1
|
Rawal RS, Mehant A, Suman SK. Deciphering ligninolytic enzymes in the secretome of Pycnoporus sp. and their potential in degradation of 2-chlorophenol. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:92830-92841. [PMID: 37495802 DOI: 10.1007/s11356-023-28932-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 07/18/2023] [Indexed: 07/28/2023]
Abstract
Chlorophenols and their derivatives are persistent environmental pollutants, posing a threat to terrestrial and aquatic life. The biological approach for eliminating toxic contaminants is an effective, sustainable, and environmental friendly method. In this study, the crude enzymes present in the secretome of white-rot fungus (Pycnoporus sp.) were explored for the degradation of 2-chlorophenol. The activity of ligninolytic enzymes in the secretome was analyzed and characterized for their kinetics and thermodynamic properties. Laccase and manganese peroxidase were prevalent ligninolytic enzymes and exhibited temperature stability in the range of 50-65 °C and pH 4-5, respectively. The kinetic parameters Michaelis constant (Km) and turnover number (Kcat) for Lac were 42.54 μM and 45 s-1 for 2,2'-azino-bis (3-ethylben- zothiazoline-6-sulfonic acid), and 93.56 μM and 48 s-1 towards 2,6-dimethoxyphenol whereas Km and Kcat for MnP were 2039 μM and 294 s-1 for guaiacol as substrate. Treatment with the crude enzymes laccase and manganese peroxidase results in the reduction of 2-chlorophenol concentration, confirmed by UV-visible absorption spectra and high-performance liquid chromatography analysis. The detoxification of 2-chlorophenol into less toxic forms was confirmed by the plate toxicity assay. This study demonstrated that crude enzymes produced by Pycnoporus sp. could potentially minimize the toxicity of phenolic compounds in a sustainable way.
Collapse
Affiliation(s)
- Raja Singh Rawal
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun, 248005, Uttarakhand, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Aditri Mehant
- Jamia Hamdard University, Hamdard Nagar, New Delhi, 110062, India
| | - Sunil Kumar Suman
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun, 248005, Uttarakhand, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
2
|
Production of Minor Ginsenosides C-K and C-Y from Naturally Occurring Major Ginsenosides Using Crude β-Glucosidase Preparation from Submerged Culture of Fomitella fraxinea. Molecules 2021; 26:molecules26164820. [PMID: 34443407 PMCID: PMC8401847 DOI: 10.3390/molecules26164820] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/02/2021] [Accepted: 08/06/2021] [Indexed: 11/24/2022] Open
Abstract
Minor ginsenosides, such as compounds (C)-K and C-Y, possess relatively better bioactivity than those of naturally occurring major ginsenosides. Therefore, this study focused on the biotransformation of major ginsenosides into minor ginsenosides using crude β-glucosidase preparation isolated from submerged liquid culture of Fomitella fraxinea (FFEP). FFEP was prepared by ammonium sulfate (30–80%) precipitation from submerged culture of F. fraxinea. FFEP was used to prepare minor ginsenosides from protopanaxadiol (PPD)-type ginsenoside (PPDG-F) or total ginsenoside fraction (TG-F). In addition, biotransformation of major ginsenosides into minor ginsenosides as affected by reaction time and pH were investigated by TLC and HPLC analyses, and the metabolites were also identified by UPLC/negative-ESI-Q-TOF-MS analysis. FFEP biotransformed ginsenosides Rb1 and Rc into C-K via the following pathways: Rd → F2 → C-K for Rb1 and both Rd → F2→ C-K and C-Mc1 → C-Mc → C-K for Rc, respectively, while C-Y is formed from Rb2 via C-O. FFEP can be applied to produce minor ginsenosides C-K and C-Y from PPDG-F or TG-F. To the best of our knowledge, this study is the first to report the production of C-K and C-Y from major ginsenosides by basidiomycete F. fraxinea.
