1
|
Farkas D, Thomas ML, Hassan A, Bonasera S, Hindle M, Longest W. Near Elimination of In Vitro Predicted Extrathoracic Aerosol Deposition in Children Using a Spray-Dried Antibiotic Formulation and Pediatric Air-Jet DPI. Pharm Res 2023; 40:1193-1207. [PMID: 35761163 PMCID: PMC10616820 DOI: 10.1007/s11095-022-03316-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/10/2022] [Indexed: 10/17/2022]
Abstract
PURPOSE This study evaluated the in vitro aerosol performance of a dry powder antibiotic product that combined a highly dispersible tobramycin powder with a previously optimized pediatric air-jet dry powder inhaler (DPI) across a subject age range of 2-10 years. METHODS An excipient enhanced growth (EEG) formulation of the antibiotic tobramycin (Tobi) was prepared using a small particle spray drying technique that included mannitol as the hygroscopic excipient and trileucine as the dispersion enhancer. The Tobi-EEG formulation was aerosolized using a positive-pressure pediatric air-jet DPI that included a 3D rod array. Realistic in vitro experiments were conducted in representative airway models consistent with children in the age ranges of 2-3, 5-6 and 9-10 years using oral or nose-to-lung administration, non-humidified or humidified airway conditions, and constant or age-specific air volumes. RESULTS Across all conditions tested, mouth-throat depositional loss was < 1% and nose-throat depositional loss was < 3% of loaded dose. Lung delivery efficiency was in the range of 77.3-85.1% of loaded dose with minor variations based on subject age (~ 8% absolute difference), oral or nasal administration (< 2%), and delivered air volume (< 2%). Humidified airway conditions had an insignificant impact on extrathoracic depositional loss and significantly increased aerosol size at the exit of a representative lung chamber. CONCLUSIONS In conclusion, the inhaled antibiotic product nearly eliminated extrathoracic depositional loss, demonstrated high efficiency nose-to-lung antibiotic aerosol delivery in pediatric airway models for the first time, and provided ~ 80% lung delivery efficiency with little variability across subject age and administered air volume.
Collapse
Affiliation(s)
- Dale Farkas
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, 401 West Main Street, P.O. Box 843015, Richmond, Virginia, 23284-3015 , USA
| | - Morgan L Thomas
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, 401 West Main Street, P.O. Box 843015, Richmond, Virginia, 23284-3015 , USA
| | - Amr Hassan
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Serena Bonasera
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Michael Hindle
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Worth Longest
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, 401 West Main Street, P.O. Box 843015, Richmond, Virginia, 23284-3015 , USA.
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, Virginia, USA.
| |
Collapse
|
2
|
Kennedy K, Khaddour K, Ramnath N, Weinberg F. The Lung Microbiome in Carcinogenesis and Immunotherapy Treatment. Cancer J 2023; 29:61-69. [PMID: 36957975 DOI: 10.1097/ppo.0000000000000644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
ABSTRACT Lung cancer is the leading cause of cancer-related deaths. Over the past 10 years, significant advances in treatment modalities, including immune checkpoint inhibitor (ICI) blockade, have led to improved outcomes. Elucidating predicative biomarkers in responders and nonresponders to ICI will lead to development of therapeutic targets that could enhance ICI efficacy. Recently, the gut microbiome was identified as a predictive biomarker for ICI in patients with multiple cancer types. However, it is unclear how other host microbiomes influence tumorigenesis and response to ICI. Other groups have explored the lung microbiome as it relates to carcinogenesis and immunotherapy efficacy. In this review, we explore the role of the lung microbiome in health and disease. We also review the current state of lung microbiome research as it relates to tumorigenesis and treatments and provide potential insights into how the lung microbiome could improve outcomes in patients with cancer.
Collapse
Affiliation(s)
- Kathleen Kennedy
- From the Department of Medicine, University of Illinois Chicago, Chicago, IL
| | - Karam Khaddour
- From the Department of Medicine, University of Illinois Chicago, Chicago, IL
| | | | - Frank Weinberg
- From the Department of Medicine, University of Illinois Chicago, Chicago, IL
| |
Collapse
|
3
|
Chen P, Hu T, Jiang H, Li B, Li G, Ran P, Zhou Y. Chronic exposure to ampicillin alters lung microbial composition in laboratory rat. Exp Lung Res 2023; 49:116-130. [PMID: 37318203 DOI: 10.1080/01902148.2023.2219790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/25/2023] [Indexed: 06/16/2023]
Abstract
PURPOSE High-throughput sequencing technologies have revealed that the lungs contain a variety of low biomass microbiota associated with various lung diseases. Rat model is an important tool to understand the possible causal relationship between pulmonary microbiota and diseases. Antibiotic exposure can alter the microbiota, however, a direct influence of long-term ampicillin exposure on commensal bacteria of healthy lungs has not been investigated, which could be useful in the study of the relation between microbiome and long-term lung diseases, especially in animal model-making of lung diseases. METHODS The rats were aerosolized ampicillin of different concentrations for five months, and then the effect on the lung microbiota was investigated using 16S rRNA gene sequencing. RESULTS The ampicillin treatment by a certain concentration (LA5, 0.2 ml of 5 mg/ml ampicillin) administration leads to profound changes in the rat lung microbiota but not in the low critical ampicillin concentration (LA01 and LA1, 0.1 and 1 mg/ml ampicillin), when compared to the untreated group (LC). The genus Acidobacteria_Gp16 dominated the ampicillin treated lung microbiota while the genera Brucella, Acinetobacter, Acidobacteria_Gp14, Sphingomonas, and Tumebacillus dominated the untreated lung microbiota. The predicted KEGG pathway analysis profile revealed some difference in the ampicillin treated group. CONCLUSIONS The study demonstrated the effects of different concentrations of ampicillin treatment on lung microbiota of rats in a relatively long term. It could serve as a basis for the clinical use of antibiotic and the use of ampicillin to control certain bacteria in the animal model-making of respiratory diseases such as chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Ping Chen
- GMU-GIBH Joint School of Life Sciences, the Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, Guangdong, P. R. China
| | - Tingting Hu
- GMU-GIBH Joint School of Life Sciences, the Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, Guangdong, P. R. China
| | - Haonan Jiang
- GMU-GIBH Joint School of Life Sciences, the Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, Guangdong, P. R. China
| | - Bing Li
- GMU-GIBH Joint School of Life Sciences, the Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, Guangdong, P. R. China
| | - Guiying Li
- Shool of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, Guangdong, P. R. China
| | - Pixin Ran
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou Laboratory, Bioland, Guangzhou, Guangdong, P. R. China
| | - Yumin Zhou
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Zhu M, Zhang D, Zhang L, Zhao L, Xu L, Wang B, Zhang X, Chen J, Bei Z, Wang H, Zhou D, Yang W, Song Y. Spray-Dried Inhalable Powder Formulations of Gentamicin Designed for Pneumonic Plague Therapy in a Mouse Model. Pharmaceutics 2022; 14:pharmaceutics14122646. [PMID: 36559140 PMCID: PMC9782578 DOI: 10.3390/pharmaceutics14122646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
Infection with Yersinia pestis (Y. pestis) may cause pneumonic plague, which is inevitably fatal without treatment. Gentamicin (GM), an aminoglycoside antibiotic, is a drug commonly used in the treatment of plague. However, it requires repeated intramuscular or intravenous administration. Pulmonary drug delivery is noninvasive, with the advantages of local targeting and reduced risk of systemic toxicity. In this study, GM powders were prepared using spray-drying technology. The powders displayed good physical and chemical properties and met the requirements for human pulmonary inhalation. The formulation of the powders was optimized using a 32 full factorial design. A formulation of 15% (w/w) of L-leucine was prepared, and the spray-drying process parameters using an inlet temperature of 120°C and a 15% pump rate were determined to produce the best powder. In addition, the optimized GM spray-dried powders were characterized in terms of morphology, crystallinity, powder fluidity, and aerodynamic particle size distribution analysis. In a mouse model of pneumonic plague, we compared the therapeutic effects among three administration routes, including subcutaneous injection, liquid atomization, and dry powder atomization. In conclusion, our data suggest that inhalation therapy with GM spray-dried powders is an effective treatment for pneumonic plague.
Collapse
Affiliation(s)
- Menghuan Zhu
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Dongna Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Lili Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Liangliang Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Likun Xu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Baogang Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Xinyu Zhang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Jinwei Chen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Zhuchun Bei
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Hong Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Wenhui Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
- Correspondence: (W.Y.); (Y.S.)
| | - Yabin Song
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
- Correspondence: (W.Y.); (Y.S.)
| |
Collapse
|
5
|
Cogen JD, Nichols DP, Goss CH, Somayaji R. Drugs, Drugs, Drugs: Current Treatment Paradigms in Cystic Fibrosis Airway Infections. J Pediatric Infect Dis Soc 2022; 11:S32-S39. [PMID: 36069901 DOI: 10.1093/jpids/piac061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/23/2022] [Indexed: 12/15/2022]
Abstract
Airway infections have remained a prominent feature in persons living with cystic fibrosis (CF) despite the dramatic improvements in survival in the past decades. Antimicrobials are a cornerstone of infection management for both acute and chronic maintenance indications. Historic clinical trials of antimicrobials in CF have led to the adoption of consensus guidelines for their use in clinical care. More recently, however, there are efforts to re-think the optimal use of antimicrobials for care with the advent of novel and highly effective CF transmembrane conductance regulator modulator therapies. Encouragingly, however, drug development has remained active concurrently in this space. Our review focuses on the evidence for and perspectives regarding antimicrobial use in both acute and maintenance settings in persons with CF. The therapeutic innovations in CF and how this may affect antimicrobial approaches are also discussed.
Collapse
Affiliation(s)
- Jonathan D Cogen
- Department of Pediatrics, University of Washington , Seattle, Washington, USA
| | - David P Nichols
- Department of Pediatrics, University of Washington , Seattle, Washington, USA.,Seattle Children's Research Institute, Seattle, Washington , USA
| | - Christopher H Goss
- Department of Pediatrics, University of Washington , Seattle, Washington, USA.,Seattle Children's Research Institute, Seattle, Washington , USA.,Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Ranjani Somayaji
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
6
|
Vanderstocken G, Woolf NL, Trigiante G, Jackson J, McGoldrick R. Harnessing the Potential of Enzymes as Inhaled Therapeutics in Respiratory Tract Diseases: A Review of the Literature. Biomedicines 2022; 10:biomedicines10061440. [PMID: 35740461 PMCID: PMC9220205 DOI: 10.3390/biomedicines10061440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/01/2022] [Accepted: 06/14/2022] [Indexed: 11/24/2022] Open
Abstract
Respiratory tract diseases (RTDs) are a global cause of mortality and affect patient well-being and quality of life. Specifically, there is a high unmet need concerning respiratory tract infections (RTIs) due to limitations of vaccines and increased antibiotic resistance. Enzyme therapeutics, and in particular plant-based enzymes, represent an underutilised resource in drug development warranting further attention. This literature review aims to summarise the current state of enzyme therapeutics in medical applications, with a focus on their potential to improve outcomes in RTDs, including RTIs. We used a narrative review approach, searching PubMed and clinicaltrials.gov with search terms including: enzyme therapeutics, enzyme therapy, inhaled therapeutics, botanical enzyme therapeutics, plant enzymes, and herbal extracts. Here, we discuss the advantages and challenges of enzyme therapeutics in the setting of RTDs and identify and describe several enzyme therapeutics currently used in the respiratory field. In addition, the review includes recent developments concerning enzyme therapies and plant enzymes in (pre-)clinical stages. The global coronavirus disease 2019 (COVID-19) pandemic has sparked development of several promising new enzyme therapeutics for use in the respiratory setting, and therefore, it is timely to provide a summary of recent developments, particularly as these therapeutics may also prove beneficial in other RTDs.
