1
|
Wiezel GA, Oliveira IS, Reis MB, Ferreira IG, Cordeiro KR, Bordon KCF, Arantes EC. The complex repertoire of Tityus spp. venoms: Advances on their composition and pharmacological potential of their toxins. Biochimie 2024; 220:144-166. [PMID: 38176606 DOI: 10.1016/j.biochi.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/30/2023] [Accepted: 12/30/2023] [Indexed: 01/06/2024]
Abstract
Animal venoms are a rich and complex source of components, including peptides (such as neurotoxins, anionic peptides and hypotensins), lipids, proteins (such as proteases, hyaluronidases and phospholipases) and inorganic compounds, which affect all biological systems of the envenoming victim. Their action may result in a wide range of clinical manifestations, including tachy/bradycardia, hyper/hypotension, disorders in blood coagulation, pain, edema, inflammation, fever, muscle paralysis, coma and even death. Scorpions are one of the most studied venomous animals in the world and interesting bioactive molecules have been isolated and identified from their venoms over the years. Tityus spp. are among the scorpions with high number of accidents reported in the Americas, especially in Brazil. Their venoms have demonstrated interesting results in the search for novel agents with antimicrobial, anti-viral, anti-parasitic, hypotensive, immunomodulation, anti-insect, antitumor and/or antinociceptive activities. Furthermore, other recent activities still under investigation include drug delivery action, design of anti-epileptic drugs, investigation of sodium channel function, treatment of erectile disfunction and priapism, improvement of scorpion antivenom and chelating molecules activity. In this scenario, this paper focuses on reviewing advances on Tityus venom components mainly through the modern omics technologies as well as addressing potential therapeutic agents from their venoms and highlighting this abundant source of pharmacologically active molecules with biotechnological application.
Collapse
Affiliation(s)
- Gisele A Wiezel
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida Do Café s/n, Ribeirão Preto, SP, Brazil.
| | - Isadora S Oliveira
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida Do Café s/n, Ribeirão Preto, SP, Brazil; Department of Biotechnology and Biomedicine, Technical University of Denmark, Søtolfts Plads, Building 239 Room 006, Kongens Lyngby, 2800, Denmark.
| | - Mouzarllem B Reis
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida Do Café s/n, Ribeirão Preto, SP, Brazil.
| | - Isabela G Ferreira
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida Do Café s/n, Ribeirão Preto, SP, Brazil.
| | - Kalynka R Cordeiro
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida Do Café s/n, Ribeirão Preto, SP, Brazil.
| | - Karla C F Bordon
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida Do Café s/n, Ribeirão Preto, SP, Brazil.
| | - Eliane C Arantes
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida Do Café s/n, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
2
|
de Oliveira IS, Alano-da-Silva NM, Ferreira IG, Cerni FA, Sachett JDAG, Monteiro WM, Pucca MB, Arantes EC. Understanding the complexity of Tityus serrulatus venom: A focus on high molecular weight components. J Venom Anim Toxins Incl Trop Dis 2024; 30:e20230046. [PMID: 38317796 PMCID: PMC10843179 DOI: 10.1590/1678-9199-jvatitd-2023-0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/04/2023] [Indexed: 02/07/2024] Open
Abstract
Tityus serrulatus scorpion is responsible for a significant number of envenomings in Brazil, ranging from mild to severe, and in some cases, leading to fatalities. While supportive care is the primary treatment modality, moderate and severe cases require antivenom administration despite potential limitations and adverse effects. The remarkable proliferation of T. serrulatus scorpions, attributed to their biology and asexual reproduction, contributes to a high incidence of envenomation. T. serrulatus scorpion venom predominantly consists of short proteins acting as neurotoxins (α and β), that primarily target ion channels. Nevertheless, high molecular weight compounds, including metalloproteases, serine proteases, phospholipases, and hyaluronidases, are also present in the venom. These compounds play a crucial role in envenomation, influencing the severity of symptoms and the spread of venom. This review endeavors to comprehensively understand the T. serrulatus scorpion venom by elucidating the primary high molecular weight compounds and exploring their potential contributions to envenomation. Understanding these compounds' mechanisms of action can aid in developing more effective treatments and prevention strategies, ultimately mitigating the impact of scorpion envenomation on public health in Brazil.
Collapse
Affiliation(s)
- Isadora Sousa de Oliveira
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Nicoly Malachize Alano-da-Silva
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Isabela Gobbo Ferreira
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Felipe Augusto Cerni
- Health and Sciences Postgraduate Program, Federal University of Roraima, Boa Vista, RR, Brazil
| | - Jacqueline de Almeida Gonçalves Sachett
- School of Health Sciences, Amazonas State University, Manaus, AM, Brazil
- Department of Teaching and Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, AM, Brazil
| | - Wuelton Marcelo Monteiro
- School of Health Sciences, Amazonas State University, Manaus, AM, Brazil
- Department of Teaching and Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, AM, Brazil
| | - Manuela Berto Pucca
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University, Araraquara, SP, Brazil
| | - Eliane Candiani Arantes
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
3
|
García-Villalvazo PE, Jiménez-Vargas JM, Lino-López GJ, Meneses EP, Bermúdez-Guzmán MDJ, Barajas-Saucedo CE, Delgado Enciso I, Possani LD, Valdez-Velazquez LL. Unveiling the Protein Components of the Secretory-Venom Gland and Venom of the Scorpion Centruroides possanii (Buthidae) through Omic Technologies. Toxins (Basel) 2023; 15:498. [PMID: 37624255 PMCID: PMC10467079 DOI: 10.3390/toxins15080498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/28/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023] Open
Abstract
Centruroides possanii is a recently discovered species of "striped scorpion" found in Mexico. Certain species of Centruroides are known to be toxic to mammals, leading to numerous cases of human intoxications in the country. Venom components are thought to possess therapeutic potential and/or biotechnological applications. Hence, obtaining and analyzing the secretory gland transcriptome and venom proteome of C. possanii is relevant, and that is what is described in this communication. Since this is a newly described species, first, its LD50 to mice was determined and estimated to be 659 ng/g mouse weight. Using RNA extracted from this species and preparing their corresponding cDNA fragments, a transcriptome analysis was obtained on a Genome Analyzer (Illumina) using the 76-base pair-end sequencing protocol. Via high-throughput sequencing, 19,158,736 reads were obtained and ensembled in 835,204 sequences. Of them, 28,399 transcripts were annotated with Pfam. A total of 244 complete transcripts were identified in the transcriptome of C. possanii. Of these, 109 sequences showed identity to toxins that act on ion channels, 47 enzymes, 17 protease inhibitors (PINs), 11 defense peptides (HDPs), and 60 in other components. In addition, a sample of the soluble venom obtained from this scorpion was analyzed using an Orbitrap Velos apparatus, which allowed for identification by liquid chromatography followed by mass spectrometry (LC-MS/MS) of 70 peptides and proteins: 23 toxins, 27 enzymes, 6 PINs, 3 HDPs, and 11 other components. Until now, this work has the highest number of scorpion venom components identified through omics technologies. The main novel findings described here were analyzed in comparison with the known data from the literature, and this process permitted some new insights in this field.
