1
|
Bešić E, Rajić Z, Šakić D. Advancements in electron paramagnetic resonance (EPR) spectroscopy: A comprehensive tool for pharmaceutical research. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2024:acph-2024-0037. [PMID: 39686630 DOI: 10.2478/acph-2024-0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/31/2024] [Indexed: 12/18/2024]
Abstract
Electron paramagnetic resonance (EPR) spectroscopy has long been established across various scientific disciplines for characterizing organic radicals, organometallic complexes, protein structures and dynamics, polymerization processes, and radical degradation phenomena. Despite its extensive utility in these areas, EPR spectroscopy's application within pharmaceutical science has historically been constrained, primarily due to factors such as high equipment costs, a steep learning curve, complex spectral deconvolution and analysis, and a traditional lack of emphasis on single-electron chemistry in pharmaceutical research. This review aims to provide a thorough examination of EPR spectroscopy's applications in analyzing a wide array of para-magnetic species relevant to pharmaceutical research. We detail how EPR spectroscopy can be employed to assess free radical scavenging properties in pharmaceutical compounds, elucidate drug mechanisms of action, and explore pharmacokinetics. Additionally, we investigate the role of free radicals in drug-induced toxicity and drug-membrane interactions, while also covering the application of EPR spectroscopy in drug delivery research, advanced studies of metallodrugs, and monitoring of oxygen levels in biological systems through EPR oximetry. The recent advancements in the miniaturization of EPR spectro meters have paved the way for their application in on-site and in-line mo nitoring during the manufacturing process and quality control of pharmaceutical substances and final drug formulations due to being the only direct and non-invasive detection technique for radical detection. Through these discussions, we highlight the substantial contributions of EPR spectroscopy to the advancement of pharmaceutical sciences.
Collapse
Affiliation(s)
- Erim Bešić
- University of Zagreb Faculty of Pharmacy and Biochemistry 10000 Zagreb, Croatia
| | - Zrinka Rajić
- University of Zagreb Faculty of Pharmacy and Biochemistry 10000 Zagreb, Croatia
| | - Davor Šakić
- University of Zagreb Faculty of Pharmacy and Biochemistry 10000 Zagreb, Croatia
| |
Collapse
|
2
|
Sahu ID, Lorigan GA. Perspective on the Effect of Membrane Mimetics on Dynamic Properties of Integral Membrane Proteins. J Phys Chem B 2023; 127:3757-3765. [PMID: 37078594 PMCID: PMC11610507 DOI: 10.1021/acs.jpcb.2c07324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
Integral membrane proteins are embedded into cell membranes by spanning the width of the lipid bilayer. They play an essential role in important biological functions for the survival of living organisms. Their functions include the transportation of ions and molecules across the cell membrane and initiating signaling pathways. The dynamic behavior of integral membrane proteins is very important for their function. Due to the complex behavior of integral membrane proteins in the cell membrane, studying their structural dynamics using biophysical approaches is challenging. Here, we concisely discuss challenges and recent advances in technical and methodological aspects of biophysical approaches for gleaning dynamic properties of integral membrane proteins to answer pertinent biological questions associated with these proteins.
