1
|
Du C, Yang D, Jiang S, Zhang J, Ye Y, Pan L, Fu G. Biocontrol Agents Inhibit Banana Fusarium Wilt and Alter the Rooted Soil Bacterial Community in the Field. J Fungi (Basel) 2024; 10:771. [PMID: 39590690 PMCID: PMC11595440 DOI: 10.3390/jof10110771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/30/2024] [Accepted: 11/02/2024] [Indexed: 11/28/2024] Open
Abstract
Banana is an important fruit and food crop in tropical and subtropical regions worldwide. Banana production is seriously threatened by Fusarium wilt of banana (FWB), a disease caused by Fusarium oxysporum f. sp. cubense, and biological control is an important means of curbing this soil-borne disease. To reveal the effects of biocontrol agents on inhibiting FWB and altering the soil bacterial community under natural ecosystems, we conducted experiments at a banana plantation. The control efficiency of a compound microbial agent (CM), Paenibacillus polymyxa (PP), Trichoderma harzianum (TH), and carbendazim (CA) on this disease were compared in the field. Meanwhile, the alterations in structure and function of the rooted soil bacterial community in different treatments during the vigorous growth and fruit development stages of banana were analyzed by microbiomics method. The results confirmed that the different biocontrol agents could effectively control FWB. In particular, CM significantly reduced the incidence of the disease and showed a field control efficiency of 60.53%. In terms of bacterial community, there were no significant differences in the richness and diversity of banana rooted soil bacteria among the different treatments at either growth stage, but their relative abundances differed substantially. CM treatment significantly increased the ratios of Bacillus, Bryobacter, Pseudomonas, Jatrophihabitans, Hathewaya, and Chujaibacter in the vigorous growth stage and Jatrophihabitans, Occallatibacter, Cupriavidus, and 1921-3 in the fruit development stage. Furthermore, bacterial community function in the banana rooted soil was affected differently by the various biocontrol agents. CM application increased the relative abundance of multiple soil bacterial functions, including carbohydrate metabolism, xenobiotic biodegradation and metabolism, terpenoid and polyketide metabolism, lipid metabolism, and metabolism of other amino acids. In summary, our results suggest that the tested biocontrol agents can effectively inhibit the occurrence of banana Fusarium wilt and alter the soil bacterial community in the field. They mainly modified the relative abundance of bacterial taxa and the metabolic functions rather than the richness and diversity. These findings provide a scientific basis for the use of biocontrol agents to control banana Fusarium wilt under field conditions, which serves as a reference for the study of the soil microbiological mechanisms of other biocontrol agents.
Collapse
Affiliation(s)
- Chanjuan Du
- Plant Protection Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Nanning 530007, China; (C.D.); (D.Y.); (S.J.); (J.Z.); (L.P.)
| | - Di Yang
- Plant Protection Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Nanning 530007, China; (C.D.); (D.Y.); (S.J.); (J.Z.); (L.P.)
| | - Shangbo Jiang
- Plant Protection Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Nanning 530007, China; (C.D.); (D.Y.); (S.J.); (J.Z.); (L.P.)
| | - Jin Zhang
- Plant Protection Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Nanning 530007, China; (C.D.); (D.Y.); (S.J.); (J.Z.); (L.P.)
| | - Yunfeng Ye
- Horticultural Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China;
| | - Lianfu Pan
- Plant Protection Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Nanning 530007, China; (C.D.); (D.Y.); (S.J.); (J.Z.); (L.P.)
| | - Gang Fu
- Plant Protection Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Nanning 530007, China; (C.D.); (D.Y.); (S.J.); (J.Z.); (L.P.)
| |
Collapse
|
2
|
Shchyogolev SY, Dykman LA, Sokolov AO, Sokolov OI, Matora LY. Quantitative intra- and intergeneric taxonomic relationships among Micrococcaceae strains reveal contradictions in the historical assignments of the strains and indicate the need for species reclassification. Arch Microbiol 2024; 206:165. [PMID: 38485793 DOI: 10.1007/s00203-024-03896-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 02/03/2024] [Accepted: 02/12/2024] [Indexed: 03/19/2024]
Abstract
This article reports the results of quantitative intra- and intergeneric taxonomic relationships among Micrococcaceae strains and a novel endophytic bacterium (SG) isolated from a suspension culture of Arabidopsis thaliana (L.) Heynh in our laboratory. The known strain Rothia sp. ND6WE1A was used as a reference one for SG. Whole-genome sequencing and phylogenetic analysis were based on the 16S rRNA test. Quantitative analysis for the nucleotide identity (ANI) and calculation of evolutionary distances were based on the identified amino acids (AAI) test indicating the generic assignment of the reference strain within and between the identified monophyletic groups of Micrococcaceae. The amino acid data structure of Rothia sp. ND6WE1A was compared against the UniProt database (250 million records) of close lineage of Micrococcaceae, including other Rothia spp. These data presented unique and evolutionary amino acid alignments, eventually expected in the new SG isolate as well. The metagenomic entries of the respective genome and proteome, characterized at the genus and species levels, could be considered for evolutionary taxonomic reclassification of the isolated and the reference strain (SG + Rothia sp. ND6WE1A). Therefore, our results warrant further investigations on the isolated SG strain.
Collapse
Affiliation(s)
- Sergei Yu Shchyogolev
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), Saratov, 410049, Russia.
| | - Lev A Dykman
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), Saratov, 410049, Russia
| | - Alexander O Sokolov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), Saratov, 410049, Russia
| | - Oleg I Sokolov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), Saratov, 410049, Russia
| | - Larisa Yu Matora
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), Saratov, 410049, Russia
| |
Collapse
|
3
|
Xie J, Singh P, Qi Y, Singh RK, Qin Q, Jin C, Wang B, Fang W. Pseudomonas aeruginosa Strain 91: A Multifaceted Biocontrol Agent against Banana Fusarium Wilt. J Fungi (Basel) 2023; 9:1047. [PMID: 37998853 PMCID: PMC10672659 DOI: 10.3390/jof9111047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/25/2023] Open
Abstract
Banana Fusarium wilt (BFW), caused by the soil-borne fungus Fusarium oxysporum f. sp. cubense (Foc), poses significant threats to banana cultivation. Currently, effective control methods are lacking, and biological control has emerged as a possible strategy to manage BFW outbreaks. In this investigation, 109 bacterial strains were isolated from the rhizospheric soil surrounding banana plants in search of potent biological agents against Foc. Strain 91 exhibited the highest antifungal activity against the causal agent of Foc and was identified as Pseudomonas aeruginosa through 16S rRNA gene sequencing and scanning electron microscopy (SEM). Elucidation of strain 91's inhibitory mechanism against Foc revealed a multifaceted antagonistic approach, encompassing the production of bioactive compounds and the secretion of cell wall hydrolytic enzymes. Furthermore, strain 91 displayed various traits associated with promoting plant growth and showed adaptability to different carbon sources. By genetically tagging with constitutively expressing GFP signals, effective colonization of strain 91 was mainly demonstrated in root followed by leaf and stem tissues. Altogether, our study reveals the potential of P. aeruginosa 91 for biocontrol based on inhibition mechanism, adaptation, and colonization features, thus providing a promising candidate for the control of BFW.