Collapse
Affiliation(s)
| | - Juana María Jiménez-Vargas
- Facultad de Ciencias Químicas, Universidad de Colima, Colima 28400, Mexico; (P.E.G.-V.); (J.M.J.-V.); (C.E.B.-S.)
- Consejo Nacional de Humanidades, Ciencia y Tecnología (CONAHCYT), Mexico City 03940, Mexico
| | - Gisela Jareth Lino-López
- Centro Nacional de Referencia de Control Biológico, Dirección General de Sanidad Vegetal SENASICASADER, Colima 28110, Mexico;
| | - Erika Patricia Meneses
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico;
| | | | | | | | - Lourival Domingos Possani
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico;
| | | |
Collapse
|
4
|
Menezes LFS, Maranhão MM, Tibery DV, de Souza ACB, da Mata DO, Campos LA, Souza AA, Freitas SMD, Schwartz EF. Ts17, a Tityus serrulatus β-toxin structurally related to α-scorpion toxins. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184057. [PMID: 36240866 DOI: 10.1016/j.bbamem.2022.184057] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 09/18/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022]
Abstract
Ts17 was purified from the venom of the scorpion Tityus serrulatus, the most dangerous scorpion species in Brazil. The activity on Nav1.1-Nav1.7 channels was electrophysiologically characterized by patch-clamp technique. Ts17 amino acid sequence indicated high similarity to alpha-scorpion toxins; however, it presented beta-toxin activity, altering the kinetics of the Na+-channels. The most affected subtypes during activation (with and without prepulse) and inactivation phases were Nav1.2 and Nav1.5, respectively. For recovery from inactivation, the most affected voltage-gated sodium channel was Nav1.5. Circular dichroism spectra showed that Ts17 presents mainly β-sheet and unordered structures at all analyzed pHs, and the maximum value of α-helix was found at pH 4.0 (13.3 %). Based on the results, Ts17 might be used as a template to develop a new cardiac drug. Key contribution Purification of Ts17 from Tityus serrulatus, electrophysiological characterization of Ts17 on voltage-gated sodium channel subtypes, β-toxin classification.
Collapse
Affiliation(s)
- Luis Felipe Santos Menezes
- Laboratório de Neurofarmacologia, Departamento de Biologia Celular, Universidade de Brasília, Brasília 70910-900, Distrito Federal, Brazil
| | - Mariza Mendanha Maranhão
- Laboratório de Neurofarmacologia, Departamento de Biologia Celular, Universidade de Brasília, Brasília 70910-900, Distrito Federal, Brazil
| | - Diogo Vieira Tibery
- Laboratório de Neurofarmacologia, Departamento de Biologia Celular, Universidade de Brasília, Brasília 70910-900, Distrito Federal, Brazil
| | - Adolfo Carlos Barros de Souza
- Laboratório de Neurofarmacologia, Departamento de Biologia Celular, Universidade de Brasília, Brasília 70910-900, Distrito Federal, Brazil
| | - Daniel Oliveira da Mata
- Laboratório de Neurofarmacologia, Departamento de Biologia Celular, Universidade de Brasília, Brasília 70910-900, Distrito Federal, Brazil
| | - Leandro Ambrósio Campos
- Laboratório de Neurofarmacologia, Departamento de Biologia Celular, Universidade de Brasília, Brasília 70910-900, Distrito Federal, Brazil; Instituto de Ciências da Saúde, Universidade Paulista, Brasília 70390-130, Distrito Federal, Brazil
| | - Amanda Araújo Souza
- Brazilian Biosciences National Laboratory (LNBio), National Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, São Paulo, Brazil
| | - Sonia Maria de Freitas
- Laboratório de Biofísica Molecular, Departamento de Biologia Celular, Universidade de Brasília, Brasília 70910-900, Distrito Federal, Brazil
| | - Elisabeth Ferroni Schwartz
- Laboratório de Neurofarmacologia, Departamento de Biologia Celular, Universidade de Brasília, Brasília 70910-900, Distrito Federal, Brazil.
| |
Collapse
|
5
|
de Melo MMA, Oliveira VDS, de Queiroz Neto MF, Paiva WDS, Torres-Rêgo M, Silva SRB, Pontes DDL, Rocha HAO, de Souza MÂF, da Silva-Júnior AA, Fernandes-Pedrosa MDF. TanP: A Multifunctional Anionic Peptide From Tityus stigmurus Scorpion Venom. Front Mol Biosci 2022; 8:785316. [PMID: 35111812 PMCID: PMC8802776 DOI: 10.3389/fmolb.2021.785316] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/13/2021] [Indexed: 12/30/2022] Open
Abstract
Anionic peptides of scorpions are molecules rich in aspartic and/or glutamic acid residues and correspond to a class of peptides without disulfide bonds that are still little explored. TanP is a linear anionic peptide (50 amino acid residues and net charge -20) present in the venom gland of the scorpion, Tityus stigmurus, with chelating properties for Cu2+ ion and immunomodulatory properties. The therapeutic application of chelating molecules is related to cases of acute or chronic intoxication by metals, neurodegenerative diseases, hematological diseases, healing of skin wounds, cardiovascular diseases, and cancer. In this approach, the chelating activity of TanP was evaluated in relation to new metal ions (Fe2+ and Zn2+) of biological importance, as well as its antioxidant, hemostatic, immunomodulatory, and healing potential, aiming to expand the biological and biotechnological potential of this peptide. TanP (25 µM) was able to form stable complexes with Fe2+ in a ratio of 1:5 (TanP: Fe2+). Theoretical results suggest that TanP can work as a sensor to identify and quantify Fe2+ ions. The fluorescence intensity of TanP (1.12 µM) decreased significantly after the addition of Fe2+, obtaining the highest ratio 1: 7.4 (TanP: Fe2+) that led to the lowest fluorescence intensity. For Zn2+, no relevant spectral change was noted. TanP (50 µM) showed a maximum of 3% of hemolytic activity, demonstrating biocompatibility, as well as exhibiting a 1,1-diphenyl-2-picrylhydrazyl radical-scavenging activity of above 70% at all the concentrations tested (1-25 μM), and 89.7% iron-chelating activity at 25 μM and 96% hydroxyl radical-scavenging activity at 73.6 μM. In addition, TanP (12.5 and 25 µM) revealed an anticoagulant effect, prolonging the clotting time in prothrombin time and activated partial thromboplastin time assays, with no fibrinogenolytic activity. TanP (12.5 and 25 µM) induced the release of TNF-α by murine macrophages, in the absence of lipopolysaccharides, with a concentration-dependent increase and also stimulated the migration of 3T3 cells in the in vitro healing assay. Thus, TanP revealed a multifunctional potential, being useful as a prototype for the development of new therapeutic and biotechnological agents.