Collapse
Affiliation(s)
| | - Nicholas L. Woolf
- Inspira Pharmaceuticals Limited, 27 Old Gloucester Street, London WC1N 3AX, UK; (N.L.W.); (J.J.)
| | - Giuseppe Trigiante
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Queen Mary University of London, London E1 2AT, UK;
| | - Jessica Jackson
- Inspira Pharmaceuticals Limited, 27 Old Gloucester Street, London WC1N 3AX, UK; (N.L.W.); (J.J.)
| | - Rory McGoldrick
- Inspira Pharmaceuticals Limited, 27 Old Gloucester Street, London WC1N 3AX, UK; (N.L.W.); (J.J.)
- Correspondence:
| |
Collapse
|
7
|
Spencer S, Donovan T, Chalmers JD, Mathioudakis AG, McDonnell MJ, Tsang A, Leadbetter P. Intermittent prophylactic antibiotics for bronchiectasis. Cochrane Database Syst Rev 2022; 1:CD013254. [PMID: 34985761 PMCID: PMC8729825 DOI: 10.1002/14651858.cd013254.pub2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Bronchiectasis is a common but under-diagnosed chronic disorder characterised by permanent dilation of the airways arising from a cycle of recurrent infection and inflammation. Symptoms including chronic, persistent cough and productive phlegm are a significant burden for people with bronchiectasis, and the main aim of treatment is to reduce exacerbation frequency and improve quality of life. Prophylactic antibiotic therapy aims to break this infection cycle and is recommended by clinical guidelines for adults with three or more exacerbations a year, based on limited evidence. It is important to weigh the evidence for bacterial suppression against the prevention of antibiotic resistance and further evidence is required on the safety and efficacy of different regimens of intermittently administered antibiotic treatments for people with bronchiectasis. OBJECTIVES To evaluate the safety and efficacy of intermittent prophylactic antibiotics in the treatment of adults and children with bronchiectasis. SEARCH METHODS We identified trials from the Cochrane Airways Trials Register, which contains studies identified through multiple electronic searches and handsearches of other sources. We also searched trial registries and reference lists of primary studies. We conducted searches on 6 September 2021, with no restriction on language of publication. SELECTION CRITERIA We included randomised controlled trials (RCTs) of at least three months' duration comparing an intermittent regime of prophylactic antibiotics with placebo, usual care or an alternate intermittent regimen. Intermittent prophylactic administration was defined as repeated courses of antibiotics with on-treatment and off-treatment intervals of at least 14 days' duration. We included adults and children with a clinical diagnosis of bronchiectasis confirmed by high resolution computed tomography (HRCT), plain film chest radiograph, or bronchography and a documented history of recurrent chest infections. We excluded studies where participants received high dose antibiotics immediately prior to enrolment or those with a diagnosis of cystic fibrosis, allergic bronchopulmonary aspergillosis (ABPA), primary ciliary dyskinesia, hypogammaglobulinaemia, sarcoidosis, or a primary diagnosis of COPD. Our primary outcomes were exacerbation frequency and serious adverse events. We did not exclude studies on the basis of review outcomes. DATA COLLECTION AND ANALYSIS We analysed dichotomous data as odds ratios (ORs) or relative risk (RRs) and continuous data as mean differences (MDs) or standardised mean differences (SMDs). We used standard methodological procedures expected by Cochrane. We conducted GRADE assessments for the following primary outcomes: exacerbation frequency; serious adverse events and secondary outcomes: antibiotic resistance; hospital admissions; health-related quality of life. MAIN RESULTS We included eight RCTs, with interventions ranging from 16 to 48 weeks, involving 2180 adults. All evaluated one of three types of antibiotics over two to six cycles of 28 days on/off treatment: aminoglycosides, ß-lactams or fluoroquinolones. Two studies also included 12 cycles of 14 days on/off treatment with fluoroquinolones. Participants had a mean age of 63.6 years, 65% were women and approximately 85% Caucasian. Baseline FEV1 ranged from 55.5% to 62.6% predicted. None of the studies included children. Generally, there was a low risk of bias in the included studies. Antibiotic versus placebo: cycle of 14 days on/off. Ciprofloxacin reduced the frequency of exacerbations compared to placebo (RR 0.75, 95% CI 0.61 to 0.93; I2 = 65%; 2 studies, 469 participants; moderate-certainty evidence), with eight people (95% CI 6 to 28) needed to treat for an additional beneficial outcome. The intervention increased the risk of antibiotic resistance more than twofold (OR 2.14, 95% CI 1.36 to 3.35; I2 = 0%; 2 studies, 624 participants; high-certainty evidence). Serious adverse events, lung function (FEV1), health-related quality of life, and adverse effects did not differ between groups. Antibiotic versus placebo: cycle of 28 days on/off. Antibiotics did not reduce overall exacerbation frequency (RR 0.92, 95% CI 0.82 to 1.02; I2 = 0%; 8 studies, 1695 participants; high-certainty evidence) but there were fewer severe exacerbations (OR 0.59, 95% CI 0.37 to 0.93; I2 = 54%; 3 studies, 624 participants), though this should be interpreted with caution due to low event rates. The risk of antibiotic resistance was more than twofold higher based on a pooled analysis (OR 2.20, 95% CI 1.42 to 3.42; I2 = 0%; 3 studies, 685 participants; high-certainty evidence) and consistent with unpooled data from four further studies. Serious adverse events, time to first exacerbation, duration of exacerbation, respiratory-related hospital admissions, lung function, health-related quality of life and adverse effects did not differ between study groups. Antibiotic versus usual care. We did not find any studies that compared intermittent antibiotic regimens with usual care. Cycle of 14 days on/off versus cycle of 28 days on/off. Exacerbation frequency did not differ between the two treatment regimens (RR 1.02, 95% CI 0.84 to 1.24; I2 = 71%; 2 studies, 625 participants; moderate-certainty evidence) However, inconsistencies in the results from the two trials in this comparison indicate that the apparent aggregated similarities may not be reliable. There was no evidence of a difference in antibiotic resistance between groups (OR 1.00, 95% CI 0.68 to 1.48; I2 = 60%; 2 studies, 624 participants; moderate-certainty evidence). Serious adverse events, adverse effects, lung function and health-related quality of life did not differ between the two antibiotic regimens. AUTHORS' CONCLUSIONS Overall, in adults who have frequent chest infections, long-term antibiotics given at 14-day on/off intervals slightly reduces the frequency of those infections and increases antibiotic resistance. Intermittent antibiotic regimens result in little to no difference in serious adverse events. The impact of intermittent antibiotic therapy on children with bronchiectasis is unknown due to an absence of evidence, and further research is needed to establish the potential risks and benefits.
Collapse
Affiliation(s)
- Sally Spencer
- Health Research Institute, Faculty of Health, Social Care & Medicine, Edge Hill University, Ormskirk, UK
| | - Tim Donovan
- Medical Sciences, Institute of Health, University of Cumbria, Lancaster, UK
| | - James D Chalmers
- University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Alexander G Mathioudakis
- Division of Infection, Immunity and Respiratory Medicine, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Melissa J McDonnell
- Department of Respiratory Medicine, Galway University Hospital, Galway, Ireland
| | - Anthony Tsang
- Edge Hill University, Ormskirk, UK
- Department of Nursing, Faculty of Health, Social and Psychology, Manchester Metropolitan University, Manchester, UK
| | - Peter Leadbetter
- Medical School, Faculty of Health, Social Care and Medicine, Edge Hill University, Ormskirk, UK
| |
Collapse
|
8
|
Atag E, Unal F, Arslan H, Teber BG, Telhan L, Ersu R, Karakoc F, Oktem S. The effect of nebulized antibiotics in children with tracheostomy. Int J Pediatr Otorhinolaryngol 2021; 143:110665. [PMID: 33713930 DOI: 10.1016/j.ijporl.2021.110665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/05/2021] [Accepted: 02/28/2021] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Children with tracheostomy have an increased risk of bacterial colonization and infection of the lower respiratory tracts. This study aimed to investigate the effects of nebulized antibiotics on the bacterial load, the need for oral antibiotics, the number of hospitalizations, and the length of stay in the intensive care unit in tracheotomised children with persistent colonization. METHODS Children with tracheostomy and persistent bacterial colonization who were started on nebulized antibiotic therapy after a lower respiratory tract infection were included in the study. Nebulized gentamicin or colistin were used according to the results of the tracheal aspirate cultures. Demographic and clinic characteristics were recorded from one year prior until one year after initiation of nebulized antibiotic treatment. RESULTS Nebulized antibiotic treatment was initiated in 22 patients. Nebulized gentamicin was administered to 14 patients (63.6%) and colistin to 8 patients (36.4%). The median duration of treatment was 3 months (range 2-5 months). Following nebulized antibiotic treatment, median number of hospitalizations decreased from 2 (range 1.0-3.5) to 1 (range 0.0-1.5) (p = 0.04). The median length of stay in the intensive care unit reduced significantly from 89.5 days (range 43.0-82.5) to 25 days (range 7.75-62.75) after starting nebulized antibiotics (p = 0.028). Following nebulized antibiotic treatment median bacterial colony count also decreased (from 105 CFU/ml (range 105-106) to 6 × 104 CFU/ml (range 104-105); p = 0.003). There were no significant side effects during nebulized antibiotic therapy. CONCLUSIONS The use of nebulized antibiotics reduced the number of hospitalizations, length of stay in the intensive care unit, and bacterial load in tracheotomised children with persistent airway colonization without significant side effects. The use of nebulized antibiotics showed a statistically significant decrease in the measures studied. Use of nebulized antibiotics may help to decrease the health care burden of these children, families and health care system. Further studies are needed to determine the indications and optimal duration of long-term nebulized antibiotic treatment in children with tracheostomy.
Collapse
Affiliation(s)
- Emine Atag
- Medipol University Faculty of Medicine, Division of Pediatric Pulmonology, Istanbul, Turkey.
| | - Fusun Unal
- Medipol University Faculty of Medicine, Department of Pediatrics, Istanbul, Turkey
| | - Huseyin Arslan
- Medipol University Faculty of Medicine, Division of Pediatric Pulmonology, Istanbul, Turkey
| | - Burcu Gizem Teber
- Medipol University Faculty of Medicine, Department of Pediatrics, Istanbul, Turkey
| | - Leyla Telhan
- Medipol University Faculty of Medicine, Department of Pediatrics, Istanbul, Turkey
| | - Refika Ersu
- Marmara University Faculty of Medicine, Division of Pediatric Pulmonology, Istanbul, Turkey
| | - Fazilet Karakoc
- Marmara University Faculty of Medicine, Division of Pediatric Pulmonology, Istanbul, Turkey
| | - Sedat Oktem
- Medipol University Faculty of Medicine, Division of Pediatric Pulmonology, Istanbul, Turkey
| |
Collapse
|
9
|
Wang S, Zhang A, Yao X. Meta-analysis of efficacy and safety of inhaled ciprofloxacin in non-cystic fibrosis bronchiectasis patients. Intern Med J 2021; 51:1505-1512. [PMID: 33469994 DOI: 10.1111/imj.15210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 12/12/2020] [Accepted: 01/13/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND No antibiotic therapies have been approved for reducing exacerbations and preventing disease progression in non-cystic fibrosis bronchiectasis (NCFB) patients. Several recent clinical studies have investigated the feasibility of inhaled ciprofloxacin in NCFB, whereas the results were controversial. AIM No antibiotic therapies have been approved for reducing exacerbations and preventing disease progression in non-cystic fibrosis bronchiectasis (NCFB) patients. Several recent clinical studies have investigated the feasibility of inhaled ciprofloxacin in NCFB, whereas the results were controversial. We conducted the present meta-analysis to comprehensively evaluate the feasibility of inhalation of ciprofloxacin in NCFB. METHODS Electrical databases Medline and Cochrane library were retrieved from inception through December 2019. Randomised controlled trials (RCT) comparing inhaled ciprofloxacin and placebo were selected. The primary outcomes were time to first exacerbation, frequency of exacerbations and the change in sputum Pseudomonas aeruginosa density. RESULTS A total of five articles involving six RCT was finally included in the analysis. The time to first exacerbation was significantly prolonged by inhaled ciprofloxacin (hazard ratio: 0.72, 95% confidence interval (CI): 0.63-0.82), with low heterogeneity (I2 = 23%). Inhalation of ciprofloxacin significantly reduced frequency of exacerbations (risk ratio: 0.70, 95% CI: 0.61-0.79) and decreased density of sputum P. aeruginosa (weighted mean difference: -2.11 log10 CFU/g, 95% CI: -2.96 to -1.27 log10 CFU/g) compared with placebo. No significant between-group differences in mortality, adverse events and discontinuation rate were observed. Further indirect treatment comparison showed no differences between the two types of inhaled ciprofloxacin in all outcomes of interest. CONCLUSIONS Ciprofloxacin inhalation treatment significantly prolonged the time to first exacerbation, reduced the frequency of exacerbations and decreased sputum P. aeruginosa density and was well tolerated. Ciprofloxacin inhalation is promising in the treatment of NCFB.