Collapse
|
3
|
Raza A, Pothula R, Abdelgaffar H, Bashir S, Jurat-Fuentes JL. Identification and functional characterization of a β-glucosidase from Bacillus tequelensis BD69 expressed in bacterial and yeast heterologous systems. PeerJ 2020; 8:e8792. [PMID: 32266116 PMCID: PMC7115751 DOI: 10.7717/peerj.8792] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/25/2020] [Indexed: 12/31/2022] Open
Abstract
Background The identification and characterization of novel β-glucosidase genes has attracted considerable attention because of their valuable use in a variety of industrial applications, ranging from biofuel production to improved digestibility of animal feed. We previously isolated a fiber-degrading strain of Bacillus tequelensis from buffalo dung samples, and the goal of the current work was to identify β-glucosidase genes in this strain. We describe the cloning and expression of a new β-glucosidase gene (Bteqβgluc) from Bacillus tequelensis strain BD69 in bacterial and yeast hosts. The recombinant Bteqβgluc were used to characterize specificity and activity parameters, and candidate active residues involved in hydrolysis of different substrates were identified through molecular docking. Methods The full length Bteqβgluc gene was cloned and expressed in Escherichia coli and Pichia pastoris cultures. Recombinant Bteqβgluc proteins were purified by immobilized metal affinity or anion exchange chromatography and used in β-glucosidase activity assays measuring hydrolysis of ρ-nitrophenyl-β-D-glucopyranoside (pNPG). Activity parameters were determined by testing relative β-glucosidase activity after incubation under different temperature and pH conditions. Candidate active residues in Bteqβgluc were identified using molecular operating environment (MOE) software. Results The cloned Bteqβgluc gene belongs to glycoside hydrolase (GH) family 4 and encoded a 54.35 kDa protein. Specific activity of the recombinant β-glucosidase was higher when expressed in P. pastoris (1,462.25 U/mg) than in E. coli (1,445.09 U/mg) hosts using same amount of enzyme. Optimum activity was detected at pH 5 and 50 °C. The activation energy (E a) was 44.18 and 45.29 kJ/mol for Bteqβgluc produced by P. pastoris and E. coli, respectively. Results from other kinetic parameter determinations, including pK a for the ionizable groups in the active site, Gibbs free energy of activation (ΔG ‡), entropy of activation (ΔS ‡), Michaelis constant (K m) and maximum reaction velocity (V max) for pNPG hydrolysis support unique kinetics and functional characteristics that may be of interest for industrial applications. Molecular docking analysis identified Glu, Asn, Phe, Tyr, Thr and Gln residues as important in protein-ligand catalytic interactions.
Collapse
Affiliation(s)
- Ahmad Raza
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan.,Pakistan Institute of Engineering & Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Ratnasri Pothula
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, United States of America
| | - Heba Abdelgaffar
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, United States of America
| | - Saira Bashir
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan.,Pakistan Institute of Engineering & Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Juan Luis Jurat-Fuentes
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, United States of America
| |
Collapse
|
4
|
Hwangbo M, Tran JL, Chu KH. Effective one-step saccharification of lignocellulosic biomass using magnetite-biocatalysts containing saccharifying enzymes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 647:806-813. [PMID: 30096670 DOI: 10.1016/j.scitotenv.2018.08.066] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/03/2018] [Accepted: 08/04/2018] [Indexed: 06/08/2023]
Abstract
Lignocellulosic biomass, packed with sugars, is one of the most available renewable resources for biofuels and bioproducts production. To release the sugars for the production, enzymatic hydrolysis (saccharification) of pretreated lignocellulosic biomass are required. However, the saccharification process is costly, inefficient, and requires multi-step operations. This is in part due to the high cost and the limited selection of commercial enzymes which commonly have different optimal pH and temperatures. Here we reported a one-step saccharification of pretreated lignocellulosic biomass using immobilized biocatalysts containing five different saccharifying enzymes (SEs) with a similar optimum pH and temperature. The five SEs - endo-1,4-β-d-glucanase (an endoglucanase, eglS), cellobiohydrolase (an exoglucanase, cbhA), and β-glucosidase (bglH), endo-1,4-β-xylanase (an endoxylanase, xynC) and β-xylosidase (bxlB) - were successfully expressed and produced by E. coli BL21. Better saccharification of pretreated corn husks was observed when using the five crude SE enzymes than those using two commonly used SEs, endo-1,4-β-d-glucanase and β-glucosidase. The five SEs were cross-linked in the absence or the presence of magnetic nanoparticles (hereafter referred as SE-CLEAs and M-SE-CLEAs, respectively). By using SE-CLEAs, the highest amount of reduced sugar (250 mg/g biomass) was measured. The activity of immobilized SEs is better than free crude SEs. The M-SE-CLEAs can be reused at least 3 times for effective saccharification of pretreated lignocellulosic biomass.
