1
|
Kumar A, Yadav B, Roy A, Mishra P, Poluri KM, Gupta P. Biochemical insights into synergistic Candida biofilm disintegrating ability of p-cymene inclusion complex and miconazole. Eur J Pharmacol 2025; 993:177365. [PMID: 39938856 DOI: 10.1016/j.ejphar.2025.177365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 02/03/2025] [Accepted: 02/07/2025] [Indexed: 02/14/2025]
Abstract
Phytoactive molecules emerge as a plentiful reservoir of adjuvant and antifungal agents. The resolution of solubility and stability issues has been facilitated by developing molecular complexes or inclusion complexes of phytoactive molecules. Miconazole (MCZ) is a favoured azole with low off-target impact, however, its pharmacological efficacy requires a revamp to enhance its suitability as an antifungal drug. Hence, the present investigation delves into the mechanism of action of the p-cymene/β-cyclodextrin inclusion complex (IC) along with MCZ against Candida albicans and Candidaglabrata biofilms. The synergy between IC and MCZ has been estimated at a concentration of 6.25 μg/mL IC + 0.5 μg/mL MCZ with a FICI of 0.19. The prepared IC + MCZ displayed remarkable antifungal properties against planktonic and sessile growth of Candida species. IC + MCZ exhibited a notable 80% biofilm eradication potential against both species, corroborated by morphological analysis using FE-SEM. The results indicated that IC/IC + MCZ acts by disrupting the biochemical composition of the ECM, altering the surface properties of the cells, reducing ergosterol, enhancing membrane permeability, and inducing oxidative stress. In conclusion, the study highlighted the synergistic antibiofilm activity of p-cymene IC with miconazole against Candida species. In summary, IC + MCZ has been established as a potent antifouling agent against Candida species, warranting further exploration for potential formulation with additional investigations.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Biotechnology, Graphic Era Deemed to Be University, Dehradun, 248001, Uttarakhand, India
| | - Bhawana Yadav
- Department of Biotechnology, Graphic Era Deemed to Be University, Dehradun, 248001, Uttarakhand, India
| | - Ankita Roy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Purusottam Mishra
- Biotechnology Centre, Silesian University of Technology, 8 Krzywousty Street, Gliwice, 44-100, Poland
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India; Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India.
| | - Payal Gupta
- Department of Biotechnology, Graphic Era Deemed to Be University, Dehradun, 248001, Uttarakhand, India.
| |
Collapse
|
2
|
Anjali, Pandey S. Ethanolamine-mediated microstructural transitions within terpenoid- and fatty acid-based deep eutectic solvents. Phys Chem Chem Phys 2025; 27:3124-3137. [PMID: 39834286 DOI: 10.1039/d4cp03878a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Deep eutectic solvents (DESs) have emerged as solubilizing media of intense interest due partly to their easily tailorable physicochemical properties. Extensive H-bonding between the constituents in a two-constituent system is the major driving force for the formation of the DES. Addition of ethanolamine (MEA), a compound having H-bonding capabilities, to the DESs composed of a terpene [menthol (Men) or thymol (Thy)] and a fatty acid [n-decanoic acid (DA)] results in an unprecedented increase in dynamic viscosity due to the extensive rearrangement in the H-bonding network and other interactions within the system, while the liquid mixture still behaves as a Newtonian fluid. For the non-DA DES constituted of Men and Thy, this behavior is not observed. Visual color appearance, density and electrical conductivity measurements, UV-Vis and FTIR absorbance, differential scanning calorimetry, and empirical Kamlet-Taft parameters of the MEA-added DA-based DESs reveal the microstructural changes effectively. Cybotactic regions of the fluorescent microfluidity probes [1,3-bis(1-pyrenyl)propane - an intramolecular excimer forming probe, as well as perylene and 1,6-diphenylhexatriene - well-established anisotropy probes] also manifest the unprecedented increase in the viscosity of the DA-based DES system upon MEA addition. The carboxylic acid functionality of the DA plays a crucial role in bringing microstructural changes within the system as MEA is added. Physicochemical properties of DES systems can be effectively manipulated by not only changing the constituents and their compositions, but also by judicious addition of a co-solute/co-solvent. This work offers an easy and efficient way to favorably tailor the properties of interest of these environmentally-benign media.
Collapse
Affiliation(s)
- Anjali
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India.
| | - Siddharth Pandey
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India.
| |
Collapse
|
3
|
Procopio FR, Brexó RP, Vitolano LES, Martins MEDM, Astolfo MEDA, Bogusz Junior S, Ferreira MD. Development of essential oils inclusion complexes: a nanotechnology approach with enhanced thermal and light stability. DISCOVER NANO 2024; 19:198. [PMID: 39645638 PMCID: PMC11625701 DOI: 10.1186/s11671-024-04158-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 11/28/2024] [Indexed: 12/09/2024]
Abstract
Essential oils (EOs) are volatile compounds that may have antimicrobial and antioxidant properties. Despite their potential application, low water solubility and chemical instability are limiting factors. Nanoencapsulation processes can overcome this problem, protecting against external factors and promoting a moderate release. Therefore, the objective of the present study was to encapsulate Cymbopogon citratus (CC) and Origanum vulgare (OV) essential oils in β-cyclodextrin (βCD) complexes. Different ratios (w/w) between βCD and EOs (96:4, 92:8, 90:10, 88:12) were tested, seeking greater entrapment efficiency. The particles were characterized by yield, entrapment efficiency, size distribution, morphology, crystallinity, infrared spectroscopy, and thermal behavior. Furthermore, the thermal (70 °C) and photochemical (UV) stability of the free and encapsulated EO was evaluated for 48 h. The results showed that the βCD-CC 90:10 and βCD-OV 90:10 formulations presented greater entrapment efficiency. Crystalline structures of varying sizes (200 to 800 nm), trapezoidal shape, and tendency to aggregation were obtained. Changes in the βCD crystalline organization and the suppression of characteristic free oil absorption bands suggest the EO entrapment. Regarding stability results, βCD-CC remained constant when CC showed losses of 20% (photodegradation) and 60% (thermal degradation) after 48 h of stress exposure. Free OV showed slight variations in absorbance over time, while βCD-OV remained constant over 24 h (thermal degradation) and maintained 60% of oil over 48 h of photo exposure. Furthermore, OV and CC demonstrate color change over time, while βCD-OV and βCD-CC remained constant. The results demonstrate that nanoencapsulation can be an interesting tool for protecting EOs.
Collapse
Grants
- #2022/10686-6, #2022/03229-8, #2023/14371-2, #2023/17653-9 Fundação de Amparo à Pesquisa do Estado de São Paulo
- #2022/10686-6, #2022/03229-8, #2023/14371-2, #2023/17653-9 Fundação de Amparo à Pesquisa do Estado de São Paulo
- #2022/10686-6, #2022/03229-8, #2023/14371-2, #2023/17653-9 Fundação de Amparo à Pesquisa do Estado de São Paulo
- #2022/10686-6, #2022/03229-8, #2023/14371-2, #2023/17653-9 Fundação de Amparo à Pesquisa do Estado de São Paulo
- #442575/2019-0, #307141/2022-5, #383538/2023-8, #385552/2023-8,#138584/2023-0 Conselho Nacional de Desenvolvimento Científico e Tecnológico
- #442575/2019-0, #307141/2022-5, #383538/2023-8, #385552/2023-8,#138584/2023-0 Conselho Nacional de Desenvolvimento Científico e Tecnológico
- #442575/2019-0, #307141/2022-5, #383538/2023-8, #385552/2023-8,#138584/2023-0 Conselho Nacional de Desenvolvimento Científico e Tecnológico
- #442575/2019-0, #307141/2022-5, #383538/2023-8, #385552/2023-8,#138584/2023-0 Conselho Nacional de Desenvolvimento Científico e Tecnológico
- 001 Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
- 001 Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Collapse
Affiliation(s)
- Fernanda Ramalho Procopio
- Brazilian Agricultural Research Corporation, Embrapa Instrumentation, São Carlos, SP, 13561-206, Brazil.
| | - Ramon Peres Brexó
- Brazilian Agricultural Research Corporation, Embrapa Instrumentation, São Carlos, SP, 13561-206, Brazil
| | | | - Maria Eduarda da Mata Martins
- Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José Do Rio Preto, Brazil
| | | | - Stanislau Bogusz Junior
- São Carlos Institute of Chemistry (IQSC), University of São Paulo (USP), São Carlos, São Paulo, 13566-590, Brazil
| | - Marcos David Ferreira
- Brazilian Agricultural Research Corporation, Embrapa Instrumentation, São Carlos, SP, 13561-206, Brazil
| |
Collapse
|
4
|
Giotopoulou I, Stamatis H, Barkoula NM. Encapsulation of Thymol in Ethyl Cellulose-Based Microspheres and Evaluation of Its Sustained Release for Food Applications. Polymers (Basel) 2024; 16:3396. [PMID: 39684141 DOI: 10.3390/polym16233396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/25/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Food waste is a global concern with enormous economic, environmental and social impacts that has contributed to active packaging evolution. However, incorporating bioactive substances into the packaging can deteriorate its physicochemical and mechanical characteristics. Thus, the objective of this work was to entrap the natural bioactive compound thymol into microparticles and apply them in the form of pads for the controlled release of bioactivity in food packaging material. The physicochemical characteristics and bioactivity of five different ethyl cellulose-based microparticles were evaluated. Increasing the amount of thymol in the formulation led to higher encapsulation efficiency. Encapsulation resulted in a substantial increase of >10-20 °C in the volatilization temperature of thymol, and the release of thymol occurred following a sustained profile, best described by the Higuchi release kinetic model. Increasing the polymer to thymol ratio in the microparticles resulted in higher thermal stability and a more gradual release profile. While all formulations demonstrated considerable inhibition of E. coli growth, the ones with the highest thymol content maintained their antimicrobial activity for at least one month of microparticle storage. Furthermore, the ability of the microparticles in retaining pH and titratable acidity of cherry tomatoes was evaluated, and it was confirmed that these characteristics were maintained during 21 days of storage.
Collapse
Affiliation(s)
- Iro Giotopoulou
- Department of Materials Science and Engineering, University of Ioannina, GR-45110 Ioannina, Greece
| | - Haralambos Stamatis
- Department of Biological Applications and Technology, University of Ioannina, GR-45110 Ioannina, Greece
| | | |
Collapse
|
5
|
Shiva K, Soleimani A, Morshedian J, Farahmandghavi F, Shokrolahi F. Improving the antibacterial properties of polyethylene food packaging films with Ajwain essential oil adsorbed on chitosan particles. Sci Rep 2024; 14:28802. [PMID: 39567677 PMCID: PMC11579371 DOI: 10.1038/s41598-024-80349-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 11/18/2024] [Indexed: 11/22/2024] Open
Abstract
The aim of this research is to develop a composite antibacterial film for food packaging using low-density polyethylene (LDPE), linear low-density polyethylene (LLDPE), polyethylene-graft-maleic anhydride (PE-g-MA), and incorporating chitosan (CS) particles onto which ajwan essential oil (AEO) is adsorbed. The films were characterized using various techniques, including Fourier-transform infrared spectroscopy (FTIR), Gas chromatography/mass spectroscopy (GC-MS), X-ray diffraction (XRD), tensile testing, oxygen transmission rate (OTR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and antibacterial assays. FTIR results confirmed the presence of CS and/or AEO in the films. Mechanical testing indicated a decrease in tensile strength and an increase in elongation at break with the addition of AEO, while CS reduced elongation. In the sample containing only 7.5% chitosan (PE-7.5-0), the oxygen permeability was reduced to 910 cm2/m2·day·bar due to the presence of CS. However, the inclusion of AEO in the sample (PE-0-10) increased the oxygen permeability to 2200 cm2/m2·day·bar, which is higher than that of the control sample (PE-0-0) with an oxygen permeability of 1680 cm2/m2·day·bar. The antibacterial activity results demonstrated a synergistic inhibitory effect of CS and AEO. Data from GC-MS and inhibition zone (IZ) tests indicated that while chitosan alone does not exhibit significant antibacterial activity due to its incorporation in the bulk of the film, its combination with AEO enhances antibacterial efficacy. This enhancement occurs as the oil is adsorbed and protected from evaporation during the film formation process. Overall, the findings from this research suggest that the composite film PE-7.5-10, which possesses suitable mechanical properties and significant antibacterial activity, could be an effective candidate for food packaging applications.