Collapse
Affiliation(s)
- Jin Xie
- Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning 530007, China; (J.X.); (P.S.); (Y.Q.); (Q.Q.); (C.J.)
| | - Pratiksha Singh
- Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning 530007, China; (J.X.); (P.S.); (Y.Q.); (Q.Q.); (C.J.)
| | - Yanhua Qi
- Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning 530007, China; (J.X.); (P.S.); (Y.Q.); (Q.Q.); (C.J.)
| | - Rajesh Kumar Singh
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China;
| | - Qijian Qin
- Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning 530007, China; (J.X.); (P.S.); (Y.Q.); (Q.Q.); (C.J.)
| | - Cheng Jin
- Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning 530007, China; (J.X.); (P.S.); (Y.Q.); (Q.Q.); (C.J.)
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bin Wang
- Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning 530007, China; (J.X.); (P.S.); (Y.Q.); (Q.Q.); (C.J.)
| | - Wenxia Fang
- Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning 530007, China; (J.X.); (P.S.); (Y.Q.); (Q.Q.); (C.J.)
| |
Collapse
|
4
|
Vicente TFL, Félix C, Félix R, Valentão P, Lemos MFL. Seaweed as a Natural Source against Phytopathogenic Bacteria. Mar Drugs 2022; 21:23. [PMID: 36662196 PMCID: PMC9867177 DOI: 10.3390/md21010023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
Plant bacterial pathogens can be devastating and compromise entire crops of fruit and vegetables worldwide. The consequences of bacterial plant infections represent not only relevant economical losses, but also the reduction of food availability. Synthetic bactericides have been the most used tool to control bacterial diseases, representing an expensive investment for the producers, since cyclic applications are usually necessary, and are a potential threat to the environment. The development of greener methodologies is of paramount importance, and some options are already available in the market, usually related to genetic manipulation or plant community modulation, as in the case of biocontrol. Seaweeds are one of the richest sources of bioactive compounds, already being used in different industries such as cosmetics, food, medicine, pharmaceutical investigation, and agriculture, among others. They also arise as an eco-friendly alternative to synthetic bactericides. Several studies have already demonstrated their inhibitory activity over relevant bacterial phytopathogens, some of these compounds are known for their eliciting ability to trigger priming defense mechanisms. The present work aims to gather the available information regarding seaweed extracts/compounds with antibacterial activity and eliciting potential to control bacterial phytopathogens, highlighting the extracts from brown algae with protective properties against microbial attack.
Collapse
Affiliation(s)
- Tânia F. L. Vicente
- MARE-Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network Associated Laboratory, ESTM, Polytechnic of Leiria, 2520-641 Peniche, Portugal
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Carina Félix
- MARE-Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network Associated Laboratory, ESTM, Polytechnic of Leiria, 2520-641 Peniche, Portugal
| | - Rafael Félix
- MARE-Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network Associated Laboratory, ESTM, Polytechnic of Leiria, 2520-641 Peniche, Portugal
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Patrícia Valentão
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Marco F. L. Lemos
- MARE-Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network Associated Laboratory, ESTM, Polytechnic of Leiria, 2520-641 Peniche, Portugal
| |
Collapse
|
5
|
Sahu PK, Tilgam J, Mishra S, Hamid S, Gupta A, K J, Verma SK, Kharwar RN. Surface sterilization for isolation of endophytes: Ensuring what (not) to grow. J Basic Microbiol 2022; 62:647-668. [PMID: 35020220 DOI: 10.1002/jobm.202100462] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/29/2021] [Accepted: 12/31/2021] [Indexed: 12/19/2022]
Abstract
Endophytic microbiota opens a magnificent arena of metabolites that served as a potential source of medicines for treating a variety of ailments and having prospective uses in agriculture, food, cosmetics, and many more. There are umpteen reports of endophytes improving the growth and tolerance of plants. In addition, endophytes from lifesaving drug-producing plants such as Taxus, Nothapodytes, Catharanthus, and so forth have the ability to produce host mimicking compounds. To harness these benefits, it is imperative to isolate the true endophytes, not the surface microflora. The foremost step in endophyte isolation is the removal of epiphytic microbes from plant tissues, called as surface sterilization. The success of surface sterilization decides "what to grow" (the endophytes) and "what not to grow" (the epiphytes). It is very crucial to use an appropriate sterilant solution, concentration, and exposure time to ensure thorough surface disinfection with minimal damage to the endophytic diversity. Commonly used surface sterilants include sodium hypochlorite (2%-10%), ethanol (70%-90%), mercuric chloride (0.1%), formaldehyde (40%), and so forth. In addition, the efficiency could further be improved by pretreatment with surfactants such as Triton X-100, Tween 80, and Tween 20. This review comprehensively deals with the various sterilants and sterilization methods for the isolation of endophytic microbes. In addition, the mechanisms and rationale behind using specific surface sterilants have also been elaborated at length.