Collapse
Affiliation(s)
- Myung Hwangbo
- Zachry Department of Civil Engineering, Texas A&M University, College Station, TX 77843-3136, USA
| | - Janessa L Tran
- Zachry Department of Civil Engineering, Texas A&M University, College Station, TX 77843-3136, USA
| | - Kung-Hui Chu
- Zachry Department of Civil Engineering, Texas A&M University, College Station, TX 77843-3136, USA.
| |
Collapse
|
5
|
Olorunnisola KS, Jamal P, Alam MZ. Growth, substrate consumption, and product formation kinetics of Phanerochaete chrysosporium and Schizophyllum commune mixed culture under solid-state fermentation of fruit peels. 3 Biotech 2018; 8:429. [PMID: 30305998 DOI: 10.1007/s13205-018-1452-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 09/24/2018] [Indexed: 11/28/2022] Open
Abstract
Kinetic analysis of solid-state fermentation (SSF) of fruit peels with Phanerochaete chrysosporium and Schizophyllum commune mixed culture was studied in flask and 7 kg capacity reactor. Modified Monod kinetic model suggested by Haldane sufficiently described microbial growth with co-efficient of determination (R 2) reaching 0.908 at increased substrate concentration than the classical Monod model (R 2 = 0.932). Leudeking-Piret model adequately described product synthesis in non-growth-dependent manner (R 2 = 0.989), while substrate consumption by P. chrysosporium and S. commune fungal mixed culture was growth-dependent (R 2 = 0.938). Hanes-Woolf model sufficiently represented α-amylase and cellulase enzymes synthesis (R 2 = 0.911 and 0.988); α-amylase had enzyme maximum velocity (V max) of 25.19 IU/gds/day and rate constant (K m) of 11.55 IU/gds/day, while cellulase enzyme had V max of 3.05 IU/gds/day and K m of 57.47 IU/gds/day. Product yield in the reactor increased to 32.65 mg/g/day compared with 28.15 mg/g/day in shake flask. 2.5 cm media thickness was adequate for product formation within a 6 day SSF in the tray reactor.
Collapse
Affiliation(s)
- Kola Saheed Olorunnisola
- 1Department of Biotechnology Engineering, Faculty of Engineering, Bioenvironmental Research Centre (BERC), International Islamic University Malaysia, P.O. Box 10, 50728 Kuala Lumpur, Malaysia
- 2Biological Sciences Department, Elizade University, P.M.B. 002, Ilara-Mokin, Ondo State Nigeria
| | - Parveen Jamal
- 1Department of Biotechnology Engineering, Faculty of Engineering, Bioenvironmental Research Centre (BERC), International Islamic University Malaysia, P.O. Box 10, 50728 Kuala Lumpur, Malaysia
| | - Md Zahangir Alam
- 1Department of Biotechnology Engineering, Faculty of Engineering, Bioenvironmental Research Centre (BERC), International Islamic University Malaysia, P.O. Box 10, 50728 Kuala Lumpur, Malaysia
| |
Collapse
|
6
|
Behrens CJ, Krahe NK, Linke D, Berger RG. BadGluc, a β-glucosidase from Bjerkandera adusta with anthocyanase properties. Bioprocess Biosyst Eng 2018; 41:1391-1401. [PMID: 29948211 DOI: 10.1007/s00449-018-1966-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 06/06/2018] [Indexed: 12/20/2022]
Abstract
A glycosidase of the basidiomycete Bjerkandera adusta (BadGluc) was found in screenings to possess a strong decolorizing ability towards malvidin-3-galactoside, an anthocyanin abundant in various berry fruits. The BadGluc was purified from the culture supernatant via FPLC, and the corresponding gene was identified which showed low similarity to other characterized glucosidases. Scanning the primary sequence with PROSITE no active site motif was detected. Eventually, a specific 18 aa consensus pattern was identified manually. The active site motif possessed an undescribed sequence which was only found in a few hypothetical proteins. The corresponding gene was cloned and expressed in Pichia pastoris GS115 yielding activities up to 100 U/L using 4-nitrophenyl-β-d-glucopyranoside (pNPG) as substrate. The enzyme possessed a good temperature (70% after 1 h at 50°C) and pH stability (70% between pH 2 and 7.5), and preferably catalysed the hydrolysis of delphinidin-3-glucoside and cyanidin-3-glucoside, regardless of the position of the terminal Hexa-His tag. This novel glucosidase worked in aqueous solution as well as on pre-stained fabrics making it the first known candidate anthocyanase for applications in the detergent and food industries.