Collapse
Affiliation(s)
- Menilla Maria Alves de Melo
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Verônica da Silva Oliveira
- Laboratory of Coordination Chemistry and Polymers, Institute of Chemistry, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Moacir Fernandes de Queiroz Neto
- Laboratory of Natural Polymer Biotechnology, Department of Biochemistry, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Weslley de Souza Paiva
- Laboratory of Natural Polymer Biotechnology, Department of Biochemistry, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Manoela Torres-Rêgo
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte, Natal, Brazil
- Laboratory of Synthesis and Isolation of Organic Compounds, Chemistry Institute, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | - Daniel de Lima Pontes
- Laboratory of Coordination Chemistry and Polymers, Institute of Chemistry, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Hugo Alexandre Oliveira Rocha
- Laboratory of Natural Polymer Biotechnology, Department of Biochemistry, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | - Arnóbio Antônio da Silva-Júnior
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte, Natal, Brazil
| | | |
Collapse
|
6
|
Kalapothakis Y, Miranda K, Pereira AH, Witt ASA, Marani C, Martins AP, Leal HG, Campos-Júnior E, Pimenta AMC, Borges A, Chávez-Olórtegui C, Kalapothakis E. Novel components of Tityus serrulatus venom: A transcriptomic approach. Toxicon 2020; 189:91-104. [PMID: 33181162 DOI: 10.1016/j.toxicon.2020.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/01/2020] [Accepted: 11/08/2020] [Indexed: 12/13/2022]
Abstract
Several research groups have studied the components produced by the venom gland of the scorpion Tityus serrulatus, which has one of the most lethal venoms in the world. Various methodologies have been employed to clarify the complex mechanisms of action of these components, especially neurotoxins and enzymes. Transcriptomes and proteomes have provided important information for pharmacological, biochemical, and immunological research. Next-generation sequencing (NGS) has allowed the description of new transcripts and completion of partial sequence descriptions for peptides, especially those with low expression levels. In the present work, after NGS sequencing, we searched for new putative venom components. We present a total of nine new transcripts with neurotoxic potential (Ts33-41) and describe the sequences of one hyaluronidase (TsHyal_4); three enzymes involved in amidation (peptidyl-glycine alpha-amidating monooxygenase A, peptidyl-alpha-hydroxyglycine alpha-amidating lyase, and peptidylglycine alpha-hydroxylating monooxygenase), which increases the lethal potential of neurotoxins; and also the enzyme Ts_Chitinase1, which may be involved in the venom's digestive action. In addition, we determined the level of transcription of five groups: toxins, metalloproteases, hyaluronidases, chitinases and amidation enzymes, including new components found in this study. Toxins are the predominant group with an expression level of 91.945%, followed by metalloproteases with only 7.790% and other groups representing 0.265%.
Collapse
Affiliation(s)
- Yan Kalapothakis
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Kelton Miranda
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Adriana Heloísa Pereira
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Amanda S A Witt
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Camila Marani
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Ana Paula Martins
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Hortênsia Gomes Leal
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Edimar Campos-Júnior
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Adriano M C Pimenta
- Departamento de Bioquímica-Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Adolfo Borges
- Centro para el Desarrollo de la Investigación Científica (CEDIC), Manduvirá 635 c/15 de Agosto, Asunción, Paraguay
| | - Carlos Chávez-Olórtegui
- Departamento de Bioquímica-Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Evanguedes Kalapothakis
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil.
| |
Collapse
|
7
|
Porto DL, da Silva ARR, Oliveira ADS, Nogueira FHA, Pedrosa MDFF, Aragão CFS. Development and validation of a stability indicating HPLC-DAD method for the determination of the peptide stigmurin. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
8
|
Al-Malki ES, Abdelsater N. In vitro Scolicidal effects of Androctonus crassicauda (Olivier, 1807) venom against the protoscolices of Echinococcus granulosus. Saudi J Biol Sci 2020; 27:1760-1765. [PMID: 32565693 PMCID: PMC7296479 DOI: 10.1016/j.sjbs.2020.05.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/30/2020] [Accepted: 05/02/2020] [Indexed: 11/25/2022] Open
|
9
|
de Oliveira Yamashita F, Torres-Rêgo M, dos Santos Gomes JA, Félix-Silva J, Ramos Passos JG, de Santis Ferreira L, da Silva-Júnior AA, Zucolotto SM, Fernandes-Pedrosa MDF. Mangaba (Hancornia speciosa Gomes) fruit juice decreases acute pulmonary edema induced by Tityus serrulatus venom: Potential application for auxiliary treatment of scorpion stings. Toxicon 2020; 179:42-52. [DOI: 10.1016/j.toxicon.2020.02.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/18/2020] [Accepted: 02/29/2020] [Indexed: 02/08/2023]
|
10
|
Borges A, Lomonte B, Angulo Y, Acosta de Patiño H, Pascale JM, Otero R, Miranda RJ, De Sousa L, Graham MR, Gómez A, Pardal PP, Ishikawa E, Bonilla F, Castillo A, de Avila RAM, Gómez JP, Caro-López JA. Venom diversity in the Neotropical scorpion genus Tityus: Implications for antivenom design emerging from molecular and immunochemical analyses across endemic areas of scorpionism. Acta Trop 2020; 204:105346. [PMID: 31982434 DOI: 10.1016/j.actatropica.2020.105346] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/14/2020] [Accepted: 01/14/2020] [Indexed: 10/25/2022]
Abstract
Scorpions of the Neotropical genus Tityus are responsible for most severe envenomations in the Caribbean, South America, and Lower Central America (LCA). Although Tityus is taxonomically complex, contains high toxin polymorphism, and produces variable clinical manifestations, treatment is limited to antivenoms produced against species with restricted distributions. In this study, we explored the compositional and antigenic diversity of Tityus venoms to provide improved guidelines for the use of available antivenoms at a broader geographic scale. We used immunoblotting, competitive ELISA, and in vivo studies to compare reactivity against commercial antivenoms from Brazil, Venezuela, and Mexico, as well as MALDI-TOF mass spectrometry, cDNA sequencing, and phylogenetic analyses to assess venom sodium channel-active toxin (NaTx) content from medically important Tityus populations inhabiting Brazil, Colombia, Costa Rica, Ecuador, Panama, Trinidad and Tobago, and Venezuela. Additionally, we raised rabbit antibodies against Tityus venoms from LCA to test for cross-reactivity with congeneric species. The results suggest that Tityus spp. possess high venom antigenic diversity, underlying the existence of four toxinological regions in Tropical America, based on venom composition and immunochemical criteria: LCA/Colombia/Amazonia (Region I), Venezuela (Region II), southeast South America (Region III), and a fourth region encompassing species related to toxinologically divergent Tityus cerroazul. Importantly, our molecular and cross-reactivity results highlight the need for new antivenoms against species inhabiting Region I, where scorpions may produce venoms that are not significantly reactive against available antivenoms.