Collapse
Affiliation(s)
- Pramod K Sahu
- ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Maunath Bhanjan, Uttar Pradesh, India
| | - Jyotsana Tilgam
- ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Maunath Bhanjan, Uttar Pradesh, India
| | - Sushma Mishra
- Plant Biotechnology Laboratory, Dayalbagh Educational Institute (Deemed-to-be-University), Agra, Uttar Pradesh, India
| | - Saima Hamid
- Department of Plant Biotechnology and Microbial Ecology, University of Kashmir, Hazratbal, Srinagar, Jammu & Kashmir, India
| | - Amrita Gupta
- Department of Biotechnology, Amity Institute of Biotechnology, Amity University, Lucknow, Uttar Pradesh, India
| | - Jayalakshmi K
- ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Maunath Bhanjan, Uttar Pradesh, India
| | - Satish K Verma
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ravindra N Kharwar
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
6
|
Martins J, Ares A, Casais V, Costa J, Canhoto J. Identification and Characterization of Arbutus unedo L. Endophytic Bacteria Isolated from Wild and Cultivated Trees for the Biological Control of Phytophthora cinnamomi. PLANTS 2021; 10:plants10081569. [PMID: 34451613 PMCID: PMC8401287 DOI: 10.3390/plants10081569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 11/16/2022]
Abstract
Arbutus unedo L. is a resilient tree with a circum-Mediterranean distribution. Besides its ecological relevance, it is vital for local economies as a fruit tree. Several microorganisms are responsible for strawberry tree diseases, leading to production constrictions. Thus, the development of alternative plant protection strategies is necessary, such as bacterial endophytes, which may increase their host’s overall fitness and productivity. As agricultural practices are a driving factor of microbiota, this paper aimed to isolate, identify and characterize endophytic bacteria from strawberry tree leaves from plants growing spontaneously in a natural environment as well as from plants growing in orchards. A total of 62 endophytes were isolated from leaves and identified as Bacillus, Paenibacillus, Pseudomonas, Sphingomonas and Staphylococcus. Although a slightly higher number of species was found in wild plants, no differences in terms of diversity indexes were found. Sixteen isolates were tested in vitro for their antagonistic effect against A. unedo mycopathogens. B. cereus was the most effective antagonist causing a growth reduction of 20% in Glomerella cingulata and 40% in Phytophthora cinnamomi and Mycosphaerella aurantia. Several endophytic isolates also exhibited plant growth-promoting potential. This study provides insights into the diversity of endophytic bacteria in A. unedo leaves and their potential role as growth promoters and pathogen antagonists.
Collapse
Affiliation(s)
- João Martins
- Department of Life Sciences, Centre for Functional Ecology, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; (J.M.); (A.A.); (V.C.); (J.C.)
| | - Aitana Ares
- Department of Life Sciences, Centre for Functional Ecology, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; (J.M.); (A.A.); (V.C.); (J.C.)
- Laboratory for Phytopathology, Instituto Pedro Nunes, 3030-199 Coimbra, Portugal
| | - Vinicius Casais
- Department of Life Sciences, Centre for Functional Ecology, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; (J.M.); (A.A.); (V.C.); (J.C.)
| | - Joana Costa
- Department of Life Sciences, Centre for Functional Ecology, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; (J.M.); (A.A.); (V.C.); (J.C.)
- Laboratory for Phytopathology, Instituto Pedro Nunes, 3030-199 Coimbra, Portugal
| | - Jorge Canhoto
- Department of Life Sciences, Centre for Functional Ecology, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; (J.M.); (A.A.); (V.C.); (J.C.)
- Correspondence:
| |
Collapse
|
7
|
Korshunova TY, Bakaeva MD, Kuzina EV, Rafikova GF, Chetverikov SP, Chetverikova DV, Loginov ON. Role of Bacteria of the Genus Pseudomonas in the Sustainable Development of Agricultural Systems and Environmental Protection (Review). APPL BIOCHEM MICRO+ 2021. [DOI: 10.1134/s000368382103008x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Nakkeeran S, Rajamanickam S, Saravanan R, Vanthana M, Soorianathasundaram K. Bacterial endophytome-mediated resistance in banana for the management of Fusarium wilt. 3 Biotech 2021; 11:267. [PMID: 34017673 DOI: 10.1007/s13205-021-02833-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 05/07/2021] [Indexed: 12/11/2022] Open
Abstract
Banana (Musa spp.), a major cash and staple fruit crop in many parts of the world, is infected by Fusarium wilt, which contributes up to 100% yield loss and causes social consequences. Race 1 and race 2 of Panama wilt caused by Fusarium oxysporum f. sp. cubense (Foc) are prevalent worldwide and seriously affect many traditional varieties. The threat of Foc tropical race 4 (Foc TR4) is looming large in African counties. However, its incidence in India has been confined to Bihar (Katihar and Purnea), Uttar Pradesh (Faizabad), Madhya Pradesh (Burhanpur) and Gujarat (Surat). Management of Foc races by employing fungicides is often not a sustainable option as the disease spread is rapid and they negatively alter the biodiversity of beneficial ectophytes and endophytes. Besides, soil drenching with carbendazim/trifloxystrobin + tebuconazole is also not effective in suppressing the Fusarium wilt of banana. Improvement of resistance to Fusarium wilt in susceptible cultivars is being addressed through both conventional and advanced breeding approaches. However, engineering of banana endosphere with bacterial endophytes from resistant genotypes like Pisang lilly and YKM5 will induce the immune response against Foc, irrespective of races. The composition of the bacterial endomicrobiome in different banana cultivars is dominated by the phyla Proteobacteria, Bacteroidetes and Actinobacteria. The major bacterial endophytic genera antagonistic to Foc are Bacillus, Brevibacillus, Paenibacillus, Virgibacillus, Staphylococcus, Cellulomonas, Micrococcus, Corynebacterium, Kocuria spp., Paracoccus sp., Acinetobacter spp. Agrobacterium, Aneurinibacillus, Enterobacter, Klebsiella, Lysinibacillus, Micrococcus, Rhizobium, Sporolactobacillus, Pantoea, Pseudomonas, Serratia, Microbacterium, Rhodococcus, Stenotrophomonas, Pseudoxanthomonas, Luteimonas, Dokdonella, Rhodanobacter, Luteibacter, Steroidobacter, Nevskia, Aquicella, Rickettsiella, Legionella, Tatlockia and Streptomyces. These bacterial endophytes promote the growth of banana plantlets by solubilising phosphate, producing indole acetic acid and siderophores. Application of banana endophytes during the hardening phase of tissue-cultured clones serves as a shield against Foc. Hitherto, MAMP molecules of endophytes including flagellin, liposaccharides, peptidoglycans, elongation factor, cold shock proteins and hairpins induce microbe-associated molecular pattern (MAMP)-triggered immunity to suppress plant pathogens. The cascade of events associated with ISR and SAR is induced through MAPK and transcription factors including WRKY and MYC. Studies are underway to exploit the potential of antagonistic bacterial endophytes against Foc isolates and to develop an understanding of the MAMP-triggered immunity and metabolomics cross talk modulating resistance. This review explores the possibility of harnessing the potential bacterial endomicrobiome against Foc and developing nanoformulations with bacterial endophytes for increased efficacy against lethal pathogenic races of Foc infecting banana. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02833-5.
