1
|
Zhao Y, Zhang Y, Song R, He Y, Yao L. Moderate exercise relieves heart failure-induced skeletal muscle atrophy through the inhibition of MAPK/SOCS3 signaling. Pathol Res Pract 2025; 270:155982. [PMID: 40286786 DOI: 10.1016/j.prp.2025.155982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 04/03/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025]
Abstract
Heart failure (HF) is a structural or functional abnormality of the heart, often accompanied by skeletal muscle atrophy and other complications. Exercise plays an important role in preventing muscle atrophy. However, the underlying molecular mechanisms related to skeletal muscle atrophy in HF still remain poorly understood. In this study, we constructed an HF rat model by abdominal aortic coarctation (AAC) and a C2C12 muscle atrophy cell model induced by angiotensin II (Ang II). The relevant protein expressions were analyzed using western blotting. The damage of myocardial tissue, gastrocnemius tissue and cells were assessed through echocardiography, ELISA, HE staining, and immunofluorescence staining. Findings from this study indicated that moderate exercise has beneficial effects on pathological damage in the myocardial and gastrocnemius tissues of rats, resulting in a reduction of NT-proBNP levels in the blood. Furthermore, it was observed that the expression levels of MAFbx and MuRF1 were downregulated, while MHC and MyoD expressions were elevated, and the expression of endoplasmic reticulum stress (ERS)-related proteins GRP78, p-eIF2α, p-IRE1α, p-PERK, CHOP, ATF6 was inhibited, and finally alleviated HF-induced skeletal muscle atrophy. The mechanism involves moderate exercise working to alleviate ERS by inhibiting the MAPK/SOCS3 signaling pathway, thus alleviating skeletal muscle atrophy induced by HF. Our study elucidates the positive role of moderate exercise in HF-induced skeletal muscle atrophy, reveals its potential molecular mechanism, and provides a new scientific basis for the comprehensive treatment of skeletal muscle atrophy in HF.
Collapse
Affiliation(s)
- Ying Zhao
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650000, China
| | - Ying Zhang
- Department of Cardiology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650000, China
| | - Rui Song
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650000, China
| | - Ying He
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650000, China
| | - Liqing Yao
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650000, China.
| |
Collapse
|
2
|
Bolado-Carrancio A, Tapia O, Rodríguez-Rey JC. Ubiquitination Insight from Spinal Muscular Atrophy-From Pathogenesis to Therapy: A Muscle Perspective. Int J Mol Sci 2024; 25:8800. [PMID: 39201486 PMCID: PMC11354275 DOI: 10.3390/ijms25168800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/03/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
Spinal muscular atrophy (SMA) is one of the most frequent causes of death in childhood. The disease's molecular basis is deletion or mutations in the SMN1 gene, which produces reduced survival motor neuron protein (SMN) levels. As a result, there is spinal motor neuron degeneration and a large increase in muscle atrophy, in which the ubiquitin-proteasome system (UPS) plays a significant role. In humans, a paralogue of SMN1, SMN2 encodes the truncated protein SMNΔ7. Structural differences between SMN and SMNΔ7 affect the interaction of the proteins with UPS and decrease the stability of the truncated protein. SMN loss affects the general ubiquitination process by lowering the levels of UBA1, one of the main enzymes in the ubiquitination process. We discuss how SMN loss affects both SMN stability and the general ubiquitination process, and how the proteins involved in ubiquitination could be used as future targets for SMA treatment.
Collapse
Affiliation(s)
- Alfonso Bolado-Carrancio
- Departamento de Biología Molecular, Facultad de Medicina, Universidad de Cantabria-and Instituto de Investigación Marqués de Valdecilla (IDIVAL), 39011 Santander, Spain;
| | - Olga Tapia
- Departamento de Ciencias Médicas Básicas, Instituto de Tecnologías Biomédicas, Universidad de la Laguna, 38200 La Laguna, Spain
| | - José C. Rodríguez-Rey
- Departamento de Biología Molecular, Facultad de Medicina, Universidad de Cantabria-and Instituto de Investigación Marqués de Valdecilla (IDIVAL), 39011 Santander, Spain;
| |
Collapse
|
3
|
Zeineddine Y, Friedman MA, Buettmann EG, Abraham LB, Hoppock GA, Donahue HJ. Genetic diversity modulates the physical and transcriptomic response of skeletal muscle to simulated microgravity in male mice. NPJ Microgravity 2023; 9:86. [PMID: 38040743 PMCID: PMC10692100 DOI: 10.1038/s41526-023-00334-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/09/2023] [Indexed: 12/03/2023] Open
Abstract
Developments in long-term space exploration necessitate advancements in countermeasures against microgravity-induced skeletal muscle loss. Astronaut data shows considerable variation in muscle loss in response to microgravity. Previous experiments suggest that genetic background influences the skeletal muscle response to unloading, but no in-depth analysis of genetic expression has been performed. Here, we placed eight, male, inbred founder strains of the diversity outbred mice (129S1/SvImJ, A/J, C57BL/6J, CAST/EiJ, NOD/ShiLtJ, NZO/HILtJ, PWK/PhJ, and WSB/EiJ) in simulated microgravity (SM) via hindlimb unloading for three weeks. Body weight, muscle morphology, muscle strength, protein synthesis marker expression, and RNA expression were collected. A/J and CAST/EiJ mice were most susceptible to SM-induced muscle loss, whereas NOD/ShiLtJ mice were the most protected. In response to SM, A/J and CAST/EiJ mice experienced reductions in body weight, muscle mass, muscle volume, and muscle cross-sectional area. A/J mice had the highest number of differentially expressed genes (68) and associated gene ontologies (328). Downregulation of immunological gene ontologies and genes encoding anabolic immune factors suggest that immune dysregulation contributes to the response of A/J mice to SM. Several muscle properties showed significant interactions between SM and mouse strain and a high degree of heritability. These data imply that genetic background plays a role in the degree of muscle loss in SM and that more individualized programs should be developed for astronauts to protect their skeletal muscles against microgravity on long-term missions.
Collapse
Affiliation(s)
- Yasmina Zeineddine
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Michael A Friedman
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Evan G Buettmann
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Lovell B Abraham
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Gabriel A Hoppock
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Henry J Donahue
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
4
|
de Hart NM, Petrocelli JJ, Nicholson RJ, Yee EM, Ferrara PJ, Bastian ED, Ward LS, Petersen BL, Summers SA, Drummond MJ. Palmitate-Induced Inflammation and Myotube Atrophy in C2C12 Cells Are Prevented by the Whey Bioactive Peptide, Glycomacropeptide. J Nutr 2023; 153:2915-2928. [PMID: 37652286 PMCID: PMC10731921 DOI: 10.1016/j.tjnut.2023.08.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND Metabolic diseases are often associated with muscle atrophy and heightened inflammation. The whey bioactive compound, glycomacropeptide (GMP), has been shown to exhibit anti-inflammatory properties and therefore may have potential therapeutic efficacy in conditions of skeletal muscle inflammation and atrophy. OBJECTIVES The purpose of this study was to determine the role of GMP in preventing lipotoxicity-induced myotube atrophy and inflammation. METHODS C2C12 myoblasts were differentiated to determine the effect of GMP on atrophy and inflammation and to explore its mechanism of action in evaluating various anabolic and catabolic cellular signaling nodes. We also used a lipidomic analysis to evaluate muscle sphingolipid accumulation with the various treatments. Palmitate (0.75 mM) in the presence and absence of GMP (5 μg/mL) was used to induce myotube atrophy and inflammation and cells were collected over a time course of 6-24 h. RESULTS After 24 h of treatment, GMP prevented the palmitate-induced decrease in the myotube area and myogenic index and the increase in the TLR4-mediated inflammatory genes tumor necrosis factor-α and interleukin 1β. Moreover, phosphorylation of Erk1/2, and gene expression of myostatin, and the E3 ubiquitin ligases, FBXO32, and MuRF1 were decreased with GMP treatment. GMP did not alter palmitate-induced ceramide or diacylglycerol accumulation, muscle insulin resistance, or protein synthesis. CONCLUSIONS In summary, GMP prevented palmitate-induced inflammation and atrophy in C2C12 myotubes. The GMP protective mechanism of action in muscle cells during lipotoxic stress may be related to targeting catabolic signaling associated with cellular stress and proteolysis but not protein synthesis.
Collapse
Affiliation(s)
- Naomi Mmp de Hart
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, United States
| | - Jonathan J Petrocelli
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, UT, United States
| | - Rebekah J Nicholson
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, United States
| | - Elena M Yee
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, UT, United States
| | - Patrick J Ferrara
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, United States
| | - Eric D Bastian
- Dairy West Innovation Partnerships, Twin Falls, ID, United States
| | - Loren S Ward
- Glanbia Nutritionals Research, Twin Falls, ID, United States
| | | | - Scott A Summers
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, United States
| | - Micah J Drummond
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, United States; Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, UT, United States.
| |
Collapse
|
5
|
Honda Y, Takahashi A, Tanaka N, Kajiwara Y, Sasaki R, Okita S, Sakamoto J, Okita M. Muscle contractile exercise through a belt electrode device prevents myofiber atrophy, muscle contracture, and muscular pain in immobilized rat gastrocnemius muscle. PLoS One 2022; 17:e0275175. [PMID: 36149919 PMCID: PMC9506634 DOI: 10.1371/journal.pone.0275175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 09/12/2022] [Indexed: 11/19/2022] Open
Abstract
Purpose
Immobilization of skeletal muscles causes muscle atrophy, muscle contracture, and muscle pain, the mechanisms of which are related to macrophage accumulation. However, muscle contractile exercise through a belt electrode device may mitigate macrophage accumulation. We hypothesized that such exercise would be effective in preventing myofiber atrophy, muscle contracture, and muscular pain. This study tested this hypothesis in immobilized rat gastrocnemius muscle.
Materials and methods
A total of 32 rats were divided into the following control and experimental groups: immobilization (immobilized treatment only), low-frequency (LF; immobilized treatment and muscle contractile exercise with a 2 s (do) /6 s (rest) duty cycle), and high-frequency (HF; immobilized treatment and muscle contractile exercise with a 2 s (do)/2 s (rest) duty cycle). Electrical stimulation was performed at 50 Hz and 4.7 mA, and muscle contractile exercise was applied to the lower limb muscles for 15 or 20 min/session (once daily) for 2 weeks (6 times/week). After the behavioral tests, the bilateral gastrocnemius muscles were collected for analysis.
Results
The number of macrophages, the Atrogin-1 and MuRF-1 mRNA expression, and the hydroxyproline content in the HF group were lower than those in the immobilization and LF groups. The cross-sectional area (CSA) of type IIb myofibers in the superficial region, the PGC-1α mRNA expression, and the range of motion of dorsiflexion in the HF group were significantly higher than those in the immobilization and LF groups. The pressure pain thresholds in the LF and HF groups were significantly higher than that in the immobilization group, and the nerve growth factor (NGF) content in the LF and HF groups was significantly lower than that in the immobilization group.
Conclusion
Muscle contractile exercise through the belt electrode device may be effective in preventing immobilization-induced myofiber atrophy, muscle contracture, and muscular pain in the immobilized rat gastrocnemius muscle.
Collapse
Affiliation(s)
- Yuichiro Honda
- Institute of Biomedical Sciences (Health Sciences), Nagasaki University, Nagasaki, Nagasaki, Japan
- Department of Physical Therapy Science, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Nagasaki, Japan
| | - Ayumi Takahashi
- Department of Physical Therapy Science, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Nagasaki, Japan
| | - Natsumi Tanaka
- Department of Physical Therapy Science, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Nagasaki, Japan
- Department of Physical Therapy, School of Rehabilitation Sciences, Seirei Christopher University, Hamamatsu, Shizuoka, Japan
| | - Yasuhiro Kajiwara
- Department of Physical Therapy Science, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Nagasaki, Japan
- Department of Rehabilitation, Nagasaki University Hospital, Nagasaki, Nagasaki, Japan
| | - Ryo Sasaki
- Department of Physical Therapy Science, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Nagasaki, Japan
- Department of Rehabilitation, Jyuzenkai Hospital, Nagasaki, Nagasaki, Japan
| | - Seima Okita
- Department of Physical Therapy Science, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Nagasaki, Japan
- Department of Rehabilitation, The Japanese Red Cross Nagasaki Genbaku Hospital, Nagasaki, Nagasaki, Japan
| | - Junya Sakamoto
- Institute of Biomedical Sciences (Health Sciences), Nagasaki University, Nagasaki, Nagasaki, Japan
- Department of Physical Therapy Science, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Nagasaki, Japan
| | - Minoru Okita
- Institute of Biomedical Sciences (Health Sciences), Nagasaki University, Nagasaki, Nagasaki, Japan
- Department of Physical Therapy Science, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Nagasaki, Japan
- * E-mail:
| |
Collapse
|
6
|
Washington TA, Haynie WS, Schrems ER, Perry RA, Brown LA, Williams BM, Rosa-Caldwell ME, Lee DE, Brown JL. Effects of PGC-1α overexpression on the myogenic response during skeletal muscle regeneration. SPORTS MEDICINE AND HEALTH SCIENCE 2022; 4:198-208. [PMID: 36090923 PMCID: PMC9453693 DOI: 10.1016/j.smhs.2022.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 11/17/2022] Open
Abstract
The ability of skeletal muscle to regenerate from injury is crucial for locomotion, metabolic health, and quality of life. Peroxisome proliferator-activated receptor-γ coactivator-1α (PGC1A) is a transcriptional coactivator required for mitochondrial biogenesis. Increased mitochondrial biogenesis is associated with improved muscle cell differentiation, however PGC1A's role in skeletal muscle regeneration following damage requires further investigation. The purpose of this study was to investigate the role of skeletal muscle-specific PGC1A overexpression during regeneration following damage. 22 C57BL/6J (WT) and 26 PGC1A muscle transgenic (A1) mice were injected with either phosphate-buffered saline (PBS, uninjured control) or Bupivacaine (MAR, injured) into their tibialis anterior (TA) muscle to induce skeletal muscle damage. TA muscles were extracted 3- or 28-days post-injury and analyzed for markers of regenerative myogenesis and protein turnover. Pgc1a mRNA was ∼10–20 fold greater in A1 mice. Markers of protein synthesis, AKT and 4EBP1, displayed decreases in A1 mice compared to WT at both timepoints indicating a decreased protein synthetic response. Myod mRNA was ∼75% lower compared to WT 3 days post-injection. WT mice exhibited decreased cross-sectional area of the TA muscle at 28 days post-injection with bupivacaine compared to all other groups. PGC1A overexpression modifies the myogenic response during regeneration.