Collapse
Affiliation(s)
- Kasra Shiva
- Department of Polymer Processing, Faculty of Processing, Iran Polymer and Petrochemical Institute, P.O. Box: 14965/115, Tehran, Iran
- Department of Novel Drug Delivery Systems, Faculty of Science, Iran Polymer and Petrochemical Institute, P.O. Box: 14965/115, Tehran, Iran
| | - Adel Soleimani
- Department of Polymer Processing, Faculty of Processing, Iran Polymer and Petrochemical Institute, P.O. Box: 14965/115, Tehran, Iran
- Department of Novel Drug Delivery Systems, Faculty of Science, Iran Polymer and Petrochemical Institute, P.O. Box: 14965/115, Tehran, Iran
| | - Jalil Morshedian
- Department of Polymer Processing, Faculty of Processing, Iran Polymer and Petrochemical Institute, P.O. Box: 14965/115, Tehran, Iran
| | - Farhid Farahmandghavi
- Department of Novel Drug Delivery Systems, Faculty of Science, Iran Polymer and Petrochemical Institute, P.O. Box: 14965/115, Tehran, Iran.
| | - Fatemeh Shokrolahi
- Department of Biomaterials, Faculty of Science, Iran Polymer and Petrochemical Institute, P.O. Box: 14965/115, Tehran, Iran
| |
Collapse
|
6
|
Venkatachalam K, Charoenphun N, Noonim P, Pechwang J, Lekjing S. Influence of pomelo pericarp essential oil on the structural characteristics of gelatin-arrowroot tuber flour-based edible films. RSC Adv 2024; 14:27274-27287. [PMID: 39193303 PMCID: PMC11348763 DOI: 10.1039/d4ra03059a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024] Open
Abstract
The present study examined the comprehensive effects of incorporating pomelo pericarp essential oil (PEO) at varying concentrations (0.5, 1.0, 1.5, and 2.0%) into gelatin-arrowroot tuber flour (GEL-ATF) based edible films and evaluated the influence on various structural properties. ATF was prepared from Maranta arundinacea L. tubers using a carefully controlled method to ensure its quality and suitability as a polysaccharide base in film formulations. The results indicated that adding PEO to the GEL-ATF films decreased L, a, and b color values and increased opacity values, especially at higher PEO concentrations. Furthermore, the appearance of both GEL-ATF and GEL-ATF-PEO films exhibited similar characteristics. Incorporating PEO significantly reduced moisture content and water vapor permeability (WVP), indicating enhanced barrier properties against moisture. Additionally, an increase in PEO concentration resulted in decreased film solubility. A decrease in tensile strength (TS) but an increase in elongation at break (EAB) was observed in the GEL-ATF films with higher PEO concentrations (>1% PEO). Slight variations in thermal degradation patterns with increased PEO addition in GEL-ATF were noticed, while X-ray diffractometry (XRD) and Fourier transform infrared spectroscopy (FTIR) results of the tested films provided insights into structural and chemical modifications, indicating changes in crystallinity and molecular interactions upon increased PEO concentration in the film compositions. The microstructural observations confirmed that PEO incorporation led to smoother film surfaces, suggesting a more uniform matrix, which could enhance the film's barrier and mechanical properties. Furthermore, applying PEO into GLE-ATF films exhibited strong antimicrobial activity against Bacillus cereus ATCC 11778. Overall, the present study found that the higher PEO (>1%) concentrations significantly influenced the physical and mechanical properties of GEL-ATF-based edible films. This newly developed edible film could be an effective alternative to inedible polymers for sustainable food packaging solutions.
Collapse
Affiliation(s)
- Karthikeyan Venkatachalam
- Faculty of Innovative Agriculture, Fisheries and Food, Prince of Songkla University Surat Thani Campus, Makham Tia, Mueang Surat Thani 84000 Thailand
| | - Narin Charoenphun
- Faculty of Science and Arts, Burapha University Chanthaburi Campus, Khamong, Thamai Chanthaburi 22170 Thailand
| | - Paramee Noonim
- Faculty of Innovative Agriculture, Fisheries and Food, Prince of Songkla University Surat Thani Campus, Makham Tia, Mueang Surat Thani 84000 Thailand
| | - Jaraslak Pechwang
- Faculty of Innovative Agriculture, Fisheries and Food, Prince of Songkla University Surat Thani Campus, Makham Tia, Mueang Surat Thani 84000 Thailand
| | - Somwang Lekjing
- Faculty of Innovative Agriculture, Fisheries and Food, Prince of Songkla University Surat Thani Campus, Makham Tia, Mueang Surat Thani 84000 Thailand
| |
Collapse
|
7
|
Pinto L, Baruzzi F, Terzano R, Busto F, Marzulli A, Magno C, Cometa S, De Giglio E. Analytical and Antimicrobial Characterization of Zn-Modified Clays Embedding Thymol or Carvacrol. Molecules 2024; 29:3607. [PMID: 39125013 PMCID: PMC11313700 DOI: 10.3390/molecules29153607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Carvacrol and thymol are broad-spectrum natural antimicrobial agents. To reduce their volatility and improve their antimicrobial performance, synergistic systems were prepared loading the active molecules in zinc-modified clays. Montmorillonite (MMT) and zeolite (ZEO) were modified with zinc ions (ZnMMT and ZnZEO), with well-known antimicrobial properties, and then with carvacrol or thymol, reaching the 26 ± 3% and 33 ± 2% w/w of loading, respectively. The resulting hybrid materials were characterized by FT-IR, XPS, XRD, TGA, and GC-MS to evaluate carvacrol/thymol release in simulating food matrices. Antimicrobial assays carried out using spoiler and pathogenic bacterial strains showed that the antimicrobial activity of both thymol and carvacrol was largely preserved once they were loaded into Zn-modified clays. However, MMT hybrids showed an antibacterial activity significantly higher than ZEO hybrids at 50 mg/mL of thymol and carvacrol. For this reason, deeper antimicrobial evaluations were carried out only for ZnMMT composites. ZnMMT loaded with thymol or carvacrol produced inhibition zones against most of the target strains, also at 3.12 mg/mL, while the positive controls represented by the single molecule thymol or carvacrol were not active. The hybrid materials can be useful for applications in which the antimicrobial activity of natural molecules need to be displayed over time as requested for the control of microbial pathogens and spoilage bacteria in different applications, such as active packaging, biomaterials, and medical devices.
Collapse
Affiliation(s)
- Loris Pinto
- Institute of Sciences of Food Production (CNR-ISPA), Via G. Amendola 122/O, 70126 Bari, Italy; (L.P.); (F.B.); (A.M.)
| | - Federico Baruzzi
- Institute of Sciences of Food Production (CNR-ISPA), Via G. Amendola 122/O, 70126 Bari, Italy; (L.P.); (F.B.); (A.M.)
| | - Roberto Terzano
- Department of Soil, Plant and Food Sciences, University of Bari, Via Orabona 4, 70126 Bari, Italy;
| | - Francesco Busto
- Department of Chemistry, University of Bari, Via Orabona 4, 70126 Bari, Italy;
- Consorzio INSTM, Via Giusti 9, 50121 Firenze, Italy
| | - Alessia Marzulli
- Institute of Sciences of Food Production (CNR-ISPA), Via G. Amendola 122/O, 70126 Bari, Italy; (L.P.); (F.B.); (A.M.)
| | - Carmela Magno
- VIBAC SpA, Strada Ticineto Salita San Salvatore 40, 15040 Ticineto, Italy;
| | | | - Elvira De Giglio
- Department of Chemistry, University of Bari, Via Orabona 4, 70126 Bari, Italy;
- Consorzio INSTM, Via Giusti 9, 50121 Firenze, Italy
| |
Collapse
|
8
|
Karabagias VK, Giannakas AE, Andritsos ND, Leontiou AA, Moschovas D, Karydis-Messinis A, Avgeropoulos A, Zafeiropoulos NE, Proestos C, Salmas CE. Shelf Life of Minced Pork in Vacuum-Adsorbed Carvacrol@Natural Zeolite Nanohybrids and Poly-Lactic Acid/Triethyl Citrate/Carvacrol@Natural Zeolite Self-Healable Active Packaging Films. Antioxidants (Basel) 2024; 13:776. [PMID: 39061844 PMCID: PMC11274301 DOI: 10.3390/antiox13070776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Enhancing food preservation and safety using environmentally friendly techniques is urgently needed. The aim of this study was to develop food packaging films using biodegradable poly-L-lactic acid (PLA) as biopolymer and carvacrol (CV) essential oil as an antioxidant/antibacterial agent for the replacement of chemical additives. CV was adsorbed onto natural zeolite (NZ) via a new vacuum adsorption method. The novel nanohybrid CV@NZ with a high CV content contained 61.7%wt. CV. Pure NZ and the CV@NZ nanohybrid were successfully dispersed in a PLA/triethyl citrate (TEC) matrix via a melt extrusion process to obtain PLA/TEC/xCV@NZ and PLA/TEC/xNZ nanocomposite films with 5, 10, and 15%wt CV@NZ or pure NZ content. The optimum resulting film PLA/TEC/10CV@NZ contained 10%wt. CV@NZ and exhibited self-healable properties, 22% higher tensile strength, 40% higher elongation at break, 45% higher water barrier, and 40% higher oxygen barrier than the pure PLA/TEC matrix. This film also had a high CV release content, high CV control release rate as well as 2.15 mg/L half maximal effective concentration (EC50) and 0.27 mm and 0.16 mm inhibition zones against Staphylococcus aureus and Salmonella enterica ssp. enterica serovar Typhimurium, respectively. This film not only succeeded in extending the shelf life of fresh minced pork, as shown by the total viable count measurements in four days but also prevented the lipid oxidation of fresh minced pork and provided higher nutritional values of the minced meat, as revealed by the heme iron content determination. It also had much better and acceptable sensory characteristics than the commercial packaging paper.
Collapse
Affiliation(s)
- Vassilios K. Karabagias
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece; (V.K.K.); (N.D.A.); (A.A.L.)
| | - Aris E. Giannakas
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece; (V.K.K.); (N.D.A.); (A.A.L.)
| | - Nikolaos D. Andritsos
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece; (V.K.K.); (N.D.A.); (A.A.L.)
| | - Areti A. Leontiou
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece; (V.K.K.); (N.D.A.); (A.A.L.)
| | - Dimitrios Moschovas
- Department of Material Science and Engineering, University of Ioannina, 45110 Ioannina, Greece; (D.M.); (A.K.-M.); (A.A.); (N.E.Z.)
| | - Andreas Karydis-Messinis
- Department of Material Science and Engineering, University of Ioannina, 45110 Ioannina, Greece; (D.M.); (A.K.-M.); (A.A.); (N.E.Z.)
| | - Apostolos Avgeropoulos
- Department of Material Science and Engineering, University of Ioannina, 45110 Ioannina, Greece; (D.M.); (A.K.-M.); (A.A.); (N.E.Z.)
| | - Nikolaos E. Zafeiropoulos
- Department of Material Science and Engineering, University of Ioannina, 45110 Ioannina, Greece; (D.M.); (A.K.-M.); (A.A.); (N.E.Z.)
| | - Charalampos Proestos
- Laboratory of Food Chemistry, Department of Chemistry, National and Kapodistrian University of Athens Zografou, 15771 Athens, Greece;
| | - Constantinos E. Salmas
- Department of Material Science and Engineering, University of Ioannina, 45110 Ioannina, Greece; (D.M.); (A.K.-M.); (A.A.); (N.E.Z.)
| |
Collapse
|
9
|
Maleki H, Doostan M, Khoshnevisan K, Baharifar H, Maleki SA, Fatahi MA. Zingiber officinale and thymus vulgaris extracts co-loaded polyvinyl alcohol and chitosan electrospun nanofibers for tackling infection and wound healing promotion. Heliyon 2024; 10:e23719. [PMID: 38223730 PMCID: PMC10784172 DOI: 10.1016/j.heliyon.2023.e23719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 12/09/2023] [Accepted: 12/12/2023] [Indexed: 01/16/2024] Open
Abstract
Infections are severe complications associated with chronic wounds and tardy healing that should be timely treated to achieve rapid and proper tissue repair. To hinder such difficulties, a nanofibrous mat composed of polyvinyl alcohol and chitosan (PVA/CS) was developed by electrospinning method, containing thyme (Thymus vulgaris) and ginger (Zingiber officinale) extracts. The mat containing 10 wt% of the extracts (at the ratio of 50:50) exposed the nanofibers (NFs) with the nanoscale diameter (average 382 ± 60 nm), smooth surface, and defect-free morphology. Likewise, the relevant analyses of the loaded mat displayed high wettability, porosity, and liquid absorption capacity without any adverse interaction. The obtained mat also provided a high antioxidant activity, and its release profile was continuous and sustained for nearly 72 h. Besides, it inhibited the growth of both Gram-positive S. aureus and Gram-negative E. coli strains. Furthermore, the proposed mat significantly accelerated cutaneous wound healing in bacterial-infected rats by preventing bacteria growth at the wound site. At last, histopathology analysis confirmed the ample regeneration of skin structures, forming collagen fibers and appendages. Overall, the proposed mat containing ginger-thyme extracts provides multiple therapeutic capabilities with promising solutions for inhibiting wound infection and accelerating the healing process.