Collapse
Affiliation(s)
- Sumei Wang
- Department of Respiratory and Critical Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Respiratory and Critical Medicine, Jiangyan TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Taizhou, China
| | - Aiping Zhang
- Department of Respiratory and Critical Medicine, Jiangyan TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Taizhou, China
| | - Xin Yao
- Department of Respiratory and Critical Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
10
|
The Lung Microbiome: A Central Mediator of Host Inflammation and Metabolism in Lung Cancer Patients? Cancers (Basel) 2020; 13:cancers13010013. [PMID: 33375062 PMCID: PMC7792810 DOI: 10.3390/cancers13010013] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/23/2020] [Accepted: 12/09/2020] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Lung cancer is the major cause of cancer related deaths in the world. New therapies have improved outcomes. Unfortunately, overall 5 year survival is ~20%. Therefore, better understanding of tumor biology and the microenvironment may lead to new therapeutic targets. The lung microbiome has recently emerged as a major mediator of host inflammation and pathogenesis. Understanding how the lung microbiota exerts its effects on lung cancer and the tumor microenvironment will allow for novel development of therapies. Abstract Lung cancer is the leading cause of cancer-related death. Over the past 5–10 years lung cancer outcomes have significantly improved in part due to better treatment options including immunotherapy and molecularly targeted agents. Unfortunately, the majority of lung cancer patients do not enjoy durable responses to these new treatments. Seminal research demonstrated the importance of the gut microbiome in dictating responses to immunotherapy in melanoma patients. However, little is known regarding how other sites of microbiota in the human body affect tumorigenesis and treatment responses. The lungs were traditionally thought to be a sterile environment; however, recent research demonstrated that the lung contains its own dynamic microbiota that can influence disease and pathophysiology. Few studies have explored the role of the lung microbiome in lung cancer biology. In this review article, we discuss the links between the lung microbiota and cancer, with particular focus on immune responses, metabolism and strategies to target the lung microbiome for cancer prevention.
Collapse
|
11
|
CFD Guided Optimization of Nose-to-Lung Aerosol Delivery in Adults: Effects of Inhalation Waveforms and Synchronized Aerosol Delivery. Pharm Res 2020; 37:199. [PMID: 32968848 DOI: 10.1007/s11095-020-02923-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/01/2020] [Indexed: 12/27/2022]
Abstract
PURPOSE The objective of this study was to optimize nose-to-lung aerosol delivery in an adult upper airway model using computational fluid dynamics (CFD) simulations in order to guide subsequent human subject aerosol delivery experiments. METHODS A CFD model was developed that included a new high-flow nasal cannula (HFNC) and pharmaceutical aerosol delivery unit, nasal cannula interface, and adult upper airway geometry. Aerosol deposition predictions in the system were validated with existing and new experimental results. The validated CFD model was then used to explore aerosol delivery parameters related to synchronizing aerosol generation with inhalation and inhalation flow rate. RESULTS The low volume of the new HFNC unit minimized aerosol transit time (0.2 s) and aerosol bolus spread (0.1 s) enabling effective synchronization of aerosol generation with inhalation. For aerosol delivery correctly synchronized with inhalation, a small particle excipient-enhanced growth delivery strategy reduced nasal cannula and nasal depositional losses each by an order of magnitude and enabled ~80% of the nebulized dose to reach the lungs. Surprisingly, nasal deposition was not sensitive to inhalation flow rate due to use of a nasal cannula interface with co-flow inhaled air and the small initial particle size. CONCLUSIONS The combination of correct aerosol synchronization and small particle size enabled high efficiency nose-to-lung aerosol delivery in adults, which was not sensitive to inhalation flow rate.
Collapse
|
12
|
Shao X, Xie Y, Zhang Y, Liu J, Ding Y, Wu M, Wang X, Deng X. Novel therapeutic strategies for treating Pseudomonas aeruginosa infection. Expert Opin Drug Discov 2020; 15:1403-1423. [PMID: 32880507 DOI: 10.1080/17460441.2020.1803274] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Persistent infections caused by the superbug Pseudomonas aeruginosa and its resistance to multiple antimicrobial agents are huge threats to patients with cystic fibrosis as well as those with compromised immune systems. Multidrug-resistant P. aeruginosa has posed a major challenge to conventional antibiotics and therapeutic approaches, which show limited efficacy and cause serious side effects. The public demand for new antibiotics is enormous; yet, drug development pipelines have started to run dry with limited targets available for inventing new antibacterial drugs. Consequently, it is important to uncover potential therapeutic targets. AREAS COVERED The authors review the current state of drug development strategies that are promising in terms of the development of novel and potent drugs to treat P. aeruginosa infection. EXPERT OPINION The prevention of P. aeruginosa infection is increasingly challenging. Furthermore, targeting key virulence regulators has great potential for developing novel anti-P. aeruginosa drugs. Additional promising strategies include bacteriophage therapy, immunotherapies, and antimicrobial peptides. Additionally, the authors believe that in the coming years, the overall network of molecular regulatory mechanism of P. aeruginosa virulence will be fully elucidated, which will provide more novel and promising drug targets for treating P. aeruginosa infections.
Collapse
Affiliation(s)
- Xiaolong Shao
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong SAR, China
| | - Yingpeng Xie
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong SAR, China
| | - Yingchao Zhang
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong SAR, China
| | - Jingui Liu
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong SAR, China
| | - Yiqing Ding
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong SAR, China
| | - Min Wu
- Department of Biomedical Sciences, University of North Dakota , Grand Forks, North Dakota, USA
| | - Xin Wang
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong SAR, China
| | - Xin Deng
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong SAR, China.,Shenzhen Research Institute, City University of Hong Kong , Shenzhen, China
| |
Collapse
|
13
|
Sahakijpijarn S, Smyth HD, Miller DP, Weers JG. Post-inhalation cough with therapeutic aerosols: Formulation considerations. Adv Drug Deliv Rev 2020; 165-166:127-141. [PMID: 32417367 DOI: 10.1016/j.addr.2020.05.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/08/2020] [Accepted: 05/10/2020] [Indexed: 01/20/2023]
Abstract
This review provides an assessment of post-inhalation cough with therapeutic aerosols. Factors that increase cough may be mitigated through design of the drug, formulation, and device. The incidence of cough is typically less than 5% for drugs with a nominal dose less than 1 mg, including asthma and COPD therapeutics. Cough increases markedly as the dose approaches 100 mg. This is due to changes in the composition of epithelial lining fluid (e.g., increases in osmolality, proton concentration). Whether an individual exhibits cough depends on their degree of sensitization to mechanical and chemical stimuli. Hypersensitivity is increased when the drug, formulation or disease result in increases in lung inflammation. Cough related to changes in epithelial lining fluid composition can be limited by using insoluble neutral forms of drugs and excipients.
Collapse
|
14
|
Velino C, Carella F, Adamiano A, Sanguinetti M, Vitali A, Catalucci D, Bugli F, Iafisco M. Nanomedicine Approaches for the Pulmonary Treatment of Cystic Fibrosis. Front Bioeng Biotechnol 2019; 7:406. [PMID: 31921811 PMCID: PMC6927921 DOI: 10.3389/fbioe.2019.00406] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 11/27/2019] [Indexed: 12/24/2022] Open
Abstract
Cystic fibrosis (CF) is a genetic disease affecting today nearly 70,000 patients worldwide and characterized by a hypersecretion of thick mucus difficult to clear arising from the defective CFTR protein. The over-production of the mucus secreted in the lungs, along with its altered composition and consistency, results in airway obstruction that makes the lungs susceptible to recurrent and persistent bacterial infections and endobronchial chronic inflammation, which are considered the primary cause of bronchiectasis, respiratory failure, and consequent death of patients. Despite the difficulty of treating the continuous infections caused by pathogens in CF patients, various strategies focused on the symptomatic therapy have been developed during the last few decades, showing significant positive impact on prognosis. Moreover, nowadays, the discovery of CFTR modulators as well as the development of gene therapy have provided new opportunity to treat CF. However, the lack of effective methods for delivery and especially targeted delivery of therapeutics specifically to lung tissues and cells limits the efficiency of the treatments. Nanomedicine represents an extraordinary opportunity for the improvement of current therapies and for the development of innovative treatment options for CF previously considered hard or impossible to treat. Due to the peculiar environment in which the therapies have to operate characterized by several biological barriers (pulmonary tract, mucus, epithelia, bacterial biofilm) the use of nanotechnologies to improve and enhance drug delivery or gene therapies is an extremely promising way to be pursued. The aim of this review is to revise the currently used treatments and to outline the most recent progresses about the use of nanotechnology for the management of CF.
Collapse
Affiliation(s)
- Cecilia Velino
- Institute of Science and Technology for Ceramics (ISTEC), National Research Council (CNR), Faenza, Italy
| | - Francesca Carella
- Institute of Science and Technology for Ceramics (ISTEC), National Research Council (CNR), Faenza, Italy
| | - Alessio Adamiano
- Institute of Science and Technology for Ceramics (ISTEC), National Research Council (CNR), Faenza, Italy
| | - Maurizio Sanguinetti
- Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Dipartimento di Scienze di Laboratorio e Infettivologiche, Rome, Italy
- Istituto di Microbiologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Alberto Vitali
- Institute for the Chemistry of Molecular Recognition (ICRM), National Research Council (CNR), c/o Institute of Biochemistry and Clinical Biochemistry, Catholic University, Rome, Italy
| | - Daniele Catalucci
- Humanitas Clinical and Research Center, Rozzano, Italy
- Institute of Genetic and Biomedical Research (IRGB) - UOS Milan, National Research Council (CNR), Milan, Italy
| | - Francesca Bugli
- Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Dipartimento di Scienze di Laboratorio e Infettivologiche, Rome, Italy
- Istituto di Microbiologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Michele Iafisco
- Institute of Science and Technology for Ceramics (ISTEC), National Research Council (CNR), Faenza, Italy
| |
Collapse
|
15
|
Le Noci V, Guglielmetti S, Arioli S, Camisaschi C, Bianchi F, Sommariva M, Storti C, Triulzi T, Castelli C, Balsari A, Tagliabue E, Sfondrini L. Modulation of Pulmonary Microbiota by Antibiotic or Probiotic Aerosol Therapy: A Strategy to Promote Immunosurveillance against Lung Metastases. Cell Rep 2019; 24:3528-3538. [PMID: 30257213 DOI: 10.1016/j.celrep.2018.08.090] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/04/2018] [Accepted: 08/29/2018] [Indexed: 12/15/2022] Open
Abstract
Pulmonary immunological tolerance to inhaled particulates might create a permissive milieu for lung metastasis. Lung microbiota contribute to pulmonary tolerance; here, we explored whether its manipulation via antibiotic or probiotic aerosolization favors immune response against melanoma metastasis. In lungs of vancomycin/neomycin-aerosolized mice, a decrease in bacterial load was associated with reduced regulatory T cells and enhanced T cell and NK cell activation that paralleled a significant reduction of melanoma B16 lung metastases. Reduction of metastases also occurred in lungs transplanted with bacterial isolates from antibiotic-treated lungs. Aerosolized Lactobacillus rhamnosus strongly promoted immunity against B16 lung metastases as well. Furthermore, probiotics or antibiotics improved chemotherapy activity against advanced B16 metastases. Thus, we identify a role for lung microbiota in metastasis and show that its targeting via aerosolization is a therapy that can prevent metastases and enhance responses to chemotherapy.