Collapse
Affiliation(s)
- Tyrone A. Washington
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, 72701, USA
- Corresponding author. University of Arkansas Department of Health, Human Performance, and Recreation, 155 Stadium Dr. HPER 309, Fayetteville, AR, 72701, USA.
| | - Wesley S. Haynie
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Eleanor R. Schrems
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Richard A. Perry
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Lemuel A. Brown
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Breanna M. Williams
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Megan E. Rosa-Caldwell
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, 72701, USA
| | - David E. Lee
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Jacob L. Brown
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, 72701, USA
| |
Collapse
|
7
|
Cai Y, Zhan H, Weng W, Wang Y, Han P, Yu X, Shao M, Sun H. Niclosamide ethanolamine ameliorates diabetes-related muscle wasting by inhibiting autophagy. Skelet Muscle 2021; 11:15. [PMID: 34107998 PMCID: PMC8188694 DOI: 10.1186/s13395-021-00272-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 05/26/2021] [Indexed: 12/25/2022] Open
Abstract
Background Diabetes-related muscle wasting is one of the devastating complications of diabetes, which is associated with muscle autophagy due to insulin-mediated glucose starvation. However, treatment for diabetes-related muscle wasting is limited. Our previous study already found that niclosamide ethanolamine salt has the therapeutic effects on insulin deficiency of type 1 diabetes mice and muscle wasting induced by doxorubicin. Therefore, we aim to investigate the therapeutic effects of niclosamide ethanolamine salt on diabetes-induced muscle wasting and to explore whether the mechanism is associated with muscle autophagy. Methods Type 1 diabetes mice were induced by intraperitoneal injection of streptozotocin, then were fed with regular diet supplemented with 10 g/kg niclosamide ethanolamine salt. The whole experiment lasted for 8 weeks. At the end of the study, grip strength, weights of tibialis anterior, gastrocnemius, soleus, and extensor digitorum longus muscle were measured. Tibialis anterior muscles stained with PAS were used for evaluating the fiber cross sectional area. Immunofluorescence analysis of myosin heavy chain expression in extensor digitorum longus and soleus muscle was used for determining the composition of the muscle fiber type. Electronic microscopy was applied to observe the autophagy in the atrophied muscle. Serum insulin levels and fasting blood glucose were also measured. Tissues of gastrocnemius muscle were used for detecting the expression of the proteins related to autophagy. Results In this study, we found that niclosamide ethanolamine salt could ameliorate muscle atrophy in the type 1 diabetes mice as well, such as enhancing the declined grip strength, improving limb weight and increasing the numbers of glycolytic muscle fiber. Electron microscopy also confirmed that there did exist abundant autophagic vacuoles in the atrophied muscle of the type 1 diabetes mice. Specifically, niclosamide ethanolamine salt could reduce the over expression of autophagy-related proteins, including p-AMPK (Thr172), FoxO3a, p-ULK1 (Ser555), LC3B II, and p-p38 in gastrocnemius muscle of the type 1 diabetes mice. Conclusion Niclosamide ethanolamine salt could ameliorate muscle wasting. The mechanisms underlying might be associated with inhibition of muscle autophagy.
Collapse
Affiliation(s)
- Yuchun Cai
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, 1 Fuhua Road, Futian District, Shenzhen, 518033, Guangdong, China
| | - Hongyue Zhan
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, 1 Fuhua Road, Futian District, Shenzhen, 518033, Guangdong, China.,Department of Critical Care Medicine, Shantou Hospital of Traditional Chinese Medicine, Shantou, China
| | - Wenci Weng
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, 1 Fuhua Road, Futian District, Shenzhen, 518033, Guangdong, China
| | - Yao Wang
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, 1 Fuhua Road, Futian District, Shenzhen, 518033, Guangdong, China
| | - Pengxun Han
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, 1 Fuhua Road, Futian District, Shenzhen, 518033, Guangdong, China
| | - Xuewen Yu
- Department of Pathology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, 1 Fuhua Road, Futian District, Shenzhen, 518033, Guangdong, China
| | - Mumin Shao
- Department of Pathology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, 1 Fuhua Road, Futian District, Shenzhen, 518033, Guangdong, China.
| | - Huili Sun
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, 1 Fuhua Road, Futian District, Shenzhen, 518033, Guangdong, China.
| |
Collapse
|
8
|
Awad AS, Nour El-Din M, Kamel R. CoQ10 augments candesartan protective effect against tourniquet-induced hind limb ischemia-reperfusion: Involvement of non-classical RAS and ROS pathways. Saudi Pharm J 2021; 29:724-733. [PMID: 34400868 PMCID: PMC8347674 DOI: 10.1016/j.jsps.2021.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/11/2021] [Indexed: 11/21/2022] Open
Abstract
Tourniquet is a well-established model of hind limb ischemia–reperfusion (HLI/R) in rats. Nevertheless, measures should be taken to alleviate the expected injury from ischemia/ reperfusion (I/R). In the present study, 30 adult male Sprague-Dawley rats were randomly divided into 5 groups (n = 6): control, HLI/R, HLI/R given candesartan (1 mg/kg, P.O); HLI/R given Coenzyme Q10 (CoQ10) (10 mg/kg, P.O); HLI/R given candesartan (0.5 mg/kg) and CoQ10 (5 mg/kg). The drugs were administered for 7 days starting one hour after reperfusion. Candesartan and CoQ10 as well as their combination suppressed gastrocnemius content of angiotensin II while they raised angiotensin-converting enzyme 2 (ACE2) activity, angiotensin (1–7) expression, and Mas receptor mRNA level. Consequently, candesartan and/or CoQ10 reversed the oxidative stress and inflammatory changes that occurred following HLI/R as demonstrated by the rise of SOD activity and the decline of MDA, TNF-α, and IL-6 skeletal muscle content. Additionally, candesartan and/or CoQ10 diminished gastrocnemius active caspase-3 level and phospho-p38 MAPK protein expression. Our study proved that CoQ10 enhanced the beneficial effect of candesartan in a model of tourniquet-induced HLI/R by affecting classical and non-classical renin-angiotensin system (RAS) pathway. To our knowledge, this is the first study showing the impact of CoQ10 on skeletal muscle RAS in rats.
Collapse
Affiliation(s)
- Azza S Awad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University (Girls), Nasr City, Egypt.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Mahmoud Nour El-Din
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Sadat City (USC), Menoufia, Egypt.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Rehab Kamel
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Cairo, Egypt.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| |
Collapse
|
9
|
Wang D, Chen W, Bi Q, Zong X, Ruan J, Yin X, Wang J, Zhang H, Ji X. Baoyuan Jiedu Decoction Alleviates Cancer-Induced Myotube Atrophy by Regulating Mitochondrial Dynamics Through p38 MAPK/PGC-1α Signaling Pathway. Front Oncol 2020; 10:523577. [PMID: 33102208 PMCID: PMC7556243 DOI: 10.3389/fonc.2020.523577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 09/11/2020] [Indexed: 01/06/2023] Open
Abstract
Cancer cachexia is a multifactorial syndrome characterized by continuous body wasting and loss of skeletal muscle. Impaired mitochondria function is closely associated with muscle atrophy in cancer cachexia. Our previous study confirmed the effectiveness of Baoyuan Jiedu decoction (BJD) in inhibiting cancer-induced muscle atrophy in an in vivo model. However, little is known about its mechanisms in regulating mitochondria dysfunction. In this study, we evaluated the therapeutic effect and action mechanisms of BJD against atrophy both in the Lewis-conditioned medium induced C2C12 myotube atrophy model and in a BALB/c mice xenograft model using mouse colon cancer C26 cells. The mitochondrial content was tested by 10-Non-ylacridine orange staining. Expressions of related proteins and mRNAs were detected by western blotting (WB) and qPCR, respectively. As a result, 18 major components were identified in BJD by ultra-high performance liquid chromatography-quadrupole (UHPLC-Q) Exactive analysis. As shown in the in vitro results, BJD treatment prevented prominent myotube atrophy and increased the myotube diameter of C2C12 cells. Besides, BJD treatment increased mitochondrial content and ATPase activity. Furthermore, the protein and mRNA expressions that were related to mitochondrial functions and generation such as cytochrome-c oxidase IV, Cytochrome C, nuclear respiratory factor 1, and mitochondrial transcription factor A were significantly increased in BJD treatment compared to the control group. The in vivo results showed that BJD treatment prevented body weight loss and improved the gastrocnemius index in cachexia mice. Moreover, the expressions of Atrogin-1 and muscle RING-finger protein-1 were decreased by BJD treatment. Mechanically, BJD increased the expression of peroxisome proliferator-activated receptor-gamma coactivator 1, and consistently, inhibited the expression of p38 MAPK and its phosphorylation both in vivo and in vitro. Taken together, this study identified that BJD effectively relieved cancer-induced myotube atrophy and provided a potential mechanism for BJD in regulating mitochondrial dynamics through p38 MAPK/PGC-1α signaling pathway.
Collapse
Affiliation(s)
- Delong Wang
- School of Basic Medical Science, Zhejiang Chinese Medical University, Zhejiang, China
| | - Weiqiao Chen
- School of Basic Medical Science, Zhejiang Chinese Medical University, Zhejiang, China
| | - Qianyu Bi
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Shandong, China
| | - Xin Zong
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Shandong, China
| | - Jiazhao Ruan
- School of Basic Medical Science, Zhejiang Chinese Medical University, Zhejiang, China
| | - Xiangjun Yin
- School of Basic Medical Science, Zhejiang Chinese Medical University, Zhejiang, China
| | - Jixin Wang
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Zhejiang, China
| | - Honghua Zhang
- Medical College, Hangzhou Normal University, Zhejiang, China
| | - Xuming Ji
- School of Basic Medical Science, Zhejiang Chinese Medical University, Zhejiang, China
| |
Collapse
|
10
|
Yang W, Huang J, Wu H, Wang Y, Du Z, Ling Y, Wang W, Wu Q, Gao W. Molecular mechanisms of cancer cachexia‑induced muscle atrophy (Review). Mol Med Rep 2020; 22:4967-4980. [PMID: 33174001 PMCID: PMC7646947 DOI: 10.3892/mmr.2020.11608] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 09/09/2020] [Indexed: 12/20/2022] Open
Abstract
Muscle atrophy is a severe clinical problem involving the loss of muscle mass and strength that frequently accompanies the development of numerous types of cancer, including pancreatic, lung and gastric cancers. Cancer cachexia is a multifactorial syndrome characterized by a continuous decline in skeletal muscle mass that cannot be reversed by conventional nutritional therapy. The pathophysiological characteristic of cancer cachexia is a negative protein and energy balance caused by a combination of factors, including reduced food intake and metabolic abnormalities. Numerous necessary cellular processes are disrupted by the presence of abnormal metabolites, which mediate several intracellular signaling pathways and result in the net loss of cytoplasm and organelles in atrophic skeletal muscle during various states of cancer cachexia. Currently, the clinical morbidity and mortality rates of patients with cancer cachexia are high. Once a patient enters the cachexia phase, the consequences are difficult to reverse and the treatment methods for cancer cachexia are very limited. The present review aimed to summarize the recent discoveries regarding the pathogenesis of cancer cachexia-induced muscle atrophy and provided novel ideas for the comprehensive treatment to improve the prognosis of affected patients.
Collapse
Affiliation(s)
- Wei Yang
- Department of Oncology, The Third Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518000, P.R. China
| | - Jianhui Huang
- Department of Oncology, Lishui Municipal Central Hospital, Lishui, Zhejiang 323000, P.R. China
| | - Hui Wu
- Department of Clinical Medicine, Anhui University of Science and Technology, Huainan, Anhui 232001, P.R. China
| | - Yuqing Wang
- Department of Clinical Medicine, Anhui University of Science and Technology, Huainan, Anhui 232001, P.R. China
| | - Zhiyin Du
- Department of Clinical Medicine, Anhui University of Science and Technology, Huainan, Anhui 232001, P.R. China
| | - Yuanbo Ling
- Department of Clinical Medicine, Anhui University of Science and Technology, Huainan, Anhui 232001, P.R. China
| | - Weizhuo Wang
- Department of Clinical Medicine, Anhui University of Science and Technology, Huainan, Anhui 232001, P.R. China
| | - Qian Wu
- Department of Oncology, The Third Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518000, P.R. China
| | - Wenbin Gao
- Department of Oncology, The Third Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518000, P.R. China
| |
Collapse
|
11
|
Marmolejo-Martínez-Artesero S, Romeo-Guitart D, Mañas-García L, Barreiro E, Casas C. NeuroHeal Reduces Muscle Atrophy and Modulates Associated Autophagy. Cells 2020; 9:cells9071575. [PMID: 32605216 PMCID: PMC7408527 DOI: 10.3390/cells9071575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 12/19/2022] Open
Abstract
Muscle wasting is an unmet medical need which leads to a reduction of myofiber diameter and a negative impact on the functional performance of daily activities. We previously found that a new neuroprotective drug called NeuroHeal reduced muscle atrophy produced by transient denervation. Aiming to decipher whether NeuroHeal has a direct role in muscle biology, we used herein different models of muscle atrophy: one caused by chronic denervation, another caused by hindlimb immobilization, and lastly, an in vitro model of myotube atrophy with Tumor Necrosis Factor-α (TNFα). In all these models, we observed that NeuroHeal reduced muscle atrophy and that SIRT1 activation seems to be required for that. The treatment downregulated some critical markers of protein degradation: Muscle Ring Finger 1 (MuRF1), K48 poly-Ub chains, and p62/SQSTM1. Moreover, it seems to restore the autophagy flux associated with denervation. Hence, we envisage a prospective use of NeuroHeal at clinics for different myopathies.
Collapse
Affiliation(s)
- Sara Marmolejo-Martínez-Artesero
- Institut de Neurociències (INc) and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193 Barcelona, Spain;
| | - David Romeo-Guitart
- Institut de Neurociències (INc) and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193 Barcelona, Spain;
- Correspondence: (D.R.-G.); (C.C.); Tel.: +33-0140615357 (D.R.-G.); +34-935811324 (C.C.)
| | - Laura Mañas-García
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), 08003 Barcelona, Spain; (L.M.-G.); (E.B.)
| | - Esther Barreiro
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), 08003 Barcelona, Spain; (L.M.-G.); (E.B.)
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 08003 Barcelona, Spain
| | - Caty Casas
- Institut de Neurociències (INc) and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193 Barcelona, Spain;
- Correspondence: (D.R.-G.); (C.C.); Tel.: +33-0140615357 (D.R.-G.); +34-935811324 (C.C.)
| |
Collapse
|
12
|
Mir BA, Mason SA, May AK, Russell AP, Foletta VC. Overexpression of NDRG2 in skeletal muscle does not ameliorate the effects of stress in vivo. Exp Physiol 2020; 105:1326-1338. [PMID: 32468595 DOI: 10.1113/ep088620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/26/2020] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? Do elevated levels of the stress-response protein NDRG2 protect against fasting and chronic disease in mouse skeletal muscle? What is the main finding and its importance? NDRG2 levels increased in the tibialis anterior muscle in response to fasting and the effects of motor neurone disease. No alleviation of the stress-related and proteasomal pathways, mitochondrial dysfunction or muscle mass loss was observed even with the addition of exogenous NDRG2 indicating that the increase in NDRG2 is a normal adaptive response. ABSTRACT Skeletal muscle mass loss and dysfunction can arise from stress, which leads to enhanced protein degradation and metabolic impairment. The expression of N-myc downstream-regulated gene 2 (NDRG2) is induced in response to different stressors and is protective against the effects of stress in some tissues and cell types. Here, we investigated the endogenous NDRG2 response to the stress of fasting and chronic disease in mice and whether exogenous NDRG2 overexpression through adeno-associated viral (AAV) treatment ameliorated the response of skeletal muscle to these conditions. Endogenous levels of NDRG2 increased in the tibialis anterior muscle in response to 24 h fasting and with the development of the motor neurone disease, amyotrophic lateral sclerosis, in SOD1G93A transgenic mice. Despite AAV-induced overexpression and increased expression with fasting, NDRG2 was unable to protect against the activation of proteasomal and stress pathways in response to fasting. Furthermore, NDRG2 was unable to reduce muscle mass loss, mitochondrial dysfunction and elevated oxidative and endoplasmic reticulum stress levels in SOD1G93A mice. Conversely, elevated NDRG2 levels did not exacerbate these stress responses. Overall, increasing NDRG2 levels might not be a useful therapeutic strategy to alleviate stress-related disease pathologies in skeletal muscle.