Collapse
Affiliation(s)
- Hassan Maleki
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Maryam Doostan
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Kamyar Khoshnevisan
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, 1983963113, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Research and Development Team, Evolution Wound Dressing (EWD) Startup Co., Tehran, Iran
| | - Hadi Baharifar
- Research and Development Team, Evolution Wound Dressing (EWD) Startup Co., Tehran, Iran
- Department of Medical Nanotechnology, Applied Biophotonics Research Center, Science and Research Branch, Islamic Azad University, Tehran, 1477893855, Iran
| | - Saeid Abbasi Maleki
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohmmad Amin Fatahi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
10
|
Sokol MB, Sokhraneva VA, Groza NV, Mollaeva MR, Yabbarov NG, Chirkina MV, Trufanova AA, Popenko VI, Nikolskaya ED. Thymol-Modified Oleic and Linoleic Acids Encapsulated in Polymeric Nanoparticles: Enhanced Bioactivity, Stability, and Biomedical Potential. Polymers (Basel) 2023; 16:72. [PMID: 38201737 PMCID: PMC10781094 DOI: 10.3390/polym16010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Unsaturated fatty acids, such as oleic acid (OA) and linoleic acid (LA), are promising antimicrobial and cytostatic agents. We modified OA and LA with thymol (TOA and TLA, respectively) to expand their bioavailability, stability, and possible applications, and encapsulated these derivatives in polymeric nanoparticles (TOA-NPs and TLA-NPs, respectively). Prior to synthesis, we performed mathematical simulations with PASS and ADMETlab 2.0 to predict the biological activity and pharmacokinetics of TOA and TLA. TOA and TLA were synthesized via esterification in the presence of catalysts. Next, we formulated nanoparticles using the single-emulsion solvent evaporation technique. We applied dynamic light scattering, Uv-vis spectroscopy, release studies under gastrointestinal (pH 1.2-6.8) and blood environment simulation conditions (pH 7.4), and in vitro biological activity testing to characterize the nanoparticles. PASS revealed that TOA and TLA have antimicrobial and anticancer therapeutic potential. ADMETlab 2.0 provided a rationale for TOA and TLA encapsulation. The nanoparticles had an average size of 212-227 nm, with a high encapsulation efficiency (71-93%), and released TOA and TLA in a gradual and prolonged mode. TLA-NPs possessed higher antibacterial activity against B. cereus and S. aureus and pronounced cytotoxic activity against MCF-7, K562, and A549 cell lines compared to TOA-NPs. Our findings expand the biomedical application of fatty acids and provide a basis for further in vivo evaluation of designed derivatives and formulations.
Collapse
Affiliation(s)
- Maria B. Sokol
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia; (M.R.M.); (N.G.Y.); (M.V.C.); (A.A.T.)
| | - Vera A. Sokhraneva
- N.A. Preobrazhensky Department of Chemistry and Technology of Biologically Active Compounds, Medicinal and Organic Chemistry, M.V. Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, 119571 Moscow, Russia; (V.A.S.); (N.V.G.)
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 11999 Moscow, Russia;
| | - Nataliya V. Groza
- N.A. Preobrazhensky Department of Chemistry and Technology of Biologically Active Compounds, Medicinal and Organic Chemistry, M.V. Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, 119571 Moscow, Russia; (V.A.S.); (N.V.G.)
| | - Mariia R. Mollaeva
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia; (M.R.M.); (N.G.Y.); (M.V.C.); (A.A.T.)
| | - Nikita G. Yabbarov
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia; (M.R.M.); (N.G.Y.); (M.V.C.); (A.A.T.)
| | - Margarita V. Chirkina
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia; (M.R.M.); (N.G.Y.); (M.V.C.); (A.A.T.)
| | - Anna A. Trufanova
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia; (M.R.M.); (N.G.Y.); (M.V.C.); (A.A.T.)
| | - Vladimir I. Popenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 11999 Moscow, Russia;
| | - Elena D. Nikolskaya
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia; (M.R.M.); (N.G.Y.); (M.V.C.); (A.A.T.)
| |
Collapse
|
11
|
Gautam S, Lapcik L, Lapcikova B, Repka D, Szyk-Warszyńska L. Physicochemical Characterisation of Polysaccharide Films with Embedded Bioactive Substances. Foods 2023; 12:4454. [PMID: 38137258 PMCID: PMC10743232 DOI: 10.3390/foods12244454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
In this study, sodium carboxymethyl cellulose (CMCNa) bioactive films, crosslinked with citric acid (CA), were prepared and comprehensively examined for their suitability in various applications, focusing on food packaging. The films displayed favourable properties, including appropriate thickness, transparency, and moisture content, essential for packaging purposes. Moreover, the films exhibited excellent moisture absorption rate and barrier properties, attributed to the high concentration of CMCNa and the inclusion of a CA. These films presented no significant effect of crosslinking and bioactive components on their mechanical strength, as evidenced by tensile strength and elongation at break values. Thermal stability was demonstrated in the distinct weight loss events at different temperature ranges, with crosslinking contributing to slightly enhanced thermal performance. Furthermore, the films showed varying antioxidant activity levels, influenced by temperature and the solubility of the films in different media, indicating their potential for diverse applications. Overall, these bioactive films showed promise as versatile materials with desirable properties for food packaging and related applications, where the controlled release of bioactive components is advantageous for enhancing the shelf life and safety of food products. These findings contribute to the growing research in biodegradable and functional food packaging materials.
Collapse
Affiliation(s)
- Shweta Gautam
- Department of Foodstuff Technology, Faculty of Technology, Tomas Bata University in Zlín, Nam. T.G. Masaryka 5555, 760 01 Zlín, Czech Republic; (S.G.); or (B.L.)
| | - Lubomir Lapcik
- Department of Foodstuff Technology, Faculty of Technology, Tomas Bata University in Zlín, Nam. T.G. Masaryka 5555, 760 01 Zlín, Czech Republic; (S.G.); or (B.L.)
- Department of Physical Chemistry, Faculty of Science, Palacky University in Olomouc, 17. Listopadu 12, 771 46 Olomouc, Czech Republic
| | - Barbora Lapcikova
- Department of Foodstuff Technology, Faculty of Technology, Tomas Bata University in Zlín, Nam. T.G. Masaryka 5555, 760 01 Zlín, Czech Republic; (S.G.); or (B.L.)
- Department of Physical Chemistry, Faculty of Science, Palacky University in Olomouc, 17. Listopadu 12, 771 46 Olomouc, Czech Republic
| | - David Repka
- Department of Physical Chemistry, Faculty of Science, Palacky University in Olomouc, 17. Listopadu 12, 771 46 Olomouc, Czech Republic
| | - Lilianna Szyk-Warszyńska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Kraków, Poland;
| |
Collapse
|
12
|
Giotopoulou I, Fotiadou R, Stamatis H, Barkoula NM. Development of Low-Density Polyethylene Films Coated with Phenolic Substances for Prolonged Bioactivity. Polymers (Basel) 2023; 15:4580. [PMID: 38232018 PMCID: PMC10707956 DOI: 10.3390/polym15234580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 01/19/2024] Open
Abstract
The current study proposes an efficient coating methodology for the development of low-density polyethylene (LDPE) films with prolonged bioactivity for food packaging applications. Three natural phenolic-based substances were incorporated at optimized concentrations in methyl-cellulose-based solutions and used as coatings on LDPE films. The amount of surfactant/emulsifier was optimized to control the entrapment of the bioactive substances, minimizing the loss of the substances during processing, and offering prolonged bioactivity. As a result, the growth of Escherichia coli was substantially inhibited after interaction with the coated films, while coated films presented excellent antioxidant activities and maintained their mechanical performance after coating. Considerable bioactivity was observed after up to 7 days of storage in sealed bags in the case of carvacrol- and thymol-coated films. Interestingly, films coated with olive-leaf extract maintained a high level of antimicrobial and antioxidant properties, at least for 40 days of storage.
Collapse
Affiliation(s)
- Iro Giotopoulou
- Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina, Greece;
| | - Renia Fotiadou
- Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece; (R.F.); (H.S.)
| | - Haralambos Stamatis
- Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece; (R.F.); (H.S.)
| | | |
Collapse
|
13
|
Karami F, Torabiardekani N, Moradi M, Zare A, Mojahedtaghi M, Khorram M, Jafari M, Jabrodini A, Kamkar M, Zomorodian K, Zareshahrabadi Z. Chitosan-based emulgel and xerogel film containing Thymus pubescens essential oil as a potential wound dressing. Carbohydr Polym 2023; 318:121156. [PMID: 37479450 DOI: 10.1016/j.carbpol.2023.121156] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/06/2023] [Accepted: 06/25/2023] [Indexed: 07/23/2023]
Abstract
Controlling the wound exudates accompanied by microbial wound infections has still remained as one the most challenging clinical issues. Herein, a chitosan/gelatin/polyvinyl alcohol xerogel film containing Thymus pubescens essential oil is fabricated for antimicrobial wound dressing application. The chemical and physical characteristics of the devised formulation is characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, atomic force microscope, and tensile tests. Moreover, swelling capability, water vapour transmission rate, water contact angle, solubility, moisture content, and release properties are also studied. The antimicrobial and antibiofilm tests are performed using the broth microdilution and XTT assay, respectively. The produced formulation shows excellent antimicrobial efficacy against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Candida species. It is also demonstrated that the obtained film can reduce (∼80 %) Candida albicans biofilm formation, and its biocompatibility is confirmed with MTT (∼100 %) and hemolysis tests. The antimicrobial activity can be correlated to the microbial membrane attraction for Candida albicans cells, illustrated by flow cytometry. This proposed film with appropriate mechanical strength, high swelling capacity in different pH values (∼200-700 %), controlled release property, and antimicrobial and antioxidant activities as well as biocompatibility can be used as a promising candidate for antimicrobial wound dressing applications.
Collapse
Affiliation(s)
- Forough Karami
- Central Research Laboratory, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mohammadreza Moradi
- Medical Student of School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Zare
- Department of Chemical Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Maryam Mojahedtaghi
- Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Khorram
- School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, Iran
| | - Mahboobeh Jafari
- Center for nanotechnology in drug delivery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Jabrodini
- Student Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Milad Kamkar
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Canada
| | - Kamiar Zomorodian
- Department of Medical Parasitology and Mycology, Shiraz University of Medical Sciences, Shiraz, Iran; Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Zareshahrabadi
- Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
14
|
Sachadyn-Król M, Budziak-Wieczorek I, Jackowska I. The Visibility of Changes in the Antioxidant Compound Profiles of Strawberry and Raspberry Fruits Subjected to Different Storage Conditions Using ATR-FTIR and Chemometrics. Antioxidants (Basel) 2023; 12:1719. [PMID: 37760022 PMCID: PMC10525253 DOI: 10.3390/antiox12091719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Strawberry cultivars Portola and Enduro, as well as raspberry cultivars Enrosadira and Kwazi, were evaluated for their antioxidant potential after treatment with gaseous ozone and different refrigeration storage conditions. Their antioxidant capacity was investigated with ABTS and DPPH methods, and the chemical composition was determined by measuring the total phenolic (TPC) and flavonoid (TFC) compounds. The classification of different samples of berry puree was influenced significantly by both the cultivars and the refrigeration storage method. Moreover, FTIR spectroscopy coupled with chemometrics was used as an alternative technique to conventional methods to determine the chemical composition of strawberries and raspberries. The chemometric discrimination of samples was achieved using principal component analysis (PCA), hierarchical clustering analysis (HCA) and linear discriminant analysis (LDA) modelling procedures performed on the FTIR preprocessed spectral data for the fingerprint region (1800-500 cm-1). The fingerprint range between 1500 and 500 cm-1, corresponding to deformation vibrations from polysaccharides, pectin and organic acid content, had a significant impact on the grouping of samples. The results obtained by PCA-LDA scores revealed a clear separation between four classes of samples and demonstrated a high overall classification rate of 97.5% in differentiating between the raspberry and strawberry cultivars.