Collapse
Affiliation(s)
- Valentino Le Noci
- Molecular Targeting Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan 20133, Italy
| | - Simone Guglielmetti
- Dipartimento di Scienze degli Alimenti, Nutrizione e Ambiente (DeFENS), Università degli Studi di Milano, Milan 20133, Italy
| | - Stefania Arioli
- Dipartimento di Scienze degli Alimenti, Nutrizione e Ambiente (DeFENS), Università degli Studi di Milano, Milan 20133, Italy
| | - Chiara Camisaschi
- Immunotherapy Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan 20133, Italy
| | - Francesca Bianchi
- Molecular Targeting Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan 20133, Italy; Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan 20133, Italy
| | - Michele Sommariva
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan 20133, Italy
| | - Chiara Storti
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan 20133, Italy
| | - Tiziana Triulzi
- Molecular Targeting Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan 20133, Italy
| | - Chiara Castelli
- Immunotherapy Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan 20133, Italy
| | - Andrea Balsari
- Molecular Targeting Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan 20133, Italy; Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan 20133, Italy.
| | - Elda Tagliabue
- Molecular Targeting Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan 20133, Italy
| | - Lucia Sfondrini
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan 20133, Italy
| |
Collapse
|
16
|
Spence BM, Longest W, Wei X, Dhapare S, Hindle M. Development of a High-Flow Nasal Cannula and Pharmaceutical Aerosol Combination Device. J Aerosol Med Pulm Drug Deliv 2019; 32:224-241. [PMID: 30855199 PMCID: PMC6685196 DOI: 10.1089/jamp.2018.1488] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 01/04/2019] [Indexed: 11/12/2022] Open
Abstract
Background: Aerosol drug delivery to the lungs is known to be very inefficient during all forms of noninvasive ventilation, especially when the aerosol is administered simultaneously with high-flow nasal cannula (HFNC) therapy. The objective of this study was to develop a new combination device based on vibrating mesh nebulizers that can provide continuously heated and humidified HFNC therapy as well as on-demand pharmaceutical aerosols with high efficiency. Methods: The combination device implemented separate mesh nebulizers for generating humidity (humidity nebulizer) and delivering the medical aerosol (drug nebulizer). Nebulizers were actuated in an alternating manner with the drug nebulizer delivering the medication during a portion of an adult inhalation cycle. Aerosol entered a small-volume mixing region where it was combined with ventilation gas flow and then entered a heating channel to produce small particles that are desirable for nose-to-lung administration and potentially excipient enhanced growth delivery. Three assessment methods (analytical calculations, computational fluid dynamics [CFD] simulations, and in vitro experiments in three-dimensional [3D] printed devices) were used to improve the mixer-heater design to minimize depositional drug losses, maintain a small device volume, ensure sufficient droplet evaporation, and control the outlet thermodynamic conditions. Results: For an initial configuration (Design 1), good agreement in performance metrics was found using the three assessment methods. Based on insights gained from the CFD simulations of Design 1, two new designs were developed and produced with 3D printing. Experimental analysis indicated that the new designs both achieved <5% depositional loss in the mixer-heater even with cyclic operation and sufficiently dried the aerosol from an initial size of 5.3 μm to an outlet size of ∼1.0 μm. A combination of the applied methods indicated that the desired thermodynamic conditions of HFNC therapy were also met. Conclusions: Multiple methodological approaches were used concurrently to develop a new combination device for administering HFNC therapy and simultaneous on-demand pharmaceutical aerosols to the lungs with high efficiency. The use of a small-volume mixer-heater (<100 mL), synchronization of the drug nebulizer with inhalation, and small outlet particle size should enable high efficiency lung delivery of the aerosol.
Collapse
Affiliation(s)
- Benjamin M. Spence
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, Virginia
| | - Worth Longest
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, Virginia
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, Virginia
| | - Xiangyin Wei
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, Virginia
| | - Sneha Dhapare
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, Virginia
| | - Michael Hindle
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
17
|
Inhaled Antibiotics for Mycobacterial Lung Disease. Pharmaceutics 2019; 11:pharmaceutics11070352. [PMID: 31331119 PMCID: PMC6680843 DOI: 10.3390/pharmaceutics11070352] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/09/2019] [Accepted: 07/15/2019] [Indexed: 12/22/2022] Open
Abstract
Mycobacterial lung diseases are an increasing global health concern. Tuberculosis and nontuberculous mycobacteria differ in disease severity, epidemiology, and treatment strategies, but there are also a number of similarities. Pathophysiology and disease progression appear to be relatively similar between these two clinical diagnoses, and as a result these difficult to treat pulmonary infections often require similarly extensive treatment durations of multiple systemic drugs. In an effort to improve treatment outcomes for all mycobacterial lung diseases, a significant body of research has investigated the use of inhaled antibiotics. This review discusses previous research into inhaled development programs, as well as ongoing research of inhaled therapies for both nontuberculous mycobacterial lung disease, and tuberculosis. Due to the similarities between the causative agents, this review will also discuss the potential cross-fertilization of development programs between these similar-yet-different diseases. Finally, we will discuss some of the perceived difficulties in developing a clinically utilized inhaled antibiotic for mycobacterial diseases, and potential arguments in favor of the approach.
Collapse
|
18
|
Tewes F, Bahamondez-Canas TF, Smyth HDC. Efficacy of Ciprofloxacin and Its Copper Complex against Pseudomonas aeruginosa Biofilms. AAPS PharmSciTech 2019; 20:205. [PMID: 31144198 DOI: 10.1208/s12249-019-1417-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 05/14/2019] [Indexed: 11/30/2022] Open
Abstract
A limitation of antibiotic treatments for P. aeruginosa (PA) chronic pulmonary infections is the reduced efficacy due to sub-therapeutic concentrations at the infection site and the development of biofilm. A novel approach to sustain ciprofloxacin (CIP) in the lungs after inhalation is to reduce its pulmonary absorption rate by its complexation with copper (CIP-Cu). This study aimed to evaluate the antimicrobial action of cationic CIP-Cu complex in PA biofilms in terms of drug concentration and time. Two PA strains, PA01 and PA14, were grown to form biofilm layers in equilibrium with planktonic cells. Static parameters such as pyoverdine production by planktonic cells, enzymatic activity within biofilms, and biofilm biomass 24 h after the addition of CIP or CIP-Cu were evaluated. Also, the kinetic effects of CIP and CIP-Cu on biofilms were evaluated by bioluminescence kinetics using transgenic strains. No differences were observed between CIP and CIP-Cu in terms of efficacy against biofilms, validating the potential of using this complex to treat PA biofilms. Interestingly, CIP concentrations slightly below the MIC value against planktonic bacteria stimulated both virulence and biofilm PA01 production. These results support the need to accurately achieve high CIP concentration in the lungs, which can be more easily achieved by pulmonary delivery of advanced CIP formulations (CIP-metal complexes or liposomal CIP) instead of the oral administration of free CIP.
Collapse
|
19
|
Clofazimine inhalation suspension for the aerosol treatment of pulmonary nontuberculous mycobacterial infections. J Cyst Fibros 2019; 18:714-720. [PMID: 31138497 DOI: 10.1016/j.jcf.2019.05.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/15/2019] [Accepted: 05/17/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Nontuberculous mycobacteria are recognized as a concern for cystic fibrosis (CF) patients due to increasing disease prevalence and the potential for detrimental effects on pulmonary function and mortality. Current standard of care involves prolonged systemic antibiotics, which often leads to severe side effects and poor treatment outcomes. In this study, we investigated the tolerability and efficacy of a novel inhaled therapeutic in various mouse models of NTM disease. METHODS We developed clofazimine inhalation suspension (CIS), a novel formulation of clofazimine developed for inhaled administration. To determine the efficacy, minimum inhibitory concentrations were evaluated in vitro, and tolerability of CIS was determined in naïve mouse models over various durations. After establishing tolerability, CIS efficacy was tested in in vivo infection models of both Mycobacterium avium and M. abscessus. Lung and plasma clofazimine levels after chronic treatments were evaluated. RESULTS Clofazimine inhalation suspension demonstrated antimycobacterial activity in vitro, with MIC values between 0.125 and 2 μg/ml for M. avium complex and M. abscessus. Administration into naïve mice showed that CIS was well tolerated at doses up to 28 mg/kg over 28 consecutive treatments. In vivo, CIS was shown to significantly improve bacterial elimination from the lungs of both acute and chronic NTM-infected mouse models compared to negative controls and oral clofazimine administration. Clofazimine concentrations in lung tissue were approximately four times higher than the concentrations achieved by oral dosing. CONCLUSION Clofazimine inhalation suspension is a well tolerated and effective novel therapeutic candidate for the treatment of NTM infections in mouse models.
Collapse
|
20
|
Analysis of the Pseudomonas aeruginosa Aminoglycoside Differential Resistomes Allows Defining Genes Simultaneously Involved in Intrinsic Antibiotic Resistance and Virulence. Antimicrob Agents Chemother 2019; 63:AAC.00185-19. [PMID: 30858210 DOI: 10.1128/aac.00185-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 03/01/2019] [Indexed: 01/04/2023] Open
Abstract
High-throughput screening of transposon insertion libraries is a useful strategy for unveiling bacterial genes whose inactivation results in an altered susceptibility to antibiotics. A potential drawback of these studies is they are usually based on just one model antibiotic for each structural family, under the assumption that the results can be extrapolated to all members of said family. To determine if this simplification is appropriate, we have analyzed the susceptibility of mutants of Pseudomonas aeruginosa to four aminoglycosides. Our results indicate that each mutation produces different effects on susceptibility to the tested aminoglycosides, with only two mutants showing similar changes in the susceptibility to all studied aminoglycosides. This indicates that the role of a particular gene in the resistome of a given antibiotic should not be generalized to other members of the same structural family. Five aminoglycoside-hypersusceptible mutants inactivating glnD, hflK, PA2798, PA3016, and hpf were chosen for further analysis in order to elucidate if lower aminoglycoside susceptibility correlates with cross-hypersusceptibility to other antibiotics and with impaired virulence. Our results indicate that glnD inactivation leads to increased cross-susceptibility to different antibiotics. The mutant in this gene is strongly impaired in virulence traits such as pyocyanin production, biofilm formation, elastase activity, and swarming motility and the ability to kill Caenorhabditis elegans Thus, GlnD might be an interesting target for developing antibiotic coadjuvants with antiresistance and antivirulence properties against P. aeruginosa.
Collapse
|
21
|
Gaspar MC, Pais AA, Sousa JJ, Brillaut J, Olivier JC. Development of levofloxacin-loaded PLGA microspheres of suitable properties for sustained pulmonary release. Int J Pharm 2019; 556:117-124. [DOI: 10.1016/j.ijpharm.2018.12.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 12/01/2018] [Accepted: 12/04/2018] [Indexed: 01/01/2023]
|
22
|
Reychler G, Michotte JB. Development challenges and opportunities in aerosol drug delivery systems in non-invasive ventilation in adults. Expert Opin Drug Deliv 2019; 16:153-162. [DOI: 10.1080/17425247.2019.1572111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Gregory Reychler
- Institut de Recherche Expérimentale et Clinique (IREC), Pôle de Pneumologie, ORL & Dermatologie, Université Catholique de Louvain, Bruxelles, Belgium
- Service de Pneumologie, Cliniques universitaires Saint-Luc, Bruxelles, Belgium
| | - Jean-Bernard Michotte
- Institut de Recherche Expérimentale et Clinique (IREC), Pôle de Pneumologie, ORL & Dermatologie, Université Catholique de Louvain, Bruxelles, Belgium
- Filière Physiothérapie, School of Health Sciences (HESAV), HES-SO University of Applied Sciences and Arts Western Switzerland, Lausanne, Switzerland
| |
Collapse
|
23
|
Longest PW, Bass K, Dutta R, Rani V, Thomas ML, El-Achwah A, Hindle M. Use of computational fluid dynamics deposition modeling in respiratory drug delivery. Expert Opin Drug Deliv 2019; 16:7-26. [PMID: 30463458 PMCID: PMC6529297 DOI: 10.1080/17425247.2019.1551875] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 11/20/2018] [Indexed: 10/27/2022]
Abstract
INTRODUCTION Respiratory drug delivery is a surprisingly complex process with a number of physical and biological challenges. Computational fluid dynamics (CFD) is a scientific simulation technique that is capable of providing spatially and temporally resolved predictions of many aspects related to respiratory drug delivery from initial aerosol formation through respiratory cellular drug absorption. AREAS COVERED This review article focuses on CFD-based deposition modeling applied to pharmaceutical aerosols. Areas covered include the development of new complete-airway CFD deposition models and the application of these models to develop a next-generation of respiratory drug delivery strategies. EXPERT OPINION Complete-airway deposition modeling is a valuable research tool that can improve our understanding of pharmaceutical aerosol delivery and is already supporting medical hypotheses, such as the expected under-treatment of the small airways in asthma. These complete-airway models are also being used to advance next-generation aerosol delivery strategies, like controlled condensational growth. We envision future applications of CFD deposition modeling to reduce the need for human subject testing in developing new devices and formulations, to help establish bioequivalence for the accelerated approval of generic inhalers, and to provide valuable new insights related to drug dissolution and clearance leading to microdosimetry maps of drug absorption.