Collapse
Affiliation(s)
- Bilal A Mir
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia.,Institute of Muscle Biology & Growth, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Shaun A Mason
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Anthony K May
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Aaron P Russell
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Victoria C Foletta
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| |
Collapse
|
13
|
Odeh M, Tamir‐Livne Y, Haas T, Bengal E. P38α MAPK coordinates the activities of several metabolic pathways that together induce atrophy of denervated muscles. FEBS J 2019; 287:73-93. [DOI: 10.1111/febs.15070] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/30/2019] [Accepted: 09/18/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Maali Odeh
- Department of Biochemistry Rappaport Faculty of Medicine Technion‐Israel Institute of Technology Haifa Israel
| | - Yael Tamir‐Livne
- Department of Biochemistry Rappaport Faculty of Medicine Technion‐Israel Institute of Technology Haifa Israel
| | - Tali Haas
- Pre‐Clinical Research Authority Technion‐Israel Institute of Technology Haifa Israel
| | - Eyal Bengal
- Department of Biochemistry Rappaport Faculty of Medicine Technion‐Israel Institute of Technology Haifa Israel
| |
Collapse
|
14
|
Ryu Y, Lee D, Jung SH, Lee KJ, Jin H, Kim SJ, Lee HM, Kim B, Won KJ. Sabinene Prevents Skeletal Muscle Atrophy by Inhibiting the MAPK-MuRF-1 Pathway in Rats. Int J Mol Sci 2019; 20:ijms20194955. [PMID: 31597276 PMCID: PMC6801606 DOI: 10.3390/ijms20194955] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 09/28/2019] [Accepted: 10/03/2019] [Indexed: 12/21/2022] Open
Abstract
Chrysanthemum boreale Makino essential oil (CBMEO) has diverse biological activities including a skin regenerating effect. However, its role in muscle atrophy remains unknown. This study explored the effects of CBMEO and its active ingredients on skeletal muscle atrophy using in vitro and in vivo models of muscle atrophy. CBMEO reversed the size decrease of L6 myoblasts under starvation. Among the eight monoterpene compounds of CBMEO without cytotoxicity for L6 cells, sabinene induced predominant recovery of reductions of myotube diameters under starvation. Sabinene diminished the elevated E3 ubiquitin ligase muscle ring-finger protein-1 (MuRF-1) expression and p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinase1/2 (ERK1/2) phosphorylations in starved myotubes. Moreover, sabinene decreased the increased level of reactive oxygen species (ROS) in myotubes under starvation. The ROS inhibitor antagonized expression of MuRF-1 and phosphorylation of MAPKs, which were elevated in starved myotubes. In addition, levels of muscle fiber atrophy and MuRF-1 expression in gastrocnemius from fasted rats were reduced after administration of sabinene. These findings demonstrate that sabinene, a bioactive component from CBMEO, may attenuate skeletal muscle atrophy by regulating the activation mechanism of ROS-mediated MAPK/MuRF-1 pathways in starved myotubes, probably leading to the reverse of reduced muscle fiber size in fasted rats.
Collapse
Affiliation(s)
- Yunkyoung Ryu
- Department of Physiology, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea.
| | - Donghyen Lee
- Department of Physiology, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea.
| | - Seung Hyo Jung
- Department of Physiology, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea.
| | - Kyung-Jin Lee
- Department of Physiology, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea.
| | - Hengzhe Jin
- Department of Physiology, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea.
| | - Su Jung Kim
- Department of Physiology, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea.
| | - Hwan Myung Lee
- Department of Cosmetic Science, College of Life and Health Sciences, Hoseo University, 20 Hoseo-ro79beon-gil, Hoseo-ro, Baebang-eup, Asan 31499, Korea.
| | - Bokyung Kim
- Department of Physiology, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea.
| | - Kyung-Jong Won
- Department of Physiology, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea.
| |
Collapse
|
15
|
Ma X, Chang H, Wang Z, Xu S, Peng X, Zhang J, Yan X, Lei T, Wang H, Gao Y. Differential activation of the calpain system involved in individualized adaptation of different fast-twitch muscles in hibernating Daurian ground squirrels. J Appl Physiol (1985) 2019; 127:328-341. [PMID: 31219776 DOI: 10.1152/japplphysiol.00124.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
We examined the lateral gastrocnemius (LG), plantaris (PL), and extensor digitorum longus (EDL) muscles to determine whether differential activation of the calpain system is related to the degree of atrophy in these fast-twitch skeletal muscles during hibernation in Daurian ground squirrels (Spermophilus dauricus). Results from morphological indices showed various degrees of atrophy in the order LG > PL > EDL. Furthermore, all three muscles underwent fast-to-slow fiber-type conversion in hibernation. In regard to the calpain system in the LG muscle, cytosolic Ca2+ increased significantly in hibernation, followed by recovery in posthibernation. Furthermore, calpastatin expression significantly decreased, and calpain 1 and 2 expression significantly increased, which may be responsible for the increased degradation of desmin during hibernation compared with that during summer activity. In the EDL muscle, Ca2+ overload was observed during interbout arousal, and calpastatin showed an increase during hibernation and interbout arousal, which could explain the increased levels of troponin T during both periods compared with levels during summer activity. These findings suggest that cytosolic Ca2+ overload and subsequent calpain 1 and 2 activation may be an important mechanism of LG muscle atrophy during hibernation. Cytosolic Ca2+ homeostasis and high expression of calpain inhibitor calpastatin during hibernation may also be an important mechanism for the EDL muscle to maintain muscle mass. Thus, the differential activation of the calpain system and selective degradation of downstream substrates may be involved in muscle atrophy of different fast-twitch muscles during hibernation.NEW & NOTEWORTHY We found that the extent of both muscle atrophy and calpain system activation differed in fast-twitch lateral gastrocnemius (LG), plantaris (PL), and extensor digitorum longus (EDL) skeletal muscles in hibernating Daurian ground squirrels, but similar hierarchies in the order of LG > PL > EDL. The differential activation of the calpain system and selective degradation of downstream substrates may be involved in muscle atrophy in different fast-twitch muscles during hibernation.
Collapse
Affiliation(s)
- Xiufeng Ma
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, China
| | - Hui Chang
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, China
| | - Zhe Wang
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, China
| | - Shenhui Xu
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, China
| | - Xin Peng
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, China
| | - Jie Zhang
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, China
| | - Xia Yan
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, China
| | - Tingyun Lei
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, China
| | - Huiping Wang
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, China
| | - Yunfang Gao
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, China
| |
Collapse
|
16
|
Llano-Diez M, Fury W, Okamoto H, Bai Y, Gromada J, Larsson L. RNA-sequencing reveals altered skeletal muscle contraction, E3 ligases, autophagy, apoptosis, and chaperone expression in patients with critical illness myopathy. Skelet Muscle 2019; 9:9. [PMID: 30992050 PMCID: PMC6466682 DOI: 10.1186/s13395-019-0194-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 03/31/2019] [Indexed: 12/17/2022] Open
Abstract
Background Critical illness myopathy (CIM) is associated with severe skeletal muscle wasting and impaired function in intensive care unit (ICU) patients. The mechanisms underlying CIM remain incompletely understood. To elucidate the biological activities occurring at the transcriptional level in the skeletal muscle of ICU patients with CIM, the gene expression profiles, potential upstream regulators, and enrichment pathways were characterized using RNA sequencing (RNA-seq). We also compared the skeletal muscle gene signatures in ICU patients with CIM and genes perturbed by mechanical loading in one leg of the ICU patients, with an aim of reducing the loss of muscle function. Methods RNA-seq was used to assess gene expression changes in tibialis anterior skeletal muscle samples from seven critically ill, immobilized, and mechanically ventilated ICU patients with CIM and matched control subjects. We also examined skeletal muscle gene expression for both legs of six ICU patients with CIM, where one leg was mechanically loaded for 10 h/day for an average of 9 days. Results In total, 6257 of 17,221 detected genes were differentially expressed (84% upregulated; p < 0.05 and fold change ≥ 1.5) in skeletal muscle from ICU patients with CIM when compared to control subjects. The differentially expressed genes were highly associated with gene changes identified in patients with myopathy, sepsis, long-term inactivity, polymyositis, tumor, and repeat exercise resistance. Upstream regulator analysis revealed that the CIM signature could be a result of the activation of MYOD1, p38 MAPK, or treatment with dexamethasone. Passive mechanical loading only reversed expression of 0.74% of the affected genes (46 of 6257 genes). Conclusions RNA-seq analysis revealed that the marked muscle atrophy and weakness observed in ICU patients with CIM were associated with the altered expression of genes involved in muscle contraction, newly identified E3 ligases, autophagy and calpain systems, apoptosis, and chaperone expression. In addition, MYOD1, p38 MAPK, and dexamethasone were identified as potential upstream regulators of skeletal muscle gene expression in ICU patients with CIM. Mechanical loading only marginally affected the skeletal muscle transcriptome profiling of ICU patients diagnosed with CIM. Electronic supplementary material The online version of this article (10.1186/s13395-019-0194-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Monica Llano-Diez
- Department of Physiology and Pharmacology, Karolinska Institutet, Bioclinicum, J8:30, SE-171 77, Stockholm, Sweden
| | - Wen Fury
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, 10591, USA
| | - Haruka Okamoto
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, 10591, USA
| | - Yu Bai
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, 10591, USA
| | - Jesper Gromada
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, 10591, USA
| | - Lars Larsson
- Department of Physiology and Pharmacology, Karolinska Institutet, Bioclinicum, J8:30, SE-171 77, Stockholm, Sweden. .,Department of Clinical Neuroscience, Karolinska Institutet and Karolinska Hospital, Stockholm, Sweden.
| |
Collapse
|
17
|
Yuasa K, Okubo K, Yoda M, Otsu K, Ishii Y, Nakamura M, Itoh Y, Horiuchi K. Targeted ablation of p38α MAPK suppresses denervation-induced muscle atrophy. Sci Rep 2018; 8:9037. [PMID: 29899565 PMCID: PMC5998077 DOI: 10.1038/s41598-018-26632-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 05/16/2018] [Indexed: 12/20/2022] Open
Abstract
The loss of skeletal muscle mass is a major cause of falls and fractures in the elderly, leading to compromised independence and a decrease in the quality of life. However, only a few therapeutic interventions leading to marginal clinical benefits in patients with this condition are currently available. Therefore, the demand to further understand the pathology of muscle atrophy and establish a treatment modality for patients with muscle atrophy is significant. p38α mitogen-activated protein kinase (p38α MAPK) is a ubiquitous signaling molecule that is implicated in various cellular functions, including cell proliferation, differentiation, and senescence. In the present study, we generated a mutant line in which p38α MAPK is specifically abrogated in muscle tissues. Compared with the control mice, these mutant mice are significantly resistant to denervation-induced muscle atrophy, suggesting that p38α MAPK positively regulates muscle atrophy. We also identified CAMK2B as a potential downstream target of p38α MAPK and found that the pharmacological inhibition of CAMK2B activity suppresses denervation-induced muscle atrophy. Altogether, our findings identify p38α MAPK as a novel regulator of muscle atrophy and suggest that the suppression of intracellular signaling mediated by p38α MAPK serves as a potential target for the treatment of muscle atrophy.
Collapse
Affiliation(s)
- Kazuki Yuasa
- Pharmacological R&D Section, Pharmaceutical Research Department, Sato Pharmaceutical Co., Ltd., 6-8-5 Higashi-ohi, Shinagawa, Tokyo, 140-0011, Japan
| | - Kazumasa Okubo
- Pharmacological R&D Section, Pharmaceutical Research Department, Sato Pharmaceutical Co., Ltd., 6-8-5 Higashi-ohi, Shinagawa, Tokyo, 140-0011, Japan
| | - Masaki Yoda
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan.,Laboratory of Cell and Tissue Biology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Kinya Otsu
- The School of Cardiovascular Medicine and Sciences, King's College London, Strand, London, WC2R 2LS, UK
| | - Yasuyuki Ishii
- Pharmacological R&D Section, Pharmaceutical Research Department, Sato Pharmaceutical Co., Ltd., 6-8-5 Higashi-ohi, Shinagawa, Tokyo, 140-0011, Japan
| | - Masaya Nakamura
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Yoshiki Itoh
- Drug Discovery Research Department, Sato Pharmaceutical Co., Ltd., 6-8-5 Higashi-ohi, Shinagawa, Tokyo, 140-0011, Japan.
| | - Keisuke Horiuchi
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan. .,Department of Orthopedic Surgery, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan.
| |
Collapse
|
18
|
Reloading Promotes Recovery of Disuse Muscle Loss by Inhibiting TGFβ Pathway Activation in Rats After Hind Limb Suspension. Am J Phys Med Rehabil 2017; 96:430-437. [PMID: 27610551 DOI: 10.1097/phm.0000000000000617] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The purpose of this paper was to study the effect of transforming growth factor beta (TGFβ) signaling pathway on reloading-mediated restoration of disuse muscle loss induced by hind limb suspension in rats. DESIGN Rats were divided into 4 groups: control group (CON), HLS group (hind limb suspension for 2 weeks), HLS + R group (hind limb suspension for 2 weeks followed by 2 weeks of natural reloading), and HRS + E group (hind limb suspension for 2 weeks followed by 2 weeks of treadmill exercise). Body weight, and weight and protein concentration of gastrocnemius were determined. The expression of members of canonical and noncanonical TGFβ signaling pathways, including TGFβ1, myostatin (MSTN), phospho-smad2/3, phospho-mitogen-activated protein kinases (p38, JNK1/2, and extracellular signal-regulated kinase 1 [ERK1]/ERK2), as well as the corresponding downstream effectors of muscle mass-p21, Pax7, MyoD, and MyoG-was determined at protein or messenger RNA (mRNA) levels. RESULTS Reloading increased MyoD mRNA and restored the decreased gastrocnemius weight/body weight ratio, protein concentration of gastrocnemius, phospho-ERK2, Pax7 and the increased TGFβ1, MSTN, phospho-smad2/3, phospho-p38, phospho-JNK1/2, and p21 induced by hind limb suspension. Moreover, the effects of exercise reloading on the restoration of gastrocnemius weight/body weight ratio, TGFβ1, MSTN, phospho-smad2, phospho-p38, phospho-JNK2, Pax7, as well as the induction of MyoD mRNA were stronger than those of natural reloading. CONCLUSIONS Disuse muscle loss can be recovered by reloading in an intensity-dependent manner through canonical and noncanonical TGFβ signaling pathways. Pax7 and MyoD might be the effectors of TGFβ pathway in mediating the recovery effect of reloading.
Collapse
|
19
|
Derbré F, Droguet M, Léon K, Troadec S, Pennec JP, Giroux-Metges MA, Rannou F. Single Muscle Immobilization Decreases Single-Fibre Myosin Heavy Chain Polymorphism: Possible Involvement of p38 and JNK MAP Kinases. PLoS One 2016; 11:e0158630. [PMID: 27383612 PMCID: PMC4934689 DOI: 10.1371/journal.pone.0158630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 06/20/2016] [Indexed: 11/29/2022] Open
Abstract
PURPOSE Muscle contractile phenotype is affected during immobilization. Myosin heavy chain (MHC) isoforms are the major determinant of the muscle contractile phenotype. We therefore sought to evaluate the effects of muscle immobilization on both the MHC composition at single-fibre level and the mitogen-activated protein kinases (MAPK), a family of intracellular signaling pathways involved in the stress-induced muscle plasticity. METHODS The distal tendon of female Wistar rat Peroneus Longus (PL) was cut and fixed to the adjacent bone at neutral muscle length. Four weeks after the surgery, immobilized and contralateral PL were dissociated and the isolated fibres were sampled to determine MHC composition. Protein kinase 38 (p38), extracellular signal-regulated kinases (ERK1/2), and c-Jun- NH2-terminal kinase (JNK) phosphorylations were measured in 6- and 15-day immobilized and contralateral PL. RESULTS MHC distribution in immobilized PL was as follows: I = 0%, IIa = 11.8 ± 2.8%, IIx = 53.0 ± 6.1%, IIb = 35.3 ± 7.3% and I = 6.1 ± 3.9%, IIa = 22.1 ± 3.4%, IIx = 46.6 ± 4.5%, IIb = 25.2 ± 6.6% in contralateral muscle. The MHC composition in immobilized muscle is consistent with a faster contractile phenotype according to the Hill's model of the force-velocity relationship. Immobilized and contralateral muscles displayed a polymorphism index of 31.1% (95% CI 26.1-36.0) and 39.3% (95% CI 37.0-41.5), respectively. Significant increases in p38 and JNK phosphorylation were observed following 6 and 15 days of immobilization. CONCLUSIONS Single muscle immobilization at neutral length induces a shift of MHC composition toward a faster contractile phenotype and decreases the polymorphic profile of single fibres. Activation of p38 and JNK could be a potential mechanism involved in these contractile phenotype modifications during muscle immobilization.