Collapse
Affiliation(s)
| | - Iwona Budziak-Wieczorek
- Department of Chemistry, Faculty of Food Sciences and Biotechnology, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland; (M.S.-K.); (I.J.)
| | | |
Collapse
|
15
|
Amoroso L, De France KJ, Kummer N, Ren Q, Siqueira G, Nyström G. Nanocomposites of cellulose nanofibers incorporated with carvacrol via stabilizing octenyl succinic anhydride-modified ɛ-polylysine. Int J Biol Macromol 2023; 242:124869. [PMID: 37201880 DOI: 10.1016/j.ijbiomac.2023.124869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/03/2023] [Accepted: 05/11/2023] [Indexed: 05/20/2023]
Abstract
Food packaging plays an extremely important role in the global food chain, allowing for products to be shipped across long distances without spoiling. However, there is an increased need to both reduce plastic waste caused by traditional single-use plastic packaging and improve the overall functionality of packaging materials to extend shelf-life even further. Herein, we investigate composite mixtures based on cellulose nanofibers and carvacrol via stabilizing octenyl-succinic anhydride-modified epsilon polylysine (MɛPL-CNF) for active food packaging applications. The effects of epsilon polylysine (εPL) concentration and modification with octenyl-succinic anhydride (OSA) and carvacrol are evaluated with respect to composites morphology, mechanical, optical, antioxidant, and antimicrobial properties. We find that both increased εPL concentration and modification with OSA and carvacrol lead to films with increased antioxidant and antimicrobial properties, albeit at the expense of reduced mechanical performance. Importantly, when sprayed onto the surface of sliced apples, MεPL-CNF-mixtures are able to successfully delay/hinder enzymatic browning, suggesting the potential of such materials for a range of active food packaging applications.
Collapse
Affiliation(s)
- Luana Amoroso
- Laboratory for Cellulose & Wood Materials, Empa - Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 DÜbendorf, Switzerland
| | - Kevin J De France
- Laboratory for Cellulose & Wood Materials, Empa - Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 DÜbendorf, Switzerland
| | - Nico Kummer
- Laboratory for Cellulose & Wood Materials, Empa - Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 DÜbendorf, Switzerland; Department of Health Science and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Qun Ren
- Laboratory for Biointerfaces, Empa - Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9041 St. Gallen, Switzerland
| | - Gilberto Siqueira
- Laboratory for Cellulose & Wood Materials, Empa - Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 DÜbendorf, Switzerland.
| | - Gustav Nyström
- Laboratory for Cellulose & Wood Materials, Empa - Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 DÜbendorf, Switzerland; Department of Health Science and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland.
| |
Collapse
|
16
|
Ebrahimi R, Fathi M, Ghoddusi HB. Nanoencapsulation of oregano essential oil using cellulose nanocrystals extracted from hazelnut shell to enhance shelf life of fruits: Case study: Pears. Int J Biol Macromol 2023; 242:124704. [PMID: 37146853 DOI: 10.1016/j.ijbiomac.2023.124704] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/13/2023] [Accepted: 04/28/2023] [Indexed: 05/07/2023]
Abstract
This study aimed to investigate the potential application of cellulose nanocrystals (CNCs) extracted from an agricultural waste for encapsulation of oregano essential oil (OEO) and subsequently their use for coating to improve the shelf life of pears as a model. By hydrolyzing hazelnut shell cellulose under the optimum conditions, high crystalline CNCs with a zeta potential of -67.8 ± 4.4 mV and a diameter of 157 ± 10 nm were produced. Different concentrations of OEO (10-50 % w/w) were incorporated into CNCs and characterized using FTIR, XRD, SEM and TEM. OEO containing 50 % CNC with the highest EE and LC was selected for coating. Pears were coated with gluten containing 0.5, 1.5 and 2 % encapsulated OEO (EOEO) and pure OEO and stored for 28 days. Physicochemical, microbial and sensory properties of the pears were examined. Microbial analysis showed that EOEO2% was more effective in controlling microbial growth than controls and pure OEO, and a 1.09 Log reduction in bacterial count was recorded on day 28 of storage when compared to control. It was concluded that CNCs produced from an agricultural waste and loaded on an essential oil could be used to extend the shelf life of pear and potentially other fruits.
Collapse
Affiliation(s)
- Reyhaneh Ebrahimi
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Milad Fathi
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Hamid B Ghoddusi
- Microbiology Research Unit (MRU), School of Human Sciences, London Metropolitan University, London, UK
| |
Collapse
|
17
|
Mishra P, Gupta P, Srivastava R, Srivastava AK, Poluri KM, Prasad R. Exploration of Antibiofilm and In Vivo Wound Healing Activity of p-Cymene-Loaded Gellan/PVA Nanofibers. ACS APPLIED BIO MATERIALS 2023; 6:1816-1831. [PMID: 37075306 DOI: 10.1021/acsabm.3c00047] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
Wound dressings with outstanding biocompatibility, antimicrobial, and tissue regeneration activities are essential to manage emerging recalcitrant antifungal infections to speed up healing. In this study, we have engineered p-cymene-loaded gellan/PVA nanofibers using electrospinning. Morphological and physicochemical properties of the nanofibers were characterized using a multitude of techniques to validate the successful integration of p-cymene (p-cym). The fabricated nanomaterials exhibited strong antibiofilm activity against Candida albicans and Candida glabrata compared to pure p-cymene. In vitro biocompatibility assay demonstrated that nanofibers did not possess any cytotoxicity to the NIH3T3 cell lines. In vivo, full-thickness excision wound healing study showed that the nanofibers were able to heal skin lesions faster than the conventional clotrimazole gel in 24 days without forming any scar. These findings unraveled p-cymene-loaded gellan gum (GA)/poly(vinyl alcohol) (PVA) nanofibers as an effective biomaterial for cutaneous tissue regeneration.
Collapse
Affiliation(s)
- Purusottam Mishra
- Department of Bioscience and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Payal Gupta
- Department of Bioscience and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
- Department of Biotechnology, Graphic Era University, Clement Town, Dehradun 248002, Uttarakhand, India
| | - Rajnish Srivastava
- Moradabad Educational Trust Group of Institutions, Faculty of Pharmacy, Moradabad 244001, Uttar Pradesh, India
| | - Amit Kumar Srivastava
- Department of Bioscience and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Krishna Mohan Poluri
- Department of Bioscience and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Ramasare Prasad
- Department of Bioscience and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| |
Collapse
|
18
|
Lignin Nanoparticles for Enhancing Physicochemical and Antimicrobial Properties of Polybutylene Succinate/Thymol Composite Film for Active Packaging. Polymers (Basel) 2023; 15:polym15040989. [PMID: 36850272 PMCID: PMC9967065 DOI: 10.3390/polym15040989] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
The natural abundance, polymer stability, biodegradability, and natural antimicrobial properties of lignin open a wide range of potential applications aiming for sustainability. In this work, the effects of 1% (w/w) softwood kraft lignin nanoparticles (SLNPs) on the physicochemical properties of polybutylene succinate (PBS) composite films were investigated. Incorporation of SLNPs into neat PBS enhanced Td from 354.1 °C to 364.7 °C, determined through TGA, whereas Tg increased from -39.1 °C to -35.7 °C while no significant change was observed in Tm and crystallinity, analyzed through DSC. The tensile strength of neat PBS increased, to 35.6 MPa, when SLNPs were added to it. Oxygen and water vapor permeabilities of PBS with SLNPs decreased equating to enhanced barrier properties. The good interactions among SLNPs, thymol, and PBS matrix, and the high homogeneity of the resultant PBS composite films, were determined through FTIR and FE-SEM analyses. This work revealed that, among the PBS composite films tested, PBS + 1% SLNPs + 10% thymol showed the strongest microbial growth inhibition against Colletotrichum gloeosporioides and Lasiodiplodia theobromae, both in vitro, through a diffusion method assay, and in actual testing on active packaging of mango fruit (cultivar "Nam Dok Mai Si Thong"). SLNPs could be an attractive replacement for synthetic substances for enhancing polymer properties without compromising the biodegradability of the resultant material, and for providing antimicrobial functions for active packaging applications.
Collapse
|
19
|
Fabrication and Characterization of Hydrogen Peroxide and Thymol-Loaded PVA/PVP Hydrogel Coatings as a Novel Anti-Mold Surface for Hay Protection. Polymers (Basel) 2022; 14:polym14245518. [PMID: 36559885 PMCID: PMC9788403 DOI: 10.3390/polym14245518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Animal food source production is increasing due to the growing world population. Many sources (e.g., hay) are prone to mold development, resulting in food degradation. This study proposes an environmentally friendly anti-mold fungicide comprising hydrogen peroxide (HP) and thymol entrapped in a polyvinyl alcohol/pyrrolidone (PVA/PVP) hydrogel (PVA is biodegradable and PVP is water soluble and non-toxic) coated on a polyethylene (PE) films for preservative hay packaging. The hydrogels improved the thermal stability of the entrapped HP and thymol, resulting in a prolonged release into the hay and thereby increasing anti-mold activity. The hydrogel composition and morphology, thymol and HP thermal stability, and release rates through indirect (gas phase) contact were investigated. Fungicidal capabilities were tested, indicating wide-range efficiency against mold growth on hay with a clear advantage for the thymol-loaded hydrogels. No visual side effects were observed on hay exposed to the released fumes of HP and/or thymol. These results demonstrate the potential of thymol-loaded hydrogels as effective and safe post-harvest preservatives.
Collapse
|
20
|
Biopolymer-based powders with encapsulated thyme oil: Characterization and comparison with free oil regarding thermal stability and antimicrobial activity. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Alsakhawy SA, Baghdadi HH, El-Shenawy MA, Sabra SA, El-Hosseiny LS. Encapsulation of thymus vulgaris essential oil in caseinate/gelatin nanocomposite hydrogel: In vitro antibacterial activity and in vivo wound healing potential. Int J Pharm 2022; 628:122280. [DOI: 10.1016/j.ijpharm.2022.122280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/03/2022] [Accepted: 10/07/2022] [Indexed: 10/31/2022]
|
22
|
Fuchs-Godec R. Flower-like Superhydrophobic Surfaces Fabricated on Stainless Steel as a Barrier against Corrosion in Simulated Acid Rain. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7104. [PMID: 36295171 PMCID: PMC9604885 DOI: 10.3390/ma15207104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/02/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
Functionalisation of the metal surface of low-carbon ferritic stainless steel (from hydrophilic to hydrophobic properties) was achieved by flower-like hierarchical structures on a steel substrate prepared by a low-cost immersion method. The flower-like structured hydrophobic layers on the steel substrate were obtained by immersing the samples in an ethanolic solution of stearic acid with the addition of various concentrations of expired vitamin E ((+)α-tocopherol). The stability and corrosion-inhibiting effect of the hierarchically structured (such as natural cornflower) hydrophobic layers were studied systematically during short and long immersion tests, 120 h (five days) in an acidic environment (pH = 3) using potentiodynamic measurements, electrochemical impedance spectroscopy and chronopotentiometry. The surfaces of the samples, their wettability, surface morphology and chemical composition were characterised by contact angle measurements, SEM, ATR-FTIR and EDAX. After 120 h of immersion, the inhibition efficiency of the flower-like structured hydrophobic layers on the steel substrate in the selected corrosion medium remained above 99%, and the hierarchical structure (flower-like structure) was also retained on the surface.