Collapse
Affiliation(s)
- Christoph J Behrens
- Gottfried Wilhelm Leibniz Universität Hannover, Institut für Lebensmittelchemie, Callinstraße 5, 30167, Hannover, Germany.
| | - Nina K Krahe
- Gottfried Wilhelm Leibniz Universität Hannover, Institut für Lebensmittelchemie, Callinstraße 5, 30167, Hannover, Germany
| | - Diana Linke
- Gottfried Wilhelm Leibniz Universität Hannover, Institut für Lebensmittelchemie, Callinstraße 5, 30167, Hannover, Germany
| | - Ralf G Berger
- Gottfried Wilhelm Leibniz Universität Hannover, Institut für Lebensmittelchemie, Callinstraße 5, 30167, Hannover, Germany
| |
Collapse
|
7
|
Vazquez-Ortega PG, Alcaraz-Fructuoso MT, Rojas-Contreras JA, López-Miranda J, Fernandez-Lafuente R. Stabilization of dimeric β-glucosidase from Aspergillu s nige r via glutaraldehyde immobilization under different conditions. Enzyme Microb Technol 2018; 110:38-45. [DOI: 10.1016/j.enzmictec.2017.12.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 12/18/2017] [Accepted: 12/21/2017] [Indexed: 01/28/2023]
|
8
|
Okereke O, Akanya H, Egwim E. Purification and characterization of an acidophilic cellulase from Pleurotus ostreatus and its potential for agrowastes valorization. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2017. [DOI: 10.1016/j.bcab.2017.10.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Highly regioselective biotransformation of ginsenoside Rb2 into compound Y and compound K by β-glycosidase purified from Armillaria mellea mycelia. J Ginseng Res 2017; 42:504-511. [PMID: 30337811 PMCID: PMC6187093 DOI: 10.1016/j.jgr.2017.07.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 06/27/2017] [Accepted: 07/03/2017] [Indexed: 11/22/2022] Open
Abstract
Background The biological activities of ginseng saponins (ginsenosides) are associated with type, number, and position of sugar moieties linked to aglycone skeletons. Deglycosylated minor ginsenosides are known to be more biologically active than major ginsenosides. Accordingly, the deglycosylation of major ginsenosides can provide the multibioactive effects of ginsenosides. The purpose of this study was to transform ginsenoside Rb2, one of the protopanaxadiol-type major ginsenosides, into minor ginsenosides using β-glycosidase (BG-1) purified from Armillaria mellea mycelium. Methods Ginsenoside Rb2 was hydrolyzed by using BG-1; the hydrolytic properties of Rb2 by BG-1 were also characterized. In addition, the influence of reaction conditions such as reaction time, pH, and temperature, and transformation pathways of Rb2, Rd, F2, compound O (C-O), and C-Y by treatment with BG-1 were investigated. Results BG-1 first hydrolyzes 3-O-outer β-d-glucoside of Rb2, then 3-O-β-d-glucoside of C-O into C-Y. C-Y was gradually converted into C-K with a prolonged reaction time, but the pathway of Rb2 → Rd → F2 → C-K was not observed. The optimum reaction conditions for C-Y and C-K formation from Rb2 by BG-1 were pH 4.0-4.5, temperature 45-60°C, and reaction time 72-96 h. Conclusion β-Glycosidase purified from A. mellea mycelium can be efficiently used to transform Rb2 into C-Y and C-K. To our best knowledge, this is the first result of transformation from Rb2 into C-Y and C-K by basidiomycete mushroom enzyme.