Collapse
Affiliation(s)
- Indra D Sahu
- Natural Science Division, Campbellsville University, Campbellsville, Kentucky 42718, United States
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Gary A Lorigan
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| |
Collapse
|
3
|
Georgieva E, Karamalakova Y, Arabadzhiev G, Atanasov V, Kostandieva R, Mitev M, Tsoneva V, Yovchev Y, Nikolova G. Site-Directed Spin Labeling EPR Spectroscopy for Determination of Albumin Structural Damage and Hypoalbuminemia in Critical COVID-19. Antioxidants (Basel) 2022; 11:antiox11122311. [PMID: 36552520 PMCID: PMC9774111 DOI: 10.3390/antiox11122311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/17/2022] [Accepted: 11/20/2022] [Indexed: 11/24/2022] Open
Abstract
The main factors in the COVID-19 pathology, which can initiate extensive structural changes at the cellular and molecular levels, are the generation of free radicals in abnormal amounts, and oxidative stress. Under "oxidative shock" conditions, the proteins undergo various modifications that affect their function and activity, and as a result distribute malfunctioning protein derivatives in the body. Human serum albumin is a small globular protein characterized by a high overall binding capacity for neutral lipophilic and acidic dosage forms. The albumin concentration is crucial for the maintenance of plasma oncotic pressure, the transport of nutrients, amino acids, and drugs, the effectiveness of drug therapy, and the prevention of drug toxicity. Hypoalbuminemia and structural defects molecule in the protein suggest a risk of changed metabolism and increased plasma concentration of unbound drugs. Therefore, the albumin structural and functional changes accompanied by low protein levels can be a serious prerequisite for ineffective therapy, frequent complications, and high mortality in patients with SARS-CoV-2 infection. The current opinion aims the research community the application of Site-Directed Spin Labeling Electron Paramagnetic Resonance spectroscopy (SDSL-EPR) and 3-Maleimido-PROXYL radical in determining abnormalities of the albumin dynamics and protein concentrations in COVID-19 critical patients.
Collapse
Affiliation(s)
- Ekaterina Georgieva
- Department of “General and Clinical Pathology, Forensic Medicine, Deontology and Dermatovenerology”, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria
- Department of “Medical Chemistry and Biochemistry”, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria
| | - Yanka Karamalakova
- Department of “Medical Chemistry and Biochemistry”, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria
| | - Georgi Arabadzhiev
- Department of “Surgery and Anesthesiology”, University Hospital “Prof. Dr. St. Kirkovich”, 6000 Stara Zagora, Bulgaria
| | - Vasil Atanasov
- Forensic Toxicology Laboratory, Military Medical Academy, 3 “Sv. Georgi Sofiiski Str.”, 1606 Sofia, Bulgaria
| | - Rositsa Kostandieva
- Forensic Toxicology Laboratory, Military Medical Academy, 3 “Sv. Georgi Sofiiski Str.”, 1606 Sofia, Bulgaria
| | - Mitko Mitev
- Department of “Diagnostic Imaging”, University Hospital “Prof. Dr. St. Kirkovich”, 6000 Stara Zagora, Bulgaria
| | - Vanya Tsoneva
- Department of Propaedeutics of Internal Medicine and Clinical Laboratory, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria
| | - Yovcho Yovchev
- Department of “Surgery and Anesthesiology”, University Hospital “Prof. Dr. St. Kirkovich”, 6000 Stara Zagora, Bulgaria
| | - Galina Nikolova
- Department of “Medical Chemistry and Biochemistry”, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria
- Correspondence: ; Tel.: +359-897771301
| |
Collapse
|
4
|
Ahammad T, Khan RH, Sahu ID, Drew DL, Faul E, Li T, McCarrick RM, Lorigan GA. Pinholin S 21 mutations induce structural topology and conformational changes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183771. [PMID: 34499883 DOI: 10.1016/j.bbamem.2021.183771] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 12/23/2022]
Abstract
The bacteriophage infection cycle is terminated at a predefined time to release the progeny virions via a robust lytic system composed of holin, endolysin, and spanin proteins. Holin is the timekeeper of this process. Pinholin S21 is a prototype holin of phage Φ21, which determines the timing of host cell lysis through the coordinated efforts of pinholin and antipinholin. However, mutations in pinholin and antipinholin play a significant role in modulating the timing of lysis depending on adverse or favorable growth conditions. Earlier studies have shown that single point mutations of pinholin S21 alter the cell lysis timing, a proxy for pinholin function as lysis is also dependent on other lytic proteins. In this study, continuous wave electron paramagnetic resonance (CW-EPR) power saturation and double electron-electron resonance (DEER) spectroscopic techniques were used to directly probe the effects of mutations on the structure and conformational changes of pinholin S21 that correlate with pinholin function. DEER and CW-EPR power saturation data clearly demonstrate that increased hydrophilicity induced by residue mutations accelerate the externalization of antipinholin transmembrane domain 1 (TMD1), while increased hydrophobicity prevents the externalization of TMD1. This altered hydrophobicity is potentially accelerating or delaying the activation of pinholin S21. It was also found that mutations can influence intra- or intermolecular interactions in this system, which contribute to the activation of pinholin and modulate the cell lysis timing. This could be a novel approach to analyze the mutational effects on other holin systems, as well as any other membrane protein in which mutation directly leads to structural and conformational changes.