Collapse
Affiliation(s)
- S Nakkeeran
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, India
| | - S Rajamanickam
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, India
| | - R Saravanan
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, India
| | - M Vanthana
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, India
| | | |
Collapse
|
9
|
Chouhan GK, Verma JP, Jaiswal DK, Mukherjee A, Singh S, de Araujo Pereira AP, Liu H, Abd Allah EF, Singh BK. Phytomicrobiome for promoting sustainable agriculture and food security: Opportunities, challenges, and solutions. Microbiol Res 2021; 248:126763. [PMID: 33892241 DOI: 10.1016/j.micres.2021.126763] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/24/2021] [Accepted: 03/31/2021] [Indexed: 12/29/2022]
Abstract
Ensuring food security in an environmentally sustainable way is a global challenge. To achieve this agriculture productivity requires increasing by 70 % under increasingly harsh climatic conditions without further damaging the environmental quality (e.g. reduced use of agrochemicals). Most governmental and inter-governmental agencies have highlighted the need for alternative approaches that harness natural resource to address this. Use of beneficial phytomicrobiome, (i.e. microbes intimately associated with plant tissues) is considered as one of the viable solutions to meet the twin challenges of food security and environmental sustainability. A diverse number of important microbes are found in various parts of the plant, i.e. root, shoot, leaf, seed, and flower, which play significant roles in plant health, development and productivity, and could contribute directly to improving the quality and quantity of food production. The phytomicrobiome can also increase productivity via increased resource use efficiency and resilience to biotic and abiotic stresses. In this article, we explore the role of phytomicrobiome in plant health and how functional properties of microbiome can be harnessed to increase agricultural productivity in environmental-friendly approaches. However, significant technical and translation challenges remain such as inconsistency in efficacy of microbial products in field conditions and a lack of tools to manipulate microbiome in situ. We propose pathways that require a system-based approach to realize the potential to phytomicrobiome in contributing towards food security. We suggest if these technical and translation constraints could be systematically addressed, phytomicrobiome can significantly contribute towards the sustainable increase in agriculture productivity and food security.
Collapse
Affiliation(s)
- Gowardhan Kumar Chouhan
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Jay Prakash Verma
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| | - Durgesh Kumar Jaiswal
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Arpan Mukherjee
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Saurabh Singh
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | | | - Hongwei Liu
- Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, Locked Bag 1797, Penrith, NSW, 2750, Sydney, Australia
| | - Elsayed Fathi Abd Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box. 2460, Riyadh, 11451, Saudi Arabia
| | - Brajesh Kumar Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, Locked Bag 1797, Penrith, NSW, 2750, Sydney, Australia; Global Centre for Land-Based Innovation, Western Sydney University, Hawkesbury Campus, Locked Bag 1797, Penrith, NSW, 2750, Sydney, Australia
| |
Collapse
|
10
|
Guerrieri MC, Fiorini A, Fanfoni E, Tabaglio V, Cocconcelli PS, Trevisan M, Puglisi E. Integrated Genomic and Greenhouse Assessment of a Novel Plant Growth-Promoting Rhizobacterium for Tomato Plant. FRONTIERS IN PLANT SCIENCE 2021; 12:660620. [PMID: 33859664 PMCID: PMC8042378 DOI: 10.3389/fpls.2021.660620] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/05/2021] [Indexed: 06/07/2023]
Abstract
Plant growth promoting rhizobacteria (PGPR) can display several plant-beneficial properties, including support to plant nutrition, regulation of plant growth, and biocontrol of pests. Mechanisms behind these effects are directly related to the presence and expression of specific genes, and different PGPR strains can be differentiated by the presence of different genes. In this study we reported a comprehensive evaluation of a novel PGPR Klebsiella variicola UC4115 from the field to the lab, and from the lab to the plant. The isolate from tomato field was screened in-vitro for different activities related to plant nutrition and growth regulation as well as for antifungal traits. We performed a functional annotation of genes contributing to plant-beneficial functions previously tested in-vitro. Furthermore, the in-vitro characterization, the whole genome sequencing and annotation of K. variicola UC4115, were compared with the well-known PGPR Azospirillum brasilense strain Sp7. This novel comparative analysis revealed different accumulation of plant-beneficial functions contributing genes, and the presence of different genes that accomplished the same functions. Greenhouse assays on tomato seedlings from BBCH 11-12 to BBCH > 14 were performed under either organic or conventional management. In each of them, three PGPR inoculations (control, K. variicola UC4115, A. brasilense Sp7) were applied at either seed-, root-, and seed plus root level. Results confirmed the PGP potential of K. variicola UC4115; in particular, its high value potential as indole-3-acetic acid producer was observed in increasing of root length density and diameter class length parameters. While, in general, A. brasilense Sp7 had a greater effect on biomass, probably due to its high ability as nitrogen-fixing bacteria. For K. variicola UC4115, the most consistent data were noticed under organic management, with application at seed level. While, A. brasilense Sp7 showed the greatest performance under conventional management. Our data highlight the necessity to tailor the selected PGPR, with the mode of inoculation and the crop-soil combination.
Collapse
Affiliation(s)
- Maria Chiara Guerrieri
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Andrea Fiorini
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Elisabetta Fanfoni
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Vincenzo Tabaglio
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Pier Sandro Cocconcelli
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Marco Trevisan
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Edoardo Puglisi
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
11
|
Gómez-Lama Cabanás C, Fernández-González AJ, Cardoni M, Valverde-Corredor A, López-Cepero J, Fernández-López M, Mercado-Blanco J. The Banana Root Endophytome: Differences between Mother Plants and Suckers and Evaluation of Selected Bacteria to Control Fusarium oxysporum f.sp. cubense. J Fungi (Basel) 2021; 7:jof7030194. [PMID: 33803181 PMCID: PMC8002102 DOI: 10.3390/jof7030194] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 12/13/2022] Open
Abstract
This study aimed to disentangle the structure, composition, and co-occurrence relationships of the banana (cv. Dwarf Cavendish) root endophytome comparing two phenological plant stages: mother plants and suckers. Moreover, a collection of culturable root endophytes (>1000) was also generated from Canary Islands. In vitro antagonism assays against Fusarium oxysporum f.sp. cubense (Foc) races STR4 and TR4 enabled the identification and characterization of potential biocontrol agents (BCA). Eventually, three of them were selected and evaluated against Fusarium wilt of banana (FWB) together with the well-known BCA Pseudomonas simiae PICF7 under controlled conditions. Culturable and non-culturable (high-throughput sequencing) approaches provided concordant information and showed low microbial diversity within the banana root endosphere. Pseudomonas appeared as the dominant genus and seemed to play an important role in the banana root endophytic microbiome according to co-occurrence networks. Fungal communities were dominated by the genera Ophioceras, Cyphellophora, Plecosphaerella, and Fusarium. Overall, significant differences were found between mother plants and suckers, suggesting that the phenological stage determines the recruitment and organization of the endophytic microbiome. While selected native banana endophytes showed clear antagonism against Foc strains, their biocontrol performance against FWB did not improve the outcome observed for a non-indigenous reference BCA (strain PICF7).
