1
|
Yu W, Zhang Q, Qiu Y, Chen H, Huang X, Xiao L, Xu G, Li S, Hu P, Tong X. CDN1163 alleviates SERCA2 dysfunction-induced pulmonary vascular remodeling by inhibiting the phenotypic transition of pulmonary artery smooth muscle cells. Clin Exp Hypertens 2023; 45:2272062. [PMID: 37899350 DOI: 10.1080/10641963.2023.2272062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/10/2023] [Indexed: 10/31/2023]
Abstract
BACKGROUND AND PURPOSE Substitution of Cys674 (C674) in the sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2 (SERCA2) causes SERCA2 dysfunction which leads to activated inositol requiring enzyme 1 alpha (IRE1α) and spliced X-box binding protein 1 (XBP1s) pathway accelerating cell proliferation of pulmonary artery smooth muscle cells (PASMCs) followed by significant pulmonary vascular remodeling resembling human pulmonary hypertension. Based on this knowledge, we intend to investigate other potential mechanisms involved in SERCA2 dysfunction-induced pulmonary vascular remodeling. EXPERIMENTAL APPROACH Heterozygous SERCA2 C674S knock-in (SKI) mice of which half of cysteine in 674 was substituted by serine to mimic the partial irreversible oxidation of C674 were used. The lungs of SKI mice and their littermate wild-type mice were collected for PASMC culture, protein expression, and pulmonary vascular remodeling analysis. RESULTS SERCA2 dysfunction increased intracellular Ca2+ levels, which activated Ca2+-dependent calcineurin (CaN) and promoted the nuclear translocation and protein expression of the nuclear factor of activated T-lymphocytes 4 (NFAT4) in an IRE1α/XBP1s pathway-independent manner. In SKI PASMCs, the scavenge of intracellular Ca2+ by BAPTA-AM or inhibition of CaN by cyclosporin A can prevent PASMC phenotypic transition. CDN1163, a SERCA2 agonist, suppressed the activation of CaN/NFAT4 and IRE1α/XBP1s pathways, reversed the protein expression of PASMC phenotypic transition markers and cell cycle-related proteins, and inhibited cell proliferation and migration when given to SKI PASMCs. Furthermore, CDN1163 ameliorated pulmonary vascular remodeling in SKI mice. CONCLUSIONS AND IMPLICATIONS SERCA2 dysfunction promotes PASMC phenotypic transition and pulmonary vascular remodeling by multiple mechanisms, which could be improved by SERCA2 agonist CDN1163.
Collapse
Affiliation(s)
- Weimin Yu
- Institute of Health Biological Chemical Medication, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Qian Zhang
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Yixiang Qiu
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Hui Chen
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Xiaoyang Huang
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Li Xiao
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Gang Xu
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
- Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China
| | - Siqi Li
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
- Central Clinical School, Monash University, Melbourne, Australia
| | - Pingping Hu
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Xiaoyong Tong
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
- Jinfeng Laboratory, Chongqing, China
| |
Collapse
|
2
|
Rodriguez M, Chen J, Jain PP, Babicheva A, Xiong M, Li J, Lai N, Zhao T, Hernandez M, Balistrieri A, Parmisano S, Simonson T, Breen E, Valdez-Jasso D, Thistlethwaite PA, Shyy JYJ, Wang J, Garcia JGN, Makino A, Yuan JXJ. Upregulation of Calcium Homeostasis Modulators in Contractile-To-Proliferative Phenotypical Transition of Pulmonary Arterial Smooth Muscle Cells. Front Physiol 2021; 12:714785. [PMID: 34408668 PMCID: PMC8364962 DOI: 10.3389/fphys.2021.714785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/13/2021] [Indexed: 12/14/2022] Open
Abstract
Excessive pulmonary artery (PA) smooth muscle cell (PASMC) proliferation and migration are implicated in the development of pathogenic pulmonary vascular remodeling characterized by concentric arterial wall thickening and arteriole muscularization in patients with pulmonary arterial hypertension (PAH). Pulmonary artery smooth muscle cell contractile-to-proliferative phenotypical transition is a process that promotes pulmonary vascular remodeling. A rise in cytosolic Ca2+ concentration [(Ca2+) cyt ] in PASMCs is a trigger for pulmonary vasoconstriction and a stimulus for pulmonary vascular remodeling. Here, we report that the calcium homeostasis modulator (CALHM), a Ca2+ (and ATP) channel that is allosterically regulated by voltage and extracellular Ca2+, is upregulated during the PASMC contractile-to-proliferative phenotypical transition. Protein expression of CALHM1/2 in primary cultured PASMCs in media containing serum and growth factors (proliferative PASMC) was significantly greater than in freshly isolated PA (contractile PASMC) from the same rat. Upregulated CALHM1/2 in proliferative PASMCs were