Collapse
|
11
|
Determination of hyaluronidase activity in Tityus spp. Scorpion venoms and its inhibition by Brazilian antivenoms. Toxicon 2019; 167:134-143. [PMID: 31207348 DOI: 10.1016/j.toxicon.2019.06.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/05/2019] [Accepted: 06/14/2019] [Indexed: 01/29/2023]
Abstract
Hyaluronidases (HYALs) are enzymes ubiquitously found in venoms from diverse animals and seem to be related to venom spreading. HYAL activity might be important to Tityus spp. envenoming, since anti-Tityus serrulatus HYAL (TsHYAL) rabbit antibodies neutralize T. serrulatus venom (TsV) lethality. The present work aimed to verify and compare HYAL activity of venoms from other Brazilian Tityus spp. (Tityus bahiensis, Tityus stigmurus and Tityus obscurus) and to test whether anti-TsHYAL antibodies and Brazilian horse therapeutic scorpion antivenom (produced by Fundação Ezequiel Dias (FUNED), Butantan and Vital Brazil Institutes) can recognize and inhibit HYAL activity from these venoms. In ELISA assays, anti-TsHYAL and scorpion antivenoms recognized T. serrulatus, T. bahiensis and T. stigmurus venoms, however, they demonstrated weaker reaction with T. obscurus, which was also observed in Western blotting assay. Epitope mapping by SPOT assay revealed different binding patterns for each antivenom. The assay showed a weaker binding of scorpion antivenom produced by FUNED to peptides recognized by anti-TsHYAL antibodies. Anti-TsHYAL antibodies and antivenoms produced by Butantan and Vital Brazil institutes inhibited HYAL activity of all tested venoms in vitro, whereas FUNED antivenom did not show the same property. These results call attention to the importance of hyaluronidase inhibition, that can aid the improvement of antivenom production.
Collapse
|
12
|
Inhibition of Tityus serrulatus venom hyaluronidase affects venom biodistribution. PLoS Negl Trop Dis 2019; 13:e0007048. [PMID: 31002673 PMCID: PMC6493768 DOI: 10.1371/journal.pntd.0007048] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 05/01/2019] [Accepted: 03/14/2019] [Indexed: 01/05/2023] Open
Abstract
Background The hyaluronidase enzyme is generally known as a spreading factor in animal venoms. Although its activity has been demonstrated in several organisms, a deeper knowledge about hyaluronidase and the venom spreading process from the bite/sting site until its elimination from the victim's body is still in need. Herein, we further pursued the goal of demonstrating the effects of inhibition of T. serrulatus venom (TsV) hyaluronidase on venom biodistribution. Methods and principal findings We used technetium-99m radiolabeled Tityus serrulatus venom (99mTc-TsV) to evaluate the venom distribution kinetics in mice. To understand the hyaluronidase’s role in the venom’s biodistribution, 99mTc-TsV was immunoneutralized with specific anti-T.serrulatus hyaluronidase serum. Venom biodistribution was monitored by scintigraphic images of treated animals and by measuring radioactivity levels in tissues as heart, liver, lungs, spleen, thyroid, and kidneys. In general, results revealed that hyaluronidase inhibition delays venom components distribution, when compared to the non-neutralized 99mTc-TsV control group. Scintigraphic images showed that the majority of the immunoneutralized venom is retained at the injection site, whereas non-treated venom is quickly biodistributed throughout the animal’s body. At the first 30 min, concentration peaks are observed in the heart, liver, lungs, spleen, and thyroid, which gradually decreases over time. On the other hand, immunoneutralized 99mTc-TsV takes 240 min to reach high concentrations in the organs. A higher concentration of immunoneutralized 99mTc-TsV was observed in the kidneys in comparison with the non-treated venom. Further, in situ neutralization of 99mTc-TsV by anti-T.serrulatus hyaluronidase serum at zero, ten, and 30 min post venom injection showed that late inhibition of hyaluronidase can still affect venom biodistribution. In this assay, immunoneutralized 99mTc-TsV was accumulated in the bloodstream until 120 or 240 min after TsV injection, depending on anti-hyaluronidase administration time. Altogether, our data show that immunoneutralization of hyaluronidase prevents venom spreading from the injection site. Conclusions By comparing TsV biodistribution in the absence or presence of anti-hyaluronidase serum, the results obtained in the present work show that hyaluronidase has a key role not only in the venom spreading from the inoculation point to the bloodstream, but also in venom biodistribution from the bloodstream to target organs. Our findings demonstrate that hyaluronidase is indeed an important spreading factor of TsV and its inhibition can be used as a novel first-aid strategy in envenoming. Hyaluronidases are known as the venom components responsible for disseminating toxins from the injection site to the victim’s organism. Therefore, understanding how the venom distribution occurs and the role of hyaluronidases in this process is crucial in the field of toxinology. In this study, we inhibited Tityus serrulatus venom (TsV) hyaluronidase’s action using specific anti-Ts-hyaluronidase antibodies. Labeling TsV with a radioactive compound enabled monitoring of its biodistribution in mice. Our results show that, upon hyaluronidase inhibition, TsV remains at the injection site for longer, and only a reduced amount of the venom reaches the bloodstream. Consequently, the venom arrives later at target organs like the heart, liver, lungs, spleen, and thyroid. Considering the possible application of hyaluronidase inhibition as a therapeutic resource in envenoming first-aid treatment, we performed the administration of hyaluronidase neutralizing antibodies at different times after TsV injection. We observed that TsV remains in the bloodstream and its arrival at tissues is delayed by 120 or 240 min after TsV injection, depending on anti-hyaluronidase administration times. Our data show that hyaluronidase plays a crucial role in TsV spreading from the injection site to the bloodstream and from the bloodstream to the organs, thus suggesting that its inhibition can help to improve envenoming’s treatment.