Collapse
|
10
|
Upadhyaya J, Yoon MS, Kim MJ, Ryu NS, Song YE, Kim YH, Kim MK. Purification and characterization of a novel ginsenoside Rc-hydrolyzing β-glucosidase from Armillaria mellea mycelia. AMB Express 2016; 6:112. [PMID: 27837549 PMCID: PMC5106418 DOI: 10.1186/s13568-016-0277-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 10/27/2016] [Indexed: 12/22/2022] Open
Abstract
Ginsenosides are the principal compounds responsible for the pharmacological effects and health benefits of Panax ginseng root. Among protopanaxadiol (PPD)-type ginsenosides, minor ginsenosides such as ginsenoside (G)-F2, G-Rh2, compound (C)-Mc1, C-Mc, C-O, C-Y, and C-K are known to be more pharmacologically active constituents than major ginsenosides such as G-Rb1, G-Rb2, G-Rc, and G-Rd. A novel ginsenoside Rc-hydrolyzing β-glucosidase (BG-1) from Armillaria mellea mycelia was purified as a single protein band with molecular weight of 121.5 kDa on SDS-PAGE and a specific activity of 17.9 U mg-1 protein. BG-1 concurrently hydrolyzed α-(1 → 6)-arabinofuranosidic linkage at the C-20 site or outer β-(1 → 2)-glucosidic linkage at the C-3 site of G-Rc to produce G-Rd and C-Mc1, respectively. The enzyme also hydrolyzed outer and inner glucosidic linkages at the C-3 site of G-Rd to produce C-K via G-F2, and inner glucosidic linkage at the C-3 site of C-Mc1 to produce C-Mc. C-Mc was also slowly hydrolyzed α-(1 → 6)-arabinofuranosidic linkage at the C-20 site to produce C-K with reaction time prolongation. Finally, the pathways for formation of C-Mc and C-K from G-Rc by BG-1 were G-Rc → C-Mc1 → C-Mc and G-Rc → G-Rd → G-F2 → C-K, respectively. The optimum reaction conditions for C-Mc and C-K formation from G-Rc by BG-1 were pH 4.0-4.5, temperature 45-60 °C, and reaction time 72-96 h. This is the first report of efficient production of minor ginsenosides, C-Mc and C-K from G-Rc by β-glucosidase purified from A. mellea mycelia.
Collapse
Affiliation(s)
- Jitendra Upadhyaya
- Department of Food Science and Technology, Chonbuk National University, Jeonju, 54896 Republic of Korea
| | - Min-Sun Yoon
- Department of Food Science and Biotechnology, Chonbuk National University, Iksan, 54596 Republic of Korea
| | - Min-Ji Kim
- Department of Food Science and Technology, Chonbuk National University, Jeonju, 54896 Republic of Korea
| | - Nam-Soo Ryu
- Department of Food Science and Biotechnology, Chonbuk National University, Iksan, 54596 Republic of Korea
| | - Young-Eun Song
- Agricultural Research and Extension Services, Iksan, 54591 Republic of Korea
| | - Young-Hoi Kim
- Department of Food Science and Technology, Chonbuk National University, Jeonju, 54896 Republic of Korea
| | - Myung-Kon Kim
- Department of Food Science and Technology, Chonbuk National University, Jeonju, 54896 Republic of Korea
| |
Collapse
|
11
|
Application of residual polysaccharide-degrading enzymes in dried shiitake mushrooms as an enzyme preparation in food processing. Biotechnol Lett 2016; 38:1923-1928. [DOI: 10.1007/s10529-016-2176-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 07/14/2016] [Indexed: 11/26/2022]
|
12
|
Singh G, Verma AK, Kumar V. Catalytic properties, functional attributes and industrial applications of β-glucosidases. 3 Biotech 2016; 6:3. [PMID: 28330074 PMCID: PMC4697909 DOI: 10.1007/s13205-015-0328-z] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 06/19/2015] [Indexed: 12/18/2022] Open
Abstract
β-Glucosidases are diverse group of enzymes with great functional importance to biological systems. These are grouped in multiple glycoside hydrolase families based on their catalytic and sequence characteristics. Most studies carried out on β-glucosidases are focused on their industrial applications rather than their endogenous function in the target organisms. β-Glucosidases performed many functions in bacteria as they are components of large complexes called cellulosomes and are responsible for the hydrolysis of short chain oligosaccharides and cellobiose. In plants, β-glucosidases are involved in processes like formation of required intermediates for cell wall lignification, degradation of endosperm’s cell wall during germination and in plant defense against biotic stresses. Mammalian β-glucosidases are thought to play roles in metabolism of glycolipids and dietary glucosides, and signaling functions. These enzymes have diverse biotechnological applications in food, surfactant, biofuel, and agricultural industries. The search for novel and improved β-glucosidase is still continued to fulfills demand of an industrially suitable enzyme. In this review, a comprehensive overview on detailed functional roles of β-glucosidases in different organisms, their industrial applications, and recent cloning and expression studies with biochemical characterization of such enzymes is presented for the better understanding and efficient use of diverse β-glucosidases.