Collapse
Affiliation(s)
- Frédéric Derbré
- Laboratory “Movement Sport and health Sciences”(M2S) -EA1274, University Rennes 2-ENS Rennes, Rennes, France
| | - Mickaël Droguet
- Physiology Department-EA1274 M2S, School of Medicine, Brest, France
| | - Karelle Léon
- Physiology Department-EA1274 M2S, School of Medicine, Brest, France
| | - Samuel Troadec
- Physiology Department-EA1274 M2S, School of Medicine, Brest, France
| | | | | | - Fabrice Rannou
- Physiology Department-EA1274 M2S, School of Medicine, Brest, France
| |
Collapse
|
20
|
Kim JH, Lee WD, Kim MY, Lee LK, Park BS, Yang SM, Noh JW, Shin YS, Lee JU, Kwak TY, Lee TH, Park J, Kim B, Kim J. Differences in strength-duration curves of electrical diagnosis by physiotherapists between DJ-1 homozygous knockout and wild-type mice: a randomized controlled pilot trial. J Phys Ther Sci 2016; 28:1595-8. [PMID: 27313379 PMCID: PMC4905918 DOI: 10.1589/jpts.28.1595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 02/03/2016] [Indexed: 12/01/2022] Open
Abstract
[Purpose] Strength-duration (SD) curves are used in electrical diagnosis by
physiotherapists to confirm muscle degeneration. However, the usefulness of SD curves in
comparing muscle degeneration in DJ-1 homozygous knockout (DJ-1−/−) and
wild-type mice (DJ-1+/+) is not yet fully understood. The electrical properties
of the gastrocnemius muscles of DJ-1−/− and DJ-1+/+ mice were
compared in the current study. [Subjects and Methods] The electrode of an electrical
stimulator was applied to the gastrocnemius muscle to measure the rheobase until the
response of contractive muscle to electrical stimulation became visible in mice. [Results]
The rheobase of DJ-1−/− mice showed a significant increase in a time-dependent
manner, compared to that of DJ-1+/+ mice. [Conclusion] These results
demonstrate that the DJ-1 protein may be implicated in the regulation of neuromuscular
activity of gastrocnemius muscles of mice.
Collapse
Affiliation(s)
- Ju-Hyun Kim
- Department of Physical Therapy, College of Health Welfare, Wonkwang Health Science University, Republic of Korea
| | - Won-Deok Lee
- Laboratory of Health Science and Nanophysiotherapy, Department of Physical Therapy, Graduate School, Yongin University, Republic of Korea
| | - Mee-Young Kim
- Laboratory of Health Science and Nanophysiotherapy, Department of Physical Therapy, Graduate School, Yongin University, Republic of Korea
| | - Lim-Kyu Lee
- Laboratory of Health Science and Nanophysiotherapy, Department of Physical Therapy, Graduate School, Yongin University, Republic of Korea; Commercializations Promotion Agency for R&D Outcomes, Republic of Korea
| | - Byoung-Sun Park
- Laboratory of Health Science and Nanophysiotherapy, Department of Physical Therapy, Graduate School, Yongin University, Republic of Korea
| | - Seung-Min Yang
- Laboratory of Health Science and Nanophysiotherapy, Department of Physical Therapy, Graduate School, Yongin University, Republic of Korea
| | - Ji-Woong Noh
- Laboratory of Health Science and Nanophysiotherapy, Department of Physical Therapy, Graduate School, Yongin University, Republic of Korea
| | - Yong-Sub Shin
- Laboratory of Health Science and Nanophysiotherapy, Department of Physical Therapy, Graduate School, Yongin University, Republic of Korea
| | - Jeong-Uk Lee
- Department of Physical Therapy, College of Health Science, Honam University, Republic of Korea
| | - Taek-Yong Kwak
- Department of Taekwondo Instructor Education, College of Martial Arts, Yongin University, Republic of Korea
| | - Tae-Hyun Lee
- Department of Combative Martial Arts Training, College of Martial Arts, Yongin University, Republic of Korea
| | - Jaehong Park
- Department of Social Welfare, College of Public Health and Welfare, Yongin University, Republic of Korea
| | - Bokyung Kim
- Department of Medicine, Institute of Functional Genomics, School of Medicine, Konkuk University, Republic of Korea
| | - Junghwan Kim
- Department of Physical Therapy, College of Public Health and Welfare, Yongin University, Republic of Korea
| |
Collapse
|
21
|
Girven M, Dugdale HF, Owens DJ, Hughes DC, Stewart CE, Sharples AP. l-glutamine Improves Skeletal Muscle Cell Differentiation and Prevents Myotube Atrophy After Cytokine (TNF-α) Stress Via Reduced p38 MAPK Signal Transduction. J Cell Physiol 2016; 231:2720-32. [PMID: 26991744 DOI: 10.1002/jcp.25380] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 03/15/2016] [Indexed: 02/06/2023]
Abstract
Tumour Necrosis Factor-Alpha (TNF-α) is chronically elevated in conditions where skeletal muscle loss occurs. As l-glutamine can dampen the effects of inflamed environments, we investigated the role of l-glutamine in both differentiating C2C12 myoblasts and existing myotubes in the absence/presence of TNF-α (20 ng · ml(-1) ) ± l-glutamine (20 mM). TNF-α reduced the proportion of cells in G1 phase, as well as biochemical (CK activity) and morphological differentiation (myotube number), with corresponding reductions in transcript expression of: Myogenin, Igf-I, and Igfbp5. Furthermore, when administered to mature myotubes, TNF-α induced myotube loss and atrophy underpinned by reductions in Myogenin, Igf-I, Igfbp2, and glutamine synthetase and parallel increases in Fox03, Cfos, p53, and Bid gene expression. Investigation of signaling activity suggested that Akt and ERK1/2 were unchanged, JNK increased (non-significantly) whereas P38 MAPK substantially and significantly increased in both myoblasts and myotubes in the presence of TNF-α. Importantly, 20 mM l-glutamine reduced p38 MAPK activity in TNF-α conditions back to control levels, with a corresponding rescue of myoblast differentiation and a reversal of atrophy in myotubes. l-glutamine resulted in upregulation of genes associated with growth and survival including; Myogenin, Igf-Ir, Myhc2 & 7, Tnfsfr1b, Adra1d, and restored atrophic gene expression of Fox03 back to baseline in TNF-α conditions. In conclusion, l-glutamine supplementation rescued suppressed muscle cell differentiation and prevented myotube atrophy in an inflamed environment via regulation of p38 MAPK. l-glutamine administration could represent an important therapeutic strategy for reducing muscle loss in catabolic diseases and inflamed ageing. J. Cell. Physiol. 9999: 231: 2720-2732, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Matthew Girven
- Stem Cells, Ageing and Molecular Physiology Research Unit, Exercise Metabolism and Adaptation Research Group, Research Institute for Sport and Exercise Sciences (RISES), Liverpool John Moores University, Liverpool, United Kingdom
| | - Hannah F Dugdale
- Stem Cells, Ageing and Molecular Physiology Research Unit, Exercise Metabolism and Adaptation Research Group, Research Institute for Sport and Exercise Sciences (RISES), Liverpool John Moores University, Liverpool, United Kingdom
| | - Daniel J Owens
- Stem Cells, Ageing and Molecular Physiology Research Unit, Exercise Metabolism and Adaptation Research Group, Research Institute for Sport and Exercise Sciences (RISES), Liverpool John Moores University, Liverpool, United Kingdom.,Sorbonne Universités, UPMC University of Paris 06, INSERM UMRS974, CNRS FRE3617, Centre de Recherche en Myologie (CRM), GH Pitié Salpêtrière, Paris 13, France
| | - David C Hughes
- Stem Cells, Ageing and Molecular Physiology Research Unit, Exercise Metabolism and Adaptation Research Group, Research Institute for Sport and Exercise Sciences (RISES), Liverpool John Moores University, Liverpool, United Kingdom.,Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, California
| | - Claire E Stewart
- Stem Cells, Ageing and Molecular Physiology Research Unit, Exercise Metabolism and Adaptation Research Group, Research Institute for Sport and Exercise Sciences (RISES), Liverpool John Moores University, Liverpool, United Kingdom
| | - Adam P Sharples
- Stem Cells, Ageing and Molecular Physiology Research Unit, Exercise Metabolism and Adaptation Research Group, Research Institute for Sport and Exercise Sciences (RISES), Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|
22
|
DJ-1 protects against undernutrition-induced atrophy through inhibition of the MAPK-ubiquitin ligase pathway in myoblasts. Life Sci 2015; 143:50-7. [PMID: 26408915 DOI: 10.1016/j.lfs.2015.09.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 08/01/2015] [Accepted: 09/21/2015] [Indexed: 01/09/2023]
Abstract
AIMS The purpose of this study is to explore whether antioxidant DJ-1 protein affects the atrophy of skeletal muscle cell induced by undernutrition. MAIN METHODS To determine cell atrophic responses, L6 cell line and skeletal primary cells from mouse hind limbs were cultivated under condition of FBS-free and low glucose. Changes of protein expression were analyzed using Western blot. Overexpression and knockdown of DJ-1 was performed in cells to assess its influence on cell atrophic responses. KEY FINDINGS Undernutrition decreased cell size and increased the abundance of oxidized form and total form of DJ-1 protein in L6 myoblasts. The undernourished cells revealed an elevation in the expression of muscle-specific RING finger-1 (MuRF-1) and atrogin-1, and in the phosphorylations of p38 mitogen-activated protein kinase (MAPK) and stress-activated protein kinase/c-Jun N-terminal kinase compared with control groups. Moreover, DJ-1-knockout mice showed a decrease in cell size and an enhancement in the expression of MuRF-1 and atrogin-1, as well as in the phosphorylation of MAPKs in gastrocnemius muscles; these changes were also observed in L6 cells transfected with siRNA of DJ-1. On the other hand, L6 cells overexpressing full-length DJ-1 did not exhibit the alterations in cell size and ubiquitin ligases seen after undernourished states of control cells. Myotubes differentiated from L6 cells also showed elevated expression of MuRF-1 and atrogin-1 in response to undernutrition. SIGNIFICANCE These results suggest that DJ-1 protein may contribute to undernutrition-induced atrophy via MAPKs/ubiquitin ligase pathway in skeletal muscle cells.
Collapse
|
23
|
Chen JA, Splenser A, Guillory B, Luo J, Mendiratta M, Belinova B, Halder T, Zhang G, Li YP, Garcia JM. Ghrelin prevents tumour- and cisplatin-induced muscle wasting: characterization of multiple mechanisms involved. J Cachexia Sarcopenia Muscle 2015; 6:132-43. [PMID: 26136189 PMCID: PMC4458079 DOI: 10.1002/jcsm.12023] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 11/11/2014] [Accepted: 02/13/2015] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Cachexia and muscle atrophy are common consequences of cancer and chemotherapy administration. The novel hormone ghrelin has been proposed as a treatment for this condition. Increases in food intake and direct effects on muscle proteolysis and protein synthesis are likely to mediate these effects, but the pathways leading to these events are not well understood. METHODS We characterized molecular pathways involved in muscle atrophy induced by Lewis lung carcinoma (LLC) tumour implantation in c57/bl6 adult male mice and by administration of the chemotherapeutic agent cisplatin in mice and in C2C12 myotubes. The effects of exogenous ghrelin administration and its mechanisms of action were examined in these settings. RESULTS Tumour implantation and cisplatin induced muscle atrophy by activating pro-inflammatory cytokines, p38-C/EBP-β, and myostatin, and by down-regulating Akt, myoD, and myogenin, leading to activation of ubiquitin-proteasome-mediated proteolysis and muscle weakness. Tumour implantation also increased mortality. In vitro, cisplatin up-regulated myostatin and atrogin-1 by activating C/EBP-β and FoxO1/3. Ghrelin prevented these changes in vivo and in vitro, significantly increasing muscle mass (P < 0.05 for LLC and P < 0.01 for cisplatin models) and grip strength (P = 0.038 for LLC and P = 0.001 for cisplatin models) and improving survival (P = 0.021 for LLC model). CONCLUSION Ghrelin prevents muscle atrophy by down-regulating inflammation, p38/C/EBP-β/myostatin, and activating Akt, myogenin, and myoD. These changes appear, at least in part, to target muscle cells directly. Ghrelin administration in this setting is associated with improved muscle strength and survival.
Collapse
Affiliation(s)
- Ji-An Chen
- Department of Health Education, College of Preventive Medicine, Third Military Medical University, Chongqing, China.,Division of Endocrinology, Diabetes and Metabolism, MCL, Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey Veterans Affairs Medical Center, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Andres Splenser
- Division of Endocrinology, Diabetes and Metabolism, MCL, Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey Veterans Affairs Medical Center, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Bobby Guillory
- Division of Endocrinology, Diabetes and Metabolism, MCL, Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey Veterans Affairs Medical Center, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Jiaohua Luo
- Division of Endocrinology, Diabetes and Metabolism, MCL, Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey Veterans Affairs Medical Center, Department of Medicine, Baylor College of Medicine, Houston, TX, USA.,Department of Environmental Hygiene, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Meenal Mendiratta
- Division of Endocrinology, Diabetes and Metabolism, MCL, Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey Veterans Affairs Medical Center, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Blaga Belinova
- Division of Endocrinology, Diabetes and Metabolism, MCL, Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey Veterans Affairs Medical Center, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Tripti Halder
- Division of Endocrinology, Diabetes and Metabolism, MCL, Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey Veterans Affairs Medical Center, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Guohua Zhang
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX, USA
| | - Yi-Ping Li
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX, USA
| | - Jose M Garcia
- Division of Endocrinology, Diabetes and Metabolism, MCL, Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey Veterans Affairs Medical Center, Department of Medicine, Baylor College of Medicine, Houston, TX, USA.,Huffington Center on Aging and Dept. of Molecular and Cell Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
24
|
Endotoxin-induced skeletal muscle wasting is prevented by angiotensin-(1-7) through a p38 MAPK-dependent mechanism. Clin Sci (Lond) 2015; 129:461-76. [PMID: 25989282 DOI: 10.1042/cs20140840] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 05/19/2015] [Indexed: 12/19/2022]
Abstract
Skeletal muscle atrophy induced during sepsis syndrome produced by endotoxin in the form of LPS (lipopolysaccharide), is a pathological condition characterized by the loss of strength and muscle mass, an increase in MHC (myosin heavy chain) degradation, and an increase in the expression of atrogin-1 and MuRF-1 (muscle-specific RING-finger protein 1), two ubiquitin E3 ligases belonging to the ubiquitin-proteasome system. Ang-(1-7) [Angiotensin-(1-7)], through its Mas receptor, has beneficial effects in skeletal muscle. We evaluated in vivo the role of Ang-(1-7) and Mas receptor on the muscle wasting induced by LPS injection into C57BL/10J mice. In vitro studies were performed in murine C2C12 myotubes and isolated myofibres from EDL (extensor digitorum longus) muscle. In addition, the participation of p38 MAPK (mitogen-activated protein kinase) in the Ang-(1-7) effect on the LPS-induced muscle atrophy was evaluated. Our results show that Ang-(1-7) prevents the decrease in the diameter of myofibres and myotubes, the decrease in muscle strength, the diminution in MHC levels and the induction of atrogin-1 and MuRF-1 expression, all of which are induced by LPS. These effects were reversed by using A779, a Mas antagonist. Ang-(1-7) exerts these anti-atrophic effects at least in part by inhibiting the LPS-dependent activation of p38 MAPK both in vitro and in vivo. We have demonstrated for the first time that Ang-(1-7) counteracts the skeletal muscle atrophy induced by endotoxin through a mechanism dependent on the Mas receptor that involves a decrease in p38 MAPK phosphorylation. The present study indicates that Ang-(1-7) is a novel molecule with a potential therapeutic use to improve muscle wasting during endotoxin-induced sepsis syndrome.