Collapse
|
13
|
Pimenta RJG, Brandão-Dias PFP, Leal HG, do Carmo AO, de Oliveira-Mendes BBR, Chávez-Olórtegui C, Kalapothakis E. Selected to survive and kill: Tityus serrulatus, the Brazilian yellow scorpion. PLoS One 2019; 14:e0214075. [PMID: 30943232 PMCID: PMC6447240 DOI: 10.1371/journal.pone.0214075] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 03/06/2019] [Indexed: 12/04/2022] Open
Abstract
Annually, more than 1.2 million scorpion stings and more than 3,000 deaths occur worldwide. Tityus serrulatus Lutz and Mello, 1922 (Scorpiones, Buthidae) is the most medically relevant species in Brazil where it is spreading rapidly and causing over 90,000 cases of envenomation yearly. We monitored T. serrulatus longevity and ability to reproduce under conditions of food and/or water deprivation. We found that T. serrulatus is highly tolerant to food deprivation, with individuals enduring up to 400 days without food. On the other hand, access to water played a pivotal role in T. serrulatus survival. Food and water deprived scorpions showed weight reduction. Reproduction occurred throughout the year for food-deprived scorpions and controls, but not in the water-deprived groups. Remarkably, food-deprived animals were able to give birth after 209 days of starvation. Tityus serrulatus resistance to food and water deprivation is likely to be an additional factor underlying this species' geographic expansion and the difficulties encountered in controlling it.
Collapse
Affiliation(s)
- Ricardo José Gonzaga Pimenta
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Pedro Ferreira Pinto Brandão-Dias
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Hortênsia Gomes Leal
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Anderson Oliveira do Carmo
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Carlos Chávez-Olórtegui
- Departamento de Bioquímica-Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Evanguedes Kalapothakis
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
14
|
Purification and Biochemical Characterization of TsMS 3 and TsMS 4: Neuropeptide-Degrading Metallopeptidases in the Tityus serrulatus Venom. Toxins (Basel) 2019; 11:toxins11040194. [PMID: 30935107 PMCID: PMC6520902 DOI: 10.3390/toxins11040194] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/22/2019] [Accepted: 03/28/2019] [Indexed: 12/14/2022] Open
Abstract
Although omics studies have indicated presence of proteases on the Tityus serrulatus venom (TsV), little is known about the function of these molecules. The TsV contains metalloproteases that cleave a series of human neuropeptides, including the dynorphin A (1-13) and the members of neuropeptide Y family. Aiming to isolate the proteases responsible for this activity, the metalloserrulase 3 and 4 (TsMS 3 and TsMS 4) were purified after two chromatographic steps and identified by mass spectrometry analysis. The biochemical parameters (pH, temperature and cation effects) were determined for both proteases, and the catalytic parameters (Km, kcat, cleavage sites) of TsMS 4 over fluorescent substrate were obtained. The metalloserrulases have a high preference for cleaving neuropeptides but presented different primary specificities. For example, the Leu-enkephalin released from dynorphin A (1-13) hydrolysis was exclusively performed by TsMS 3. Neutralization assays using Butantan Institute antivenoms show that both metalloserrulases were well blocked. Although TsMS 3 and TsMS 4 were previously described through cDNA library studies using the venom gland, this is the first time that both these toxins were purified. Thus, this study represents a step further in understanding the mechanism of scorpion venom metalloproteases, which may act as possible neuropeptidases in the envenomation process.
Collapse
|
15
|
The diversity of venom components of the scorpion species Paravaejovis schwenkmeyeri (Scorpiones: Vaejovidae) revealed by transcriptome and proteome analyses. Toxicon 2018; 151:47-62. [DOI: 10.1016/j.toxicon.2018.06.085] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/20/2018] [Accepted: 06/25/2018] [Indexed: 12/11/2022]
|
16
|
Ward MJ, Ellsworth SA, Nystrom GS. A global accounting of medically significant scorpions: Epidemiology, major toxins, and comparative resources in harmless counterparts. Toxicon 2018; 151:137-155. [DOI: 10.1016/j.toxicon.2018.07.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/25/2018] [Accepted: 07/05/2018] [Indexed: 01/18/2023]
|
17
|
de Oliveira UC, Nishiyama MY, dos Santos MBV, Santos-da-Silva ADP, Chalkidis HDM, Souza-Imberg A, Candido DM, Yamanouye N, Dorce VAC, Junqueira-de-Azevedo IDLM. Proteomic endorsed transcriptomic profiles of venom glands from Tityus obscurus and T. serrulatus scorpions. PLoS One 2018; 13:e0193739. [PMID: 29561852 PMCID: PMC5862453 DOI: 10.1371/journal.pone.0193739] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 02/16/2018] [Indexed: 11/18/2022] Open
Abstract
Background Except for the northern region, where the Amazonian black scorpion, T. obscurus, represents the predominant and most medically relevant scorpion species, Tityus serrulatus, the Brazilian yellow scorpion, is widely distributed throughout Brazil, causing most envenoming and fatalities due to scorpion sting. In order to evaluate and compare the diversity of venom components of Tityus obscurus and T. serrulatus, we performed a transcriptomic investigation of the telsons (venom glands) corroborated by a shotgun proteomic analysis of the venom from the two species. Results The putative venom components represented 11.4% and 16.7% of the total gene expression for T. obscurus and T. serrulatus, respectively. Transcriptome and proteome data revealed high abundance of metalloproteinases sequences followed by sodium and potassium channel toxins, making the toxin core of the venom. The phylogenetic analysis of metalloproteinases from T. obscurus and T. serrulatus suggested an intraspecific gene expansion, as we previously observed for T. bahiensis, indicating that this enzyme may be under evolutionary pressure for diversification. We also identified several putative venom components such as anionic peptides, antimicrobial peptides, bradykinin-potentiating peptide, cysteine rich protein, serine proteinases, cathepsins, angiotensin-converting enzyme, endothelin-converting enzyme and chymotrypsin like protein, proteinases inhibitors, phospholipases and hyaluronidases. Conclusion The present work shows that the venom composition of these two allopatric species of Tityus are considerably similar in terms of the major classes of proteins produced and secreted, although their individual toxin sequences are considerably divergent. These differences at amino acid level may reflect in different epitopes for the same protein classes in each species, explaining the basis for the poor recognition of T. obscurus venom by the antiserum raised against other species.