Collapse
Affiliation(s)
- Tanbir Ahammad
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Rasal H Khan
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Indra D Sahu
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA; Natural Science Division, Campbellsville University, Campbellsville, KY 42718, USA
| | - Daniel L Drew
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Emily Faul
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Tianyan Li
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Robert M McCarrick
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Gary A Lorigan
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA.
| |
Collapse
|
5
|
Probing Structural Dynamics of Membrane Proteins Using Electron Paramagnetic Resonance Spectroscopic Techniques. BIOPHYSICA 2021. [DOI: 10.3390/biophysica1020009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Membrane proteins are essential for the survival of living organisms. They are involved in important biological functions including transportation of ions and molecules across the cell membrane and triggering the signaling pathways. They are targets of more than half of the modern medical drugs. Despite their biological significance, information about the structural dynamics of membrane proteins is lagging when compared to that of globular proteins. The major challenges with these systems are low expression yields and lack of appropriate solubilizing medium required for biophysical techniques. Electron paramagnetic resonance (EPR) spectroscopy coupled with site directed spin labeling (SDSL) is a rapidly growing powerful biophysical technique that can be used to obtain pertinent structural and dynamic information on membrane proteins. In this brief review, we will focus on the overview of the widely used EPR approaches and their emerging applications to answer structural and conformational dynamics related questions on important membrane protein systems.
Collapse
|
6
|
Affiliation(s)
- James E. Keener
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Guozhi Zhang
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Michael T. Marty
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
- Bio5 Institute, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
7
|
Ahammad T, Drew DL, Sahu ID, Khan RH, Butcher BJ, Serafin RA, Galende AP, McCarrick RM, Lorigan GA. Conformational Differences Are Observed for the Active and Inactive Forms of Pinholin S 21 Using DEER Spectroscopy. J Phys Chem B 2020; 124:11396-11405. [PMID: 33289567 DOI: 10.1021/acs.jpcb.0c09081] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bacteriophages have evolved with an efficient host cell lysis mechanism to terminate the infection cycle and release the new progeny virions at the optimum time, allowing adaptation with the changing host and environment. Among the lytic proteins, holin controls the first and rate-limiting step of host cell lysis by permeabilizing the inner membrane at an allele-specific time known as "holin triggering". Pinholin S21 is a prototype holin of phage Φ21 which makes many nanoscale holes and destroys the proton motive force, which in turn activates the signal anchor release (SAR) endolysin system to degrade the peptidoglycan layer of the host cell and destruction of the outer membrane by the spanin complex. Like many others, phage Φ21 has two holin proteins: active pinholin and antipinholin. The antipinholin form differs only by three extra amino acids at the N-terminus; however, it has a different structural topology and conformation with respect to the membrane. Predefined combinations of active pinholin and antipinholin fine-tune the lysis timing through structural dynamics and conformational changes. Previously, the dynamics and topology of active pinholin and antipinholin were investigated (Ahammad et al. JPCB 2019, 2020) using continuous wave electron paramagnetic resonance (CW-EPR) spectroscopy. However, detailed structural studies and direct comparison of these two forms of pinholin S21 are absent in the literature. In this study, the structural topology and conformations of active pinholin (S2168) and inactive antipinholin (S2168IRS) in DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine) proteoliposomes were investigated using the four-pulse double electron-electron resonance (DEER) EPR spectroscopic technique to measure distances between transmembrane domains 1 and 2 (TMD1 and TMD2). Five sets of interlabel distances were measured via DEER spectroscopy for both the active and inactive forms of pinholin S21. Structural models of the active pinholin and inactive antipinholin forms in DMPC proteoliposomes were obtained using the experimental DEER distances coupled with the simulated annealing software package Xplor-NIH. TMD2 of S2168 remains in the lipid bilayer, and TMD1 is partially externalized from the bilayer with some residues located on the surface. However, both TMDs remain incorporated in the lipid bilayer for the inactive S2168IRS form. This study demonstrates, for the first time, clear structural topology and conformational differences between the two forms of pinholin S21. This work will pave the way for further studies of other holin systems using the DEER spectroscopic technique and will give structural insight into these biological clocks in molecular detail.