Collapse
|
25
|
Kim DY, Won KJ, Yoon MS, Yu HJ, Park JH, Kim B, Lee HM. Chrysanthemum boreale flower floral water inhibits platelet-derived growth factor-stimulated migration and proliferation in vascular smooth muscle cells. PHARMACEUTICAL BIOLOGY 2015; 53:725-734. [PMID: 25330930 DOI: 10.3109/13880209.2014.941882] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
CONTEXT Chrysanthemum boreale Makino (Compositae) (CBM) is a traditional medicine that has been used for the prevention or treatment of various disorders; it has various properties including antioxidation, anti-inflammation, and antitumor. OBJECTIVE The present study was designed to explore the in vitro effect of CBM flower floral water (CBMFF) on atherosclerosis-related responses in rat aortic smooth muscle cells (RASMCs). MATERIALS AND METHODS CBMFF was extracted from CBM flower by steam distillation and analyzed using gas chromatography-mass spectrometry. The anti-atherosclerosis activity of CBMFF was tested by estimating platelet-derived growth factor (PDGF)-BB (10 ng/mL)-induced proliferation and migration levels and intracellular kinase pathways in RASMCs at CBMFF concentrations of 0.01-100 μM and analyzing ex vivo aortic ring assay. RESULTS Gas chromatography-mass spectrometry showed that the CBMFF contained a total of seven components. The CBMFF inhibits PDGF-BB-stimulated RASMC migration and proliferation (IC50: 0.010 μg/mL). Treatment of RASMCs with PDGF-BB induced PDGFR-β phosphorylation and increased the phosphorylations of MAPK p38 and ERK1/2. CBMFF addition prevented PDGF-BB-induced phosphorylation of these kinases (IC50: 008 and 0.018 μg/mL, for p38 MAPK and ERK1/2, respectively), as well as PDGFR-β (IC50: 0.046 μg/mL). Treatment with inhibitors of PDGFR, P38 MAPK, and ERK1/2 decreased PDGF-BB-increased migration and proliferation in RASMCs. Moreover, the CBMFF suppressed PDGF-BB-increased sprout outgrowth of aortic rings (IC50: 0.047 μg/mL). DISCUSSION AND CONCLUSION These results demonstrate that CBMFF may inhibit PDGF-BB-induced vascular migration and proliferation, most likely through inhibition of the PDGFR-β-mediated MAPK pathway; therefore, the CBMFF may be promising candidate for the development of herbal remedies for vascular disorders.
Collapse
MESH Headings
- Animals
- Cell Movement/drug effects
- Cell Movement/physiology
- Cell Proliferation/drug effects
- Cell Proliferation/physiology
- Cells, Cultured
- Chrysanthemum
- Dose-Response Relationship, Drug
- Flowers
- Male
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Plant Extracts/isolation & purification
- Plant Extracts/pharmacology
- Platelet-Derived Growth Factor/antagonists & inhibitors
- Platelet-Derived Growth Factor/pharmacology
- Rats
- Rats, Sprague-Dawley
- Water/pharmacology
Collapse
Affiliation(s)
- Do-Yoon Kim
- Department of Cosmetic Science, College of Natural Science, Hoseo University , Asan, Chungnam Prefecture , Republic of Korea and
| | | | | | | | | | | | | |
Collapse
|
26
|
Kim MY, Lee JU, Kim JH, Lee LK, Park BS, Yang SM, Jeon HJ, Lee WD, Noh JW, Kwak TY, Jang SH, Lee TH, Kim JY, Kim B, Kim J. Phosphorylation of Heat Shock Protein 27 is Increased by Cast Immobilization and by Serum-free Starvation in Skeletal Muscles. J Phys Ther Sci 2014; 26:1975-7. [PMID: 25540511 PMCID: PMC4273071 DOI: 10.1589/jpts.26.1975] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 06/23/2014] [Indexed: 02/01/2023] Open
Abstract
[Purpose] Cast immobilization- and cell starvation-induced loss of muscle mass are closely associated with a dramatic reduction in the structural muscle proteins. Heat shock proteins are molecular chaperones that are constitutively expressed in several eukaryotic cells and have been shown to protect against various stressors. However, the changes in the phosphorylation of atrophy-related heat shock protein 27 (HSP27) are still poorly understood in skeletal muscles. In this study, we examine whether or not phosphorylation of HSP27 is changed in the skeletal muscles after cast immobilization and serum-free starvation with low glucose in a time-dependent manner. [Methods] We undertook a HSP27 expression and high-resolution differential proteomic analysis in skeletal muscles. Furthermore, we used western blotting to examine protein expression and phosphorylation of HSP27 in atrophied gastrocnemius muscle strips and L6 myoblasts. [Results] Cast immobilization and starvation significantly upregulated the phosphorylation of HSP27 in a time-dependent manner, respectively. [Conclusion] Our results suggest that cast immobilization- and serum-free starvation-induced atrophy may be in part related to changes in the phosphorylation of HSP27 in rat skeletal muscles.
Collapse
Affiliation(s)
- Mee-Young Kim
- Laboratory of Health Science and Nanophysiotherapy, Department of Physical Therapy, Graduate School, Yongin University, Republic of Korea
| | - Jeong-Uk Lee
- Laboratory of Health Science and Nanophysiotherapy, Department of Physical Therapy, Graduate School, Yongin University, Republic of Korea
| | - Ju-Hyun Kim
- Laboratory of Health Science and Nanophysiotherapy, Department of Physical Therapy, Graduate School, Yongin University, Republic of Korea
| | - Lim-Kyu Lee
- Laboratory of Health Science and Nanophysiotherapy, Department of Physical Therapy, Graduate School, Yongin University, Republic of Korea
| | - Byoung-Sun Park
- Laboratory of Health Science and Nanophysiotherapy, Department of Physical Therapy, Graduate School, Yongin University, Republic of Korea
| | - Seung-Min Yang
- Laboratory of Health Science and Nanophysiotherapy, Department of Physical Therapy, Graduate School, Yongin University, Republic of Korea
| | - Hye-Joo Jeon
- Laboratory of Health Science and Nanophysiotherapy, Department of Physical Therapy, Graduate School, Yongin University, Republic of Korea
| | - Won-Deok Lee
- Laboratory of Health Science and Nanophysiotherapy, Department of Physical Therapy, Graduate School, Yongin University, Republic of Korea
| | - Ji-Woong Noh
- Laboratory of Health Science and Nanophysiotherapy, Department of Physical Therapy, Graduate School, Yongin University, Republic of Korea
| | - Taek-Yong Kwak
- Department of Taekwondo Instructor Education, College of Martial Arts, Yongin University, Republic of Korea
| | - Sung-Ho Jang
- Department of Judo, College of Martial Arts, Yongin University, Republic of Korea
| | - Tae-Hyun Lee
- Department of Combative Martial Arts Training, College of Martial Arts, Yongin University, Republic of Korea
| | - Ju-Young Kim
- Department of Combative Martial Arts Training, College of Martial Arts, Yongin University, Republic of Korea
| | - Bokyung Kim
- Institute of Functional Genomics, Department of Physiology, School of Medicine, Konkuk University, Republic of Korea
| | - Junghwan Kim
- Department of Physical Therapy, College of Public Health and Welfare, Yongin University: Yongin 449-714, Republic of Korea
| |
Collapse
|
27
|
Kim MY, Lee JU, Kim JH, Lee LK, Yang SM, Park BS, Jeon HJ, Lee WD, Noh JW, Kwak TY, Jang SH, Lee TH, Kim JY, Kim B, Kim J. Decrease of PKB/Akt Phosphorylation is Partially Mediated by SAPK/JNK Activation in Serum-free L6 Myoblasts Starved with Low Glucose. J Phys Ther Sci 2014; 26:1757-60. [PMID: 25435694 PMCID: PMC4242949 DOI: 10.1589/jpts.26.1757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 05/16/2014] [Indexed: 11/24/2022] Open
Abstract
[Purpose] Studies have been using cell cultures of muscle cells to mimic atrophy in
in vivo and in vitro tests. However, changes in the
activation of atrophy-related PKB/Akt is not fully understood in serum-free starved
skeletal muscle cells. The purpose of the present study was to determine the change of
PKB/Akt phosphorylation in L6 myoblasts under serum-free starvation conditions. [Methods]
We used western blotting to examine PKB/Akt expression and phosphorylation in atrophied L6
myoblasts. [Results] The phosphorylation of PKB/Akt was significantly lower in L6
myoblasts under serum-free starvation than that of the control group. Serum-free
starvation for 6, 12, 24, 36, 48, 72, 96, and 120 hours significantly decreased the
phosphorylation of PKB/Akt. Furthermore, the decrease of PKB/Akt phosphorylation under
serum-free starvation was partially restored by SP600125, an inhibitor of SAPK/JNK.
[Conclusion] These results suggest that decrease of PKB/Akt phosphorylation due to
serum-free starvation with low glucose is partially related to the activity of SAPK/JNK in
L6 myoblasts.
Collapse
Affiliation(s)
- Mee-Young Kim
- Laboratory of Health Science and Nanophysiotherapy, Department of Physical Therapy, Graduate School, Yongin University, Republic of Korea ; Laboratory of Health Science and Nanophysiotherapy, Department of Physical Therapy, Graduate School, Yongin University, Republic of Korea
| | - Jeong-Uk Lee
- Laboratory of Health Science and Nanophysiotherapy, Department of Physical Therapy, Graduate School, Yongin University, Republic of Korea
| | - Ju-Hyun Kim
- Laboratory of Health Science and Nanophysiotherapy, Department of Physical Therapy, Graduate School, Yongin University, Republic of Korea
| | - Lim-Kyu Lee
- Laboratory of Health Science and Nanophysiotherapy, Department of Physical Therapy, Graduate School, Yongin University, Republic of Korea
| | - Seung-Min Yang
- Laboratory of Health Science and Nanophysiotherapy, Department of Physical Therapy, Graduate School, Yongin University, Republic of Korea
| | - Byoung-Sun Park
- Laboratory of Health Science and Nanophysiotherapy, Department of Physical Therapy, Graduate School, Yongin University, Republic of Korea
| | - Hye-Joo Jeon
- Laboratory of Health Science and Nanophysiotherapy, Department of Physical Therapy, Graduate School, Yongin University, Republic of Korea
| | - Won-Deok Lee
- Laboratory of Health Science and Nanophysiotherapy, Department of Physical Therapy, Graduate School, Yongin University, Republic of Korea
| | - Ji-Woong Noh
- Laboratory of Health Science and Nanophysiotherapy, Department of Physical Therapy, Graduate School, Yongin University, Republic of Korea
| | - Taek-Yong Kwak
- Department of Taekwondo Instructor Education, College of Martial Arts, Yongin University, Republic of Korea
| | - Sung-Ho Jang
- Department of Judo, College of Martial Arts, Yongin University, Republic of Korea
| | - Tae-Hyun Lee
- Combative Martial Arts Training, College of Martial Arts, Yongin University, Republic of Korea
| | - Ju-Young Kim
- Combative Martial Arts Training, College of Martial Arts, Yongin University, Republic of Korea
| | - Bokyung Kim
- Institute of Functional Genomics, Department of Physiology, School of Medicine, Konkuk University, Republic of Korea
| | - Junghwan Kim
- Department of Physical Therapy, College of Public Health and Welfare, Yongin University: Yongin 449-714, Republic of Korea
| |
Collapse
|
28
|
Paulsen G, Hamarsland H, Cumming KT, Johansen RE, Hulmi JJ, Børsheim E, Wiig H, Garthe I, Raastad T. Vitamin C and E supplementation alters protein signalling after a strength training session, but not muscle growth during 10 weeks of training. J Physiol 2014; 592:5391-408. [PMID: 25384788 DOI: 10.1113/jphysiol.2014.279950] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
This study investigated the effects of vitamin C and E supplementation on acute responses and adaptations to strength training. Thirty-two recreationally strength-trained men and women were randomly allocated to receive a vitamin C and E supplement (1000 mg day(-1) and 235 mg day(-1), respectively), or a placebo, for 10 weeks. During this period the participants' training involved heavy-load resistance exercise four times per week. Muscle biopsies from m. vastus lateralis were collected, and 1 repetition maximum (1RM) and maximal isometric voluntary contraction force, body composition (dual-energy X-ray absorptiometry), and muscle cross-sectional area (magnetic resonance imaging) were measured before and after the intervention. Furthermore, the cellular responses to a single exercise session were assessed midway in the training period by measurements of muscle protein fractional synthetic rate and phosphorylation of several hypertrophic signalling proteins. Muscle biopsies were obtained from m. vastus lateralis twice before, and 100 and 150 min after, the exercise session (4 × 8RM, leg press and knee-extension). The supplementation did not affect the increase in muscle mass or the acute change in protein synthesis, but it hampered certain strength increases (biceps curl). Moreover, increased phosphorylation of p38 mitogen-activated protein kinase, Extracellular signal-regulated protein kinases 1 and 2 and p70S6 kinase after the exercise session was blunted by vitamin C and E supplementation. The total ubiquitination levels after the exercise session, however, were lower with vitamin C and E than placebo. We concluded that vitamin C and E supplementation interfered with the acute cellular response to heavy-load resistance exercise and demonstrated tentative long-term negative effects on adaptation to strength training.
Collapse
Affiliation(s)
- G Paulsen
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway Norwegian Olympic Federation, Oslo, Norway
| | - H Hamarsland
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - K T Cumming
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - R E Johansen
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - J J Hulmi
- Department of Biology of Physical Activity, Neuromuscular Research Center, University of Jyväskylä, Jyväskylä, Finland
| | - E Børsheim
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway Arkansas Children's Hospital Research Institute, Departments of Pediatrics and Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - H Wiig
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - I Garthe
- Norwegian Olympic Federation, Oslo, Norway
| | - T Raastad
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| |
Collapse
|
29
|
Kim MY, Kim JH, Lee JU, Lee LK, Yang SM, Park BS, Jeon HJ, Lee WD, Noh JW, Kwak TY, Jang SH, Lee TH, Kim JY, Kim TW, Kim B, Kim J. Cofilin Phosphorylation Decreased by Serum-free Starvation with Low Glucose in the L6 Myoblasts. J Phys Ther Sci 2014; 26:1543-5. [PMID: 25364107 PMCID: PMC4210392 DOI: 10.1589/jpts.26.1543] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 04/10/2014] [Indexed: 01/08/2023] Open
Abstract
[Purpose] Many studies have been using cell culture models of muscle cells with exogenous cytokines or glucocorticoids to mimic atrophy in in vivo and in vitro tests. However, the changes in the phosphorylation of atrophy-related cofilin are still poorly understood in starved skeletal muscle cells. In this study, we first examined whether or not phosphorylation of cofilin is altered in L6 myoblasts after 3, 6, 12, 24, 48, and 72 hours of serum-free starvation with low glucose. [Methods] We used Western blotting to exam protein expression and phosphorylation in atrophied L6 myoblasts. [Results] L6 cell sizes and numbers were diminished as a result of serum-free starvation in a time-dependent manner. Serum-free starvation for 3, 6, 12, 24, 48, and 72 hours significantly decreased the phosphorylation of cofilin, respectively. [Conclusion] These results suggest that starvation-induced atrophy may be in part related to changes in the phosphorylation of cofilin in L6 myoblasts.