Collapse
Affiliation(s)
- Gopal Singh
- Institute of Himalayan Bioresource Technology, Palampur, 176062, India
| | - A K Verma
- Department of Biochemistry, College of Basic Sciences and Humanities, G. B. Pant University of Agriculture and Technology, Pantnagar, 263145, India
| | - Vinod Kumar
- Department of Biotechnology, Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, 173101, India.
| |
Collapse
|
13
|
Production and Characterization of Highly Thermostable β-Glucosidase during the Biodegradation of Methyl Cellulose by Fusarium oxysporum. Biochem Res Int 2016; 2016:3978124. [PMID: 26977320 PMCID: PMC4761672 DOI: 10.1155/2016/3978124] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 12/31/2015] [Accepted: 01/03/2016] [Indexed: 11/17/2022] Open
Abstract
Production of β-glucosidase from Fusarium oxysporum was investigated during degradation of some cellulosic substrates (Avicel, α-cellulose, carboxymethyl cellulose (CMC), and methylcellulose). Optimized production of β-glucosidase using the cellulosic substrate that supported highest yield of enzyme was examined over 192 h fermentation period and varied pH of 3.0–11.0. The β-glucosidase produced was characterized for its suitability for industrial application. Methyl cellulose supported the highest yield of β-glucosidase (177.5 U/mg) at pH 6.0 and 30°C at 96 h of fermentation with liberation of 2.121 μmol/mL glucose. The crude enzyme had optimum activity at pH 5.0 and 70°C. The enzyme was stable over broad pH range of 4.0–7.0 with relative residual activity above 60% after 180 min of incubation. β-glucosidase demonstrated high thermostability with 83% of its original activity retained at 70°C after 180 min of incubation. The activity of β-glucosidase was enhanced by Mn2+ and Fe2+ with relative activities of 167.67% and 205.56%, respectively, at 5 mM and 360% and 315%, respectively, at 10 mM. The properties shown by β-glucosidase suggest suitability of the enzyme for industrial applications in the improvement of hydrolysis of cellulosic compounds into fermentable sugars that can be used in energy generation and biofuel production.
Collapse
|
14
|
Enzymatic formation of compound-K from ginsenoside Rb1 by enzyme preparation from cultured mycelia of Armillaria mellea. J Ginseng Res 2015; 40:105-12. [PMID: 27158230 PMCID: PMC4845050 DOI: 10.1016/j.jgr.2015.05.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/19/2015] [Accepted: 05/21/2015] [Indexed: 11/29/2022] Open
Abstract
Background Minor saponins or human intestinal bacterial metabolites, such as ginsenosides Rg3, F2, Rh2, and compound K, are more pharmacologically active than major saponins, such as ginsenosides Rb1, Rb2, and Rc. In this work, enzymatic hydrolysis of ginsenoside Rb1 was studied using enzyme preparations from cultured mycelia of mushrooms. Methods Mycelia of Armillaria mellea, Ganoderma lucidum, Phellinus linteus, Elfvingia applanata, and Pleurotus ostreatus were cultivated in liquid media at 25°C for 2 wk. Enzyme preparations from cultured mycelia of five mushrooms were obtained by mycelia separation from cultured broth, enzyme extraction, ammonium sulfate (30–80%) precipitation, dialysis, and freeze drying, respectively. The enzyme preparations were used for enzymatic hydrolysis of ginsenoside Rb1. Results Among the mushrooms used in this study, the enzyme preparation from cultured mycelia of A. mellea (AMMEP) was found to convert ginsenoside Rb1 into compound K with a high yield, while those from G. lucidum, P. linteus, E. applanata, and P. ostreatus produced remarkable amounts of ginsenoside Rd from ginsenoside Rb1. The enzymatic hydrolysis pathway of ginsenoside Rb1 by AMMEP was Rb1 → Rd → F2 → compound K. The optimum reaction conditions for compound K formation from ginsenoside Rb1 were as follows: reaction time 72–96 h, pH 4.0–4.5, and temperature 45–55°C. Conclusion AMMEP can be used to produce the human intestinal bacterial metabolite, compound K, from ginsenoside Rb1 with a high yield and without food safety issues.
Collapse
|
15
|
Isolation and characterization of Achromobacter sp. CX2 from symbiotic Cytophagales, a non-cellulolytic bacterium showing synergism with cellulolytic microbes by producing β-glucosidase. ANN MICROBIOL 2014. [DOI: 10.1007/s13213-014-1009-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|