associated with an increased ratio of pAKT/AKT and pmTOR/mTOR and an increased expression of the cell proliferation marker PCNA, whereas serum starvation and rapamycin significantly downregulated CALHM1/2. Furthermore, CALHM1/2 were upregulated in freshly isolated PA from rats with monocrotaline (MCT)-induced PH and in primary cultured PASMC from patients with PAH in comparison to normal controls. Intraperitoneal injection of CGP 37157 (0.6 mg/kg, q8H), a non-selective blocker of CALHM channels, partially reversed established experimental PH. These data suggest that CALHM upregulation is involved in PASMC contractile-to-proliferative phenotypical transition. Ca2+ influx through upregulated CALHM1/2 may play an important role in the transition of sustained vasoconstriction to excessive vascular remodeling in PAH or precapillary PH. Calcium homeostasis modulator could potentially be a target to develop novel therapies for PAH.
Collapse
Affiliation(s)
- Marisela Rodriguez
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, La Jolla, CA, United States
- Department of Pediatrics, Tucson, AZ, United States
| | - Jiyuan Chen
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, La Jolla, CA, United States
- State Key Laboratory of Respiratory Diseases, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Pritesh P. Jain
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, La Jolla, CA, United States
| | - Aleksandra Babicheva
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, La Jolla, CA, United States
| | - Mingmei Xiong
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, La Jolla, CA, United States
- State Key Laboratory of Respiratory Diseases, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jifeng Li
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, La Jolla, CA, United States
- Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Ning Lai
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, La Jolla, CA, United States
- State Key Laboratory of Respiratory Diseases, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Tengteng Zhao
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, La Jolla, CA, United States
| | - Moises Hernandez
- Division of Cardiothoracic Surgery, Department of Surgery, La Jolla, CA, United States
| | - Angela Balistrieri
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, La Jolla, CA, United States
| | - Sophia Parmisano
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, La Jolla, CA, United States
| | - Tatum Simonson
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, La Jolla, CA, United States
| | - Ellen Breen
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, La Jolla, CA, United States
| | - Daniela Valdez-Jasso
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
| | | | - John Y. -J. Shyy
- Division of Cardiovascular Medicine, Department of Medicine, La Jolla, CA, United States
| | - Jian Wang
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, La Jolla, CA, United States
- State Key Laboratory of Respiratory Diseases, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Joe G. N. Garcia
- Department of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Ayako Makino
- Division of Endocrinology and Metabolism, La Jolla, CA, United States
| | - Jason X. -J. Yuan
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, La Jolla, CA, United States
| |
Collapse
|
3
|
Li Y, Zhang Z, Li S, Yu T, Jia Z. Therapeutic Effects of Traditional Chinese Medicine on Cardiovascular Diseases: the Central Role of Calcium Signaling. Front Pharmacol 2021; 12:682273. [PMID: 34305595 PMCID: PMC8299363 DOI: 10.3389/fphar.2021.682273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/01/2021] [Indexed: 12/18/2022] Open
Abstract
Calcium, as a second messenger, plays an important role in the pathogenesis of cardiovascular diseases (CVDs). The malfunction of calcium signaling in endothelial cells and vascular smooth muscle cells promotes hypertension. In cardiomyocytes, calcium overload induces apoptosis, leading to myocardial infarction and arrhythmias. Moreover, the calcium–calcineurin–nuclear factor of activated T cells (NFAT) pathway is essential for expressing the cardiac pro-hypertrophic gene. Heart failure is also characterized by reduced calcium transient amplitude and enhanced sarcoplasmic reticulum (SR) calcium leakage. Traditional Chinese medicine (TCM) has been used to treat CVDs for thousands of years in China. Because of its multicomponent and multitarget characteristics, TCM's unique advantages in CVD treatment are closely related to the modulation of multiple calcium handling proteins and calcium signaling pathways in different types of cells involved in distinct CVDs. Thus, we systematically review the diverse mechanisms of TCM in regulating calcium pathways to treat various types of CVDs, ranging from hypertrophic cardiomyopathy to diabetic heart disease.