Collapse
Affiliation(s)
- Regina Fuchs-Godec
- Faculty of Chemistry and Chemical Engineering, University of Maribor, 2000 Maribor, Slovenia
| |
Collapse
|
23
|
Xiao L, Kang S, Lapu M, Jiang P, Wang X, Liu D, Li J, Liu M. Preparation and characterization of chitosan/pullulan film loading carvacrol for targeted antibacterial packaging of chilled meat. Int J Biol Macromol 2022; 211:140-149. [PMID: 35561855 DOI: 10.1016/j.ijbiomac.2022.05.044] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/02/2022] [Accepted: 05/06/2022] [Indexed: 01/13/2023]
Abstract
In this research, the common microorganisms in chilled meat were used as the targeted antibacterial objects. Chitosan, pullulan, and carvacrol were chosen to prepare the edible antibacterial film. The effects of different concentrations of carvacrol on the microstructure, physical properties and antibacterial properties of the films were investigated. The results showed that the antibacterial activity of chitosan/pullulan film (CS/PU) was unsatisfactory, when carvacrol was added, the antibacterial activity of the chitosan/pullulan/carvacrol film (CS/PU/CAR) improved significantly (p < 0.05), and the water vapor permeability (WVP) of the CS/PU/CAR decreased significantly (p < 0.05). When the carvacrol concentration was higher than 1.25% (w/v), the tensile strength and percentage elongation at break of the CS/PU/CAR increased significantly (p < 0.05), and the CS/PU/CAR exhibited satisfying antibacterial activity against the common bacteria in chilled meat such as Pseudomonas fluorescens, Listeria monocytogenes, Escherichia coli, Pseudomonas putida, Enterobacter cloacae, and Staphylococcus aureus. Finally, the CS/PU/CAR film was applied to the preservation of chilled goat meat and extended the shelf life of goat meat to more than 15 days. These results suggested that the targeted CS/PU/CAR film can be used as biodegradable films for the active packaging of chilled meat.
Collapse
Affiliation(s)
- Longquan Xiao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China; School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| | - Shuai Kang
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| | - Molazi Lapu
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| | - Peng Jiang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Xinhui Wang
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China; Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, Sichuan, China
| | - Dayu Liu
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China; Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, Sichuan, China
| | - Jing Li
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China.
| | - Mingxue Liu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China.
| |
Collapse
|
24
|
Türkoğlu GC, Sarıışık AM, Erkan G, Erden E, Pazarlıoğlu N. Development of antibacterial textiles by cyclodextrin inclusion complexes of volatile thyme active agents. FLAVOUR FRAG J 2022. [DOI: 10.1002/ffj.3709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Gizem Ceylan Türkoğlu
- Faculty of Engineering, Department of Textile Engineering Dokuz Eylul University İzmir Türkiye
- Graduate School of Natural and Applied Sciences Dokuz Eylül University İzmir Türkiye
| | - Ayşe Merih Sarıışık
- Faculty of Engineering, Department of Textile Engineering Dokuz Eylul University İzmir Türkiye
| | - Gökhan Erkan
- Faculty of Engineering, Department of Textile Engineering Dokuz Eylul University İzmir Türkiye
| | - Emre Erden
- Faculty of Science, Department of Biochemistry Ege University İzmir Türkiye
| | - Nurdan Pazarlıoğlu
- Faculty of Science, Department of Chemistry Celal Bayar University Manisa Türkiye
| |
Collapse
|
25
|
Temperature- and Nutrients-Induced Phenotypic Changes of Antarctic Green Snow Bacteria Probed by High-Throughput FTIR Spectroscopy. BIOLOGY 2022; 11:biology11060890. [PMID: 35741411 PMCID: PMC9220083 DOI: 10.3390/biology11060890] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/21/2022] [Accepted: 06/08/2022] [Indexed: 11/29/2022]
Abstract
Simple Summary Green snow microorganisms play an important role in biogeochemical cycle and carbon sink processes and they can be a source of biotechnologically interesting cell factories. A wide temperature tolerance is a unique property of bacteria isolated from cold environments, which has received great attention in the last years. The present paper examines the growth and chemical profile flexibility for green snow bacteria exposed to different temperature and nutrient fluctuations. By applying high-throughput chemical phenotyping with FTIR spectroscopy we discovered chemical changes possessed by green snow bacteria when grown at high/low temperature and rich/minimal media. Abstract Temperature fluctuations and nutrient composition are the main parameters influencing green snow microbiome. In this study we investigated the influence of temperature and nutrient conditions on the growth and cellular chemical profile of bacteria isolated from green snow. Chemical profiling of the green snow bacteria was done by high-throughput FTIR spectroscopy combined with multivariate data analysis. We showed that temperature and nutrients fluctuations strongly affect growth ability and chemical profile of the green snow bacteria. The size of colonies for green snow bacteria grown at higher (25 °C) and lower (4 °C and 10 °C) than optimal temperature (18 °C) was smaller. All isolates grew on rich medium, and only 19 isolates were able to grow on synthetic minimal media. Lipid and mixed spectral regions showed to be phylogeny related. FTIR fingerprinting indicates that lipids are often affected by the temperature fluctuations. Growth on different media resulted in the change of the whole chemical profile, where lipids showed to be more affected than proteins and polysaccharides. Correlation analysis showed that nutrient composition is clearly strongly influencing chemical changes in the cells, followed by temperature.
Collapse
|
26
|
Mot MD, Gavrilaș S, Lupitu AI, Moisa C, Chambre D, Tit DM, Bogdan MA, Bodescu AM, Copolovici L, Copolovici DM, Bungau SG. Salvia officinalis L. Essential Oil: Characterization, Antioxidant Properties, and the Effects of Aromatherapy in Adult Patients. Antioxidants (Basel) 2022; 11:808. [PMID: 35624672 PMCID: PMC9137537 DOI: 10.3390/antiox11050808] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/11/2022] [Accepted: 04/18/2022] [Indexed: 02/01/2023] Open
Abstract
The purpose of this study is to reveal the chemical and biochemical characteristics and the potential aromatherapy applications of the essential oil (EO) of Salvia officinalis (common sage) within a hospital environment. The chemical composition was determined by gas chromatography with mass spectrometry and ATR-FTIR spectroscopy. Three types of sage EOs were included in this study: two commercial oils and one oil obtained by in-house hydrodistillation. Based on the findings, these EOs were included in different chemotypes. The first two samples were similar to the most common chemotype (α-thujone > camphor > 1,8-cineole > β-thujone), while the in-house sage EO revealed a high content of 1,8-cineole, borneol, α-thujone, similar to the Dalmatian type. The latter sample was selected to be evaluated for its antioxidant and medical effects, as borneol, a bicyclic monoterpene, is known as a substance with anesthetic and analgesic effects in traditional Asian medicine. The study suggests that the antioxidant capacity of the sage EO is modest (33.61% and 84.50% inhibition was determined by DPPH and ABTS assays, respectively), but also that the inhalation of sage EO with high borneol content by hospitalized patients could improve these patients’ satisfaction.
Collapse
Affiliation(s)
- Maria-Daniela Mot
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (M.-D.M.); (D.M.T.); (M.A.B.); (S.G.B.)
| | - Simona Gavrilaș
- Faculty of Food Engineering, Tourism and Environmental Protection, Institute for Research, Development and Innovation in Technical and Natural Sciences, “Aurel Vlaicu” University of Arad, 310330 Arad, Romania; (S.G.); (A.I.L.); (C.M.); (D.C.); (L.C.)
| | - Andreea I. Lupitu
- Faculty of Food Engineering, Tourism and Environmental Protection, Institute for Research, Development and Innovation in Technical and Natural Sciences, “Aurel Vlaicu” University of Arad, 310330 Arad, Romania; (S.G.); (A.I.L.); (C.M.); (D.C.); (L.C.)
| | - Cristian Moisa
- Faculty of Food Engineering, Tourism and Environmental Protection, Institute for Research, Development and Innovation in Technical and Natural Sciences, “Aurel Vlaicu” University of Arad, 310330 Arad, Romania; (S.G.); (A.I.L.); (C.M.); (D.C.); (L.C.)
| | - Dorina Chambre
- Faculty of Food Engineering, Tourism and Environmental Protection, Institute for Research, Development and Innovation in Technical and Natural Sciences, “Aurel Vlaicu” University of Arad, 310330 Arad, Romania; (S.G.); (A.I.L.); (C.M.); (D.C.); (L.C.)
| | - Delia Mirela Tit
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (M.-D.M.); (D.M.T.); (M.A.B.); (S.G.B.)
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
| | - Mihaela Alexandra Bogdan
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (M.-D.M.); (D.M.T.); (M.A.B.); (S.G.B.)
| | | | - Lucian Copolovici
- Faculty of Food Engineering, Tourism and Environmental Protection, Institute for Research, Development and Innovation in Technical and Natural Sciences, “Aurel Vlaicu” University of Arad, 310330 Arad, Romania; (S.G.); (A.I.L.); (C.M.); (D.C.); (L.C.)
| | - Dana Maria Copolovici
- Faculty of Food Engineering, Tourism and Environmental Protection, Institute for Research, Development and Innovation in Technical and Natural Sciences, “Aurel Vlaicu” University of Arad, 310330 Arad, Romania; (S.G.); (A.I.L.); (C.M.); (D.C.); (L.C.)
| | - Simona Gabriela Bungau
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (M.-D.M.); (D.M.T.); (M.A.B.); (S.G.B.)
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
| |
Collapse
|
27
|
Briassoulis D, Athanasoulia IG, Tserotas P. PHB/PLA plasticized by olive oil and carvacrol solvent-cast films with optimised ductility and physical ageing stability. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.109958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Physicochemical and thermal characterization of poly (3-hydroxybutyrate-co-4-hydroxybutyrate) films incorporating thyme essential oil for active packaging of white bread. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108688] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
29
|
Supercritical Foaming and Impregnation of Polycaprolactone and Polycaprolactone-Hydroxyapatite Composites with Carvacrol. Processes (Basel) 2022. [DOI: 10.3390/pr10030482] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Polycaprolactone (PCL) and polycaprolactone-hydroxyapatite (PCL-HA) scaffolds were produced by foaming in supercritical carbon dioxide (scCO2) at 20 MPa, as well as in one-step foaming and impregnation process using carvacrol as an antibacterial agent with proven activity against Gram-positive and Gram-negative bacteria. The experimental design was developed to study the influence of temperature (40 °C and 50 °C), HA content (10 and 20 wt.%), and depressurization rate (one and two-step decompression) on the foams’ morphology, porosity, pore size distribution, and carvacrol impregnation yield. The characterization of the foams was carried out using scanning electron microscopy (SEM, SEM-FIB), Gay-Lussac density bottle measurements, and Fourier–transform infrared (FTIR) analyses. The obtained results demonstrate that processing PCL and PCL-HA scaffolds by means of scCO2 foaming enables preparing foams with porosity in the range of 65.55–74.39% and 61.98–67.13%, at 40 °C and 50 °C, respectively. The presence of carvacrol led to a lower porosity. At 40 °C and one-step decompression at a slow rate, the porosity of impregnated scaffolds was higher than at 50 °C and two- step fast decompression. However, a narrower pore size distribution was obtained at the last processing conditions. PCL scaffolds with HA resulted in higher carvacrol impregnation yields than neat PCL foams. The highest carvacrol loading (10.57%) was observed in the scaffold with 10 wt.% HA obtained at 50 °C.
Collapse
|
30
|
Heat-denatured and alcalase-hydrolyzed protein films/coatings containing marjoram essential oil and thyme extract. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2021.101466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
31
|
Abstract
Cardamom essential oil (EO) is a rare oil of high scientific and economic interest due to its biofunctionality. This work aims to stabilize the EO by Pickering emulsions with nanocellulose, in the form of nanocrystals (CNC) or nanofibers (CNF), and to investigate the stability and chemical and physical interactions involved in the process. The emulsions were characterized by droplet size, morphology, stability, surface charges, Fourier transform infrared spectroscopy, FT-Raman, nuclear magnetic resonance, and scanning electron microscopy. Stable emulsions were prepared with cellulose morphologies and CNCs resulted in a 34% creaming index, while CNFs do not show instability. Emulsions indicate a possible interaction between nanocellulose, α-terpinyl acetate, and 1,8-cineole active essential oil compounds, where α-terpinyl acetate would be inside the drop and 1,8-cineole is more available to interact with cellulose. The interaction intensity depended on the morphology, which might be due to the nanocellulose’s self-assembly around oil droplets and influence on oil availability and future application. This work provides a systematic picture of cardamomum derived essential oil Pickering emulsion containing nanocellulose stabilizers’ formation and stability, which can further be extended to other value-added oils and can be an alternative for the delivery of cardamom essential oil for biomedical, food, cosmetics, and other industries.