Collapse
Affiliation(s)
- Tanbir Ahammad
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Daniel L Drew
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Indra D Sahu
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States.,Natural Science Division, Campbellsville University, Campbellsville, Kentucky 42718, United States
| | - Rasal H Khan
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Brandon J Butcher
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Rachel A Serafin
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Alberto P Galende
- Natural Science Division, Campbellsville University, Campbellsville, Kentucky 42718, United States
| | - Robert M McCarrick
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Gary A Lorigan
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| |
Collapse
|
8
|
Sahu ID, Lorigan GA. Electron Paramagnetic Resonance as a Tool for Studying Membrane Proteins. Biomolecules 2020; 10:E763. [PMID: 32414134 PMCID: PMC7278021 DOI: 10.3390/biom10050763] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/24/2020] [Accepted: 04/24/2020] [Indexed: 12/13/2022] Open
Abstract
Membrane proteins possess a variety of functions essential to the survival of organisms. However, due to their inherent hydrophobic nature, it is extremely difficult to probe the structure and dynamic properties of membrane proteins using traditional biophysical techniques, particularly in their native environments. Electron paramagnetic resonance (EPR) spectroscopy in combination with site-directed spin labeling (SDSL) is a very powerful and rapidly growing biophysical technique to study pertinent structural and dynamic properties of membrane proteins with no size restrictions. In this review, we will briefly discuss the most commonly used EPR techniques and their recent applications for answering structure and conformational dynamics related questions of important membrane protein systems.
Collapse
Affiliation(s)
- Indra D. Sahu
- Natural Science Division, Campbellsville University, Campbellsville, KY 42718, USA
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Gary A. Lorigan
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| |
Collapse
|
9
|
Mutalik SP, Pandey A, Mutalik S. Nanoarchitectronics: A versatile tool for deciphering nanoparticle interaction with cellular proteins, nucleic acids and phospholipids at biological interfaces. Int J Biol Macromol 2020; 151:136-158. [DOI: 10.1016/j.ijbiomac.2020.02.150] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 12/12/2022]
|
10
|
Bolla JR, Agasid MT, Mehmood S, Robinson CV. Membrane Protein-Lipid Interactions Probed Using Mass Spectrometry. Annu Rev Biochem 2019; 88:85-111. [PMID: 30901263 DOI: 10.1146/annurev-biochem-013118-111508] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Membrane proteins that exist in lipid bilayers are not isolated molecular entities. The lipid molecules that surround them play crucial roles in maintaining their full structural and functional integrity. Research directed at investigating these critical lipid-protein interactions is developing rapidly. Advancements in both instrumentation and software, as well as in key biophysical and biochemical techniques, are accelerating the field. In this review, we provide a brief outline of structural techniques used to probe protein-lipid interactions and focus on the molecular aspects of these interactions obtained from native mass spectrometry (native MS). We highlight examples in which lipids have been shown to modulate membrane protein structure and show how native MS has emerged as a complementary technique to X-ray crystallography and cryo-electron microscopy. We conclude with a short perspective on future developments that aim to better understand protein-lipid interactions in the native environment.