Collapse
Affiliation(s)
- P. Worth Longest
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA, USA
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, USA
| | - Karl Bass
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Rabijit Dutta
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Vijaya Rani
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Morgan L. Thomas
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Ahmad El-Achwah
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Michael Hindle
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
24
|
Orally inhaled migraine therapy: Where are we now? Adv Drug Deliv Rev 2018; 133:131-134. [PMID: 30189270 DOI: 10.1016/j.addr.2018.08.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/28/2018] [Accepted: 08/31/2018] [Indexed: 11/24/2022]
Abstract
Migraine is a debilitating disease that affects 9% of men and 19% of women worldwide with high socio-economic and personal impact. Surveys indicate that migraineurs are among the most dissatisfied with available therapeutic options, predominantly given via oral or injectable routes, citing side effects as the primary complaint. Orally inhaled therapies have the potential to offer faster onset of action with fewer side effects compared to existing therapies, yet development has stalled. Despite emerging therapies such as calcitonin gene-related peptide antagonists, there are still good opportunities for repositioning migraine drugs via the inhaled route.
Collapse
|
25
|
Amaro R, Panagiotarakou M, Alcaraz V, Torres A. The efficacy of inhaled antibiotics in non-cystic fibrosis bronchiectasis. Expert Rev Respir Med 2018; 12:683-691. [DOI: 10.1080/17476348.2018.1500179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Rosanel Amaro
- Department of Pulmonary Medicine, Institut Clinic del Tórax, Hospital Clinic of Barcelona - Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona - Ciber de Enfermedades Respiratorias (Ciberes), Barcelona, Spain
| | - Meropi Panagiotarakou
- Department of Pneumonology, Sotiria General Hospital for Thoracic Diseases, Medical School, University of Athens, Barcelona, Spain
| | - Victoria Alcaraz
- Fundació Clínic per la Recerca Biomèdica, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Antoni Torres
- Department of Pulmonary Medicine, Institut Clinic del Tórax, Hospital Clinic of Barcelona - Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona - Ciber de Enfermedades Respiratorias (Ciberes), Barcelona, Spain
| |
Collapse
|
26
|
Jaggupilli A, Singh N, De Jesus VC, Gounni MS, Dhanaraj P, Chelikani P. Chemosensory bitter taste receptors (T2Rs) are activated by multiple antibiotics. FASEB J 2018; 33:501-517. [PMID: 30011231 DOI: 10.1096/fj.201800521rr] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Many medications including antibiotics taste bitter. The potency of these antibiotics on the 25 bitter taste receptors (T2Rs) in humans remains poorly understood. Here we characterize by sensory and structure-function analyses how antibiotics frequently used to treat airway infections in cystic fibrosis activate multiple human T2Rs. The potency of the broad-spectrum antibiotics, tobramycin, levofloxacin, and azithromycin on the highly expressed T2Rs in airways, T2R4, T2R14, and T2R20 was pursued. The amino acids and structural features of T2R4, T2R14, and T2R20 important for antibiotic binding were characterized by mutational analysis in heterologous cell-based assays. Strikingly, extracellular loop 2 in T2Rs performs a key function in binding to antibiotics with contribution from residues in transmembrane helices. Our results suggest that different antibiotics activate multiple T2Rs with different potencies. An understanding of the nonantibiotic and physiologic effects mediated through T2Rs on the host cells is much needed.-Jaggupilli, A., Singh, N., De Jesus, V. C., Gounni, M. S., Dhanaraj, P., Chelikani, P. Chemosensory bitter taste receptors (T2Rs) are activated by multiple antibiotics.
Collapse
Affiliation(s)
- Appalaraju Jaggupilli
- Manitoba Chemosensory Biology Research Group and Department of Oral Biology, University of Manitoba, Children's Hospital Research Institute of Manitoba (CHRIM), Winnipeg, Manitoba, Canada
| | - Nisha Singh
- Manitoba Chemosensory Biology Research Group and Department of Oral Biology, University of Manitoba, Children's Hospital Research Institute of Manitoba (CHRIM), Winnipeg, Manitoba, Canada
| | - Vivianne Cruz De Jesus
- Manitoba Chemosensory Biology Research Group and Department of Oral Biology, University of Manitoba, Children's Hospital Research Institute of Manitoba (CHRIM), Winnipeg, Manitoba, Canada
| | - Mohamed Soussi Gounni
- Manitoba Chemosensory Biology Research Group and Department of Oral Biology, University of Manitoba, Children's Hospital Research Institute of Manitoba (CHRIM), Winnipeg, Manitoba, Canada
| | - Premnath Dhanaraj
- Manitoba Chemosensory Biology Research Group and Department of Oral Biology, University of Manitoba, Children's Hospital Research Institute of Manitoba (CHRIM), Winnipeg, Manitoba, Canada
| | - Prashen Chelikani
- Manitoba Chemosensory Biology Research Group and Department of Oral Biology, University of Manitoba, Children's Hospital Research Institute of Manitoba (CHRIM), Winnipeg, Manitoba, Canada
| |
Collapse
|
27
|
Ponzano S, Nigrelli G, Fregonese L, Eichler I, Bertozzi F, Bandiera T, Galietta LJ, Papaluca M. A European regulatory perspective on cystic fibrosis: current treatments, trends in drug development and translational challenges for CFTR modulators. Eur Respir Rev 2018; 27:170124. [PMID: 29653946 PMCID: PMC9488862 DOI: 10.1183/16000617.0124-2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 02/14/2018] [Indexed: 12/18/2022] Open
Abstract
In this article we analyse the current authorised treatments and trends in early drug development for cystic fibrosis (CF) in the European Union for the time period 2000-2016. The analysis indicates a significant improvement in the innovation and development of new potential medicines for CF, shifting from products that act on the symptoms of the disease towards new therapies targeting the cause of CF. However, within these new innovative medicines, results for CF transmembrane conductance regulator (CFTR) modulators indicate that one major challenge for turning a CF concept product into an actual medicine for the benefit of patients resides in the fact that, although pre-clinical models have shown good predictability for certain mutations, a good correlation to clinical end-points or biomarkers (e.g. forced expiratory volume in 1 s and sweat chloride) for all mutations has not yet been achieved. In this respect, the use of alternative end-points and innovative nonclinical models could be helpful for the understanding of those translational discrepancies. Collaborative endeavours to promote further research and development in these areas as well as early dialogue with the regulatory bodies available at the European competent authorities are recommended.
Collapse
Affiliation(s)
- Stefano Ponzano
- European Medicines Agency, London, UK
- D3 PharmaChemistry, Istituto Italiano di Tecnologia, Genova, Italy
| | | | | | | | - Fabio Bertozzi
- D3 PharmaChemistry, Istituto Italiano di Tecnologia, Genova, Italy
| | - Tiziano Bandiera
- D3 PharmaChemistry, Istituto Italiano di Tecnologia, Genova, Italy
| | | | | |
Collapse
|
28
|
Treatment compliance in cystic fibrosis patients with chronic Pseudomonas aeruginosa infection treated with tobramycin inhalation powder: The FREE study. Respir Med 2018; 138:88-94. [DOI: 10.1016/j.rmed.2018.03.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 12/08/2017] [Accepted: 03/30/2018] [Indexed: 11/18/2022]
|
29
|
Spencer S, Felix LM, Milan SJ, Normansell R, Goeminne PC, Chalmers JD, Donovan T. Oral versus inhaled antibiotics for bronchiectasis. Cochrane Database Syst Rev 2018; 3:CD012579. [PMID: 29587336 PMCID: PMC6494273 DOI: 10.1002/14651858.cd012579.pub2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Bronchiectasis is a chronic inflammatory disease characterised by a recurrent cycle of respiratory bacterial infections associated with cough, sputum production and impaired quality of life. Antibiotics are the main therapeutic option for managing bronchiectasis exacerbations. Evidence suggests that inhaled antibiotics may be associated with more effective eradication of infective organisms and a lower risk of developing antibiotic resistance when compared with orally administered antibiotics. However, it is currently unclear whether antibiotics are more effective when administered orally or by inhalation. OBJECTIVES To determine the comparative efficacy and safety of oral versus inhaled antibiotics in the treatment of adults and children with bronchiectasis. SEARCH METHODS We identified studies through searches of the Cochrane Airways Group's Specialised Register (CAGR), which is maintained by the Information Specialist for the group. The Register contains trial reports identified through systematic searches of bibliographic databases including the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, CINAHL, AMED, and PsycINFO, and handsearching of respiratory journals and meeting abstracts. We also searched ClinicalTrials.gov and the WHO trials portal. We searched all databases in March 2018 and imposed no restrictions on language of publication. SELECTION CRITERIA We planned to include studies which compared oral antibiotics with inhaled antibiotics. We would have considered short-term use (less than four weeks) for treating acute exacerbations separately from longer-term use as a prophylactic (4 weeks or more). We would have considered both intraclass and interclass comparisons. We planned to exclude studies if the participants received continuous or high-dose antibiotics immediately before the start of the trial, or if they have received a diagnosis of cystic fibrosis (CF), sarcoidosis, active allergic bronchopulmonary aspergillosis or active non-tuberculous Mycobacterial infection. DATA COLLECTION AND ANALYSIS Two review authors independently applied study inclusion criteria to the searches and we planned for two authors to independently extract data, assess risk of bias and assess overall quality of the evidence using GRADE criteria. We also planned to obtain missing data from the authors where possible and to report results with 95% confidence intervals (CIs). MAIN RESULTS We identified 313 unique records through database searches and a further 21 records from trial registers. We excluded 307 on the basis of title and abstract alone and a further 27 after examining full-text reports. No studies were identified for inclusion in the review. AUTHORS' CONCLUSIONS There is currently no evidence indicating whether orally administered antibiotics are more beneficial compared to inhaled antibiotics. The recent ERS bronchiectasis guidelines provide a practical approach to the use of long-term antibiotics. New research is needed comparing inhaled versus oral antibiotic therapies for bronchiectasis patients with a history of frequent exacerbations, to establish which approach is the most effective in terms of exacerbation prevention, quality of life, treatment burden, and antibiotic resistance.