Collapse
Affiliation(s)
- Carmen Gómez-Lama Cabanás
- Departamento de Protección de Cultivos, Instituto de Agricultura Sostenible, Consejo Superior de Investigaciones Científicas (CSIC), Campus ‘Alameda del Obispo’ s/n, Avd. Menéndez Pidal s/n, 14004 Córdoba, Spain; (C.G.-L.C.); (M.C.); (A.V.-C.)
| | - Antonio J. Fernández-González
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Calle Profesor Albareda, 18008 Granada, Spain; (A.J.F.-G.); (M.F.-L.)
| | - Martina Cardoni
- Departamento de Protección de Cultivos, Instituto de Agricultura Sostenible, Consejo Superior de Investigaciones Científicas (CSIC), Campus ‘Alameda del Obispo’ s/n, Avd. Menéndez Pidal s/n, 14004 Córdoba, Spain; (C.G.-L.C.); (M.C.); (A.V.-C.)
| | - Antonio Valverde-Corredor
- Departamento de Protección de Cultivos, Instituto de Agricultura Sostenible, Consejo Superior de Investigaciones Científicas (CSIC), Campus ‘Alameda del Obispo’ s/n, Avd. Menéndez Pidal s/n, 14004 Córdoba, Spain; (C.G.-L.C.); (M.C.); (A.V.-C.)
| | - Javier López-Cepero
- Departamento Técnico de Coplaca S.C. Organización de Productores de Plátanos, Avd. de Anaga, 11-38001 Santa Cruz de Tenerife, Spain;
| | - Manuel Fernández-López
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Calle Profesor Albareda, 18008 Granada, Spain; (A.J.F.-G.); (M.F.-L.)
| | - Jesús Mercado-Blanco
- Departamento de Protección de Cultivos, Instituto de Agricultura Sostenible, Consejo Superior de Investigaciones Científicas (CSIC), Campus ‘Alameda del Obispo’ s/n, Avd. Menéndez Pidal s/n, 14004 Córdoba, Spain; (C.G.-L.C.); (M.C.); (A.V.-C.)
- Correspondence: ; Tel.: +34-957-499261
| |
Collapse
|
12
|
Drought tolerant bacterial endophytes with potential plant probiotic effects from Ananas comosus. Biologia (Bratisl) 2020. [DOI: 10.2478/s11756-020-00483-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Cesa-Luna C, Baez A, Quintero-Hernández V, De la Cruz-Enríquez J, Castañeda-Antonio MD, Muñoz-Rojas J. The importance of antimicrobial compounds produced by beneficial bacteria on the biocontrol of phytopathogens. ACTA BIOLÓGICA COLOMBIANA 2020. [DOI: 10.15446/abc.v25n1.76867] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Bacteria produce antimicrobial compounds to compete for nutrients and space in a particular habitat. Antagonistic interactions can be evaluated by several methodologies including the double-layer agar and simultaneous inhibition assays. Among the well-known inhibitory substances produced by bacteria are the broad-spectrum antibiotics, organic acids, siderophores, antifungal, and bacteriocins. The most studied bacterial genera able to produce these inhibitory substances are Enterococcus, Lactococcus, Streptomyces, Bacillus, Pseudomonas, Klebsiella, Escherichia, and Burkholderia. Some beneficial bacteria can promote plant growth and degrade toxic compounds in the environment representing an attractive solution to diverse issues in agriculture and soil pollution, particularly in fields with damaged soils where pesticides and fertilizers have been indiscriminately used. Beneficial bacteria may increase plant health by inhibiting pathogenic microorganisms; some examples include Gluconacetobacter diazotrophicus, Azospirullum brasilense, Pseudomonas fluorescens, Pseudomonas protegens, and Burkholderia tropica. However, most studies showing the antagonistic potential of these bacteria have been performed in vitro, and just a few of them have been evaluated in association with plants. Several inhibitory substances involved in pathogen antagonism have not been elucidated yet; in fact, we know only 1 % of the bacterial diversity in a natural environment leading us to assume that many other inhibitory substances remain unexplored. In this review, we will describe the characteristics of some antimicrobial compounds produced by beneficial bacteria, the principal methodologies performed to evaluate their production, modes of action, and their importance for biotechnological purposes.
Collapse
|
14
|
Liu Y, Zhu A, Tan H, Cao L, Zhang R. Engineering banana endosphere microbiome to improve Fusarium wilt resistance in banana. MICROBIOME 2019; 7:74. [PMID: 31092296 PMCID: PMC6521393 DOI: 10.1186/s40168-019-0690-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 05/05/2019] [Indexed: 05/04/2023]
Abstract
BACKGROUND Plant microbiome highlights the importance of endosphere microbiome for growth and health of the host plant. Microbial community analysis represents an elegant way to identify keystone microbial species that have a more central position in the community. The aim of this study was to access the interactions between the keystone bacterial species and plants during banana Fusarium wilt process, by comparing the endophytic bacterial and fungal community in banana roots and shoot tips during growth and wilting processes. The keystone bacterial species were isolated and further engineered to improve banana wilt resistance. RESULTS Banana endosphere microbiome structure varied during plant growth and wilting processes. Bacterial and fungal diversity in the shoot tips and roots increased with the development of the banana plantlets. The bacterial groups belonging to the Enterobacteriaceae family with different relative abundances were detected in all the samples. The Klebsiella spp. might be the keystone bacteria during the growth of banana plantlets. The relative abundance of Fusarium associated with the wilt disease did not increase during the wilting process. The endophytic Enterobacteriaceae strains Enterobacter sp. E5, Kosakonia sp. S1, and Klebsiella sp. Kb were isolated on Enterobacteriaceae selective medium and further engineered by expressing 1-aminocyclopropane-1-carboxylate (ACC) deaminase on the bacterial cell walls (designated as E5P, S1P, and KbP, respectively). Pot experiments suggested that plants inoculated with strains E5, E5P, S1, and S1P increased resistance to the Fusarium wilt disease compared with the controls without inoculation, whereas the Klebsiella inoculation (Kb and KbP) did not increase the wilt resistance. Compared with the inoculation with the wild strains E5 and S1, the inoculation with engineered strains E5P and S1P significantly increased wilt resistance and promoted plant growth, respectively. The results illustrated that the keystone species in the banana microbiome may not be dominant in numbers and the functional role of keystone species should be involved in the wilt resistance. CONCLUSION The ACC deaminase activity of engineered bacteria was essential to the Fusarium wilt resistance and growth promotion of banana plants. Engineering keystone bacteria in plant microbiome with ACC deaminase on the cell walls should be a promising method to improve plant growth and disease resistance.