Collapse
Affiliation(s)
- Mee-Young Kim
- Department of Physical Therapy, Laboratory of Health Science and Nanophysiotherapy, Yongin University, Republic of Korea ; Department of Physical Therapy, Laboratory of Health Science and Nanophysiotherapy, Yongin University, Republic of Korea
| | - Ju-Hyun Kim
- Department of Physical Therapy, Laboratory of Health Science and Nanophysiotherapy, Yongin University, Republic of Korea
| | - Jeong-Uk Lee
- Department of Physical Therapy, Laboratory of Health Science and Nanophysiotherapy, Yongin University, Republic of Korea
| | - Lim-Kyu Lee
- Department of Physical Therapy, Laboratory of Health Science and Nanophysiotherapy, Yongin University, Republic of Korea
| | - Seung-Min Yang
- Department of Physical Therapy, Laboratory of Health Science and Nanophysiotherapy, Yongin University, Republic of Korea
| | - Byoung-Sun Park
- Department of Physical Therapy, Laboratory of Health Science and Nanophysiotherapy, Yongin University, Republic of Korea
| | - Hye-Joo Jeon
- Department of Physical Therapy, Laboratory of Health Science and Nanophysiotherapy, Yongin University, Republic of Korea
| | - Won-Deok Lee
- Department of Physical Therapy, Laboratory of Health Science and Nanophysiotherapy, Yongin University, Republic of Korea
| | - Ji-Woong Noh
- Department of Physical Therapy, Laboratory of Health Science and Nanophysiotherapy, Yongin University, Republic of Korea
| | - Taek-Yong Kwak
- Department of Taekwondo Instructor Education, College of Martial Arts, Yongin University, Republic of Korea
| | - Sung-Ho Jang
- Department of Judo, College of Martial Arts, Yongin University, Republic of Korea
| | - Tae-Hyun Lee
- Combative Martial Arts Training, College of Martial Arts, Yongin University, Republic of Korea
| | - Ju-Young Kim
- Combative Martial Arts Training, College of Martial Arts, Yongin University, Republic of Korea
| | - Tae-Whan Kim
- Department of Sports Science and Engineering, Korea Institute of Sport Science, Republic of Korea
| | - Bokyung Kim
- Department of Physiology, School of Medicine, Institute of Functional Genomics, Konkuk University, Republic of Korea
| | - Junghwan Kim
- Department of Physical Therapy, College of Public Health and Welfare, Yongin University, Republic of Korea
| |
Collapse
|
30
|
Abstract
Muscle RING finger 1 (MuRF1) and muscle atrophy F-box (MAFbx)/atrogin-1 were identified more than 10 years ago as two muscle-specific E3 ubiquitin ligases that are increased transcriptionally in skeletal muscle under atrophy-inducing conditions, making them excellent markers of muscle atrophy. In the past 10 years much has been published about MuRF1 and MAFbx with respect to their mRNA expression patterns under atrophy-inducing conditions, their transcriptional regulation, and their putative substrates. However, much remains to be learned about the physiological role of both genes in the regulation of mass and other cellular functions in striated muscle. Although both MuRF1 and MAFbx are enriched in skeletal, cardiac, and smooth muscle, this review will focus on the current understanding of MuRF1 and MAFbx in skeletal muscle, highlighting the critical questions that remain to be answered.
Collapse
Affiliation(s)
- Sue C Bodine
- Departments of Neurobiology, Physiology, and Behavior and Physiology and Membrane Biology, University of California Davis, Davis, California; and Northern California Veterans Affairs Health Systems, Mather, California
| | - Leslie M Baehr
- Membrane Biology, University of California Davis, Davis, California; and
| |
Collapse
|
31
|
Morales MG, Abrigo J, Meneses C, Cisternas F, Simon F, Cabello-Verrugio C. Expression of the Mas receptor is upregulated in skeletal muscle wasting. Histochem Cell Biol 2014; 143:131-41. [DOI: 10.1007/s00418-014-1275-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2014] [Indexed: 12/13/2022]
|
32
|
Smith IJ, Godinez GL, Singh BK, McCaughey KM, Alcantara RR, Gururaja T, Ho MS, Nguyen HN, Friera AM, White KA, McLaughlin JR, Hansen D, Romero JM, Baltgalvis KA, Claypool MD, Li W, Lang W, Yam GC, Gelman MS, Ding R, Yung SL, Creger DP, Chen Y, Singh R, Smuder AJ, Wiggs MP, Kwon OS, Sollanek KJ, Powers SK, Masuda ES, Taylor VC, Payan DG, Kinoshita T, Kinsella TM. Inhibition of Janus kinase signaling during controlled mechanical ventilation prevents ventilation-induced diaphragm dysfunction. FASEB J 2014; 28:2790-803. [PMID: 24671708 PMCID: PMC4062832 DOI: 10.1096/fj.13-244210] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Controlled mechanical ventilation (CMV) is associated with the development of diaphragm atrophy and contractile dysfunction, and respiratory muscle weakness is thought to contribute significantly to delayed weaning of patients. Therefore, therapeutic strategies for preventing these processes may have clinical benefit. The aim of the current study was to investigate the role of the Janus kinase (JAK)/signal transducer and activator of transcription 3 (STAT3) signaling pathway in CMV-mediated diaphragm wasting and weakness in rats. CMV-induced diaphragm atrophy and contractile dysfunction coincided with marked increases in STAT3 phosphorylation on both tyrosine 705 (Tyr705) and serine 727 (Ser727). STAT3 activation was accompanied by its translocation into mitochondria within diaphragm muscle and mitochondrial dysfunction. Inhibition of JAK signaling during CMV prevented phosphorylation of both target sites on STAT3, eliminated the accumulation of phosphorylated STAT3 within the mitochondria, and reversed the pathologic alterations in mitochondrial function, reduced oxidative stress in the diaphragm, and maintained normal diaphragm contractility. In addition, JAK inhibition during CMV blunted the activation of key proteolytic pathways in the diaphragm, as well as diaphragm atrophy. These findings implicate JAK/STAT3 signaling in the development of diaphragm muscle atrophy and dysfunction during CMV and suggest that the delayed extubation times associated with CMV can be prevented by inhibition of Janus kinase signaling.-Smith, I. J., Godinez, G. L., Singh, B. K., McCaughey, K. M., Alcantara, R. R., Gururaja, T., Ho, M. S., Nguyen, H. N., Friera, A. M., White, K. A., McLaughlin, J. R., Hansen, D., Romero, J. M., Baltgalvis, K. A., Claypool, M. D., Li, W., Lang, W., Yam, G. C., Gelman, M. S., Ding, R., Yung, S. L., Creger, D. P., Chen, Y., Singh, R., Smuder, A. J., Wiggs, M. P., Kwon, O.-S., Sollanek, K. J., Powers, S. K., Masuda, E. S., Taylor, V. C., Payan, D. G., Kinoshita, T., Kinsella, T. M. Inhibition of Janus kinase signaling during controlled mechanical ventilation prevents ventilation-induced diaphragm dysfunction.
Collapse
Affiliation(s)
- Ira J Smith
- Rigel Pharmaceuticals, South San Francisco, California, USA; and
| | | | - Baljit K Singh
- Rigel Pharmaceuticals, South San Francisco, California, USA; and
| | | | | | | | - Melissa S Ho
- Rigel Pharmaceuticals, South San Francisco, California, USA; and
| | - Henry N Nguyen
- Rigel Pharmaceuticals, South San Francisco, California, USA; and
| | | | - Kathy A White
- Rigel Pharmaceuticals, South San Francisco, California, USA; and
| | | | - Derek Hansen
- Rigel Pharmaceuticals, South San Francisco, California, USA; and
| | - Jason M Romero
- Rigel Pharmaceuticals, South San Francisco, California, USA; and
| | | | - Mark D Claypool
- Rigel Pharmaceuticals, South San Francisco, California, USA; and
| | - Wei Li
- Rigel Pharmaceuticals, South San Francisco, California, USA; and
| | - Wayne Lang
- Rigel Pharmaceuticals, South San Francisco, California, USA; and
| | - George C Yam
- Rigel Pharmaceuticals, South San Francisco, California, USA; and
| | - Marina S Gelman
- Rigel Pharmaceuticals, South San Francisco, California, USA; and
| | - Rongxian Ding
- Rigel Pharmaceuticals, South San Francisco, California, USA; and
| | - Stephanie L Yung
- Rigel Pharmaceuticals, South San Francisco, California, USA; and
| | - Daniel P Creger
- Rigel Pharmaceuticals, South San Francisco, California, USA; and
| | - Yan Chen
- Rigel Pharmaceuticals, South San Francisco, California, USA; and
| | - Rajinder Singh
- Rigel Pharmaceuticals, South San Francisco, California, USA; and
| | - Ashley J Smuder
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| | - Michael P Wiggs
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| | - Oh-Sung Kwon
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| | - Kurt J Sollanek
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| | - Scott K Powers
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| | - Esteban S Masuda
- Rigel Pharmaceuticals, South San Francisco, California, USA; and
| | - Vanessa C Taylor
- Rigel Pharmaceuticals, South San Francisco, California, USA; and
| | - Donald G Payan
- Rigel Pharmaceuticals, South San Francisco, California, USA; and
| | - Taisei Kinoshita
- Rigel Pharmaceuticals, South San Francisco, California, USA; and
| | - Todd M Kinsella
- Rigel Pharmaceuticals, South San Francisco, California, USA; and
| |
Collapse
|
33
|
Kim MY, Kim JH, Lee JU, Lee LK, Yang SM, Jeon HJ, Lee WD, Noh JW, Lee TH, Kwak TY, Kim B, Kim J. Decrease of Both Cofilin and LIM Kinase Phosphorylation in the Skeletal Muscles of Immobilization-induced Atrophy Rats. J Phys Ther Sci 2014; 26:355-7. [PMID: 24711688 PMCID: PMC3977028 DOI: 10.1589/jpts.26.355] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 09/22/2013] [Indexed: 12/02/2022] Open
Abstract
[Purpose] Immobilization-induced atrophy is a general phenomenon caused by prolonged
muscle disuse associated with orthopaedic conditions. However, changes in the
phosphorylation of atrophy-related cofilin and LIM kinases are still poorly understood. In
this study, we examined whether or not phosphorylation of cofilin and LIM kinases is
altered in the skeletal muscles of rats after 3, 7, 14, and 21 days of cast
immobilization. [Methods] We used two-dimensional gel electrophoresis, mass spectrometry,
and western blotting to examine protein expression and phosphorylation in atrophied rat
gastrocnemius muscles. [Results] The expression of the cofilin was detected in
gastrocnemius muscle strips using proteomic analysis. Cast immobilization after 3, 7, 14,
and 21 days significantly diminished the phosphorylation of cofilin and LIM kinases.
[Conclusion] The present results suggest that cast immobilization-induced atrophy may be
in part related to changes in the phosphorylation of cofilin and LIM kinases in rat
skeletal muscles.
Collapse
Affiliation(s)
- Mee-Young Kim
- Laboratory of Health Science and Nanophysiotherapy, Department of Physical Therapy, Graduate School, Yongin University, Republic of Korea
| | - Ju-Hyun Kim
- Laboratory of Health Science and Nanophysiotherapy, Department of Physical Therapy, Graduate School, Yongin University, Republic of Korea
| | - Jeong-Uk Lee
- Laboratory of Health Science and Nanophysiotherapy, Department of Physical Therapy, Graduate School, Yongin University, Republic of Korea
| | - Lim-Kyu Lee
- Laboratory of Health Science and Nanophysiotherapy, Department of Physical Therapy, Graduate School, Yongin University, Republic of Korea
| | - Seung-Min Yang
- Laboratory of Health Science and Nanophysiotherapy, Department of Physical Therapy, Graduate School, Yongin University, Republic of Korea
| | - Hye-Joo Jeon
- Laboratory of Health Science and Nanophysiotherapy, Department of Physical Therapy, Graduate School, Yongin University, Republic of Korea
| | - Won-Deok Lee
- Laboratory of Health Science and Nanophysiotherapy, Department of Physical Therapy, Graduate School, Yongin University, Republic of Korea
| | - Ji-Woong Noh
- Laboratory of Health Science and Nanophysiotherapy, Department of Physical Therapy, Graduate School, Yongin University, Republic of Korea
| | - Tae-Hyun Lee
- Department of Combative Martial Arts Training, College of Martial Arts, Yongin University, Republic of Korea
| | - Taek-Yong Kwak
- Taekwondo Instructor Education, College of Martial Arts, Yongin University, Republic of Korea
| | - Bokyung Kim
- Institute of Functional Genomics, Department of Physiology, School of Medicine, Konkuk University, Republic of Korea
| | - Junghwan Kim
- Department of Physical Therapy, College of Public Health and Welfare, Yongin University, Republic of Korea
| |
Collapse
|
34
|
Evertsson K, Fjällström AK, Norrby M, Tågerud S. p38 mitogen-activated protein kinase and mitogen-activated protein kinase-activated protein kinase 2 (MK2) signaling in atrophic and hypertrophic denervated mouse skeletal muscle. J Mol Signal 2014; 9:2. [PMID: 24629011 PMCID: PMC3995524 DOI: 10.1186/1750-2187-9-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 03/10/2014] [Indexed: 11/10/2022] Open
Abstract
Background p38 mitogen-activated protein kinase has been implicated in both skeletal muscle atrophy and hypertrophy. T317 phosphorylation of the p38 substrate mitogen-activated protein kinase-activated protein kinase 2 (MK2) correlates with muscle weight in atrophic and hypertrophic denervated muscle and may influence the nuclear and cytoplasmic distribution of p38 and/or MK2. The present study investigates expression and phosphorylation of p38, MK2 and related proteins in cytosolic and nuclear fractions from atrophic and hypertrophic 6-days denervated skeletal muscles compared to innervated controls. Methods Expression and phosphorylation of p38, MK2, Hsp25 (heat shock protein25rodent/27human, Hsp25/27) and Hsp70 protein expression were studied semi-quantitatively using Western blots with separated nuclear and cytosolic fractions from innervated and denervated hypertrophic hemidiaphragm and atrophic anterior tibial muscles. Unfractionated innervated and denervated atrophic pooled gastrocnemius and soleus muscles were also studied. Results No support was obtained for a differential nuclear/cytosolic localization of p38 or MK2 in denervated hypertrophic and atrophic muscle. The differential effect of denervation on T317 phosphorylation of MK2 in denervated hypertrophic and atrophic muscle was not reflected in p38 phosphorylation nor in the phosphorylation of the MK2 substrate Hsp25. Hsp25 phosphorylation increased 3-30-fold in all denervated muscles studied. The expression of Hsp70 increased 3-5-fold only in denervated hypertrophic muscles. Conclusions The study confirms a differential response of MK2 T317 phosphorylation in denervated hypertrophic and atrophic muscles and suggests that Hsp70 may be important for this. Increased Hsp25 phosphorylation in all denervated muscles studied indicates a role for factors other than MK2 in the regulation of this phosphorylation.