Collapse
Affiliation(s)
- Sally Spencer
- Edge Hill UniversityPostgraduate Medical InstituteSt Helens RoadOrmskirkLancashireUKL39 4QP
| | - Lambert M Felix
- University of OxfordNuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS)OxfordUK
| | | | - Rebecca Normansell
- St George's, University of LondonCochrane Airways, Population Health Research InstituteLondonUKSW17 0RE
| | | | - James D Chalmers
- University of Dundee, Ninewells Hospital and Medical SchoolDundeeUK
| | - Tim Donovan
- University of CumbriaMedical and Sport SciencesLancasterUK
| | | |
Collapse
|
30
|
Proof-of-Principle Study in a Murine Lung Infection Model of Antipseudomonal Activity of Phage PEV20 in a Dry-Powder Formulation. Antimicrob Agents Chemother 2018; 62:AAC.01714-17. [PMID: 29158280 DOI: 10.1128/aac.01714-17] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 11/10/2017] [Indexed: 01/21/2023] Open
Abstract
Bacteriophage therapy is a promising alternative treatment to antibiotics, as it has been documented to be efficacious against multidrug-resistant bacteria with minimal side effects. Several groups have demonstrated the efficacy of phage suspension in vivo to treat lung infections using intranasal delivery; however, phage dry-powder administration to the lungs has not yet been explored. Powder formulations provide potential advantages over a liquid formulation, including easy storage, transport, and administration. The purpose of this study was to assess the bactericidal activities of phage dry-powder formulations against multidrug-resistant (MDR) strain Pseudomonas aeruginosa FADDI-PA001 in a mouse lung infection model. Phage PEV20 spray dried with lactose and leucine produced an inhalable powder at a concentration of 2 × 107 PFU/mg. P. aeruginosa lung infection was established by intratracheal administration of the bacterial suspension to neutropenic mice. At 2 h after the bacterial challenge, the infected mice were treated with 2 mg of the phage powder using a dry-powder insufflator. At 24 h after the phage treatment, the bacterial load in the lungs was decreased by 5.3 log10 (P < 0.0005) in the phage-treated group compared with that in the nontreated group. Additionally, the phage concentration in the lungs was increased by 1 log10 at 24 h in the treated group. These results demonstrate the feasibility of a pulmonary delivery of phage PEV20 dry-powder formulation for the treatment of lung infection caused by antibiotic-resistant P. aeruginosa.
Collapse
|
31
|
Cho DY, Lim DJ, Mackey C, Skinner D, Weeks C, Gill GS, Hergenrother RW, Swords WE, Woodworth BA. Preclinical therapeutic efficacy of the ciprofloxacin-eluting sinus stent for Pseudomonas aeruginosa sinusitis. Int Forum Allergy Rhinol 2018; 8:482-489. [PMID: 29334430 DOI: 10.1002/alr.22081] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 12/09/2017] [Accepted: 12/12/2017] [Indexed: 12/25/2022]
Abstract
BACKGROUND The ciprofloxacin-coated sinus stent (CSS) has unique therapeutic potential to deliver antibiotics to the sinuses. The objective of this study is to evaluate the efficacy of the CSS stent in eliminating Pseudomonas aeruginosa infection in a rabbit model of sinusitis. METHODS A ciprofloxacin-eluting sinus stent was created by coating ciprofloxacin/Eudragit RS100 on biodegradable poly-D/L-lactic acid (2 mg). After analyzing in-vitro inhibition of P aeruginosa (PAO-1 strain) biofilm formation, a total of 8 stents (4 shams, 4 CSSs) were placed unilaterally in rabbit maxillary sinuses via dorsal sinusotomy after inducing infection for 1 week with PAO-1. Animals were assessed 2 weeks after stent insertion with nasal endoscopy, sinus culture, computed tomography (CT) scan, histopathology, and scanning electron microscopy (SEM). RESULTS PAO-1 biofilm formation was significantly reduced in vitro with exposure to the CSS (p < 0.0001). Insertion of the stent in PAO-1-infected rabbits for 2 weeks resulted in significant improvement in sinusitis according to endoscopy scoring (p < 0.0001) and CT scoring (p < 0.002). Histology and SEM revealed marked improvement in the structure of the mucosa and submucosa with no detection of biofilm structures in the CSS cohort. CONCLUSION Although this study had a small sample size, we identified robust therapeutic efficacy of the CSS by reducing bacterial load and biofilm formation of P aeruginosa in a preclinical model of sinusitis after placement for 2 weeks.
Collapse
Affiliation(s)
- Do-Yeon Cho
- Department of Otolaryngology, University of Alabama at Birmingham, Birmingham, AL.,Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL
| | - Dong-Jin Lim
- Department of Otolaryngology, University of Alabama at Birmingham, Birmingham, AL
| | - Calvin Mackey
- Department of Otolaryngology, University of Alabama at Birmingham, Birmingham, AL
| | - Daniel Skinner
- Department of Otolaryngology, University of Alabama at Birmingham, Birmingham, AL
| | - Christopher Weeks
- Department of Otolaryngology, University of Alabama at Birmingham, Birmingham, AL
| | - Gobind S Gill
- Department of Otolaryngology, University of Alabama at Birmingham, Birmingham, AL
| | - Robert W Hergenrother
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL
| | - William E Swords
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL.,Department of Medicine, University of Alabama at Birmingham, Birmingham, AL.,Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL
| | - Bradford A Woodworth
- Department of Otolaryngology, University of Alabama at Birmingham, Birmingham, AL.,Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
32
|
Spencer S, Felix LM, Milan SJ, Normansell R, Goeminne PC, Chalmers JD. Oral versus inhaled antibiotics for non-cystic fibrosis bronchiectasis. Hippokratia 2017. [DOI: 10.1002/14651858.cd012579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sally Spencer
- Edge Hill University; Faculty of Health and Social Care; St Helens Road Ormskirk Lancashire UK L39 4QP
| | - Lambert M Felix
- Edge Hill University; Faculty of Health and Social Care; St Helens Road Ormskirk Lancashire UK L39 4QP
| | | | - Rebecca Normansell
- St George's, University of London; Cochrane Airways, Population Health Research Institute; London UK SW17 0RE
| | | | - James D Chalmers
- University of Dundee, Ninewells Hospital and Medical School; Dundee UK
| |
Collapse
|
33
|
Pharmacokinetics/Pharmacodynamics of Pulmonary Delivery of Colistin against Pseudomonas aeruginosa in a Mouse Lung Infection Model. Antimicrob Agents Chemother 2017; 61:AAC.02025-16. [PMID: 28031207 DOI: 10.1128/aac.02025-16] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 12/11/2016] [Indexed: 11/20/2022] Open
Abstract
Colistin is often administered by inhalation and/or the parenteral route for the treatment of respiratory infections caused by multidrug-resistant (MDR) Pseudomonas aeruginosa However, limited pharmacokinetic (PK) and pharmacodynamic (PD) data are available to guide the optimization of dosage regimens of inhaled colistin. In the present study, PK of colistin in epithelial lining fluid (ELF) and plasma was determined following intratracheal delivery of a single dose of colistin solution in neutropenic lung-infected mice. The antimicrobial efficacy of intratracheal delivery of colistin against three P. aeruginosa strains (ATCC 27853, PAO1, and FADDI-PA022; MIC of 1 mg/liter for all strains) was examined in a neutropenic mouse lung infection model. Dose fractionation studies were conducted over 2.64 to 23.8 mg/kg of body weight/day. The inhibitory sigmoid model was employed to determine the PK/PD index that best described the antimicrobial efficacy of pulmonary delivery of colistin. In both ELF and plasma, the ratio of the area under the unbound concentration-time profile to MIC (fAUC/MIC) was the PK/PD index that best described the antimicrobial effect in mouse lung infection (R2 = 0.60 to 0.84 for ELF and 0.64 to 0.83 for plasma). The fAUC/MIC targets required to achieve stasis against the three strains were 684 to 1,050 in ELF and 2.15 to 3.29 in plasma. The histopathological data showed that pulmonary delivery of colistin reduced infection-caused pulmonary inflammation and preserved the integrity of the lung epithelium, although colistin introduced mild pulmonary inflammation in healthy mice. This study showed pulmonary delivery of colistin provides antimicrobial effects against MDR P. aeruginosa lung infections superior to those of parenteral administrations. For the first time, our results provide important preclinical PK/PD information for optimization of inhaled colistin therapy.
Collapse
|
34
|
Hamed K, Debonnett L. Tobramycin inhalation powder for the treatment of pulmonary Pseudomonas aeruginosa infection in patients with cystic fibrosis: a review based on clinical evidence. Ther Adv Respir Dis 2017; 11:193-209. [PMID: 28470103 PMCID: PMC5933546 DOI: 10.1177/1753465817691239] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Chronic airway infection with Pseudomonas aeruginosa is a major cause of increased morbidity and mortality in patients with cystic fibrosis (CF). The development and widespread use of nebulized antibacterial therapies, including tobramycin inhalation solution (TIS), has led to improvements in lung function and quality of life. However, the use of nebulizers is associated with various challenges, including extended administration times and the need for frequent device cleaning and disinfection. Multiple therapies are required for patients with CF, which poses a considerable burden to patients, and adherence to the recommended treatments remains a challenge. Tobramycin inhalation powder (TIP), delivered via the T-326 Inhaler, has been shown to have similar clinical efficacy and safety as compared to TIS, with improved patient convenience, satisfaction, and treatment adherence. Long-term safety studies have shown that TIP was well tolerated with no unexpected adverse events in patients with CF. This review of the TIP pivotal and postmarketing studies reinforces the well-established efficacy and safety profile of TIP and its ease of use.
Collapse
Affiliation(s)
| | - Laurie Debonnett
- Novartis Pharmaceuticals Corporation, One Health
Plaza, East Hanover, NJ 07936-1080, USA
| |
Collapse
|
35
|
Cho DY, Hoffman K, Skinner D, Mackey C, Lim DJ, Alexander GC, Bae CY, Han DK, Jun HW, Woodworth BA. Tolerance and pharmacokinetics of a ciprofloxacin-coated sinus stent in a preclinical model. Int Forum Allergy Rhinol 2016; 7:352-358. [PMID: 27992118 DOI: 10.1002/alr.21892] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 10/22/2016] [Accepted: 11/04/2016] [Indexed: 01/12/2023]
Abstract
BACKGROUND Chronic rhinosinusitis (CRS) is often associated with persistent bacterial infection despite the use of systemic antibiotics. Topically administered antibiotics are an alternative strategy, but require effective local concentrations, prolonged mucosal contact time, minor systemic absorption, and minimal depletion. The objectives of the current study were to analyze the in vitro release rate and in vivo drug delivery tolerance and pharmacokinetics of a ciprofloxacin-coated sinus stent (CSS). METHODS The CSS (2 mg) was created from biodegradable poly-D/L-lactic acid. After analyzing in vitro release profile, CSSs were placed unilaterally in maxillary sinuses of 16 rabbits via dorsal sinusotomy. Animals were euthanized between 1 and 3 weeks postoperatively. Ciprofloxacin concentrations in the sinus tissue and plasmas were assessed using high-performance liquid chromatography. Radiological and histological evaluations were performed. RESULTS In the in vitro release profile, an initial burst release was observed over the first 24 hours, followed by sustained release through the 14-day time point. In the rabbit model, ciprofloxacin was continuously released from the stent up to 3 weeks at doses >50 ng/mL. Histologic examination found no evidence of inflammation, epithelial ulceration, or bony reaction upon euthanization of the animals at 21 days. Computed tomography also demonstrated no signs of mucosal edema or opacification in the sinus. CONCLUSION The CSS was safe in this preclinical model and sustained release was observed in both the in vitro and in vivo analyses. The innovative stent design coated with ciprofloxacin may provide a unique therapeutic strategy for chronic rhinosinusitis (CRS).