Collapse
Affiliation(s)
- Yuxin Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Zhang Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Sen Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Tingting Yu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Zhaoqi Jia
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
4
|
Truong L, Zheng YM, Kandhi S, Wang YX. Overview on Interactive Role of Inflammation, Reactive Oxygen Species, and Calcium Signaling in Asthma, COPD, and Pulmonary Hypertension. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1304:147-164. [PMID: 34019268 DOI: 10.1007/978-3-030-68748-9_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Inflammatory signaling is a major component in the development and progression of many lung diseases, including asthma, chronic obstructive pulmonary disorder (COPD), and pulmonary hypertension (PH). This chapter will provide a brief overview of asthma, COPD, and PH and how inflammation plays a vital role in these diseases. Specifically, we will discuss the role of reactive oxygen species (ROS) and Ca2+ signaling in inflammatory cellular responses and how these interactive signaling pathways mediate the development of asthma, COPD, and PH. We will also deliberate the key cellular responses of pulmonary arterial (PA) smooth muscle cells (SMCs) and airway SMCs (ASMCs) in these devastating lung diseases. The analysis of the importance of inflammation will shed light on the key questions remaining in this field and highlight molecular targets that are worth exploring. The crucial findings will not only demonstrate the novel roles of essential signaling molecules such as Rieske iron-sulfur protein and ryanodine receptor in the development and progress of asthma, COPD, and PH but also offer advanced insight for creating more effective and new therapeutic targets for these devastating inflammatory lung diseases.
Collapse
Affiliation(s)
- Lillian Truong
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Yun-Min Zheng
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Sharath Kandhi
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA.
| | - Yong-Xiao Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA.
| |
Collapse
|
5
|
Nwabufor PC, Omoniyi ON, Oyibo SO. A Case of Lithium-Associated Hypocalciuric Hypercalcemia. Cureus 2020; 12:e10606. [PMID: 32983744 PMCID: PMC7515745 DOI: 10.7759/cureus.10606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Lithium is the treatment of choice for acute manic, mixed, and depressive episodes of bipolar disorder, along with long-term prophylaxis. A significant proportion of patients taking lithium develop lithium-associated hypercalcemia. Most cases are due to lithium-associated hyperparathyroidism with underlying parathyroid adenoma or hyperplasia. We present a 67-year-old woman who presented with increasing lethargy and loss of concentration and was found to have slightly raised serum calcium levels with inappropriately low urinary calcium excretion levels characteristic of hypocalciuric hypercalcemia. She had been on lithium therapy for over 15 years for bipolar disease. She had no other cause for these findings and had no family history to suggest familial hypocalciuric hypercalcemia. Neck imaging ruled out any parathyroid adenoma or hyperplasia. A diagnosis of lithium-associated hypocalciuric hypercalcemia was discussed with the patient, and she remains stable under surveillance.
Collapse
|
6
|
Truong L, Zheng YM, Wang YX. Mitochondrial Rieske iron-sulfur protein in pulmonary artery smooth muscle: A key primary signaling molecule in pulmonary hypertension. Arch Biochem Biophys 2020; 683:108234. [PMID: 31980131 DOI: 10.1016/j.abb.2019.108234] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Rieske iron-sulfur protein (RISP) is a catalytic subunit of the complex III in the mitochondrial electron transport chain. Studies for years have revealed that RISP is essential for the generation of intracellular reactive oxygen species (ROS) via delicate signaling pathways associated with many important molecules such as protein kinase C-ε, NADPH oxidase, and ryanodine receptors. More significantly, mitochondrial RISP-mediated ROS production has been implicated in the development of hypoxic pulmonary vasoconstriction, leading to pulmonary hypertension, right heart failure, and death. Investigations have also shown the involvement of RISP in ROS-dependent cardiac ischemic/reperfusion injuries. Further research may provide novel and valuable information that can not only enhance our understanding of the functional roles of RISP and the underlying molecular mechanisms in the pulmonary vasculature and other systems, but also elucidate whether RISP targeting can act as preventative and restorative therapies against pulmonary hypertension, cardiac diseases, and other disorders.