Collapse
Affiliation(s)
- Yupei Liu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, China
| | - Aiping Zhu
- School of Life Sciences, Guangdong Provincial Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-sen University, Guangzhou, China
| | - Hongming Tan
- School of Life Sciences, Guangdong Provincial Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-sen University, Guangzhou, China
| | - Lixiang Cao
- School of Life Sciences, Guangdong Provincial Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-sen University, Guangzhou, China.
| | - Renduo Zhang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
15
|
Macedo-Raygoza GM, Valdez-Salas B, Prado FM, Prieto KR, Yamaguchi LF, Kato MJ, Canto-Canché BB, Carrillo-Beltrán M, Di Mascio P, White JF, Beltrán-García MJ. Enterobacter cloacae, an Endophyte That Establishes a Nutrient-Transfer Symbiosis With Banana Plants and Protects Against the Black Sigatoka Pathogen. Front Microbiol 2019; 10:804. [PMID: 31133991 PMCID: PMC6513882 DOI: 10.3389/fmicb.2019.00804] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 03/28/2019] [Indexed: 01/20/2023] Open
Abstract
Banana (Musa spp.) is an important crop worldwide, but black Sigatoka disease caused by the fungus Pseudocercospora fijiensis threatens fruit production. In this work, we examined the potential of the endophytes of banana plants Enterobacter cloacae and Klebsiella pneumoniae, as antagonists of P. fijiensis and support plant growth in nutrient limited soils by N-transfer. The two bacterial isolates were identified by MALDI-TOF mass spectrometry and corroborated by 16S rRNA sequence analysis. Both bacteria were positive for beneficial traits such as N-fixation, indole acetic acid production, phosphate solubilization, negative for 1-aminocyclopropane 1-carboxylic acid deaminase and were antagonistic to P. fijiensis. To measure the effects on plant growth, the two plant bacteria and an E. coli strain (as non-endophyte), were inoculated weekly for 60 days as active cells (AC) and heat-killed cells (HKC) into plant microcosms without nutrients and compared to a water only treatment, and a mineral nutrients solution (MMN) treatment. Bacterial treatments increased growth parameters and prevented accelerated senescence, which was observed for water and mineral nutrients solution (MMN) treatments used as controls. Plants died after the first 20 days of being irrigated with water; irrigation with MMN enabled plants to develop some new leaves, but plants lost weight (−30%) during the same period. Plants treated with bacteria showed good growth, but E. cloacae AC treated plants had significantly greater biomass than the E. cloacae HKC. After 60 days, plants inoculated with E. cloacae AC showed intracellular bacteria within root cells, suggesting that a stable symbiosis was established. To evaluate the transference of organic N from bacteria into the plants, the 3 bacteria were grown with 15NH4Cl or Na15NO3 as the nitrogen source. The 15N transferred from bacteria to plant tissues was measured by pheophytin isotopomer abundance. The relative abundance of the isotopomers m/z 872.57, 873.57, 874.57, 875.57, 876.57 unequivocally demonstrated that plants acquired 15N atoms directly from bacterial cells, using them as a source of N, to support plant growth in restricted nutrient soils. E. cloacae might be a new alternative to promote growth and health of banana crops.
Collapse
Affiliation(s)
- Gloria M Macedo-Raygoza
- Engineering Institute, Universidad Autónoma de Baja California, Mexicali, Mexico.,Department of Chemistry, Universidad Autónoma de Guadalajara, Zapopan, Mexico
| | | | - Fernanda M Prado
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Katia R Prieto
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil.,PPG Ciência Animal, Universidade de Franca, Franca, Brazil
| | - Lydia F Yamaguchi
- Department of Fundamental Chemistry, Institute of Chemistry, Universidade de São Paulo, São Paulo, Brazil
| | - Massuo J Kato
- Department of Fundamental Chemistry, Institute of Chemistry, Universidade de São Paulo, São Paulo, Brazil
| | - Blondy B Canto-Canché
- Biotechnology Unit, Centro de Investigación Científica de Yucatán A.C., Mérida, Mexico
| | | | - Paolo Di Mascio
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - James F White
- Department of Plant Biology, School of Environmental and Biological Sciences Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | | |
Collapse
|
16
|
Bubici G, Kaushal M, Prigigallo MI, Gómez-Lama Cabanás C, Mercado-Blanco J. Biological Control Agents Against Fusarium Wilt of Banana. Front Microbiol 2019; 10:616. [PMID: 31024469 PMCID: PMC6459961 DOI: 10.3389/fmicb.2019.00616] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 03/11/2019] [Indexed: 11/13/2022] Open
Abstract
In the last century, the banana crop and industry experienced dramatic losses due to an epidemic of Fusarium wilt of banana (FWB), caused by Fusarium oxysporum f.sp. cubense (Foc) race 1. An even more dramatic menace is now feared due to the spread of Foc tropical race 4. Plant genetic resistance is generally considered as the most plausible strategy for controlling effectively such a devastating disease, as occurred for the first round of FWB epidemic. Nevertheless, with at least 182 articles published since 1970, biological control represents a large body of knowledge on FWB. Remarkably, many studies deal with biological control agents (BCAs) that reached the field-testing stage and even refer to high effectiveness. Some selected BCAs have been repeatedly assayed in independent trials, suggesting their promising value. Overall under field conditions, FWB has been controlled up to 79% by using Pseudomonas spp. strains, and up to 70% by several endophytes and Trichoderma spp. strains. Lower biocontrol efficacy (42-55%) has been obtained with arbuscular mycorrhizal fungi, Bacillus spp., and non-pathogenic Fusarium strains. Studies on Streptomyces spp. have been mostly limited to in vitro conditions so far, with very few pot-experiments, and none conducted in the field. The BCAs have been applied with diverse procedures (e.g., spore suspension, organic amendments, bioformulations, etc.) and at different stages of plant development (i.e., in vitro, nursery, at transplanting, post-transplanting), but there has been no evidence for a protocol better than another. Nonetheless, new bioformulation technologies (e.g., nanotechnology, formulation of microbial consortia and/or their metabolites, etc.) and tailor-made consortia of microbial strains should be encouraged. In conclusion, the literature offers many examples of promising BCAs, suggesting that biocontrol can greatly contribute to limit the damage caused by FWB. More efforts should be done to further validate the currently available outcomes, to deepen the knowledge on the most valuable BCAs, and to improve their efficacy by setting up effective formulations, application protocols, and integrated strategies.