Collapse
Affiliation(s)
- Do-Yeon Cho
- Department of Otolaryngology-Head and Neck Surgery, University of Alabama at Birmingham, Birmingham, AL.,Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL
| | - Kyle Hoffman
- Department of Otolaryngology-Head and Neck Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - Daniel Skinner
- Department of Otolaryngology-Head and Neck Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - Calvin Mackey
- Department of Otolaryngology-Head and Neck Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - Dong Jin Lim
- Department of Otolaryngology-Head and Neck Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - Grant C Alexander
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL
| | - Chae Yun Bae
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL
| | - Dong Keun Han
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), University of Science and Technology (UST), Seoul, South Korea
| | - Ho-Wook Jun
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL
| | - Bradford A Woodworth
- Department of Otolaryngology-Head and Neck Surgery, University of Alabama at Birmingham, Birmingham, AL.,Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
36
|
The Impact of Inspiratory Flow Rate on Drug Delivery to the Lungs with Dry Powder Inhalers. Pharm Res 2016; 34:507-528. [PMID: 27738953 DOI: 10.1007/s11095-016-2050-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 10/05/2016] [Indexed: 12/29/2022]
Abstract
Current marketed dry powder inhalers utilize the energy from patient inspiration to fluidize and disperse bulk powder agglomerates into respirable particles. Variations in patient inspiratory flow profiles can lead to marked differences in total lung dose (TLD), and ultimately patient outcomes for an inhaled therapeutic. The present review aims to quantitate the flow rate dependence in TLD observed for a number of drug/device combinations using a new metric termed the Q index. With this data in hand, the review explores key attributes in the design of the formulation and device that impact flow rate dependence. The review also proposes alternative in vitro methods to assess flow rate dependence that more closely align with in vivo observations. Finally, the impact of variations in flow rate on lung function for inhaled bronchodilators is summarized.
Collapse
|
37
|
Kłodzińska SN, Priemel PA, Rades T, Mørck Nielsen H. Inhalable Antimicrobials for Treatment of Bacterial Biofilm-Associated Sinusitis in Cystic Fibrosis Patients: Challenges and Drug Delivery Approaches. Int J Mol Sci 2016; 17:E1688. [PMID: 27735846 PMCID: PMC5085720 DOI: 10.3390/ijms17101688] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/05/2016] [Accepted: 08/29/2016] [Indexed: 02/07/2023] Open
Abstract
Bacterial biofilm-associated chronic sinusitis in cystic fibrosis (CF) patients caused by Pseudomonas aeruginosa infections and the lack of available treatments for such infections constitute a critical aspect of CF disease management. Currently, inhalation therapies to combat P. aeruginosa infections in CF patients are focused mainly on the delivery of antimicrobials to the lower respiratory tract, disregarding the sinuses. However, the sinuses constitute a reservoir for P. aeruginosa growth, leading to re-infection of the lungs, even after clearing an initial lung infection. Eradication of P. aeruginosa from the respiratory tract after a first infection has been shown to delay chronic pulmonary infection with the bacteria for up to two years. The challenges with providing a suitable treatment for bacterial sinusitis include: (i) identifying a suitable antimicrobial compound; (ii) selecting a suitable device to deliver the drug to the sinuses and nasal cavities; and (iii) applying a formulation design, which will mediate delivery of a high dose of the antimicrobial directly to the site of infection. This review highlights currently available inhalable antimicrobial formulations for treatment and management of biofilm infections caused by P. aeruginosa and discusses critical issues related to novel antimicrobial drug formulation design approaches.
Collapse
Affiliation(s)
- Sylvia Natalie Kłodzińska
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| | - Petra Alexandra Priemel
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| | - Thomas Rades
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| | - Hanne Mørck Nielsen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
38
|
Gaspar MC, Grégoire N, Sousa JJ, Pais AA, Lamarche I, Gobin P, Olivier JC, Marchand S, Couet W. Pulmonary pharmacokinetics of levofloxacin in rats after aerosolization of immediate-release chitosan or sustained-release PLGA microspheres. Eur J Pharm Sci 2016; 93:184-91. [DOI: 10.1016/j.ejps.2016.08.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/21/2016] [Accepted: 08/11/2016] [Indexed: 01/08/2023]
|
39
|
Abstract
There is a high prevalence of Pseudomonas aeruginosa in patients with cystic fibrosis and clear epidemiologic links between chronic infection and morbidity and mortality exist. Prevention and early identification of infection are critical, and stand to improve with the advent of new vaccines and laboratory methods. Once the organism is identified, a variety of treatment options are available. Aggressive use of antipseudomonal antibiotics is the standard of care for acute pulmonary exacerbations in cystic fibrosis, and providers must take into account specific patient characteristics when making treatment decisions related to antibiotic selection, route and duration of administration, and site of care.
Collapse
Affiliation(s)
- Jaideep S Talwalkar
- Department of Internal Medicine, Yale School of Medicine, 333 Cedar Street, PO Box 208086, New Haven, CT 06520-8086, USA; Department of Pediatrics, Yale School of Medicine, 333 Cedar Street, PO Box 208084, New Haven, CT 06520-8084, USA.
| | - Thomas S Murray
- Department of Medical Sciences, Frank H Netter MD School of Medicine, Quinnipiac University, 275 Mount Carmel Avenue, Hamden, CT 06518, USA; Division of Infectious Diseases and Immunology, Connecticut Children's Medical Center, 282 Washington Street, Suite 2L, Hartford, CT 06106, USA
| |
Collapse
|
40
|
Thomas N, Thorn C, Richter K, Thierry B, Prestidge C. Efficacy of Poly-Lactic-Co-Glycolic Acid Micro- and Nanoparticles of Ciprofloxacin Against Bacterial Biofilms. J Pharm Sci 2016; 105:3115-3122. [PMID: 27519649 DOI: 10.1016/j.xphs.2016.06.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 05/27/2016] [Accepted: 06/24/2016] [Indexed: 12/13/2022]
Abstract
Bacterial biofilms are associated with a number of recurring infectious diseases and are a major cause for antibiotic resistance. Despite the broad use of polymeric microparticles and nanoparticles in biomedical research, it is not clear which particle size is more effective against biofilms. The purpose of this study was to evaluate the efficacy of sustained release poly-lactic-co-glycolic acid (PLGA) micro- and nanoparticles containing ciprofloxacin against biofilms of Staphylococcus aureus and Pseudomonas aeruginosa. The PLGA particles were prepared by the double emulsion solvent evaporation method. The resulting microparticles (12 μm) and nanoparticles (300 nm) contained drug loads of 7.3% and 4.5% (wt/wt) ciprofloxacin, respectively. Drug release was complete within 1 week following comparable release profiles for both particle sizes. Micro- and nanoparticles demonstrated a similar in vitro antibiofilm performance against mature P aeruginosa and S aureus with marked differences between the 2 strains. The sustained release of ciprofloxacin from micro- and nanoparticles over 6 days was equally effective as the continuous treatment with ciprofloxacin solution over the same period resulting in the eradication of culturable S aureus suggesting that reformulation of ciprofloxacin as sustained release PLGA micro- and nanoparticles might be valuable formulation approaches for the treatment of biofilms.
Collapse
Affiliation(s)
- Nicky Thomas
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5000, Australia; Basil Hetzel Institute for Translational Health Research, Woodville South, SA 5011, Australia.
| | - Chelsea Thorn
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Katharina Richter
- Basil Hetzel Institute for Translational Health Research, Woodville South, SA 5011, Australia; Department of Otolaryngology Head and Neck Surgery, University of Adelaide, Adelaide, SA 5000, Australia
| | - Benjamin Thierry
- Future Industries Institute, University of South Australia, Mawson Lakes, Adelaide, SA 5095, Australia
| | - Clive Prestidge
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5000, Australia
| |
Collapse
|
41
|
Michotte JB, Staderini E, Le Pennec D, Dugernier J, Rusu R, Roeseler J, Vecellio L, Liistro G, Reychler G. In Vitro Comparison of a Vibrating Mesh Nebulizer Operating in Inspiratory Synchronized and Continuous Nebulization Modes During Noninvasive Ventilation. J Aerosol Med Pulm Drug Deliv 2016; 29:328-36. [PMID: 27310926 DOI: 10.1089/jamp.2015.1243] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
UNLABELLED Backround: Coupling nebulization with noninvasive ventilation (NIV) has been shown to be effective in patients with respiratory diseases. However, a breath-synchronized nebulization option that could potentially improve drug delivery by limiting drug loss during exhalation is currently not available on bilevel ventilators. The aim of this in vitro study was to compare aerosol delivery of amikacin with a vibrating mesh nebulizer coupled to a single-limb circuit bilevel ventilator, using conventional continuous (Conti-Neb) and experimental inspiratory synchronized (Inspi-Neb) nebulization modes. METHODS Using an adult lung bench model of NIV, we tested a vibrating mesh device coupled with a bilevel ventilator in both nebulization modes. Inspi-Neb delivered aerosol only during the whole inspiratory phase, whereas Conti-Neb delivered aerosol continuously. The nebulizer was charged with amikacin solution (250 mg/3 mL) and placed at two different positions: between the lung and exhalation port and between the ventilator and exhalation port. Inhaled, expiratory wasted and circuit lost doses were assessed by residual gravimetric method. Particle size distribution of aerosol delivered at the outlet of the ventilator circuit during both nebulization modes was measured by laser diffraction method. RESULTS Regardless of the nebulizer position, Inspi-Neb produced higher inhaled dose (p < 0.01; +6.3% to +16.8% of the nominal dose), lower expiratory wasted dose (p < 0.05; -2.7% to -42.6% of the nominal dose), and greater respirable dose (p < 0.01; +8.4% to +15.2% of the nominal dose) than Conti-Neb. The highest respirable dose was found with the nebulizer placed between the lung and exhalation port (48.7% ± 0.3% of the nominal dose). CONCLUSIONS During simulated NIV with a single-limb circuit bilevel ventilator, the use of inspiratory synchronized vibrating mesh nebulization improves respirable dose and reduces drug loss of amikacin compared with continuous vibrating mesh nebulization.
Collapse
Affiliation(s)
- Jean-Bernard Michotte
- 1 Western Switzerland University of Applied Sciences-Haute Ecole de Santé Vaud , Filière Physiothérapie, Switzerland .,6 Cliniques Universitaires Saint-Luc, Service de Pneumologie; Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique (IREC) , Pôle de Pneumologie, ORL & Dermatologie, Belgium
| | - Enrico Staderini
- 2 Western Switzerland University of Applied Sciences-Haute Ecole d'Ingénierie et de Gestion du Canton de Vaud , Switzerland
| | - Deborah Le Pennec
- 3 Centre d'Etude des Pathologies Respiratoires, INSERM, UMR 1100, Equipe "aérosolthérapie et biomédicaments à visée respiratoire," Université de Tours , Faculté de Médecine, France
| | - Jonathan Dugernier
- 4 Cliniques Universitaires Saint-Luc , Service des soins intensifs, Belgium
| | - Rares Rusu
- 2 Western Switzerland University of Applied Sciences-Haute Ecole d'Ingénierie et de Gestion du Canton de Vaud , Switzerland
| | - Jean Roeseler
- 4 Cliniques Universitaires Saint-Luc , Service des soins intensifs, Belgium
| | - Laurent Vecellio
- 3 Centre d'Etude des Pathologies Respiratoires, INSERM, UMR 1100, Equipe "aérosolthérapie et biomédicaments à visée respiratoire," Université de Tours , Faculté de Médecine, France .,5 Aerodrug, DTF, Faculty of Medicine, Tours University , France
| | - Giuseppe Liistro
- 6 Cliniques Universitaires Saint-Luc, Service de Pneumologie; Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique (IREC) , Pôle de Pneumologie, ORL & Dermatologie, Belgium
| | - Grégory Reychler
- 6 Cliniques Universitaires Saint-Luc, Service de Pneumologie; Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique (IREC) , Pôle de Pneumologie, ORL & Dermatologie, Belgium
| |
Collapse
|
42
|
Bassetti M, Luyt CE, Nicolau DP, Pugin J. Characteristics of an ideal nebulized antibiotic for the treatment of pneumonia in the intubated patient. Ann Intensive Care 2016; 6:35. [PMID: 27090532 PMCID: PMC4835402 DOI: 10.1186/s13613-016-0140-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/06/2016] [Indexed: 02/06/2023] Open
Abstract
Gram-negative pneumonia in patients who are intubated and mechanically ventilated is associated with increased morbidity and mortality as well as higher healthcare costs compared with those who do not have the disease. Intravenous antibiotics are currently the standard of care for pneumonia; however, increasing rates of multidrug resistance and limited penetration of some classes of antimicrobials into the lungs reduce the effectiveness of this treatment option, and current clinical cure rates are variable, while recurrence rates remain high. Inhaled antibiotics may have the potential to improve outcomes in this patient population, but their use is currently restricted by a lack of specifically formulated solutions for inhalation and a limited number of devices designed for the nebulization of antibiotics. In this article, we review the challenges clinicians face in the treatment of pneumonia and discuss the characteristics that would constitute an ideal inhaled drug/device combination. We also review inhaled antibiotic options currently in development for the treatment of pneumonia in patients who are intubated and mechanically ventilated.