Collapse
Affiliation(s)
- Lillian Truong
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, 12208, USA
| | - Yun-Min Zheng
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, 12208, USA
| | - Yong-Xiao Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, 12208, USA.
| |
Collapse
|
7
|
Truong L, Zheng YM, Wang YX. Mitochondrial Rieske iron-sulfur protein in pulmonary artery smooth muscle: A key primary signaling molecule in pulmonary hypertension. Arch Biochem Biophys 2019; 664:68-75. [PMID: 30710505 DOI: 10.1016/j.abb.2019.01.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 01/14/2019] [Accepted: 01/26/2019] [Indexed: 12/17/2022]
Abstract
Rieske iron-sulfur protein (RISP) is a catalytic subunit of the complex III in the mitochondrial electron transport chain. Studies for years have revealed that RISP is essential for the generation of intracellular reactive oxygen species (ROS) via delicate signaling pathways associated with many important molecules such as protein kinase C-ε, NADPH oxidase, and ryanodine receptors. More significantly, mitochondrial RISP-mediated ROS production has been implicated in the development of hypoxic pulmonary vasoconstriction, leading to pulmonary hypertension, right heart failure, and death. Investigations have also shown the involvement of RISP in ROS-dependent cardiac ischemic/reperfusion injuries. Further research may provide novel and valuable information that can not only enhance our understanding of the functional roles of RISP and the underlying molecular mechanisms in the pulmonary vasculature and other systems, but also elucidate whether RISP targeting can act as preventative and restorative therapies against pulmonary hypertension, cardiac diseases, and other disorders.
Collapse
Affiliation(s)
- Lillian Truong
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, 12208, USA
| | - Yun-Min Zheng
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, 12208, USA
| | - Yong-Xiao Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, 12208, USA.
| |
Collapse
|
8
|
Guo Y, Yang X, He J, Liu J, Yang S, Dong H. Important roles of the Ca 2+-sensing receptor in vascular health and disease. Life Sci 2018; 209:217-227. [PMID: 30098342 DOI: 10.1016/j.lfs.2018.08.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/30/2018] [Accepted: 08/06/2018] [Indexed: 02/07/2023]
Abstract
Ca2+-sensing receptor (CaSR), a member of G protein-coupled receptor family, is widely expressed in the vascular system, including perivascular neurons, vascular endothelial cells (VECs) and vascular smooth muscle cells (VSMCs). When stimulated, CaSR can further increase the cytosolic Ca2+ concentration ([Ca2+]cyt) in two ways: intracellular Ca2+ release from endo/sarcoplasmic reticulum (ER/SR) and extracellular Ca2+ entry through Ca2+-permeable cation channels. In endothelium, increased Ca2+ subsequently activate nitric oxide synthase (NOS) and intermediate conductance Ca2+-activated K+ channels (IKCa), resulting in vasodilation through NOS-mediated NO release or membrane hyperpolarization. In VSMCs, CaSR-induced intracellular Ca2+ increase causes blood vessel constriction. CaSR activation predominantly induces vasorelaxation of whole vascular tissues through VECs-dependent mechanisms; however, CaSR-induced Ca2+ signaling in VSMCs may play a braking role in CaSR-mediated vasorelaxation. Emerging evidence reveals the importance of CaSR in the regulation of vascular tone and blood pressure. Here, we summarized recent advances in CaSR-mediated vascular reaction and the underlying mechanisms in different species, including humans. In addition, several studies have demonstrated that CaSR dysfunction may be associated with some fatal vascular diseases, such as pulmonary arterial hypertension, primary hypertension, diabetes, acute myocardial infarction and vascular calcification. With the advance of studies on CaSR in vascular health and disease, it is expected positive modulators or negative modulators of CaSR used for the treatment of specific diseases may be promising therapeutic options for the prevention and/or treatment of vascular diseases.