Collapse
Affiliation(s)
- Giovanni Bubici
- Consiglio Nazionale delle Ricerche (CNR), Istituto per la Protezione Sostenibile delle Piante (IPSP), Bari, Italy
| | - Manoj Kaushal
- International Institute of Tropical Agriculture (IITA), Dar es Salaam, Tanzania
| | - Maria Isabella Prigigallo
- Consiglio Nazionale delle Ricerche (CNR), Istituto per la Protezione Sostenibile delle Piante (IPSP), Bari, Italy
| | | | - Jesús Mercado-Blanco
- Department of Crop Protection, Institute for Sustainable Agriculture (CSIC), Córdoba, Spain
| |
Collapse
|
17
|
Thomas P, Agrawal M, Bharathkumar CB. Use of Plant Preservative Mixture™ for establishing in vitro cultures from field plants: Experience with papaya reveals several PPM™ tolerant endophytic bacteria. PLANT CELL REPORTS 2017; 36:1717-1730. [PMID: 28748257 DOI: 10.1007/s00299-017-2185-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 07/12/2017] [Indexed: 06/07/2023]
Abstract
Prevalence of diverse PPM™-tolerant endophytic bacteria in papaya, the broad-spectrum microbicide specified for use in plant tissue cultures, capable of surviving covertly in MS-based medium, with implications in contamination management. Plant Preservative Mixture™ was employed for establishing papaya (Carica papaya) tissue cultures from field explants. Comparing three recommended practices for controlling endogenous microbial contaminants, axillary shoot tips (1.0-1.5 cm) from cv. Arka Prabhath were treated with PPM™ 5% for 4 h (T1), 50% for 10 min (T2) or 100% for 10 min (T3) and cultured in MS-based papaya establishment medium (PEM). By 4-6 weeks, all treatments proved non-rewarding with cultures succumbing either to microbial contamination (80% in T1) or phytotoxicity effect/contamination (90% in T2 and 95% in T3). Another trial adopting a multi-step surface sterilization treatment (carbendazim-cetrimide-HgCl2) followed by culturing in 0.05% PPM-supplemented PEM showed 35% obvious bacterial contamination compared with 40% in control. Single colonies from pooled bacterial growths were tested on 0.1% PPM-incorporated nutrient agar (NA) registering 60% isolates as PPM sensitive. Twenty PPM-surviving isolates were selected and identified. This showed 85% Gram-positive bacteria including 80% under phylum Firmicutes (55% spore-forming Bacillaceae and 25% Staphylococcaceae) and 5% Actinobacteria, and 15% Gram-negative Proteobacteria. About 50% isolates remained wholly non-obvious upon culturing on PEM while the rest showed slow growth with many displaying growth enhancement upon host tissue extract supplementation. Culturing the isolates on PPM-supplemented NA indicated 90-95% as tolerating 0.05-0.1% PPM and 65% overriding 0.2% PPM. The isolates, however, did not display obvious growth in PPM-supplemented PEM where the spore formers survived. The results indicate the prevalence of diverse PPM™-tolerant endophytic bacteria in papaya most of which survive covertly in MS-based medium and the need for taking this into account while using PPM™ for contamination management.
Collapse
Affiliation(s)
- Pious Thomas
- Division of Biotechnology, Endophytic and Molecular Microbiology Laboratory, ICAR-Indian Institute of Horticultural Research, Hessaraghatta Lake, Bengaluru, 560 089, India.
| | - Mukta Agrawal
- Division of Biotechnology, Endophytic and Molecular Microbiology Laboratory, ICAR-Indian Institute of Horticultural Research, Hessaraghatta Lake, Bengaluru, 560 089, India
| | - C B Bharathkumar
- Division of Biotechnology, Endophytic and Molecular Microbiology Laboratory, ICAR-Indian Institute of Horticultural Research, Hessaraghatta Lake, Bengaluru, 560 089, India
| |
Collapse
|
18
|
Thomas P, Sekhar AC. Cultivation Versus Molecular Analysis of Banana (Musa sp.) Shoot-Tip Tissue Reveals Enormous Diversity of Normally Uncultivable Endophytic Bacteria. MICROBIAL ECOLOGY 2017; 73:885-899. [PMID: 27833995 DOI: 10.1007/s00248-016-0877-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 10/10/2016] [Indexed: 05/06/2023]
Abstract
The interior of plants constitutes a unique environment for microorganisms with various organisms inhabiting as endophytes. Unlike subterranean plant parts, aboveground parts are relatively less explored for endophytic microbial diversity. We employed a combination of cultivation and molecular approaches to study the endophytic bacterial diversity in banana shoot-tips. Cultivable bacteria from 20 sucker shoot-tips of cv. Grand Naine included 37 strains under 16 genera and three phyla (Proteobacteria, Actinobacteria, Firmicutes). 16S rRNA gene-ribotyping approach on 799f and 1492r PCR-amplicons to avoid plant organelle sequences was ineffective showing limited bacterial diversity. 16S rRNA metagene profiling targeting the V3-V4 hypervariable region after filtering out the chloroplast (74.2 %), mitochondrial (22.9 %), and unknown sequences (1.1 %) revealed enormous bacterial diversity. Proteobacteria formed the predominant phylum (64 %) succeeded by Firmicutes (12.1 %), Actinobacteria (9.5 %), Bacteroidetes (6.4 %), Planctomycetes, Cyanobacteria, and minor shares (<1 %) of 14 phyla including several candidate phyla besides the domain Euryarchaeota (0.2 %). Microbiome analysis of single shoot-tips through 16S rRNA V3 region profiling showed similar taxonomic richness and diversity and was less affected by plant sequence interferences. DNA extraction kit ominously influenced the phylogenetic diversity. The study has revealed vast diversity of normally uncultivable endophytic bacteria prevailing in banana shoot-tips (20 phyla, 46 classes) with about 2.6 % of the deciphered 269 genera and 1.5 % of the 656 observed species from the same source of shoot-tips attained through cultivation. The predominant genera included several agriculturally important bacteria. The study reveals an immense ecosystem of endophytic bacteria in banana shoot tissues endorsing the earlier documentation of intracellular "Cytobacts" and "Peribacts" with possible roles in plant holobiome and hologenome.