Collapse
|
32
|
Tessaro PS, Meireles AM, Guimarães AS, Schmitberger B, Lage ALA, Patrício PSDO, Martins DCDS, DeFreitas-Silva G. The polymerization of carvacrol catalyzed by Mn-porphyrins: obtaining the desired product guided by the choice of solvent, oxidant, and catalyst. NEW J CHEM 2022. [DOI: 10.1039/d2nj03171j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Less polar solvents could modulate the catalytic activity of Mn(iii)-porphyrins in carvacrol's oxidation leading to polymer/oligomer formation instead of thymoquinone formation.
Collapse
Affiliation(s)
- Patrícia Salvador Tessaro
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31.270-901, Brazil
| | - Alexandre Moreira Meireles
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31.270-901, Brazil
| | - Adriano Silva Guimarães
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31.270-901, Brazil
| | - Bernardo Schmitberger
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31.270-901, Brazil
| | - Ana Luísa Almeida Lage
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31.270-901, Brazil
| | | | - Dayse Carvalho da Silva Martins
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31.270-901, Brazil
| | - Gilson DeFreitas-Silva
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31.270-901, Brazil
| |
Collapse
|
33
|
El Fawal G, Abu-Serie MM. Bioactive properties of nanofibers based on poly(vinylidene fluoride) loaded with oregano essential oil: Fabrication, characterization and biological evaluation. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
34
|
Yoncheva K, Benbassat N, Zaharieva MM, Dimitrova L, Kroumov A, Spassova I, Kovacheva D, Najdenski HM. Improvement of the Antimicrobial Activity of Oregano Oil by Encapsulation in Chitosan-Alginate Nanoparticles. Molecules 2021; 26:molecules26227017. [PMID: 34834109 PMCID: PMC8623404 DOI: 10.3390/molecules26227017] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 01/08/2023] Open
Abstract
Oregano oil (OrO) possesses well-pronounced antimicrobial properties but its application is limited due to low water solubility and possible instability. The aim of this study was to evaluate the possibility to incorporate OrO in an aqueous dispersion of chitosan—alginate nanoparticles and how this will affect its antimicrobial activity. The encapsulation of OrO was performed by emulsification and consequent electrostatic gelation of both polysaccharides. OrO-loaded nanoparticles (OrO-NP) have small size (320 nm) and negative charge (−25 mV). The data from FTIR spectroscopy and XRD analyses reveal successful encapsulation of the oil into the nanoparticles. The results of thermogravimetry suggest improved thermal stability of the encapsulated oil. The minimal inhibitory concentrations of OrO-NP determined on a panel of Gram-positive and Gram-negative pathogens (ISO 20776-1:2006) are 4–32-fold lower than those of OrO. OrO-NP inhibit the respiratory activity of the bacteria (MTT assay) to a lower extent than OrO; however, the minimal bactericidal concentrations still remain significantly lower. OrO-NP exhibit significantly lower in vitro cytotoxicity than pure OrO on the HaCaT cell line as determined by ISO 10993-5:2009. The irritation test (ISO 10993-10) shows no signs of irritation or edema on the application site. In conclusion, the nanodelivery system of oregano oil possesses strong antimicrobial activity and is promising for development of food additives.
Collapse
Affiliation(s)
- Krassimira Yoncheva
- Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (K.Y.); (N.B.)
| | - Niko Benbassat
- Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (K.Y.); (N.B.)
| | - Maya M. Zaharieva
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (M.M.Z.); (L.D.); (A.K.)
| | - Lyudmila Dimitrova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (M.M.Z.); (L.D.); (A.K.)
| | - Alexander Kroumov
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (M.M.Z.); (L.D.); (A.K.)
| | - Ivanka Spassova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (I.S.); (D.K.)
| | - Daniela Kovacheva
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (I.S.); (D.K.)
| | - Hristo M. Najdenski
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (M.M.Z.); (L.D.); (A.K.)
- Correspondence: ; Tel.: +359-2-979-3161
| |
Collapse
|
35
|
Characterization and Physical and Biological Properties of Tissue Conditioner Incorporated with Carum copticum L. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5577760. [PMID: 34423036 PMCID: PMC8376465 DOI: 10.1155/2021/5577760] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 05/26/2021] [Accepted: 08/02/2021] [Indexed: 12/27/2022]
Abstract
Aim One of the main problems in dentistry is the injury caused by the long-term application of an ill-fitting denture. The existence of multiple microorganisms along with the susceptibility of the tissue conditioners to colonize them can lead to denture stomatitis. This study is aimed at developing a tissue conditioner incorporated with Carum copticum L. (C. copticum L.) for the effective treatment of these injuries. Materials and Methods The Carum copticum L. essential oil composition was determined by gas chromatography-mass (GC-mass) spectrometry. The antimicrobial activity of the essential oil against the standard strains of bacterial and fungal species was determined by broth microdilution methods as suggested by the Clinical and Laboratory Standards Institute (CLSI). The physical and chemical properties of the prepared tissue conditioner were investigated by viscoelasticity, FTIR assays, and the release study performed. Furthermore, the antibiofilm activity of the Carum copticum L. essential oil-loaded tissue conditioner was evaluated by using the XTT reduction assay and scanning electron microscopy (SEM). Results The main component of the essential oil is thymol, which possesses high antimicrobial activity. The broth microdilution assay showed that the essential oil has broad activity as the minimum inhibitory concentration was in the range of 32-128 μg mL-1. The viscoelasticity test showed that the essential oil significantly diminished the viscoelastic modulus on the first day. The FTIR test showed that Carum copticum L. essential oil was preserved as an independent component in the tissue conditioner. The release study showed that the essential oil was released in 3 days following a sustained release and with an ultimate cumulative release of 81%. Finally, the Carum copticum L. essential oil exhibited significant activity in the inhibition of microbial biofilm formation in a dose-dependent manner. Indeed, the lowest and highest amounts of biofilm formation on the tissue conditioner disks are exhibited in the Streptococcus salivarius and Candida albicans by up to 22.4% and 71.4% at the 64 μg mL-1 concentration of C. copticum L. with a statistically significant difference (P < 0.05). Conclusion The obtained results showed that the Carum copticum L. essential oil-loaded tissue conditioner possessed suitable physical, biological, and release properties for use as a novel treatment for denture stomatitis.
Collapse
|
36
|
Polymeric Microfiltration Membranes Modification by Supercritical Solvent Impregnation-Potential Application in Open Surgical Wound Ventilation. Molecules 2021; 26:molecules26154572. [PMID: 34361725 PMCID: PMC8348072 DOI: 10.3390/molecules26154572] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 11/24/2022] Open
Abstract
This study investigated supercritical solvent impregnation of polyamide microfiltration membranes with carvacrol and the potential application of the modified membranes in ventilation of open surgical wounds. The impregnation process was conducted in batch mode at a temperature of 40 °C under pressures of 10, 15, and 20 MPa for contact times from 1 to 6 h. FTIR was applied to confirm the presence of carvacrol on the membrane surface. In the next step, the impact of the modification on the membrane structure was studied using scanning electron and ion beam microscopy and cross-filtration tests. Further, the release of carvacrol in carbon dioxide was determined, and finally, an open thoracic cavity model was applied to evaluate the efficiency of carvacrol-loaded membranes in contamination prevention. Carvacrol loadings of up to 43 wt.% were obtained under the selected operating conditions. The swelling effect was detectable. However, its impact on membrane functionality was minor. An average of 18.3 µg of carvacrol was released from membranes per liter of carbon dioxide for the flow of interest. Membranes with 30–34 wt.% carvacrol were efficient in the open thoracic cavity model applied, reducing the contamination levels by 27% compared to insufflation with standard membranes.
Collapse
|
37
|
Bogdan MA, Bungau S, Tit DM, Zaha DC, Nechifor AC, Behl T, Chambre D, Lupitu AI, Copolovici L, Copolovici DM. Chemical Profile, Antioxidant Capacity, and Antimicrobial Activity of Essential Oils Extracted from Three Different Varieties (Moldoveanca 4, Vis Magic 10, and Alba 7) of Lavandula angustifolia. Molecules 2021; 26:4381. [PMID: 34299656 PMCID: PMC8303575 DOI: 10.3390/molecules26144381] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 11/17/2022] Open
Abstract
Chemical composition, antioxidant capacity, and antimicrobial activity of lavender essential oils (LEOs) extracted from three different varieties of Lavandula angustifolia Mill. (1-Moldoveanca 4, 2-Vis magic 10, and 3-Alba 7) have been determined. These plants previously patented in the Republic of Moldova were cultivated in an organic agriculture system in the northeastern part of Romania and then harvested in 3 consecutive years (2017-2019) to obtain the essential oils. From the inflorescences in the complete flowering stage, the LEOs were extracted by hydrodistillation. Then, their composition was analyzed by gas chromatography coupled with mass spectrometry (GC-MS) and by Fourier Transformed Infrared spectroscopy (FT-IR). The major identified constituents are as follows: linalool (1: 32.19-46.83%; 2: 29.93-30.97%; 3: 31.97-33.77%), linalyl acetate (1: 17.70-35.18%; 2: 27.55-37.13%; 3: 28.03-35.32%), and terpinen-4-ol (1: 3.63-7.70%; 2: 3.06-7.16%; 3: 3.10-6.53%). The antioxidant capacity as determined by ABTS and DPPH assays indicates inhibition, with the highest activity obtained for LEO var. Alba 7 from 2019. The in vitro antimicrobial activities of the LEOs and combinations were investigated as well, by using the disk diffusion method and minimum inhibitory concentration (MIC) against the Gram-positive bacterial strain Staphylococcus aureus (ATCC 6538), Gram-negative Pseudomonas aeruginosa (ATCC 27858), Escherichia coli (ATCC 25922), the yeast Candida albicans (ATCC 10231), and clinical isolates. Our results have shown that LEOs obtained from the three studied varieties of L. angustifolia manifest significant bactericidal effects against tested microorganisms (Staphylococcus aureus and Escherichia coli), and antifungal effects against Candida albicans. The mixture of LEOs (Var. Alba 7) and geranium, respectively, in tea tree EOs, in different ratios, showed a significant enhancement of the antibacterial effect against all the studied strains, except Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Mihaela Alexandra Bogdan
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (M.A.B.); (D.M.T.)
| | - Simona Bungau
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (M.A.B.); (D.M.T.)
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
| | - Delia Mirela Tit
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (M.A.B.); (D.M.T.)
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
| | - Dana Carmen Zaha
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy of Oradea, University of Oradea, 410073 Oradea, Romania;
- Clinical Emergency Hospital of Oradea, 410169 Oradea, Romania
| | - Aurelia Cristina Nechifor
- Analytical Chemistry and Environmental Engineering Department, University Politehnica of Bucharest, 011061 Bucharest, Romania;
| | - Tapan Behl
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India;
| | - Dorina Chambre
- Faculty of Food Engineering, Tourism and Environmental Protection, “Aurel Vlaicu” University of Arad, 310330 Arad, Romania; (D.C.); (L.C.); (D.M.C.)
- Institute for Research, Development and Innovation in Technical and Natural Sciences, “Aurel Vlaicu” University of Arad, 310330 Arad, Romania;
| | - Andreea Ioana Lupitu
- Institute for Research, Development and Innovation in Technical and Natural Sciences, “Aurel Vlaicu” University of Arad, 310330 Arad, Romania;
| | - Lucian Copolovici
- Faculty of Food Engineering, Tourism and Environmental Protection, “Aurel Vlaicu” University of Arad, 310330 Arad, Romania; (D.C.); (L.C.); (D.M.C.)
- Institute for Research, Development and Innovation in Technical and Natural Sciences, “Aurel Vlaicu” University of Arad, 310330 Arad, Romania;
| | - Dana Maria Copolovici
- Faculty of Food Engineering, Tourism and Environmental Protection, “Aurel Vlaicu” University of Arad, 310330 Arad, Romania; (D.C.); (L.C.); (D.M.C.)