Collapse
Affiliation(s)
- Yanjun Guo
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Xin Yang
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Jialin He
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Jingjing Liu
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Shiming Yang
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Hui Dong
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
9
|
Jie Z, Baoqin W, Changan L, Xiangli T, Zegeng L. Qibai Pingfei capsule medicated serum inhibits the proliferation of hypoxia-induced pulmonary arterial smooth muscle cells via the Ca 2+ /calcineurin/nuclear factor of activated T-cells 3 pathway. J TRADIT CHIN MED 2017. [DOI: 10.1016/s0254-6272(17)30153-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Riley CJ, Gavin M. Physiological Changes to the Cardiovascular System at High Altitude and Its Effects on Cardiovascular Disease. High Alt Med Biol 2017; 18:102-113. [PMID: 28294639 DOI: 10.1089/ham.2016.0112] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Riley, Callum James, and Matthew Gavin. Physiological changes to the cardiovascular system at high altitude and its effects on cardiovascular disease. High Alt Med Biol. 18:102-113, 2017.-The physiological changes to the cardiovascular system in response to the high altitude environment are well understood. More recently, we have begun to understand how these changes may affect and cause detriment to cardiovascular disease. In addition to this, the increasing availability of altitude simulation has dramatically improved our understanding of the physiology of high altitude. This has allowed further study on the effect of altitude in those with cardiovascular disease in a safe and controlled environment as well as in healthy individuals. Using a thorough PubMed search, this review aims to integrate recent advances in cardiovascular physiology at altitude with previous understanding, as well as its potential implications on cardiovascular disease. Altogether, it was found that the changes at altitude to cardiovascular physiology are profound enough to have a noteworthy effect on many forms of cardiovascular disease. While often asymptomatic, there is some risk in high altitude exposure for individuals with certain cardiovascular diseases. Although controlled research in patients with cardiovascular disease was largely lacking, meaning firm conclusions cannot be drawn, these risks should be a consideration to both the individual and their physician.
Collapse
Affiliation(s)
| | - Matthew Gavin
- 2 University of Leeds School of Biomedical Sciences , Leeds, United Kingdom
| |
Collapse
|
11
|
Xu YJ, Elimban V, Dhalla NS. Reduction of blood pressure by store-operated calcium channel blockers. J Cell Mol Med 2015; 19:2763-70. [PMID: 26471725 PMCID: PMC4687696 DOI: 10.1111/jcmm.12684] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 08/14/2015] [Indexed: 12/16/2022] Open
Abstract
The voltage-operated Ca(2+) channels (VOCC), which allow Ca(2+) influx from the extracellular space, are inhibited by anti-hypertensive agents such as verapamil and nifedipine. The Ca(2+) entering from outside into the cell triggers Ca(2+) release from the sarcoplasmic reticulum (SR) stores. To refill the depleted Ca(2+) stores in the SR, another type of Ca(2+) channels in the cell membrane, known as store-operated Ca(2+) channels (SOCC), are activated. These SOCCs are verapamil and nifedipine resistant, but are SKF 96465 (SK) and gadolinium (Gd(3+) ) sensitive. Both SK and Gd(3+) have been shown to reduce [Ca(2+) ]i in the smooth muscle, but their effects on blood pressure have not been reported. Our results demonstrated that both SK and Gd(3+) produced a dose-dependent reduction in blood pressure in rat. The combination of SK and verapamil produced an additive action in lowering the blood pressure. Furthermore, SK, but not Gd(3+) suppressed proliferation of vascular smooth muscle cells in the absence or presence of lysophosphatidic acid (LPA). SK decreased the elevation of [Ca(2+) ]i induced by LPA, endothelin-1 (ET-1) and angiotensin II (Ang II), but did not affect the norepinephrine (NE)-evoked increase in [Ca(2+) ]i . On the other hand, Gd(3+) inhibited the LPA and Ang II induced change in [Ca(2+) ]i , but had no effect on the ET-1 and NE induced increase in [Ca(2+) ]i . The combination of verapamil and SK abolished the LPA- or adenosine-5'-triphosphate (ATP)-induced [Ca(2+) ]i augmentation. These results suggest that SOCC inhibitors, like VOCC blocker, may serve as promising drugs for the treatment of hypertension.