Collapse
Affiliation(s)
- Matteo Bassetti
- Infectious Diseases Clinic, Santa Maria Misericordia University Hospital, Udine, Italy.
| | - Charles-Edouard Luyt
- Service de Réanimation, Institut de Cardiologie, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France.,Sorbonne Universités, UPMC Université Paris 06, INSERM, UMRS_1166-ICAN Institute of Cardiometabolism and Nutrition, Paris, France
| | - David P Nicolau
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, USA
| | - Jérôme Pugin
- Service des Soins Intensifs, University Hospitals of Geneva and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
43
|
Stigliani M, Haghi M, Russo P, Young PM, Traini D. Antibiotic transport across bronchial epithelial cells: Effects of molecular weight, LogP and apparent permeability. Eur J Pharm Sci 2016; 83:45-51. [DOI: 10.1016/j.ejps.2015.12.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 09/24/2015] [Accepted: 12/07/2015] [Indexed: 10/22/2022]
|
44
|
Orizondo RA, Fabiilli ML, Morales MA, Cook KE. Effects of Emulsion Composition on Pulmonary Tobramycin Delivery During Antibacterial Perfluorocarbon Ventilation. J Aerosol Med Pulm Drug Deliv 2016; 29:251-9. [PMID: 26741303 DOI: 10.1089/jamp.2015.1235] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The effectiveness of inhaled aerosolized antibiotics is limited by poor ventilation of infected airways. Pulmonary delivery of antibiotics emulsified within liquid perfluorocarbon [antibacterial perfluorocarbon ventilation (APV)] may solve this problem through better airway penetration and improved spatial uniformity. However, little work has been done to explore emulsion formulation and the corresponding effects on drug delivery during APV. This study investigated the effects of emulsion formulation on emulsion stability and the pharmacokinetics of antibiotic delivery via APV. METHODS Gravity-driven phase separation was examined in vitro by measuring emulsion tobramycin concentrations at varying heights within a column of emulsion over 4 hours for varying values of fluorosurfactant concentration (Cfs = 5-48 mg/mL H2O). Serum and pulmonary tobramycin concentrations in rats were then evaluated following pulmonary tobramycin delivery via aerosol or APV utilizing sufficiently stable emulsions of varying aqueous volume percentage (Vaq = 1%-5%), aqueous tobramycin concentration (Ct = 20-100 mg/mL), and Cfs (15 and 48 mg/mL H2O). RESULTS In vitro assessment showed sufficient spatial and temporal uniformity of tobramycin dispersion within emulsion for Cfs ≥15 mg/mL H2O, while lower Cfs values showed insufficient emulsification even immediately following preparation. APV with stable emulsion formulations resulted in 5-22 times greater pulmonary tobramycin concentrations at 4 hours post-delivery relative to aerosolized delivery. Concentrations increased with emulsion formulations utilizing increased Vaq (with decreased Ct) and, to a lesser extent, increased Cfs. CONCLUSIONS The emulsion stability necessary for effective delivery is retained at Cfs values as low as 15 mg/mL H2O. Additionally, the pulmonary retention of antibiotic delivered via APV is significantly greater than that of aerosolized delivery and can be most effectively increased by increasing Vaq and decreasing Ct. APV has been further proven as an effective means of pulmonary drug delivery with the potential to significantly improve antibiotic therapy for lung disease patients.
Collapse
Affiliation(s)
- Ryan A Orizondo
- 1 Department of Biomedical Engineering, University of Michigan , Ann Arbor, Michigan
| | - Mario L Fabiilli
- 2 Department of Radiology, University of Michigan , Ann Arbor, Michigan
| | - Marissa A Morales
- 3 Department of Chemical Engineering, Carnegie Mellon University , Pittsburgh, Pennsylvania.,4 Department of Biomedical Engineering, Carnegie Mellon University , Pittsburgh, Pennsylvania
| | - Keith E Cook
- 4 Department of Biomedical Engineering, Carnegie Mellon University , Pittsburgh, Pennsylvania
| |
Collapse
|
45
|
Kim S, Kwag DS, Lee DJ, Lee ES. Acidic pH-stimulated tiotropium release from porous poly(lactic-co-glycolic acid) microparticles containing 3-diethylaminopropyl-conjugated hyaluronate. Macromol Res 2016. [DOI: 10.1007/s13233-016-4022-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
46
|
Tewes F, Brillault J, Lamy B, O'Connell P, Olivier JC, Couet W, Healy AM. Ciprofloxacin-Loaded Inorganic-Organic Composite Microparticles To Treat Bacterial Lung Infection. Mol Pharm 2015; 13:100-12. [PMID: 26641021 DOI: 10.1021/acs.molpharmaceut.5b00543] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Ciprofloxacin (CIP) is an antibiotic that has been clinically trialed for the treatment of lung infections by aerosolization. However, CIP is rapidly systemically absorbed after lung administration, increasing the risk for subtherapeutic pulmonary concentrations and resistant bacteria selection. In the presence of calcium, CIP forms complexes that reduce its oral absorption. Such complexation may slow down CIP absorption from the lung thereby maintaining high concentration in this tissue. Thus, we developed inhalable calcium-based inorganic-organic composite microparticles to sustain CIP within the lung. The aerodynamics and micromeritic properties of the microparticles were characterized. FTIR and XRD analysis suggest that the inorganic component of the particles comprised amorphous calcium carbonate and amorphous calcium formate, and that CIP and calcium interact in a 1:1 stoichiometry in the particles. CIP was completely released from the microparticles within 7 h, with profiles showing a slight dependence on pH (5 and 7.4) compared to the dissolution of pure CIP. Transport studies of CIP across Calu-3 cell monolayers, in the presence of various calcium concentrations, showed a decrease of up to 84% in CIP apparent permeability. The apparent minimum inhibitory concentration of CIP against Pseudomonas aeruginosa and Staphylococcus aureus was not changed in the presence of the same calcium concentration. These results indicate that the designed particles should provide sustained levels of CIP with therapeutic effect in the lung. With these microparticles, it should be possible to control CIP pharmacokinetics within the lung, based on controlled CIP release from the particles and reduced apparent permeability across the epithelial barrier due to the cation-CIP interaction.
Collapse
Affiliation(s)
- Frederic Tewes
- INSERM U 1070, Pôle Biologie-Santé, Faculté de Médecine & Pharmacie, Université de Poitiers , CHU de Poitiers, 86022 Poitiers Cedex, France.,School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, University of Dublin , Dublin 2, Ireland
| | - Julien Brillault
- INSERM U 1070, Pôle Biologie-Santé, Faculté de Médecine & Pharmacie, Université de Poitiers , CHU de Poitiers, 86022 Poitiers Cedex, France
| | - Barbara Lamy
- INSERM U 1070, Pôle Biologie-Santé, Faculté de Médecine & Pharmacie, Université de Poitiers , CHU de Poitiers, 86022 Poitiers Cedex, France
| | - Peter O'Connell
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, University of Dublin , Dublin 2, Ireland
| | - Jean-Christophe Olivier
- INSERM U 1070, Pôle Biologie-Santé, Faculté de Médecine & Pharmacie, Université de Poitiers , CHU de Poitiers, 86022 Poitiers Cedex, France
| | - William Couet
- INSERM U 1070, Pôle Biologie-Santé, Faculté de Médecine & Pharmacie, Université de Poitiers , CHU de Poitiers, 86022 Poitiers Cedex, France
| | - Anne Marie Healy
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, University of Dublin , Dublin 2, Ireland
| |
Collapse
|
47
|
Arora S, Haghi M, Young PM, Kappl M, Traini D, Jain S. Highly respirable dry powder inhalable formulation of voriconazole with enhanced pulmonary bioavailability. Expert Opin Drug Deliv 2015; 13:183-93. [DOI: 10.1517/17425247.2016.1114603] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
48
|
Investigation on the aerosol performance of dry powder inhalation hypromellose capsules with different lubricant levels. Int J Pharm 2015. [DOI: 10.1016/j.ijpharm.2015.07.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
49
|
Gaspar MC, Sousa JJS, Pais AACC, Cardoso O, Murtinho D, Serra MES, Tewes F, Olivier JC. Optimization of levofloxacin-loaded crosslinked chitosan microspheres for inhaled aerosol therapy. Eur J Pharm Biopharm 2015; 96:65-75. [PMID: 26192459 DOI: 10.1016/j.ejpb.2015.07.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 07/09/2015] [Accepted: 07/11/2015] [Indexed: 01/08/2023]
Abstract
The aim of this work was the development of innovative levofloxacin-loaded swellable microspheres (MS) for the dry aerosol therapy of pulmonary chronicPseudomonas aeruginosainfections in Cystic Fibrosis patients. In a first step, a factorial design was applied to optimize formulations of chitosan-based MS with glutaraldehyde as crosslinker. After optimization, other crosslinkers (genipin, glutaric acid and glyceraldehyde) were tested. Analyses of MS included aerodynamic and swelling properties, morphology, drug loading, thermal and chemical characteristics,in vitroantibacterial activity and drug release studies. The prepared MS presented a drug content ranging from 39.8% to 50.8% of levofloxacin in an amorphous or dispersed state, antibacterial activity and fast release profiles. The highest degree of swelling was obtained for MS crosslinked with glutaric acid and genipin. These formulations also presented satisfactory aerodynamic properties, making them a promising alternative, in dry-powder inhalers, to levofloxacin solution for inhalation.
Collapse
Affiliation(s)
- Marisa C Gaspar
- Center for Neuroscience and Cell Biology, University of Coimbra, 3000-548 Coimbra, Portugal; Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.
| | - João J S Sousa
- Center for Neuroscience and Cell Biology, University of Coimbra, 3000-548 Coimbra, Portugal; Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | | | - Olga Cardoso
- Laboratory of Microbiology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Dina Murtinho
- Chemistry Department, University of Coimbra, 3004-535 Coimbra, Portugal
| | - M Elisa S Serra
- Chemistry Department, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Frédéric Tewes
- INSERM, U 1070, Pôle Biologie Santé, 1 rue Georges Bonnet, TSA 51106, 86073 Poitiers Cedex 9, France; University of Poitiers, Faculty of Medicine and Pharmacy, 6 rue de la Milétrie, TSA 51115, 86073 Poitiers Cedex 9, France
| | - Jean-Christophe Olivier
- INSERM, U 1070, Pôle Biologie Santé, 1 rue Georges Bonnet, TSA 51106, 86073 Poitiers Cedex 9, France; University of Poitiers, Faculty of Medicine and Pharmacy, 6 rue de la Milétrie, TSA 51115, 86073 Poitiers Cedex 9, France
| |
Collapse
|
50
|
Bhardwaj A, Mehta S, Yadav S, Singh SK, Grobler A, Goyal AK, Mehta A. Pulmonary delivery of antitubercular drugs using spray-dried lipid–polymer hybrid nanoparticles. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2015; 44:1544-55. [DOI: 10.3109/21691401.2015.1062389] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Ankur Bhardwaj
- Department of Research Innovation & Consultancy, Punjab Technical University, Kapurthala, India
- IIPC Lab, Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | - Shuchi Mehta
- IIPC Lab, Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | - Shailendra Yadav
- Division of Microbiology, CSIR-CDRI, Lucknow, Uttar Pradesh, India
| | - Sudheer K. Singh
- Division of Microbiology, CSIR-CDRI, Lucknow, Uttar Pradesh, India
| | - Anne Grobler
- Preclinical Drug Development Platform, North West University, Potchefstroom, South Africa
| | - Amit Kumar Goyal
- IIPC Lab, Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | - Abhinav Mehta
- IIPC Lab, Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
- Preclinical Drug Development Platform, North West University, Potchefstroom, South Africa
| |
Collapse
|