Collapse
Affiliation(s)
- Kim Evertsson
- Department of Chemistry and Biomedical Sciences, Linnaeus University, SE-391 82 Kalmar, Sweden.
| | | | | | | |
Collapse
|
35
|
Lee JU, Kim JH, Kim MY, Lee LK, Yang SM, Jeon HJ, Lee WD, Noh JW, Lee TH, Kwak TY, Kim B, Kim J. Increase of Myoglobin in Rat Gastrocnemius Muscles with Immobilization-induced Atrophy. J Phys Ther Sci 2014; 25:1617-20. [PMID: 24409033 PMCID: PMC3885852 DOI: 10.1589/jpts.25.1617] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 07/05/2013] [Indexed: 12/01/2022] Open
Abstract
[Purpose] Atrophy is a common phenomenon caused by prolonged muscle disuse associated
with bed-rest, aging, and immobilization. However, changes in the expression of
atrophy-related myoglobin are still poorly understood. In the present study, we examined
whether or not myoglobin expression is altered in the gastrocnemius muscles of rats after
seven days of cast immobilization. [Methods] We conducted a protein expression and
high-resolution differential proteomic analysis using, two-dimensional gel electrophoresis
and matrix-assisted laser desorption ionization time-of-flight/time-of-flight mass
spectrometry, and western blotting. [Results] The density and expression of myoglobin
increased significantly more in atrophic gastrocnemius muscle strips than they did in the
control group. [Conclusion] The results suggest that cast immobilization-induced atrophy
may be related to changes in the expression of myoglobin in rat gastrocnemius muscles.
Collapse
Affiliation(s)
- Jeong-Uk Lee
- Laboratory of Health Science and Nanophysiotherapy, Department of Physical Therapy, Graduate School, Yongin University, Republic of Korea
| | - Ju-Hyun Kim
- Laboratory of Health Science and Nanophysiotherapy, Department of Physical Therapy, Graduate School, Yongin University, Republic of Korea
| | - Mee-Young Kim
- Laboratory of Health Science and Nanophysiotherapy, Department of Physical Therapy, Graduate School, Yongin University, Republic of Korea
| | - Lim-Kyu Lee
- Laboratory of Health Science and Nanophysiotherapy, Department of Physical Therapy, Graduate School, Yongin University, Republic of Korea
| | - Seung-Min Yang
- Laboratory of Health Science and Nanophysiotherapy, Department of Physical Therapy, Graduate School, Yongin University, Republic of Korea
| | - Hye-Joo Jeon
- Laboratory of Health Science and Nanophysiotherapy, Department of Physical Therapy, Graduate School, Yongin University, Republic of Korea
| | - Won-Deok Lee
- Laboratory of Health Science and Nanophysiotherapy, Department of Physical Therapy, Graduate School, Yongin University, Republic of Korea
| | - Ji-Woong Noh
- Laboratory of Health Science and Nanophysiotherapy, Department of Physical Therapy, Graduate School, Yongin University, Republic of Korea
| | - Tae-Hyun Lee
- Department of Combative Martial Arts Training, College of Martial Arts, Yongin University, Republic of Korea
| | - Taek-Yong Kwak
- Taekwondo Instructor Education, College of Martial Arts, Yongin University, Republic of Korea
| | - Bokyung Kim
- Department of Physiology, School of Medicine, Institute of Functional Genomics, Konkuk University, Republic of Korea
| | - Junghwan Kim
- Department of Physical Therapy, College of Public Health and Welfare, Yongin University, Republic of Korea
| |
Collapse
|
36
|
Jamart C, Naslain D, Gilson H, Francaux M. Higher activation of autophagy in skeletal muscle of mice during endurance exercise in the fasted state. Am J Physiol Endocrinol Metab 2013; 305:E964-74. [PMID: 23964069 DOI: 10.1152/ajpendo.00270.2013] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Activation of autophagy in skeletal muscle has been reported in response to endurance exercise and food deprivation independently. The purpose of this study was to evaluate whether autophagy was more activated when both stimuli were combined, namely when endurance exercise was performed in a fasted rather than a fed state. Mice performed a low-intensity running exercise (10 m/min for 90min) in both dietary states after which the gastrocnemius muscles were removed. LC3b-II, a marker of autophagosome presence, increased in both conditions, but the increase was higher in the fasted state. Other protein markers of autophagy, like Gabarapl1-II and Atg12 conjugated form as well as mRNA of Lc3b, Gabarapl1, and p62/Sqstm1 were increased only when exercise was performed in a fasted state. The larger activation of autophagy by exercise in a fasted state was associated with a larger decrease in plasma insulin and phosphorylation of Akt(Ser473), Akt(Thr308), FoxO3a(Thr32), and ULK1(Ser757). AMPKα(Thr172), ULK1(Ser317), and ULK1(Ser555) remained unchanged in both conditions, whereas p38(Thr180/Tyr182) increased during exercise to a similar extent in the fasted and fed conditions. The marker of mitochondrial fission DRP1(Ser616) was increased by exercise independently of the nutritional status. Changes in mitophagy markers BNIP3 and Parkin suggest that mitophagy was increased during exercise in the fasted state. In conclusion, our results highlight a major implication of the insulin-Akt-mTOR pathway and its downstream targets FoxO3a and ULK1 in the larger activation of autophagy observed when exercise is performed in a fasted state compared with a fed state.
Collapse
Affiliation(s)
- Cécile Jamart
- Institute of Neuroscience, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | | | | | | |
Collapse
|
37
|
Agergaard J, Reitelseder S, Pedersen TG, Doessing S, Schjerling P, Langberg H, Miller BF, Aagaard P, Kjaer M, Holm L. Myogenic, matrix, and growth factor mRNA expression in human skeletal muscle: effect of contraction intensity and feeding. Muscle Nerve 2013; 47:748-59. [PMID: 23519763 DOI: 10.1002/mus.23667] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2012] [Indexed: 11/08/2022]
Abstract
INTRODUCTION We examined short-term (3-hour) and long-term (12-week) training effects after heavy load [HL; 70% 1RM] and light load (LL; 16% 1RM) exercise. METHODS mRNA expression of genes involved in skeletal muscle remodeling were analyzed and muscle activity (EMG measurements) was measured. RESULTS Relative muscle activity differed between HL and LL resistance exercise, whereas median power frequency was even, suggesting an equal muscle-fiber-type recruitment distribution. mRNA expression of Myf6, myogenin, and p21 was mostly increased, and myostatin was mostly depressed by HL resistance exercise. No major differences were seen in atrophy-related genes between HL and LL resistance exercise. No changes were seen over 12-week training for any of the targets. CONCLUSIONS Resistance exercise at LL and HL elevated the expression of genes involved in skeletal muscle hypertrophy, although the greatest response was from HL. However, no long-term effect from either LL or HL resistance exercise was seen on basal levels of the mRNA targets.
Collapse
Affiliation(s)
- Jakob Agergaard
- Institute of Sports Medicine, Department of Orthopedic Surgery M, Bispebjerg Hospital, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Porporato PE, Filigheddu N, Reano S, Ferrara M, Angelino E, Gnocchi VF, Prodam F, Ronchi G, Fagoonee S, Fornaro M, Chianale F, Baldanzi G, Surico N, Sinigaglia F, Perroteau I, Smith RG, Sun Y, Geuna S, Graziani A. Acylated and unacylated ghrelin impair skeletal muscle atrophy in mice. J Clin Invest 2013; 123:611-622. [PMID: 23281394 PMCID: PMC3561827 DOI: 10.1172/jci39920] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 11/01/2012] [Indexed: 01/30/2023] Open
Abstract
Cachexia is a wasting syndrome associated with cancer, AIDS, multiple sclerosis, and several other disease states. It is characterized by weight loss, fatigue, loss of appetite, and skeletal muscle atrophy and is associated with poor patient prognosis, making it an important treatment target. Ghrelin is a peptide hormone that stimulates growth hormone (GH) release and positive energy balance through binding to the receptor GHSR-1a. Only acylated ghrelin (AG), but not the unacylated form (UnAG), can bind GHSR-1a; however, UnAG and AG share several GHSR-1a-independent biological activities. Here we investigated whether UnAG and AG could protect against skeletal muscle atrophy in a GHSR-1a-independent manner. We found that both AG and UnAG inhibited dexamethasone-induced skeletal muscle atrophy and atrogene expression through PI3Kβ-, mTORC2-, and p38-mediated pathways in myotubes. Upregulation of circulating UnAG in mice impaired skeletal muscle atrophy induced by either fasting or denervation without stimulating muscle hypertrophy and GHSR-1a-mediated activation of the GH/IGF-1 axis. In Ghsr-deficient mice, both AG and UnAG induced phosphorylation of Akt in skeletal muscle and impaired fasting-induced atrophy. These results demonstrate that AG and UnAG act on a common, unidentified receptor to block skeletal muscle atrophy in a GH-independent manner.
Collapse
Affiliation(s)
- Paolo E. Porporato
- Department of Translational Medicine, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), and Biotechnology Center for Applied Medical Research (BRMA), Università del Piemonte Orientale “Amedeo Avogadro” — Alessandria, Novara, Vercelli, Italy.
Department of Health Sciences, Università del Piemonte Orientale “Amedeo Avogadro” — Alessandria, Novara, Vercelli, Italy.
Neuroscience Institute “Cavalieri Ottolenghi” (NICO) and Department of Clinical and Biological Sciences, University of Torino, Orbassano (TO), Italy.
Molecular Biotechnology Center and Department of Genetics, Biology and Biochemistry, and
Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy.
Department of Metabolism and Aging, The Scripps Research Institute, Scripps, Florida, USA.
USDA ARS Children’s Nutrition Research Center, Departments of Pediatrics and Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Nicoletta Filigheddu
- Department of Translational Medicine, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), and Biotechnology Center for Applied Medical Research (BRMA), Università del Piemonte Orientale “Amedeo Avogadro” — Alessandria, Novara, Vercelli, Italy.
Department of Health Sciences, Università del Piemonte Orientale “Amedeo Avogadro” — Alessandria, Novara, Vercelli, Italy.
Neuroscience Institute “Cavalieri Ottolenghi” (NICO) and Department of Clinical and Biological Sciences, University of Torino, Orbassano (TO), Italy.
Molecular Biotechnology Center and Department of Genetics, Biology and Biochemistry, and
Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy.
Department of Metabolism and Aging, The Scripps Research Institute, Scripps, Florida, USA.
USDA ARS Children’s Nutrition Research Center, Departments of Pediatrics and Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Simone Reano
- Department of Translational Medicine, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), and Biotechnology Center for Applied Medical Research (BRMA), Università del Piemonte Orientale “Amedeo Avogadro” — Alessandria, Novara, Vercelli, Italy.
Department of Health Sciences, Università del Piemonte Orientale “Amedeo Avogadro” — Alessandria, Novara, Vercelli, Italy.
Neuroscience Institute “Cavalieri Ottolenghi” (NICO) and Department of Clinical and Biological Sciences, University of Torino, Orbassano (TO), Italy.
Molecular Biotechnology Center and Department of Genetics, Biology and Biochemistry, and
Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy.
Department of Metabolism and Aging, The Scripps Research Institute, Scripps, Florida, USA.
USDA ARS Children’s Nutrition Research Center, Departments of Pediatrics and Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Michele Ferrara
- Department of Translational Medicine, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), and Biotechnology Center for Applied Medical Research (BRMA), Università del Piemonte Orientale “Amedeo Avogadro” — Alessandria, Novara, Vercelli, Italy.
Department of Health Sciences, Università del Piemonte Orientale “Amedeo Avogadro” — Alessandria, Novara, Vercelli, Italy.
Neuroscience Institute “Cavalieri Ottolenghi” (NICO) and Department of Clinical and Biological Sciences, University of Torino, Orbassano (TO), Italy.
Molecular Biotechnology Center and Department of Genetics, Biology and Biochemistry, and
Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy.
Department of Metabolism and Aging, The Scripps Research Institute, Scripps, Florida, USA.
USDA ARS Children’s Nutrition Research Center, Departments of Pediatrics and Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Elia Angelino
- Department of Translational Medicine, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), and Biotechnology Center for Applied Medical Research (BRMA), Università del Piemonte Orientale “Amedeo Avogadro” — Alessandria, Novara, Vercelli, Italy.
Department of Health Sciences, Università del Piemonte Orientale “Amedeo Avogadro” — Alessandria, Novara, Vercelli, Italy.
Neuroscience Institute “Cavalieri Ottolenghi” (NICO) and Department of Clinical and Biological Sciences, University of Torino, Orbassano (TO), Italy.
Molecular Biotechnology Center and Department of Genetics, Biology and Biochemistry, and
Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy.
Department of Metabolism and Aging, The Scripps Research Institute, Scripps, Florida, USA.
USDA ARS Children’s Nutrition Research Center, Departments of Pediatrics and Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Viola F. Gnocchi
- Department of Translational Medicine, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), and Biotechnology Center for Applied Medical Research (BRMA), Università del Piemonte Orientale “Amedeo Avogadro” — Alessandria, Novara, Vercelli, Italy.
Department of Health Sciences, Università del Piemonte Orientale “Amedeo Avogadro” — Alessandria, Novara, Vercelli, Italy.
Neuroscience Institute “Cavalieri Ottolenghi” (NICO) and Department of Clinical and Biological Sciences, University of Torino, Orbassano (TO), Italy.
Molecular Biotechnology Center and Department of Genetics, Biology and Biochemistry, and
Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy.
Department of Metabolism and Aging, The Scripps Research Institute, Scripps, Florida, USA.
USDA ARS Children’s Nutrition Research Center, Departments of Pediatrics and Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Flavia Prodam
- Department of Translational Medicine, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), and Biotechnology Center for Applied Medical Research (BRMA), Università del Piemonte Orientale “Amedeo Avogadro” — Alessandria, Novara, Vercelli, Italy.
Department of Health Sciences, Università del Piemonte Orientale “Amedeo Avogadro” — Alessandria, Novara, Vercelli, Italy.
Neuroscience Institute “Cavalieri Ottolenghi” (NICO) and Department of Clinical and Biological Sciences, University of Torino, Orbassano (TO), Italy.
Molecular Biotechnology Center and Department of Genetics, Biology and Biochemistry, and
Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy.
Department of Metabolism and Aging, The Scripps Research Institute, Scripps, Florida, USA.
USDA ARS Children’s Nutrition Research Center, Departments of Pediatrics and Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Giulia Ronchi
- Department of Translational Medicine, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), and Biotechnology Center for Applied Medical Research (BRMA), Università del Piemonte Orientale “Amedeo Avogadro” — Alessandria, Novara, Vercelli, Italy.
Department of Health Sciences, Università del Piemonte Orientale “Amedeo Avogadro” — Alessandria, Novara, Vercelli, Italy.
Neuroscience Institute “Cavalieri Ottolenghi” (NICO) and Department of Clinical and Biological Sciences, University of Torino, Orbassano (TO), Italy.
Molecular Biotechnology Center and Department of Genetics, Biology and Biochemistry, and
Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy.
Department of Metabolism and Aging, The Scripps Research Institute, Scripps, Florida, USA.
USDA ARS Children’s Nutrition Research Center, Departments of Pediatrics and Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Sharmila Fagoonee
- Department of Translational Medicine, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), and Biotechnology Center for Applied Medical Research (BRMA), Università del Piemonte Orientale “Amedeo Avogadro” — Alessandria, Novara, Vercelli, Italy.
Department of Health Sciences, Università del Piemonte Orientale “Amedeo Avogadro” — Alessandria, Novara, Vercelli, Italy.
Neuroscience Institute “Cavalieri Ottolenghi” (NICO) and Department of Clinical and Biological Sciences, University of Torino, Orbassano (TO), Italy.