Collapse
Affiliation(s)
- Ursula Castro de Oliveira
- Laboratório Especial de Toxinologia Aplicada, CeTICS, Instituto Butantan, São Paulo, São Paulo, Brazil
- * E-mail: ,
| | - Milton Yutaka Nishiyama
- Laboratório Especial de Toxinologia Aplicada, CeTICS, Instituto Butantan, São Paulo, São Paulo, Brazil
| | | | | | | | | | | | - Norma Yamanouye
- Laboratório de Farmacologia, Instituto Butantan, São Paulo, São Paulo, Brazil
| | | | | |
Collapse
|
18
|
Ward MJ, Ellsworth SA, Rokyta DR. Venom-gland transcriptomics and venom proteomics of the Hentz striped scorpion (Centruroides hentzi; Buthidae) reveal high toxin diversity in a harmless member of a lethal family. Toxicon 2018; 142:14-29. [DOI: 10.1016/j.toxicon.2017.12.042] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/07/2017] [Accepted: 12/11/2017] [Indexed: 01/02/2023]
|
19
|
Nencioni ALA, Neto EB, de Freitas LA, Dorce VAC. Effects of Brazilian scorpion venoms on the central nervous system. J Venom Anim Toxins Incl Trop Dis 2018; 24:3. [PMID: 29410679 PMCID: PMC5781280 DOI: 10.1186/s40409-018-0139-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 01/02/2018] [Indexed: 12/26/2022] Open
Abstract
In Brazil, the scorpion species responsible for most severe incidents belong to the Tityus genus and, among this group, T. serrulatus, T. bahiensis, T. stigmurus and T. obscurus are the most dangerous ones. Other species such as T. metuendus, T. silvestres, T. brazilae, T. confluens, T. costatus, T. fasciolatus and T. neglectus are also found in the country, but the incidence and severity of accidents caused by them are lower. The main effects caused by scorpion venoms - such as myocardial damage, cardiac arrhythmias, pulmonary edema and shock - are mainly due to the release of mediators from the autonomic nervous system. On the other hand, some evidence show the participation of the central nervous system and inflammatory response in the process. The participation of the central nervous system in envenoming has always been questioned. Some authors claim that the central effects would be a consequence of peripheral stimulation and would be the result, not the cause, of the envenoming process. Because, they say, at least in adult individuals, the venom would be unable to cross the blood-brain barrier. In contrast, there is some evidence showing the direct participation of the central nervous system in the envenoming process. This review summarizes the major findings on the effects of Brazilian scorpion venoms on the central nervous system, both clinically and experimentally. Most of the studies have been performed with T. serrulatus and T. bahiensis. Little information is available regarding the other Brazilian Tityus species.
Collapse
Affiliation(s)
| | - Emidio Beraldo Neto
- Laboratory of Pharmacology, Butantan Institute, Av. Dr. Vital Brasil, 1500, São Paulo, SP 05503-900 Brazil
- Graduation Program in Sciences – Toxinology, Butantan Institute, São Paulo, SP Brazil
| | - Lucas Alves de Freitas
- Laboratory of Pharmacology, Butantan Institute, Av. Dr. Vital Brasil, 1500, São Paulo, SP 05503-900 Brazil
- Graduation Program in Sciences – Toxinology, Butantan Institute, São Paulo, SP Brazil
| | | |
Collapse
|
20
|
Rocha-Resende C, Leão NM, de Lima ME, Santos RA, Pimenta AMDC, Verano-Braga T. Moving pieces in a cryptomic puzzle: Cryptide from Tityus serrulatus Ts3 Nav toxin as potential agonist of muscarinic receptors. Peptides 2017; 98:70-77. [PMID: 28041976 DOI: 10.1016/j.peptides.2016.12.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 02/02/2023]
Abstract
Cryptome is as a subset of a given proteome containing bioactive cryptides embedded in larger peptides or proteins. We pinpointed a striking sequence similarity between two peptides from the Tityus serrulatus venom: Ts10 (KKDGYPVEYDRAY) and the N-terminal of Ts3 (KKDGYPVEYDNCAY). Ts3 (former Tityustoxin or TsIV) is an α-neurotoxin acting on voltage-gated sodium channels while Ts10 (former Peptide T) is a bradykinin-potentiating peptide and was originally reported as inhibitor of the angiotensin-converting enzyme (ACEi). Thus, the goal of this study was to evaluate whether such peptide hidden in the N-terminal of Ts3 (Ts31-14[C12S]) was able to mimic known effects of Ts10 as well as to expand the current knowledge of the vascular effects and molecular targets of these peptides. Similar to Ts10, Ts31-14[C12S] was able to potentiate the hypotensive effect of bradykinin (BK). However, none of these peptides was able to induce a long-lasting BK-potentiating effect, suggesting that this effect may not be their main biological outcome. On the other hand, we report that Ts10 and mainly Ts31-14[C12S] induced a strong vasodilation effect depending on the presence of functional endothelium and nitric oxide (NO) production. Unlike previously reported, Ts10 was not able to inhibit ACE activity (similar result was observed for Ts31-14[C12S]). On the other hand, we report that Ts31-14[C12S] induces vasodilation via the activation of muscarinic acetylcholine receptors (mAChRs) M2 and M3 while only the activation of mAChR M2 seems to be required for Ts10-induced vasodilation.