- Institute for Research, Development and Innovation in Technical and Natural Sciences, “Aurel Vlaicu” University of Arad, 310330 Arad, Romania;
| |
Collapse
|
38
|
Maheswari P, Harish S, Ponnusamy S, Muthamizhchelvan C. A novel strategy of nanosized herbal Plectranthus amboinicus, Phyllanthus niruri and Euphorbia hirta treated TiO 2 nanoparticles for antibacterial and anticancer activities. Bioprocess Biosyst Eng 2021; 44:1593-1616. [PMID: 34075470 DOI: 10.1007/s00449-020-02491-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 11/23/2020] [Indexed: 01/25/2023]
Abstract
Titanium dioxide nanoparticles exhibit good anticancer and antibacterial activities. They are known to be environmentally friendly, stable, less toxic, and have excellent biocompatibility nature. Due to these properties, they are well suited for biological applications particularly in biomedical applications such as drug delivery and cancer therapy. In this research article, three medicinal herbs namely, Plectranthus amboinicus (Karpooravalli), Phyllanthus niruri (Keezhanelli), and Euphorbia hirta (Amman Pacharisi), were used to modify the surface of the TiO2 nanoparticles. The synthesized nanoparticles were subjected to various characterization techniques. The samples are then subjected to MTT assay to determine cell viability. KB oral cancer cells are used for the determination of the anticancer nature of the pure and bio modified nanoparticles. It is observed that Plectranthus amboinicus-Phyllanthus niruri modified TiO2 nanoparticles exhibit excellent anticancer activities among other bio modified and pure samples. The samples are then examined for antibacterial activities against three Gram-negative bacterial strains namely, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and two Gram-positive bacterial strains namely, Staphylococcus aureus and Streptococcus mutans, respectively. Among the modified and pure samples, Plectranthus amboinicus showed good antibacterial activity against Gram-positive and Gram-negative bacteria. In the Flow cytometry analysis, the generation of p53 protein expression from Plectranthus amboinicus-Phyllanthus niruri modified TiO2 nano herbal particles shows the anti-cancerous nature of the sample. Then to determine the toxic nature of the Plectranthus amboinicus-Phyllanthus niruri modified TiO2 nano herbal particles against normal cells, the NPs were subjected to MTT assay against normal L929 cells, and it was found to be safer and less toxic towards the normal cells.
Collapse
Affiliation(s)
- P Maheswari
- Department of Nautical Science, VELS Institute of Science, Technology and Advanced Studies, Thalambur, 603 103, India.,Functional Materials and Energy Devices Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, 603 203, India
| | - S Harish
- Research Institute of Electronics, Shizuoka University, 3-5-1 Johoku, Naka-Ku, Hamamatsu, Shizuoka, 432-8011, Japan. .,Functional Materials and Energy Devices Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, 603 203, India.
| | - S Ponnusamy
- Functional Materials and Energy Devices Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, 603 203, India.
| | - C Muthamizhchelvan
- Functional Materials and Energy Devices Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, 603 203, India
| |
Collapse
|
39
|
El Fawal G, Hong H, Mo X, Wang H. Fabrication of scaffold based on gelatin and polycaprolactone (PCL) for wound dressing application. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102501] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
40
|
Bensemmane N, Bouzidi N, Daghbouche Y, Garrigues S, de la Guardia M, El Hattab M. Quantification of phenolic acids by partial least squares Fourier-transform infrared (PLS-FTIR) in extracts of medicinal plants. PHYTOCHEMICAL ANALYSIS : PCA 2021; 32:206-221. [PMID: 32666562 DOI: 10.1002/pca.2974] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/02/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
INTRODUCTION Phenolic compounds are ubiquitous compounds found in all plants as their secondary metabolites. Phenols are becoming increasingly important particularly because of their beneficial effects on health. OBJECTIVE To provide a faithful calibration model for the simultaneous determination and quantification of phenolic acids, as salicylic, vanillic, p-hydroxybenzoic acids, eugenol and thymol in different extracts of medicinal plants, a comparative study was made between two methods of infrared measurements based on attenuated total reflectance (ATR) and transmission. METHODS Characteristic absorbance peak heights of mid-infrared spectra of individual phenolic acids were measured for the compounds. For partial least squares regression (PLS-R) calibration mixtures of phenolic acids, wavenumber ranges, spectra pretreatment and number of latent variables, were assayed to improve the prediction capability of models using different spectral preprocessing techniques after mean centring of infrared data. Plant extracts were prepared by using water/methanol and ethanolic extraction solvents followed by Fourier-transform infrared (FTIR)-spectrometry analysis. The concentrations of phenolic compounds contained in the extracts were obtained by using the best models selected of the PLS calibration. RESULTS PLS-ATR-mid-infrared (MIR) measurement provided the most accurate results and offers a good methodology for the determination of phenolic acids. The analysis showed that the rate of phenolic acids and monoterpenic phenols in extracts of medicinal plants is in the same range obtained with the Folin-Ciocalteu method, which confirm that the developed method using PLS is therefore, highly specific and selective. CONCLUSION The simultaneous direct quantification of various phenolic acids in different plant extracts was possible with a fast and simple methodology based on PLS-ATR-FTIR analysis.
Collapse
Affiliation(s)
- Nachida Bensemmane
- Laboratory of Natural Products Chemistry and of Biomolecules, Faculty of Science, University Blida 1, Blida, Algeria
| | - Naima Bouzidi
- Laboratory of Natural Products Chemistry and of Biomolecules, Faculty of Science, University Blida 1, Blida, Algeria
| | - Yasmina Daghbouche
- Laboratory of Natural Products Chemistry and of Biomolecules, Faculty of Science, University Blida 1, Blida, Algeria
| | - Salvador Garrigues
- Department of Analytical Chemistry, University of Valencia, Burjassot, Valencia, Spain
| | - Miguel de la Guardia
- Department of Analytical Chemistry, University of Valencia, Burjassot, Valencia, Spain
| | - Mohamed El Hattab
- Laboratory of Natural Products Chemistry and of Biomolecules, Faculty of Science, University Blida 1, Blida, Algeria
| |
Collapse
|
41
|
Sobczyk ADE, Luchese CL, Faccin DJL, Tessaro IC. Influence of replacing oregano essential oil by ground oregano leaves on chitosan/alginate-based dressings properties. Int J Biol Macromol 2021; 181:51-59. [PMID: 33737191 DOI: 10.1016/j.ijbiomac.2021.03.084] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 02/20/2021] [Accepted: 03/14/2021] [Indexed: 01/07/2023]
Abstract
Biopolymers, as chitosan and alginate, have gained prominence in the biomedical area, mainly for application in wound dressings, as partial replacements for synthetic polymers. The present work aimed to compare the influence of the antimicrobial agent incorporation form on the properties of films prepared by casting. The chitosan/alginate-based films were manufactured containing oregano essential oil (OEO) or ground oregano leaves (OR). The OEO was chosen due to its excellent pharmacological properties, and the substitution by OR can represent an advantageous alternative for minimizing the final cost of the product, by removing the oil extraction step. The films, with different amounts of OEO and OR, were characterized in terms of their morphological, physicochemical, mechanical and antimicrobial properties. The films had properties according to desirable for wound dressing application: water vapor flux less than 35 g m-2 h-1, moderate liquid absorption capacity, and similar mechanical properties to human skin. All developed films showed antimicrobial activity against the bacteria Escherichia coli and Staphylococcus aureus. Formulations containing OEO presented the largest inhibition zones, although OR showed high potential for the proposed use. These results suggest that films developed, with both OEO and ground oregano leaves, are promising for use as dressings.
Collapse
Affiliation(s)
- Andressa de Espíndola Sobczyk
- Laboratory of Packaging Technology and Membrane Development - LATEM, Department of Chemical Engineering, Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos Street, 2777, 90035-007 Porto Alegre, RS, Brazil.
| | - Cláudia Leites Luchese
- Laboratory of Packaging Technology and Membrane Development - LATEM, Department of Chemical Engineering, Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos Street, 2777, 90035-007 Porto Alegre, RS, Brazil
| | - Débora Jung Luvizetto Faccin
- Laboratory of Bioprocess - LABIO, Department of Chemical Engineering, Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos Street, 2777, 90035-007 Porto Alegre, RS, Brazil
| | - Isabel Cristina Tessaro
- Laboratory of Packaging Technology and Membrane Development - LATEM, Department of Chemical Engineering, Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos Street, 2777, 90035-007 Porto Alegre, RS, Brazil
| |
Collapse
|
42
|
Chambre DR, Moisa C, Lupitu A, Copolovici L, Pop G, Copolovici DM. Chemical composition, antioxidant capacity, and thermal behavior of Satureja hortensis essential oil. Sci Rep 2020; 10:21322. [PMID: 33288856 PMCID: PMC7721874 DOI: 10.1038/s41598-020-78263-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/13/2020] [Indexed: 11/17/2022] Open
Abstract
Saturejahortensis is one of the representative plants from the Lamiaceae family, and its essential oil has been used in various applicative fields, from the food industry to aromatherapy. The changes that occur in heated samples at different temperatures (160, 175, 190 ºC) over different periods (0.5 and 2.5 h) in Saturejahortensis essential oil composition and chemical properties were evaluated. The results showed that the major chemical composition constituents of the investigated essential oil are γ-terpinene + α-terpinolene and carvacrol + p-cymene and the thermal behavior is dependent on the content. This composition drastically changes through the heating of the samples and causes significant changes in thermal behavior. The present study demonstrated that the concentration of carvacrol in S.hortensis essential oil is increasing after heating treatment, and the sample heated at 190 ºC for 2.5 h contained more than 91% carvacrol. This simple treatment is a rapid way to obtain carvacrol from the essential oil that has high potential as a natural preservative suitable for the food industry and alternative and complementary medicine.
Collapse
Affiliation(s)
- Dorina Rodica Chambre
- Faculty of Food Engineering, Tourism, and Environmental Protection, Institute for Research, Development, and Innovation in Technical and Natural Sciences, "Aurel Vlaicu" University of Arad, 2 Elena Dragoi St., 310330, Arad, Romania
| | - Cristian Moisa
- Faculty of Food Engineering, Tourism, and Environmental Protection, Institute for Research, Development, and Innovation in Technical and Natural Sciences, "Aurel Vlaicu" University of Arad, 2 Elena Dragoi St., 310330, Arad, Romania
| | - Andreea Lupitu
- Faculty of Food Engineering, Tourism, and Environmental Protection, Institute for Research, Development, and Innovation in Technical and Natural Sciences, "Aurel Vlaicu" University of Arad, 2 Elena Dragoi St., 310330, Arad, Romania.,Faculty of Agriculture, Banat University of Agricultural Sciences and Veterinary Medicine "King Michael 1st of Romania" from Timisoara, 119 Calea Aradului St., 300645, Timisoara, Romania
| | - Lucian Copolovici
- Faculty of Food Engineering, Tourism, and Environmental Protection, Institute for Research, Development, and Innovation in Technical and Natural Sciences, "Aurel Vlaicu" University of Arad, 2 Elena Dragoi St., 310330, Arad, Romania.
| | - Georgeta Pop
- Faculty of Agriculture, Banat University of Agricultural Sciences and Veterinary Medicine "King Michael 1st of Romania" from Timisoara, 119 Calea Aradului St., 300645, Timisoara, Romania
| | - Dana-Maria Copolovici
- Faculty of Food Engineering, Tourism, and Environmental Protection, Institute for Research, Development, and Innovation in Technical and Natural Sciences, "Aurel Vlaicu" University of Arad, 2 Elena Dragoi St., 310330, Arad, Romania.
| |
Collapse
|
43
|
Encapsulation of oregano essential oil (Origanum vulgare) by complex coacervation between gelatin and chia mucilage and its properties after spray drying. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.106077] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
44
|
Synergic antimicrobial properties of Carvacrol essential oil and montmorillonite in biodegradable starch films. Int J Biol Macromol 2020; 164:1737-1747. [DOI: 10.1016/j.ijbiomac.2020.07.226] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/13/2022]
|
45
|
Pop RM, Bocsan IC, Buzoianu AD, Chedea VS, Socaci SA, Pecoraro M, Popolo A. Evaluation of the Antioxidant Activity of Nigella sativa L. and Allium ursinum Extracts in a Cellular Model of Doxorubicin-Induced Cardiotoxicity. Molecules 2020; 25:molecules25225259. [PMID: 33187371 PMCID: PMC7697550 DOI: 10.3390/molecules25225259] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/07/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023] Open
Abstract
Natural products black cumin—Nigella sativa (N. sativa) and wild garlic—Allium ursinum (AU) are known for their potential role in reducing cardiovascular risk factors, including antracycline chemotherapy. Therefore, this study investigates the effect of N. sativa and AU water and methanolic extracts in a cellular model of doxorubicin (doxo)-induced cardiotoxicity. The extracts were characterized using Ultraviolet-visible (UV-VIS) spectroscopy, Fourier-transform infrared (FT-IR) spectroscopy, Liquid Chromatography coupled with Mass Spectrometry (LC-MS) and Gas Chromatography coupled with Mass Spectrometry (GC-MS) techniques. Antioxidant activity was evaluated on H9c2 cells. Cytosolic and mitochondrial reactive oxygen species (ROS) release was evaluated using 2′,7′-dichlorofluorescin-diacetate (DHCF-DA) and mitochondria-targeted superoxide indicator (MitoSOX red), respectively. Mitochondrial membrane depolarization was evaluated by flow cytometry. LC-MS analysis identified 12 and 10 phenolic compounds in NSS and AU extracts, respectively, with flavonols as predominant compounds. FT-IR analysis identified the presence of carbohydrates, amino acids and lipids in both plants. GC-MS identified the sulfur compounds in the AU water extract. N. sativa seeds (NSS) methanolic extract had the highest antioxidant activity reducing both intracellular and mitochondrial ROS release. All extracts (excepting AU methanolic extract) preserved H9c2 cells viability. None of the investigated plants affected the mitochondrial membrane depolarization. N. sativa and AU are important sources of bioactive compounds with increased antioxidant activities, requiring different extraction solvents to obtain the pharmacological effects.