Molecular Biotechnology Center and Department of Genetics, Biology and Biochemistry, and
Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy.
Department of Metabolism and Aging, The Scripps Research Institute, Scripps, Florida, USA.
USDA ARS Children’s Nutrition Research Center, Departments of Pediatrics and Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Michele Fornaro
- Department of Translational Medicine, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), and Biotechnology Center for Applied Medical Research (BRMA), Università del Piemonte Orientale “Amedeo Avogadro” — Alessandria, Novara, Vercelli, Italy.
Department of Health Sciences, Università del Piemonte Orientale “Amedeo Avogadro” — Alessandria, Novara, Vercelli, Italy.
Neuroscience Institute “Cavalieri Ottolenghi” (NICO) and Department of Clinical and Biological Sciences, University of Torino, Orbassano (TO), Italy.
Molecular Biotechnology Center and Department of Genetics, Biology and Biochemistry, and
Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy.
Department of Metabolism and Aging, The Scripps Research Institute, Scripps, Florida, USA.
USDA ARS Children’s Nutrition Research Center, Departments of Pediatrics and Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Federica Chianale
- Department of Translational Medicine, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), and Biotechnology Center for Applied Medical Research (BRMA), Università del Piemonte Orientale “Amedeo Avogadro” — Alessandria, Novara, Vercelli, Italy.
Department of Health Sciences, Università del Piemonte Orientale “Amedeo Avogadro” — Alessandria, Novara, Vercelli, Italy.
Neuroscience Institute “Cavalieri Ottolenghi” (NICO) and Department of Clinical and Biological Sciences, University of Torino, Orbassano (TO), Italy.
Molecular Biotechnology Center and Department of Genetics, Biology and Biochemistry, and
Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy.
Department of Metabolism and Aging, The Scripps Research Institute, Scripps, Florida, USA.
USDA ARS Children’s Nutrition Research Center, Departments of Pediatrics and Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Gianluca Baldanzi
- Department of Translational Medicine, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), and Biotechnology Center for Applied Medical Research (BRMA), Università del Piemonte Orientale “Amedeo Avogadro” — Alessandria, Novara, Vercelli, Italy.
Department of Health Sciences, Università del Piemonte Orientale “Amedeo Avogadro” — Alessandria, Novara, Vercelli, Italy.
Neuroscience Institute “Cavalieri Ottolenghi” (NICO) and Department of Clinical and Biological Sciences, University of Torino, Orbassano (TO), Italy.
Molecular Biotechnology Center and Department of Genetics, Biology and Biochemistry, and
Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy.
Department of Metabolism and Aging, The Scripps Research Institute, Scripps, Florida, USA.
USDA ARS Children’s Nutrition Research Center, Departments of Pediatrics and Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Nicola Surico
- Department of Translational Medicine, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), and Biotechnology Center for Applied Medical Research (BRMA), Università del Piemonte Orientale “Amedeo Avogadro” — Alessandria, Novara, Vercelli, Italy.
Department of Health Sciences, Università del Piemonte Orientale “Amedeo Avogadro” — Alessandria, Novara, Vercelli, Italy.
Neuroscience Institute “Cavalieri Ottolenghi” (NICO) and Department of Clinical and Biological Sciences, University of Torino, Orbassano (TO), Italy.
Molecular Biotechnology Center and Department of Genetics, Biology and Biochemistry, and
Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy.
Department of Metabolism and Aging, The Scripps Research Institute, Scripps, Florida, USA.
USDA ARS Children’s Nutrition Research Center, Departments of Pediatrics and Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Fabiola Sinigaglia
- Department of Translational Medicine, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), and Biotechnology Center for Applied Medical Research (BRMA), Università del Piemonte Orientale “Amedeo Avogadro” — Alessandria, Novara, Vercelli, Italy.
Department of Health Sciences, Università del Piemonte Orientale “Amedeo Avogadro” — Alessandria, Novara, Vercelli, Italy.
Neuroscience Institute “Cavalieri Ottolenghi” (NICO) and Department of Clinical and Biological Sciences, University of Torino, Orbassano (TO), Italy.
Molecular Biotechnology Center and Department of Genetics, Biology and Biochemistry, and
Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy.
Department of Metabolism and Aging, The Scripps Research Institute, Scripps, Florida, USA.
USDA ARS Children’s Nutrition Research Center, Departments of Pediatrics and Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Isabelle Perroteau
- Department of Translational Medicine, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), and Biotechnology Center for Applied Medical Research (BRMA), Università del Piemonte Orientale “Amedeo Avogadro” — Alessandria, Novara, Vercelli, Italy.
Department of Health Sciences, Università del Piemonte Orientale “Amedeo Avogadro” — Alessandria, Novara, Vercelli, Italy.
Neuroscience Institute “Cavalieri Ottolenghi” (NICO) and Department of Clinical and Biological Sciences, University of Torino, Orbassano (TO), Italy.
Molecular Biotechnology Center and Department of Genetics, Biology and Biochemistry, and
Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy.
Department of Metabolism and Aging, The Scripps Research Institute, Scripps, Florida, USA.
USDA ARS Children’s Nutrition Research Center, Departments of Pediatrics and Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Roy G. Smith
- Department of Translational Medicine, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), and Biotechnology Center for Applied Medical Research (BRMA), Università del Piemonte Orientale “Amedeo Avogadro” — Alessandria, Novara, Vercelli, Italy.
Department of Health Sciences, Università del Piemonte Orientale “Amedeo Avogadro” — Alessandria, Novara, Vercelli, Italy.
Neuroscience Institute “Cavalieri Ottolenghi” (NICO) and Department of Clinical and Biological Sciences, University of Torino, Orbassano (TO), Italy.
Molecular Biotechnology Center and Department of Genetics, Biology and Biochemistry, and
Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy.
Department of Metabolism and Aging, The Scripps Research Institute, Scripps, Florida, USA.
USDA ARS Children’s Nutrition Research Center, Departments of Pediatrics and Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Yuxiang Sun
- Department of Translational Medicine, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), and Biotechnology Center for Applied Medical Research (BRMA), Università del Piemonte Orientale “Amedeo Avogadro” — Alessandria, Novara, Vercelli, Italy.
Department of Health Sciences, Università del Piemonte Orientale “Amedeo Avogadro” — Alessandria, Novara, Vercelli, Italy.
Neuroscience Institute “Cavalieri Ottolenghi” (NICO) and Department of Clinical and Biological Sciences, University of Torino, Orbassano (TO), Italy.
Molecular Biotechnology Center and Department of Genetics, Biology and Biochemistry, and
Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy.
Department of Metabolism and Aging, The Scripps Research Institute, Scripps, Florida, USA.
USDA ARS Children’s Nutrition Research Center, Departments of Pediatrics and Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Stefano Geuna
- Department of Translational Medicine, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), and Biotechnology Center for Applied Medical Research (BRMA), Università del Piemonte Orientale “Amedeo Avogadro” — Alessandria, Novara, Vercelli, Italy.
Department of Health Sciences, Università del Piemonte Orientale “Amedeo Avogadro” — Alessandria, Novara, Vercelli, Italy.
Neuroscience Institute “Cavalieri Ottolenghi” (NICO) and Department of Clinical and Biological Sciences, University of Torino, Orbassano (TO), Italy.
Molecular Biotechnology Center and Department of Genetics, Biology and Biochemistry, and
Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy.
Department of Metabolism and Aging, The Scripps Research Institute, Scripps, Florida, USA.
USDA ARS Children’s Nutrition Research Center, Departments of Pediatrics and Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Andrea Graziani
- Department of Translational Medicine, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), and Biotechnology Center for Applied Medical Research (BRMA), Università del Piemonte Orientale “Amedeo Avogadro” — Alessandria, Novara, Vercelli, Italy.
Department of Health Sciences, Università del Piemonte Orientale “Amedeo Avogadro” — Alessandria, Novara, Vercelli, Italy.
Neuroscience Institute “Cavalieri Ottolenghi” (NICO) and Department of Clinical and Biological Sciences, University of Torino, Orbassano (TO), Italy.
Molecular Biotechnology Center and Department of Genetics, Biology and Biochemistry, and
Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy.
Department of Metabolism and Aging, The Scripps Research Institute, Scripps, Florida, USA.
USDA ARS Children’s Nutrition Research Center, Departments of Pediatrics and Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
39
|
Lemire BB, Debigaré R, Dubé A, Thériault ME, Côté CH, Maltais F. MAPK signaling in the quadriceps of patients with chronic obstructive pulmonary disease. J Appl Physiol (1985) 2012; 113:159-66. [DOI: 10.1152/japplphysiol.01518.2011] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Muscle atrophy in chronic obstructive pulmonary disease (COPD) is associated with reduced exercise tolerance, muscle strength, and survival. The molecular mechanisms leading to muscle atrophy in COPD remain elusive. The mitogen-activated protein kinases (MAPKs) such as p38 MAPK and ERK 1/2 can increase levels of MAFbx/Atrogin and MuRF1, which are specifically involved in muscle protein degradation and atrophy. Our aim was to investigate the level of activation of p38 MAPK, ERK 1/2, and JNK in the quadriceps of patients with COPD. A biopsy of the quadriceps was obtained in 18 patients with COPD as well as in 9 healthy controls. We evaluated the phosphorylated as well as total protein levels of p38 MAPK, ERK 1/2, and JNK as well as MAFbx/Atrogin and MuRF1 in these muscle samples. The corresponding mRNA expression was also assessed by RT-PCR. Ratios of phosphorylated to total level of p38 MAPK ( P = 0.02) and ERK 1/2 ( P = 0.01) were significantly elevated in patients with COPD compared with controls. Moreover, protein levels of MAFbx/Atrogin showed a tendency to be greater in patients with COPD ( P = 0.08). mRNA expression of p38 MAPK ( P = 0.03), ERK 1/2 ( P = 0.02), and MAFbx/Atrogin ( P = 0.04) were significantly elevated in patients with COPD. In addition, phosphorylated-to-total p38 MAPK ratio (Pearson's r = −0.45; P < 0.05) and phosphorylated-to-total ERK 1/2 ratio (Pearson's r = −0.47; P < 0.05) were negatively associated with the mid-thigh muscle cross-sectional area. These data support the hypothesis that the MAPKs might play a role in the development of muscle atrophy in COPD.
Collapse
Affiliation(s)
- Bruno B. Lemire
- Centre de recherche, Institut Universitaire de cardiologie et de pneumologie de Québec, Université Laval, Quebec, Canada; and
| | - Richard Debigaré
- Centre de recherche, Institut Universitaire de cardiologie et de pneumologie de Québec, Université Laval, Quebec, Canada; and
| | - Annie Dubé
- Centre de recherche, Institut Universitaire de cardiologie et de pneumologie de Québec, Université Laval, Quebec, Canada; and
| | - Marie-Eve Thériault
- Centre de recherche, Institut Universitaire de cardiologie et de pneumologie de Québec, Université Laval, Quebec, Canada; and
| | - Claude H. Côté
- Centre de recherche, Centre Hospitalier Universitaire de Québec, Pavillon CHUL, Université Laval, Québec, Canada
| | - François Maltais
- Centre de recherche, Institut Universitaire de cardiologie et de pneumologie de Québec, Université Laval, Quebec, Canada; and
| |
Collapse
|
40
|
Burks TN, Andres-Mateos E, Marx R, Mejias R, Van Erp C, Simmers JL, Walston JD, Ward CW, Cohn RD. Losartan restores skeletal muscle remodeling and protects against disuse atrophy in sarcopenia. Sci Transl Med 2011; 3:82ra37. [PMID: 21562229 PMCID: PMC3140459 DOI: 10.1126/scitranslmed.3002227] [Citation(s) in RCA: 186] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Sarcopenia, a critical loss of muscle mass and function because of the physiological process of aging, contributes to disability and mortality in older adults. It increases the incidence of pathologic fractures, causing prolonged periods of hospitalization and rehabilitation. The molecular mechanisms underlying sarcopenia are poorly understood, but recent evidence suggests that increased transforming growth factor-β (TGF-β) signaling contributes to impaired satellite cell function and muscle repair in aged skeletal muscle. We therefore evaluated whether antagonism of TGF-β signaling via losartan, an angiotensin II receptor antagonist commonly used to treat high blood pressure, had a beneficial impact on the muscle remodeling process of sarcopenic mice. We demonstrated that mice treated with losartan developed significantly less fibrosis and exhibited improved in vivo muscle function after cardiotoxin-induced injury. We found that losartan not only blunted the canonical TGF-β signaling cascade but also modulated the noncanonical TGF-β mitogen-activated protein kinase pathway. We next assessed whether losartan was able to combat disuse atrophy in aged mice that were subjected to hindlimb immobilization. We showed that immobilized mice treated with losartan were protected against loss of muscle mass. Unexpectedly, this protective mechanism was not mediated by TGF-β signaling but was due to an increased activation of the insulin-like growth factor 1 (IGF-1)/Akt/mammalian target of rapamycin (mTOR) pathway. Thus, blockade of the AT1 (angiotensin II type I) receptor improved muscle remodeling and protected against disuse atrophy by differentially regulating the TGF-β and IGF-1/Akt/mTOR signaling cascades, two pathways critical for skeletal muscle homeostasis. Thus, losartan, a Food and Drug Administration-approved drug, may prove to have clinical benefits to combat injury-related muscle remodeling and provide protection against disuse atrophy in humans with sarcopenia.
Collapse
Affiliation(s)
- Tyesha N. Burks
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Eva Andres-Mateos
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ruth Marx
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Rebeca Mejias
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Christel Van Erp
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jessica L. Simmers
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jeremy D. Walston
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | - Ronald D. Cohn
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pediatrics and Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
41
|
Burks TN, Cohn RD. Role of TGF-β signaling in inherited and acquired myopathies. Skelet Muscle 2011; 1:19. [PMID: 21798096 PMCID: PMC3156642 DOI: 10.1186/2044-5040-1-19] [Citation(s) in RCA: 179] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 05/04/2011] [Indexed: 01/25/2023] Open
Abstract
The transforming growth factor-beta (TGF-β) superfamily consists of a variety of cytokines expressed in many different cell types including skeletal muscle. Members of this superfamily that are of particular importance in skeletal muscle are TGF-β1, mitogen-activated protein kinases (MAPKs), and myostatin. These signaling molecules play important roles in skeletal muscle homeostasis and in a variety of inherited and acquired neuromuscular disorders. Expression of these molecules is linked to normal processes in skeletal muscle such as growth, differentiation, regeneration, and stress response. However, chronic elevation of TGF-β1, MAPKs, and myostatin is linked to various features of muscle pathology, including impaired regeneration and atrophy. In this review, we focus on the aberrant signaling of TGF-β in various disorders such as Marfan syndrome, muscular dystrophies, sarcopenia, and critical illness myopathy. We also discuss how the inhibition of several members of the TGF-β signaling pathway has been implicated in ameliorating disease phenotypes, opening up novel therapeutic avenues for a large group of neuromuscular disorders.
Collapse
Affiliation(s)
- Tyesha N Burks
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
42
|
Identification of atrophy-related proteins produced in response to cast immobilization in rat gastrocnemius muscle. Mol Cell Toxicol 2010. [DOI: 10.1007/s13273-010-0048-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
43
|
Kim J, Kim B. Differential Regulation of MAPK Isoforms during Cast-Immobilization -Induced Atrophy in Rat Gastrocnemius Muscle. J Phys Ther Sci 2010. [DOI: 10.1589/jpts.22.217] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Junghwan Kim
- Department of Physical Therapy, College of Public Health & Welfare, Yongin University
| | - Bokyung Kim
- Department of Physiology, Institute of Functional Genomics, School of Medicine, Konkuk University
| |
Collapse
|