Collapse
Affiliation(s)
- Jani Reddy Bolla
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom;
| | - Mark T Agasid
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom;
| | - Shahid Mehmood
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom;
| | - Carol V Robinson
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom;
| |
Collapse
|
11
|
Bali AP, Sahu ID, Craig AF, Clark EE, Burridge KM, Dolan MT, Dabney-Smith C, Konkolewicz D, Lorigan GA. Structural characterization of styrene-maleic acid copolymer-lipid nanoparticles (SMALPs) using EPR spectroscopy. Chem Phys Lipids 2019; 220:6-13. [PMID: 30796886 DOI: 10.1016/j.chemphyslip.2019.02.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 01/29/2019] [Accepted: 02/18/2019] [Indexed: 12/31/2022]
Abstract
Spectroscopic studies of membrane proteins (MPs) are challenging due to difficulties in preparing homogenous and functional lipid membrane mimetic systems into which membrane proteins can properly fold and function. It has recently been shown that styrene-maleic acid (SMA) copolymers act as a macromolecular surfactant and therefore facilitate the formation of disk-shaped lipid bilayer nanoparticles (styrene-maleic acid copolymer-lipid nanoparticles (SMALPs)) that retain structural characteristics of native lipid membranes. We have previously reported controlled synthesis of SMA block copolymers using reversible addition-fragmentation chain transfer (RAFT) polymerization, and that alteration of the weight ratio of styrene to maleic acid affects nanoparticle size. RAFT-synthesis offers superior control over SMA polymer architecture compared to conventional radical polymerization techniques used for commercially available SMA. However, the interactions between the lipid bilayer and the solubilized RAFT-synthesized SMA polymer are currently not fully understood. In this study, EPR spectroscopy was used to detect the perturbation on the acyl chain upon introduction of the RAFT-synthesized SMA polymer by attaching PC-based nitroxide spin labels to the 5th, 12th, and 16th positions along the acyl chain of the lipid bilayer. EPR spectra showed high rigidity at the 12th position compared to the other two regions, displaying similar qualities to commercially available polymers synthesized via conventional methods. In addition, central EPR linewidths and correlation time data were obtained that are consistent with previous findings.
Collapse
Affiliation(s)
- Avnika P Bali
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056, USA
| | - Indra D Sahu
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056, USA
| | - Andrew F Craig
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056, USA
| | - Emily E Clark
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056, USA
| | - Kevin M Burridge
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056, USA
| | - Madison T Dolan
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056, USA
| | - Carole Dabney-Smith
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056, USA
| | - Dominik Konkolewicz
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056, USA.
| | - Gary A Lorigan
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056, USA.
| |
Collapse
|
12
|
Development of lamellar gel phase emulsion containing baru oil ( Dipteryx alata Vog.) as a prospective delivery system for cutaneous application. Asian J Pharm Sci 2018; 13:183-190. [PMID: 32104391 PMCID: PMC7032179 DOI: 10.1016/j.ajps.2017.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 08/13/2017] [Accepted: 09/22/2017] [Indexed: 11/24/2022] Open
Abstract
The rational design of emulsions requires study of the main factors that influence their formation, physicochemical properties and, consequently, stability and performance. The use of vegetable oils in the pharmaceutical and cosmetic industries has recently become attractive. Dipteryx alata Vogel (D. alata) is an oleaginous species native to Brazil. The seeds of this species contain highly unsaturated oil with significant amounts of tocopherols and phytosterols, representing an important source of agents capable of combatting oxidative processes. In this work, a lamellar gel phase emulsion using oil extracted from the seeds of D. alata (baru) was developed. The steps involved in the development of this research were as follows: 1) development of formulations and 2) in vitro assays by simulating the evaporation of the final product after application to the skin and Electron paramagnetic resonance spectroscopy (EPR) of fatty acid spin labels was used to investigate the profile of interaction of the dispersed systems with stratum corneum (SC) lipids. The results indicate that the developed system shows no signs of instability during the storage period. Moreover, EPR studies indicated that D. alata oil and especially the developed formulation were able to increase SC lipid fluidity and extract a fatty-acid spin label from the lipid domain structures of SC, demonstrating its potential to act as a drug or skin care vehicle.