Collapse
Affiliation(s)
- Pious Thomas
- Endophytic and Molecular Microbiology Laboratory, Division of Biotechnology, ICAR-Indian Institute of Horticultural Research (IIHR), Hessaraghatta Lake, Bengaluru, 560089, India.
| | - Aparna Chandra Sekhar
- Endophytic and Molecular Microbiology Laboratory, Division of Biotechnology, ICAR-Indian Institute of Horticultural Research (IIHR), Hessaraghatta Lake, Bengaluru, 560089, India
| |
Collapse
|
19
|
|
20
|
Thomas P, Sekhar AC. Effects Due to Rhizospheric Soil Application of an Antagonistic Bacterial Endophyte on Native Bacterial Community and Its Survival in Soil: A Case Study with Pseudomonas aeruginosa from Banana. Front Microbiol 2016; 7:493. [PMID: 27199897 PMCID: PMC4844927 DOI: 10.3389/fmicb.2016.00493] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 03/27/2016] [Indexed: 01/31/2023] Open
Abstract
Effective translation of research findings from laboratory to agricultural fields is essential for the success of biocontrol or growth promotion trials employing beneficial microorganisms. The rhizosphere is to be viewed holistically as a dynamic ecological niche comprising of diverse microorganisms including competitors and noxious antagonists to the bio-inoculant. This study was undertaken to assess the effects due to the soil application of an endophytic bacterium with multiple pathogen antagonistic potential on native bacterial community and its sustenance in agricultural soil. Pseudomonas aeruginosa was employed as a model system considering its frequent isolation as an endophyte, wide antagonistic effects reported against different phytopathogens and soil pests, and that the species is a known human pathogen which makes its usage in agriculture precarious. Employing the strain ‘GNS.13.2a’ from banana, its survival in field soil and the effects upon soil inoculation were investigated by monitoring total culturable bacterial fraction as the representative indicator of soil microbial community. Serial dilution plating of uninoculated control versus P. aeruginosa inoculated soil from banana rhizosphere indicated a significant reduction in native bacterial cfu soon after inoculation compared with control soil as assessed on cetrimide- nalidixic acid selective medium against nutrient agar. Sampling on day-4 showed a significant reduction in P. aeruginosa cfu in inoculated soil and a continuous dip thereafter registering >99% reduction within 1 week while the native bacterial population resurged with cfu restoration on par with control. This was validated in contained trials with banana plants. Conversely, P. aeruginosa showed static cfu or proliferation in axenic-soil. Lateral introduction of soil microbiome in P. aeruginosa established soil under axenic conditions or its co-incubation with soil microbiota in suspension indicated significant adverse effects by native microbial community. Direct agar-plate challenge assays with individual environmental bacterial isolates displayed varying interactive or antagonistic effects. In effect, the application of P. aeruginosa in rhizospheric soil did not serve any net benefit in terms of sustained survival. Conversely, it caused a disturbance to the native soil bacterial community. The findings highlight the need for monitoring the bio-inoculant(s) in field-soil and assessing the interactive effects with native microbial community before commercial recommendation. varying interactive or antagonistic effects. In effect, the application of P. aeruginosa in rhizospheric soil did not serve any net benefit in terms of sustained survival. Conversely, it caused a disturbance to the native soil bacterial community. The findings highlight the need for monitoring the bio-inoculant(s) in field-soil and assessing the interactive effects with native microbial community before commercial recommendation.
Collapse
Affiliation(s)
- Pious Thomas
- Endophytic and Molecular Microbiology Laboratory, Division of Biotechnology, ICAR-Indian Institute of Horticultural Research Bengaluru, India
| | - Aparna C Sekhar
- Endophytic and Molecular Microbiology Laboratory, Division of Biotechnology, ICAR-Indian Institute of Horticultural Research Bengaluru, India
| |
Collapse
|
21
|
Thomas P, Sekhar AC, Upreti R, Mujawar MM, Pasha SS. Optimization of single plate-serial dilution spotting (SP-SDS) with sample anchoring as an assured method for bacterial and yeast cfu enumeration and single colony isolation from diverse samples. ACTA ACUST UNITED AC 2015; 8:45-55. [PMID: 28352572 PMCID: PMC4980700 DOI: 10.1016/j.btre.2015.08.003] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 07/28/2015] [Accepted: 08/05/2015] [Indexed: 11/28/2022]
Abstract
SP-SDS forms a simple tool for bacterial cfu estimation for samples with unknown cfu. Prime recommendation of anchoring specimens to fixed initial OD or a standard base. Six serial dilutions of 20 μl each applied per 9-cm plate followed by manual counting. Suits pure and mixed bacterial stocks, spores, yeasts and composite samples. Superior to alternate techniques like track-dilution, drop-plating or drop-spotting.
We propose a simple technique for bacterial and yeast cfu estimations from diverse samples with no prior idea of viable counts, designated as single plate-serial dilution spotting (SP-SDS) with the prime recommendation of sample anchoring (100 stocks). For pure cultures, serial dilutions were prepared from 0.1 OD (100) stock and 20 μl aliquots of six dilutions (101–106) were applied as 10–15 micro-drops in six sectors over agar-gelled medium in 9-cm plates. For liquid samples 100–105 dilutions, and for colloidal suspensions and solid samples (10% w/v), 101–106 dilutions were used. Following incubation, at least one dilution level yielded 6–60 cfu per sector comparable to the standard method involving 100 μl samples. Tested on diverse bacteria, composite samples and Saccharomyces cerevisiae, SP-SDS offered wider applicability over alternative methods like drop-plating and track-dilution for cfu estimation, single colony isolation and culture purity testing, particularly suiting low resource settings.
Collapse
Key Words
- Agricultural biotechnology
- CNA, cetrimide- nalixic acid- agar
- Environmental biotechnology
- Food microbiology
- NA, nutrient agar
- NB, nutrient broth
- OD, optical density
- PDA, potato dextrose agar
- PP, polypropylene bag
- PS, peptone-salt
- Pour-plating
- SATS, spotting- and- tilt- spreading
- SP-SDS, single plate-serial dilution spotting
- Spread-plating
- cfu Estimation
- cfu, colony forming units
- tmtc, too many to count
Collapse
Affiliation(s)
- Pious Thomas
- Division of Biotechnology, Indian Institute of Horticultural Research, Hessaraghatta Lake, Bangalore 560089, India
| | - Aparna C Sekhar
- Division of Biotechnology, Indian Institute of Horticultural Research, Hessaraghatta Lake, Bangalore 560089, India
| | - Reshmi Upreti
- Division of Biotechnology, Indian Institute of Horticultural Research, Hessaraghatta Lake, Bangalore 560089, India
| | - Mohammad M Mujawar
- Division of Biotechnology, Indian Institute of Horticultural Research, Hessaraghatta Lake, Bangalore 560089, India
| | - Sadiq S Pasha
- Division of Biotechnology, Indian Institute of Horticultural Research, Hessaraghatta Lake, Bangalore 560089, India
| |
Collapse
|