Collapse
Affiliation(s)
- Cibele Rocha-Resende
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Nádia Miricéia Leão
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Maria Elena de Lima
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Robson Augusto Santos
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Adriano Monteiro de Castro Pimenta
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | - Thiago Verano-Braga
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
21
|
Expanding biological activities of Ts19 Frag-II toxin: Insights into IL-17 production. Toxicon 2017; 134:18-25. [DOI: 10.1016/j.toxicon.2017.05.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 05/09/2017] [Accepted: 05/15/2017] [Indexed: 01/03/2023]
|
22
|
Melo MMA, Daniele-Silva A, Teixeira DG, Estrela AB, Melo KRT, Oliveira VS, Rocha HAO, Ferreira LDS, Pontes DL, Lima JPMS, Silva-Júnior AA, Barbosa EG, Carvalho E, Fernandes-Pedrosa MF. Structure and in vitro activities of a Copper II-chelating anionic peptide from the venom of the scorpion Tityus stigmurus. Peptides 2017; 94:91-98. [PMID: 28552408 DOI: 10.1016/j.peptides.2017.05.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 05/21/2017] [Accepted: 05/22/2017] [Indexed: 01/09/2023]
Abstract
Anionic Peptides are molecules rich in aspartic acid (Asp) and/or glutamic acid (Glu) residues in the primary structure. This work presents, for the first time, structural characterization and biological activity assays of an anionic peptide from the venom of the scorpion Tityus stigmurus, named TanP. The three-dimensional structure of TanP was obtained by computational modeling and refined by molecular dynamic (MD) simulations. Furthermore, we have performed circular dichroism (CD) analysis to predict TanP secondary structure, and UV-vis spectroscopy to evaluate its chelating activity. CD indicated predominance of random coil conformation in aqueous medium, as well as changes in structure depending on pH and temperature. TanP has chelating activity on copper ions, which modified the peptide's secondary structure. These results were corroborated by MD data. The molar ratio of binding (TanP:copper) depends on the concentration of peptide: at lower TanP concentration, the molar ratio was 1:5 (TanP:Cu2+), whereas in concentrated TanP solution, the molar ratio was 1:3 (TanP:Cu2+). TanP was not cytotoxic to non-neoplastic or cancer cell lines, and showed an ability to inhibit the in vitro release of nitric oxide by LPS-stimulated macrophages. Altogether, the results suggest TanP is a promising peptide for therapeutic application as a chelating agent.
Collapse
Affiliation(s)
- Menilla M A Melo
- Laboratório de Tecnologia e Biotecnologia Farmacêutica, Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, UFRN, Natal, RN, Brazil
| | - Alessandra Daniele-Silva
- Laboratório de Tecnologia e Biotecnologia Farmacêutica, Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Diego G Teixeira
- Laboratório de Sistemas Metabólicos, Centro de Biociências, UFRN, Natal, RN, Brazil
| | - Andréia B Estrela
- Laboratório de Tecnologia e Biotecnologia Farmacêutica, Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Karolline R T Melo
- Laboratório de Biotecnologia de Polímeros Naturais, UFRN, Natal, RN, Brazil
| | | | - Hugo A O Rocha
- Laboratório de Biotecnologia de Polímeros Naturais, UFRN, Natal, RN, Brazil
| | | | - Daniel L Pontes
- Laboratório de Química de Coordenação e Polímeros, UFRN, Natal, RN, Brazil
| | - João P M S Lima
- Laboratório de Sistemas Metabólicos, Centro de Biociências, UFRN, Natal, RN, Brazil
| | - Arnóbio A Silva-Júnior
- Laboratório de Tecnologia e Biotecnologia Farmacêutica, Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, UFRN, Natal, RN, Brazil
| | - Euzebio G Barbosa
- Programa de Pós-Graduação em Ciências Farmacêuticas, UFRN, Natal, RN, Brazil; Laboratório de Química Farmacêutica, UFRN, Natal, RN, Brazil
| | - Eneas Carvalho
- Centro de Biotecnologia, Instituto Butantan, São Paulo, SP, Brazil
| | - Matheus F Fernandes-Pedrosa
- Laboratório de Tecnologia e Biotecnologia Farmacêutica, Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, UFRN, Natal, RN, Brazil.
| |
Collapse
|
23
|
Rokyta DR, Ward MJ. Venom-gland transcriptomics and venom proteomics of the black-back scorpion (Hadrurus spadix) reveal detectability challenges and an unexplored realm of animal toxin diversity. Toxicon 2017; 128:23-37. [DOI: 10.1016/j.toxicon.2017.01.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/17/2017] [Accepted: 01/18/2017] [Indexed: 10/20/2022]
|
24
|
Insights into the Hypertensive Effects of Tityus serrulatus Scorpion Venom: Purification of an Angiotensin-Converting Enzyme-Like Peptidase. Toxins (Basel) 2016; 8:toxins8120348. [PMID: 27886129 PMCID: PMC5198543 DOI: 10.3390/toxins8120348] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/01/2016] [Accepted: 11/16/2016] [Indexed: 12/24/2022] Open
Abstract
The number of cases of envenomation by scorpions has grown significantly in Brazil since 2007, with the most severe cases being caused by the Tityus serrulatus scorpion. Although envenomed patients mostly suffer neurotoxic manifestations, other symptoms, such as hypertension, cannot be exclusively attributed to neurotoxins. Omics analyses have detected plentiful amounts of metalloproteases in T. serrulatus venom. However, the roles played by these enzymes in envenomation are still unclear. Endeavoring to investigate the functions of scorpion venom proteases, we describe here for the first time an Angiotensin I-Converting Enzyme-like peptidase (ACE-like) purified from T. serrulatus venom. The crude venom cleaved natural and fluorescent substrates and these activities were inhibited by captopril. Regarding the serum neutralization, the scorpion antivenom was more effective at blocking the ACE-like activity than arachnid antivenom, although neither completely inhibited the venom cleavage action, even at higher doses. ACE-like was purified from the venom after three chromatographic steps and its identity was confirmed by mass spectrometric and transcriptomic analyses. Bioinformatics analysis showed homology between the ACE-like transcript sequences from Tityus spp. and human testis ACE. These findings advance our understanding of T. serrulatus venom components and may improve treatment of envenomation victims, as ACE-like may contribute to envenomation symptoms, especially the resulting hypertension.