Collapse
|
13
|
Sahu ID, Lorigan GA. Site-Directed Spin Labeling EPR for Studying Membrane Proteins. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3248289. [PMID: 29607317 PMCID: PMC5828257 DOI: 10.1155/2018/3248289] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 12/21/2017] [Indexed: 01/13/2023]
Abstract
Site-directed spin labeling (SDSL) in combination with electron paramagnetic resonance (EPR) spectroscopy is a rapidly expanding powerful biophysical technique to study the structural and dynamic properties of membrane proteins in a native environment. Membrane proteins are responsible for performing important functions in a wide variety of complicated biological systems that are responsible for the survival of living organisms. In this review, a brief introduction of the most popular SDSL EPR techniques and illustrations of recent applications for studying pertinent structural and dynamic properties on membrane proteins will be discussed.
Collapse
Affiliation(s)
- Indra D. Sahu
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Gary A. Lorigan
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| |
Collapse
|
14
|
Vicente EF, Sahu ID, Crusca E, Basso LGM, Munte CE, Costa-Filho AJ, Lorigan GA, Cilli EM. HsDHODH Microdomain-Membrane Interactions Influenced by the Lipid Composition. J Phys Chem B 2017; 121:11085-11095. [PMID: 29148803 DOI: 10.1021/acs.jpcb.7b09642] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Human dihydroorotate dehydrogenase (HsDHODH) enzyme has been studied as selective target for inhibitors to block the enzyme activity, intending to prevent proliferative diseases. The N-terminal microdomain seems to play an important role in the enzyme function. However, the molecular mechanism of action and dynamics of this region are not totally understood yet. This study analyzes the interaction and conformation in model membranes of HsDHODH microdomain using peptide analogues containing the paramagnetic amino acid TOAC at strategic positions. In buffer solution, the analogues presented a disordered conformation, but acquired a high content of α-helical structure in membrane mimetics, which was found to be lipid dependent. The microdomain peptide structure in micelles showed a very different peptide conformation when compared to the reported crystal structure, displaying a conformational flexibility of its helices, promoted by the connecting loop, which might be functionally relevant. Electron spin resonance in membrane compositions containing POPC, POPE, and cardiolipin showed that interaction of the analogues was enhanced by the presence of cardiolipin, indicating that the microdomain preferentially interacts with cardiolipin-containing membranes. Therefore, the great flexibility of the microdomain and the cardiolipin affinity should be considered in further studies aimed at finding new inhibitory compounds to fight proliferative diseases.
Collapse
Affiliation(s)
- Eduardo F Vicente
- School of Science and Engineering, São Paulo State University (UNESP) , 17602-496, Tupã, SP Brazil
| | - Indra D Sahu
- Department of Chemistry and Biochemistry, Miami University , Oxford, Ohio 45056, United States
| | - Edson Crusca
- Institute of Chemistry, São Paulo State University (UNESP) , 14800-900, Araraquara, SP Brazil.,Instituto de Física de São Carlos, Universidade de São Paulo (USP) , 13566-590 - São Carlos, SP Brazil
| | - Luis G M Basso
- Laboratório de Biofísica Molecular, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo (USP) , 14040-901, Ribeirão Preto, SP Brazil
| | - Claudia E Munte
- Instituto de Física de São Carlos, Universidade de São Paulo (USP) , 13566-590 - São Carlos, SP Brazil
| | - Antonio J Costa-Filho
- Laboratório de Biofísica Molecular, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo (USP) , 14040-901, Ribeirão Preto, SP Brazil
| | - Gary A Lorigan
- Department of Chemistry and Biochemistry, Miami University , Oxford, Ohio 45056, United States
| | - Eduardo M Cilli
- Institute of Chemistry, São Paulo State University (UNESP) , 14800-900, Araraquara, SP Brazil
| |
Collapse
|
15
|
Sahu ID, Craig AF, Dunagum MM, McCarrick RM, Lorigan GA. Characterization of Bifunctional Spin Labels for Investigating the Structural and Dynamic Properties of Membrane Proteins Using EPR Spectroscopy. J Phys Chem B 2017; 121:9185-9195. [PMID: 28877443 DOI: 10.1021/acs.jpcb.7b07631] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Site-directed spin labeling (SDSL) coupled with electron paramagnetic resonance (EPR) spectroscopy is a very powerful technique to study structural and dynamic properties of membrane proteins. The most widely used spin label is methanthiosulfonate (MTSL). However, the flexibility of this spin label introduces greater uncertainties in EPR measurements obtained for determining structures, side-chain dynamics, and backbone motion of membrane protein systems. Recently, a newer bifunctional spin label (BSL), 3,4-bis(methanethiosulfonylmethyl)-2,2,5,5-tetramethyl-2,5-dihydro-1H-pyrrol-1-yloxy, has been introduced to overcome the dynamic limitations