Collapse
Affiliation(s)
- Yan-Jun Xu
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, Department of Physiology and Pathophysiology, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Vijayan Elimban
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, Department of Physiology and Pathophysiology, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Naranjan S Dhalla
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, Department of Physiology and Pathophysiology, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
12
|
Yang D, Hong JH. Dexmedetomidine Modulates Histamine-induced Ca(2+) Signaling and Pro-inflammatory Cytokine Expression. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2015; 19:413-20. [PMID: 26330753 PMCID: PMC4553400 DOI: 10.4196/kjpp.2015.19.5.413] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 05/06/2015] [Accepted: 05/10/2015] [Indexed: 01/22/2023]
Abstract
Dexmedetomidine is a sedative and analgesic agent that exerts its effects by selectively agonizing α2 adrenoceptor. Histamine is a pathophysiological amine that activates G protein-coupled receptors, to induce Ca(2+) release and subsequent mediate or progress inflammation. Dexmedetomidine has been reported to exert inhibitory effect on inflammation both in vitro and in vivo studies. However, it is unclear that dexmedetomidine modulates histamine-induced signaling and pro-inflammatory cytokine expression. This study was carried out to assess how dexmedetomidine modulates histamine-induced Ca(2+) signaling and regulates the expression of pro-inflammatory cytokine genes encoding interleukin (IL)-6 and -8. To elucidate the regulatory role of dexmedetomidine on histamine signaling, HeLa cells and human salivary gland cells which are endogenously expressed histamine 1 receptor were used. Dexmedetomidine itself did not trigger Ca(2+) peak or increase in the presence or absence of external Ca(2+). When cells were stimulated with histamine after pretreatment with various concentrations of dexmedetomidine, we observed inhibited histamine-induced [Ca(2+)]i signal in both cell types. Histamine stimulated IL-6 mRNA expression not IL-8 mRNA within 2 hrs, however this effect was attenuated by dexmedetomidine. Collectively, these findings suggest that dexmedetomidine modulates histamine-induced Ca(2+) signaling and IL-6 expression and will be useful for understanding the antagonistic properties of dexmedetomidine on histamine-induced signaling beyond its sedative effect.
Collapse
Affiliation(s)
- Dongki Yang
- Department of Physiology, College of Medicine, Gachon University, Incheon 406-799, Korea
| | - Jeong Hee Hong
- Department of Physiology, College of Medicine, Gachon University, Incheon 406-799, Korea
| |
Collapse
|
13
|
Son A, Shin DM, Hong JH. Peptidoglycan Induces the Production of Interleukin-8 via Calcium Signaling in Human Gingival Epithelium. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2014; 19:51-7. [PMID: 25605997 PMCID: PMC4297762 DOI: 10.4196/kjpp.2015.19.1.51] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 11/27/2014] [Accepted: 12/01/2014] [Indexed: 02/06/2023]
Abstract
The etiology of periodontal disease is multifactorial. Exogenous stimuli such as bacterial pathogens can interact with toll-like receptors to activate intracellular calcium signaling in gingival epithelium and other tissues. The triggering of calcium signaling induces the secretion of pro-inflammatory cytokines such as interleukin-8 as part of the inflammatory response; however, the exact mechanism of calcium signaling induced by bacterial toxins when gingival epithelial cells are exposed to pathogens is unclear. Here, we investigate calcium signaling induced by bacteria and expression of inflammatory cytokines in human gingival epithelial cells. We found that peptidoglycan, a constituent of gram-positive bacteria and an agonist of toll-like receptor 2, increases intracellular calcium in a concentration-dependent manner. Peptidoglycan-induced calcium signaling was abolished by treatment with blockers of phospholipase C (U73122), inositol 1,4,5-trisphosphate receptors, indicating the release of calcium from intracellular calcium stores. Peptidoglycan-mediated interleukin-8 expression was blocked by U73122 and 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis (acetoxymethyl ester). Moreover, interleukin-8 expression was induced by thapsigargin, a selective inhibitor of the sarco/endoplasmic reticulum calcium ATPase, when thapsigargin was treated alone or co-treated with peptidoglycan. These results suggest that the gram-positive bacterial toxin peptidoglycan induces calcium signaling via the phospholipase C/inositol 1,4,5-trisphosphate pathway, and that increased interleukin-8 expression is mediated by intracellular calcium levels in human gingival epithelial cells.