Collapse
Affiliation(s)
- Raluca Maria Pop
- Department of Pharmacology, Toxicology and Clinical Pharmacology, “Iuliu Hatieganu” University of Medicine and Pharmacy, Victor Babes, No 8, 400012 Cluj-Napoca, Romania; (I.C.B.); (A.D.B.)
- Correspondence: (R.M.P.); (A.P.)
| | - Ioana Corina Bocsan
- Department of Pharmacology, Toxicology and Clinical Pharmacology, “Iuliu Hatieganu” University of Medicine and Pharmacy, Victor Babes, No 8, 400012 Cluj-Napoca, Romania; (I.C.B.); (A.D.B.)
| | - Anca Dana Buzoianu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, “Iuliu Hatieganu” University of Medicine and Pharmacy, Victor Babes, No 8, 400012 Cluj-Napoca, Romania; (I.C.B.); (A.D.B.)
| | - Veronica Sanda Chedea
- Research Station for Viticulture and Enology Blaj (SCDVV Blaj), 515400 Blaj, Romania;
| | - Sonia Ancuța Socaci
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Calea Manaștur 3–5, 400372 Cluj-Napoca, Romania;
| | - Michela Pecoraro
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano (SA), Italy;
| | - Ada Popolo
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano (SA), Italy;
- Correspondence: (R.M.P.); (A.P.)
| |
Collapse
|
46
|
Essential Oil Quality and Purity Evaluation via FT-IR Spectroscopy and Pattern Recognition Techniques. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10207294] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Essential oils are highly volatile, aromatic concentrated extracts from plants with wide applications. In this study, fast, easy-to-use attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FTIR) was combined with chemometric techniques to verify essential oils’ taxonomy and purity. Principal component analysis (PCA) clustered 30 essential oil samples into three different groups based on plant botanical family and concentration. The first group contained highly concentrated oils from the Asteraceae family, the second group contained highly concentrated oils from the Lamiaceae family, while the last group contained three highly concentrated essential oils from different botanical families and commercial-grade essential oils. Thus, commercial-grade oil samples did not cluster with the corresponding concentrated oil samples despite their similar spectral patterns or botanical family. A loading plot identified infrared (IR) bands that correspond to carbonyl, vinyl, methyl and methylene group vibrations as the most important spectral bands that can be used as marker bands for discrimination between different botanical plant family groups. Hierarchical cluster analysis (HCA) confirmed the results obtained by PCA. ATR-FTIR spectroscopy combined with chemometric algorithms provides a direct and non-destructive method for chemotaxonomic classification of medicinal and aromatic essential oils and an assessment of their purity.
Collapse
|
47
|
Detection of carvacrol in essential oils by electrochemical polymerization. Heliyon 2020; 6:e03714. [PMID: 32322714 PMCID: PMC7171669 DOI: 10.1016/j.heliyon.2020.e03714] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/09/2020] [Accepted: 03/27/2020] [Indexed: 01/08/2023] Open
Abstract
Carvacrol (Carv) and thymol (TOH), components of essential oils, are known by their antimicrobial and antioxidant activity. However, Carv but not TOH seems to be the responsible of anti-inflammatory and inhibition of Cu corrosion properties. Since Carv and TOH are positional isomers, their identification is tricky and GC-MS is usually required. To find simple and inexpensive methods that allow the detection of Carv in presence of TOH (e.g. essential oils), cyclic voltammetry and chronoamperometry tests using Pt and Cu as electrodes in TOH and Carv containing mixtures and essential oils were made. Electrochemical and ATR-FTIR results show that pure phytocompounds and mixtures lead to the formation of polymeric layers on both metallic surfaces. Results show that only Cu is suitable for Carv detection. Potentiostatic and potentiodynamic detection is simple and conclusive in Carv + TOH mixtures and in essential oils due to the formation of a homogeneous blocking Carv electropolymeric layer on Cu.
Collapse
|
48
|
Eusepi P, Marinelli L, García-Villén F, Borrego-Sánchez A, Cacciatore I, Di Stefano A, Viseras C. Carvacrol Prodrugs with Antimicrobial Activity Loaded on Clay Nanocomposites. MATERIALS 2020; 13:ma13071793. [PMID: 32290211 PMCID: PMC7179022 DOI: 10.3390/ma13071793] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/25/2020] [Accepted: 04/07/2020] [Indexed: 01/18/2023]
Abstract
Background: Carvacrol, an essential oil with antimicrobial activity against a wide range of pathogens, and its water soluble carvacrol prodrugs (WSCP1-3) were intercalated into montmorillonite (VHS) interlayers to improve their stability in physiological media and promote their absorption in the intestine. Methods: Intercalation of prodrugs by cation exchange with montmorillonite interlayer counterions was verified by X-ray powder diffraction and confirmed by Fourier transform infrared spectroscopy and thermal analysis. Results: In vitro release studies demonstrated that montmorillonite successfully controlled the release of the adsorbed prodrugs and promoted their bioactivation only in the intestinal tract where carvacrol could develop its maximum antimicrobial activity. The amount of WSCP1, WSCP2, and WSCP3 released from VHS were 38%, 54%, and 45% at acid pH in 120 min, and 65%, 78%, and 44% at pH 6.8 in 240 min, respectively. Conclusions: The resultant hybrids successfully controlled conversion of the prodrugs to carvacrol, avoiding premature degradation of the drug.
Collapse
Affiliation(s)
- Piera Eusepi
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Chieti, 66100 Abruzzo, Italy; (P.E.); (I.C.); (A.D.S.)
| | - Lisa Marinelli
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Chieti, 66100 Abruzzo, Italy; (P.E.); (I.C.); (A.D.S.)
- Correspondence: ; Tel.: +39-871-355-4475
| | - Fátima García-Villén
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Granada, 18071 Granada, Spain; (F.G.-V.); (A.B.-S.); (C.V.)
| | - Ana Borrego-Sánchez
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Granada, 18071 Granada, Spain; (F.G.-V.); (A.B.-S.); (C.V.)
- Andalusian Institute of Earth Science, CSIC-University of Granada, Armilla, 18100 Granada, Spain
| | - Ivana Cacciatore
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Chieti, 66100 Abruzzo, Italy; (P.E.); (I.C.); (A.D.S.)
| | - Antonio Di Stefano
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Chieti, 66100 Abruzzo, Italy; (P.E.); (I.C.); (A.D.S.)
| | - Cesar Viseras
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Granada, 18071 Granada, Spain; (F.G.-V.); (A.B.-S.); (C.V.)
- Andalusian Institute of Earth Science, CSIC-University of Granada, Armilla, 18100 Granada, Spain
| |
Collapse
|
49
|
Marinelli L, Cacciatore I, Eusepi P, Di Biase G, Morroni G, Cirioni O, Giacometti A, Di Stefano A. Viscoelastic behaviour of hyaluronic acid formulations containing carvacrol prodrugs with antibacterial properties. Int J Pharm 2020; 582:119306. [PMID: 32276092 DOI: 10.1016/j.ijpharm.2020.119306] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 11/16/2022]
Abstract
In this paper, we report the development and viscoelastic properties of hyaluronic acid formulations (HA5, HA30, and HA60, containing 0.5, 3, and 6% HA, respectively) loaded with carvacrol prodrugs (WSCPS) with antibacterial properties. Notably, antimicrobial studies revealed that WSCP1-2 in both HA5 and HA30 formulations showed the best minimum inhibitory concentration (MIC) values against Enterococcus faecium (128 mg/L) and Enterococcus faecalis (256 mg/L) compared to those of carvacrol alone or in formulations with HA. Moreover, rheological analyses showed that HA30 composites exhibited a semi-solid consistency, while HA5 formulations possessed a fluid consistency. Considering these data, HA30 is a useful formulation which guarantees a good percentage of prodrug release (e.g., 30 and 60% for WSCP1 and 2, respectively) as well as a texture suitable for topical administration to treat wounds and/or skin infections.
Collapse
Affiliation(s)
- Lisa Marinelli
- Department of Pharmacy, "G. D'Annunzio" University of Chieti-Pescara, 66100 Chieti Scalo (CH), Italy.
| | - Ivana Cacciatore
- Department of Pharmacy, "G. D'Annunzio" University of Chieti-Pescara, 66100 Chieti Scalo (CH), Italy
| | - Piera Eusepi
- Department of Pharmacy, "G. D'Annunzio" University of Chieti-Pescara, 66100 Chieti Scalo (CH), Italy
| | - Giuseppe Di Biase
- Department of Pharmacy, "G. D'Annunzio" University of Chieti-Pescara, 66100 Chieti Scalo (CH), Italy
| | - Gianluca Morroni
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, via Tronto 10/A, 60020 Ancona, Italy
| | - Oscar Cirioni
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, via Tronto 10/A, 60020 Ancona, Italy
| | - Andrea Giacometti
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, via Tronto 10/A, 60020 Ancona, Italy
| | - Antonio Di Stefano
- Department of Pharmacy, "G. D'Annunzio" University of Chieti-Pescara, 66100 Chieti Scalo (CH), Italy
| |
Collapse
|
50
|
Bioactive Properties of Nanofibres Based on Concentrated Collagen Hydrolysate Loaded with Thyme and Oregano Essential Oils. MATERIALS 2020; 13:ma13071618. [PMID: 32244692 PMCID: PMC7178294 DOI: 10.3390/ma13071618] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/20/2020] [Accepted: 03/30/2020] [Indexed: 12/13/2022]
Abstract
This research aimed to obtain biocompatible and antimicrobial nanofibres based on concentrated collagen hydrolysate loaded with thyme or oregano essential oils as a natural alternative to synthesis products. The essential oils were successfully incorporated using electrospinning process into collagen resulting nanofibres with diameter from 471 nm to 580 nm and porous structure. The presence of essential oils in collagen nanofibre mats was confirmed by Attenuated Total Reflectance -Fourier Transform Infrared Spectroscopy (ATR-FTIR), Ultraviolet-visible spectroscopy (UV-VIS) and antimicrobial activity. Scanning Electron Microscopy with Energy Dispersive Spectroscopy analyses allowed evaluating the morphology and constituent elements of the nanofibre networks. Microbiological tests performed against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Candida albicans showed that the presence of essential oils supplemented the new collagen nanofibres with antimicrobial properties. The biocompatibility of collagen and collagen with essential oils was assessed by in vitro cultivation with NCTC clone 929 of fibroblastic cells and cell viability measurement. The results showed that the collagen and thyme or oregano oil composites have no cytotoxicity up to concentrations of 1000 μg·mL-1 and 500 μg mL-1, respectively. Optimization of electrospinning parameters has led to the obtaining of new collagen electrospun nanofibre mats loaded with essential oils with potential use for wound dressings, tissue engineering or protective clothing.
Collapse
|