associated with the MTSL spin label and has been invaluable in determining protein backbone dynamics and inter-residue distances due to its restricted internal motion and fewer size restrictions. While BSL has been successful in providing more accurate information about the structure and dynamics of several proteins, a detailed characterization of the spin label is still lacking. In this study, we characterized BSLs by performing CW-EPR spectral line shape analysis as a function of temperature on spin-labeled sites inside and outside of the membrane for the integral membrane protein KCNE1 in POPC/POPG lipid bilayers and POPC/POPG lipodisq nanoparticles. The experimental data revealed a powder pattern spectral line shape for all of the KCNE1-BSL samples at 296 K, suggesting the motion of BSLs approaches the rigid limit regime for these series of samples. BSLs were further utilized to report for the first time the distance measurement between two BSLs attached on an integral membrane protein KCNE1 in POPC/POPG lipid bilayers at room temperature using dipolar line broadening CW-EPR spectroscopy. The CW dipolar line broadening EPR data revealed a 15 ± 2 Å distance between doubly attached BSLs on KCNE1 (53/57-63/67) which is consistent with molecular dynamics modeling and the solution NMR structure of KCNE1 which yielded a distance of 17 Å. This study demonstrates the utility of investigating the structural and dynamic properties of membrane proteins in physiologically relevant membrane mimetics using BSLs.
Collapse
Affiliation(s)
- Indra D Sahu
- Department of Chemistry and Biochemistry, Miami University , Oxford, Ohio 45056, United States
| | - Andrew F Craig
- Department of Chemistry and Biochemistry, Miami University , Oxford, Ohio 45056, United States
| | - Megan M Dunagum
- Department of Chemistry and Biochemistry, Miami University , Oxford, Ohio 45056, United States
| | - Robert M McCarrick
- Department of Chemistry and Biochemistry, Miami University , Oxford, Ohio 45056, United States
| | - Gary A Lorigan
- Department of Chemistry and Biochemistry, Miami University , Oxford, Ohio 45056, United States
| |
Collapse
|
16
|
Sahu ID, Zhang R, Dunagan MM, Craig AF, Lorigan GA. Characterization of KCNE1 inside Lipodisq Nanoparticles for EPR Spectroscopic Studies of Membrane Proteins. J Phys Chem B 2017; 121:5312-5321. [DOI: 10.1021/acs.jpcb.7b01705] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Indra D. Sahu
- Department of Chemistry and
Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Rongfu Zhang
- Department of Chemistry and
Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Megan M. Dunagan
- Department of Chemistry and
Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Andrew F. Craig
- Department of Chemistry and
Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Gary A. Lorigan
- Department of Chemistry and
Biochemistry, Miami University, Oxford, Ohio 45056, United States
| |
Collapse
|
17
|
Bottorf L, Rafferty S, Sahu ID, McCarrick RM, Lorigan GA. Utilizing Electron Spin Echo Envelope Modulation To Distinguish between the Local Secondary Structures of an α-Helix and an Amphipathic 3 10-Helical Peptide. J Phys Chem B 2017; 121:2961-2967. [PMID: 28339206 DOI: 10.1021/acs.jpcb.7b00626] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Electron spin echo envelope modulation (ESEEM) spectroscopy was used to distinguish between the local secondary structures of an α-helix and a 310-helix. Previously, we have shown that ESEEM spectroscopy in combination with site-directed spin labeling (SDSL) and 2H-labeled amino acids (i) can probe the local secondary structure of α-helices, resulting in an obvious deuterium modulation pattern, where i+4 positions generally show larger 2H ESEEM peak intensities than i+3 positions. Here, we have hypothesized that due to the unique turn periodicities of an α-helix (3.6 residues per turn with a pitch of 5.4 Å) and a 310-helix (3.1 residues per turn with a pitch of 5.8-6.0 Å), the opposite deuterium modulation pattern would be observed for a 310-helix. In this study, 2H-labeled d10-leucine (Leu) was substituted at a specific Leu residue (i) and a nitroxide spin label was positioned 2, 3, and 4 residues away (denoted i+2 to i+4) on an amphipathic model peptide, LRL8. When LRL8 is solubilized in trifluoroethanol (TFE), the peptide adopts an α-helical structure, and alternatively, forms a 310-helical secondary structure when incorporated into liposomes. Larger 2H ESEEM peaks in the FT frequency domain data were observed for the i+4 samples when compared to the i+3 samples for the α-helix whereas the opposite pattern was revealed for the 310-helix. These unique patterns provide pertinent local secondary structural information to distinguish between the α-helical and 310-helical structural motifs for the first time using this ESEEM spectroscopic approach with short data acquisition times (∼30 min) and small sample concentrations (∼100 μM) as well as providing more site-specific secondary structural information compared to other common biophysical approaches, such as CD.