Collapse
Affiliation(s)
- Aran Son
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul 120-752, Korea. ; BK21 PLUS Project, Yonsei University College of Dentistry, Seoul 120-752, Korea
| | - Dong Min Shin
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul 120-752, Korea. ; BK21 PLUS Project, Yonsei University College of Dentistry, Seoul 120-752, Korea
| | - Jeong Hee Hong
- Department of Physiology, Graduate School of Medicine, Gachon University, Incheon 406-799, Korea
| |
Collapse
|
14
|
Zhang G, Cui J, Chen Y, Ma J. The relaxant effect of propofol on isolated rat intrapulmonary arteries. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2014; 18:377-81. [PMID: 25352756 PMCID: PMC4211120 DOI: 10.4196/kjpp.2014.18.5.377] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 08/30/2014] [Accepted: 09/01/2014] [Indexed: 01/21/2023]
Abstract
Propofol is a widely used anesthetic. Many studies have shown that propofol has direct effects on blood vessels, but the precise mechanism is not fully understood. Secondary intrapulmonary artery rings from male rats were prepared and mounted in a Multi Myograph System. The following constrictors were used to induce contractions in isolated artery rings: high K(+) solution (60 mmol/L); U46619 solution (100 nmol/L); 5-hydroxytryptamine (5-HT; 3 µmol/L); or phenylephrine (Phe; 1 µmol/L). The relaxation effects of propofol were tested on high K(+) or U46619 precontracted rings. Propofol also was added to induce relaxation of rings preconstricted by U46619 after pretreatment with the nitric oxide synthase inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME). The effects of propofol on Ca(2+) influx via the L-type Ca(2+) channels were evaluated by examining contraction-dependent responses to CaCl2 in the absence or presence of propofol (10 to 300 µmol/L). High K(+) solution and U46619 induced remarkable contractions of the rings, whereas contractions induced by 5-HT and Phe were weak. Propofol induced dose-dependent relaxation of artery rings precontracted by the high K(+) solution. Propofol also induced relaxation of rings precontracted by U46619 in an endothelium-independent way. Propofol at different concentrations significantly inhibited the Ca(2+)-induced contractions of pulmonary rings exposed to high K(+)-containing and Ca(2+)-free solution in a dose-dependent manner. Propofol relaxed vessels precontracted by the high K(+) solution and U46619 in an endothelium-independent way. The mechanism for this effect may involve inhibition of calcium influx through voltage-operated calcium channels (VOCCs) and receptor-operated calcium channels (ROCCs).
Collapse
Affiliation(s)
- Guangyan Zhang
- Department of Anesthesiology, Guangdong General Hospital (Guangdong Academy of Medical Sciences), Guangzhou 510080, China
| | - Jianxiu Cui
- Department of Anesthesiology, Guangdong General Hospital (Guangdong Academy of Medical Sciences), Guangzhou 510080, China
| | - Yijing Chen
- Department of Anesthesiology, Guangdong General Hospital (Guangdong Academy of Medical Sciences), Guangzhou 510080, China
| | - Jue Ma
- Department of Anesthesiology, Guangdong General Hospital (Guangdong Academy of Medical Sciences), Guangzhou 510080, China
| |
Collapse
|
15
|
Billaud M, Lohman AW, Johnstone SR, Biwer LA, Mutchler S, Isakson BE. Regulation of cellular communication by signaling microdomains in the blood vessel wall. Pharmacol Rev 2014; 66:513-69. [PMID: 24671377 DOI: 10.1124/pr.112.007351] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
It has become increasingly clear that the accumulation of proteins in specific regions of the plasma membrane can facilitate cellular communication. These regions, termed signaling microdomains, are found throughout the blood vessel wall where cellular communication, both within and between cell types, must be tightly regulated to maintain proper vascular function. We will define a cellular signaling microdomain and apply this definition to the plethora of means by which cellular communication has been hypothesized to occur in the blood vessel wall. To that end, we make a case for three broad areas of cellular communication where signaling microdomains could play an important role: 1) paracrine release of free radicals and gaseous molecules such as nitric oxide and reactive oxygen species; 2) role of ion channels including gap junctions and potassium channels, especially those associated with the endothelium-derived hyperpolarization mediated signaling, and lastly, 3) mechanism of exocytosis that has considerable oversight by signaling microdomains, especially those associated with the release of von Willebrand factor. When summed, we believe that it is clear that the organization and regulation of signaling microdomains is an essential component to vessel wall function.
Collapse
Affiliation(s)
- Marie Billaud
- Dept. of Molecular Physiology and Biophysics, University of Virginia School of Medicine, PO Box 801394, Charlottesville, VA 22902.
| | | | | | | | | | | |
Collapse
|