Collapse
Affiliation(s)
- Lauren Bottorf
- Department of Chemistry and Biochemistry, Miami University , Oxford, Ohio 45056, United States
| | - Sophia Rafferty
- Department of Chemistry and Biochemistry, Miami University , Oxford, Ohio 45056, United States
| | - Indra D Sahu
- Department of Chemistry and Biochemistry, Miami University , Oxford, Ohio 45056, United States
| | - Robert M McCarrick
- Department of Chemistry and Biochemistry, Miami University , Oxford, Ohio 45056, United States
| | - Gary A Lorigan
- Department of Chemistry and Biochemistry, Miami University , Oxford, Ohio 45056, United States
| |
Collapse
|
18
|
Basso LGM, Mendes LFS, Costa-Filho AJ. The two sides of a lipid-protein story. Biophys Rev 2016; 8:179-191. [PMID: 28510056 DOI: 10.1007/s12551-016-0199-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 03/29/2016] [Indexed: 01/10/2023] Open
Abstract
Protein-membrane interactions play essential roles in a variety of cell functions such as signaling, membrane trafficking, and transport. Membrane-recruited cytosolic proteins that interact transiently and interfacially with lipid bilayers perform several of those functions. Experimental techniques capable of probing changes on the structural dynamics of this weak association are surprisingly limited. Among such techniques, electron spin resonance (ESR) has the enormous advantage of providing valuable local information from both membrane and protein perspectives by using intrinsic paramagnetic probes in metalloproteins or by attaching nitroxide spin labels to proteins and lipids. In this review, we discuss the power of ESR to unravel relevant structural and functional details of lipid-peripheral membrane protein interactions with special emphasis on local changes of specific regions of the protein and/or the lipids. First, we show how ESR can be used to investigate the direct interaction between a protein and a particular lipid, illustrating the case of lipid binding into a hydrophobic pocket of chlorocatechol 1,2-dioxygenase, a non-heme iron enzyme responsible for catabolism of aromatic compounds that are industrially released in the environment. In the second case, we show the effects of GPI-anchored tissue-nonspecific alkaline phosphatase, a protein that plays a crucial role in skeletal mineralization, and on the ordering and dynamics of lipid acyl chains. Then, switching to the protein perspective, we analyze the interaction with model membranes of the brain fatty acid binding protein, the major actor in the reversible binding and transport of hydrophobic ligands such as long-chain, saturated, or unsaturated fatty acids. Finally, we conclude by discussing how both lipid and protein views can be associated to address a common question regarding the molecular mechanism by which dihydroorotate dehydrogenase, an essential enzyme for the de novo synthesis of pyrimidine nucleotides, and how it fishes out membrane-embedded quinones to perform its function.
Collapse
Affiliation(s)
- Luis G Mansor Basso
- Laboratório de Biofísica Molecular, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Luis F Santos Mendes
- Laboratório de Biofísica Molecular, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Antonio J Costa-Filho
- Laboratório de Biofísica Molecular, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|