Collapse
|
25
|
First venom gland transcriptomic analysis of Iranian yellow scorpion “Odonthubuthus doriae” with some new findings. Toxicon 2016; 120:69-77. [DOI: 10.1016/j.toxicon.2016.07.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/01/2016] [Accepted: 07/13/2016] [Indexed: 11/20/2022]
|
26
|
Pucca MB, Cerni FA, Pinheiro-Junior EL, Zoccal KF, Bordon KDCF, Amorim FG, Peigneur S, Vriens K, Thevissen K, Cammue BPA, Júnior RBM, Arruda E, Faccioli LH, Tytgat J, Arantes EC. Non-disulfide-bridged peptides from Tityus serrulatus venom: Evidence for proline-free ACE-inhibitors. Peptides 2016; 82:44-51. [PMID: 27221550 DOI: 10.1016/j.peptides.2016.05.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 05/15/2016] [Accepted: 05/19/2016] [Indexed: 12/15/2022]
Abstract
The present study purifies two T. serrulatus non-disulfide-bridged peptides (NDBPs), named venom peptides 7.2 (RLRSKG) and 8 (KIWRS) and details their synthesis and biological activity, comparing to the synthetic venom peptide 7.1 (RLRSKGKK), previously identified. The synthetic replicate peptides were subjected to a range of biological assays: hemolytic, antifungal, antiviral, electrophysiological, immunological and angiotensin-converting enzyme (ACE) inhibition activities. All venom peptides neither showed to be cytolytic nor demonstrated significant antifungal or antiviral activities. Interestingly, peptides were able to modulate macrophages' responses, increasing IL-6 production. The three venom peptides also demonstrated potential to inhibit ACE in the following order: 7.2>7.1>8. The ACE inhibition activity was unexpected, since peptides that display this function are usually proline-rich peptides. In attempt to understand the origin of such small peptides, we discovered that the isolated peptides 7.2 and 8 are fragments of the same molecule, named Pape peptide precursor. Furthermore, the study discusses that Pape fragments could be originated from a post-splitting mechanism resulting from metalloserrulases and other proteinases cleavage, which can be seen as a clever mechanism used by the scorpion to enlarge its repertoire of venom components. Scorpion venom remains as an interesting source of bioactive proteins and this study advances our knowledge about three NDBPs and their biological activities.
Collapse
Affiliation(s)
- Manuela Berto Pucca
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Felipe Augusto Cerni
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Ernesto Lopes Pinheiro-Junior
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Karina Furlani Zoccal
- Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Karla de Castro Figueiredo Bordon
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Fernanda Gobbi Amorim
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Steve Peigneur
- Toxicology and Pharmacology, University of Leuven, Leuven, Belgium
| | - Kim Vriens
- Centre of Microbial and Plant Genetics, University of Leuven, Heverlee, Belgium
| | - Karin Thevissen
- Centre of Microbial and Plant Genetics, University of Leuven, Heverlee, Belgium
| | - Bruno Philippe Angelo Cammue
- Centre of Microbial and Plant Genetics, University of Leuven, Heverlee, Belgium; Department of Plant Systems Biology, VIB, Technologiepark 927, 9052 Gent, Belgium
| | | | - Eurico Arruda
- Department of Cell Biology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Lúcia Helena Faccioli
- Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Jan Tytgat
- Toxicology and Pharmacology, University of Leuven, Leuven, Belgium
| | - Eliane Candiani Arantes
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
27
|
Laustsen AH, Solà M, Jappe EC, Oscoz S, Lauridsen LP, Engmark M. Biotechnological Trends in Spider and Scorpion Antivenom Development. Toxins (Basel) 2016; 8:E226. [PMID: 27455327 PMCID: PMC4999844 DOI: 10.3390/toxins8080226] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 06/19/2016] [Accepted: 07/13/2016] [Indexed: 12/28/2022] Open
Abstract
Spiders and scorpions are notorious for their fearful dispositions and their ability to inject venom into prey and predators, causing symptoms such as necrosis, paralysis, and excruciating pain. Information on venom composition and the toxins present in these species is growing due to an interest in using bioactive toxins from spiders and scorpions for drug discovery purposes and for solving crystal structures of membrane-embedded receptors. Additionally, the identification and isolation of a myriad of spider and scorpion toxins has allowed research within next generation antivenoms to progress at an increasingly faster pace. In this review, the current knowledge of spider and scorpion venoms is presented, followed by a discussion of all published biotechnological efforts within development of spider and scorpion antitoxins based on small molecules, antibodies and fragments thereof, and next generation immunization strategies. The increasing number of discovery and development efforts within this field may point towards an upcoming transition from serum-based antivenoms towards therapeutic solutions based on modern biotechnology.
Collapse
Affiliation(s)
- Andreas Hougaard Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen East, Denmark.
| | - Mireia Solà
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| | - Emma Christine Jappe
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| | - Saioa Oscoz
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| | - Line Præst Lauridsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| | - Mikael Engmark
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
- Department of Bio and Health Informatics, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
28
|
Potassium channel blockers from the venom of the Brazilian scorpion Tityus serrulatus (). Toxicon 2016; 119:253-65. [PMID: 27349167 DOI: 10.1016/j.toxicon.2016.06.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 06/06/2016] [Accepted: 06/24/2016] [Indexed: 02/05/2023]
Abstract
Potassium (K(+)) channels are trans-membrane proteins, which play a key role in cellular excitability and signal transduction pathways. Scorpion toxins blocking the ion-conducting pore from the external side have been invaluable probes to elucidate the structural, functional, and physio-pathological characteristics of these ion channels. This review will focus on the interaction between K(+) channels and their peptide blockers isolated from the venom of the scorpion Tityus serrulatus, which is considered as the most dangerous scorpion in Brazil, in particular in Minas-Gerais State, where many casualties are described each year. The primary mechanisms of action of these K(+) blockers will be discussed in correlation with their structure, very often non-canonical compared to those of other well known K(+) channels blockers purified from other scorpion venoms. Also, special attention will be brought to the most recent data obtained by proteomic and transcriptomic analyses on Tityus serrulatus venoms and venom glands.
Collapse
|
29
|
Cerni FA, Pucca MB, Amorim FG, de Castro Figueiredo Bordon K, Echterbille J, Quinton L, De Pauw E, Peigneur S, Tytgat J, Arantes EC. Isolation and characterization of Ts19 Fragment II, a new long-chain potassium channel toxin from Tityus serrulatus venom. Peptides 2016; 80:9-17. [PMID: 26116782 DOI: 10.1016/j.peptides.2015.06.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 06/05/2015] [Accepted: 06/08/2015] [Indexed: 01/13/2023]
Abstract
Ts19 Fragment II (Ts19 Frag-II) was first isolated from the venom of the scorpion Tityus serrulatus (Ts). It is a protein presenting 49 amino acid residues, three disulfide bridges, Mr 5534Da and was classified as a new member of class (subfamily) 2 of the β-KTxs, the second one described for Ts scorpion. The β-KTx family is composed by two-domain peptides: N-terminal helical domain (NHD), with cytolytic activity, and a C-terminal CSαβ domain (CCD), with Kv blocking activity. The extensive electrophysiological screening (16 Kv channels and 5 Nav channels) showed that Ts19 Frag-II presents a specific and significant blocking effect on Kv1.2 (IC50 value of 544±32nM). However, no cytolytic activity was observed with this toxin. We conclude that the absence of 9 amino acid residues from the N-terminal sequence (compared to Ts19 Frag-I) is responsible for the absence of cytolytic activity. In order to prove this hypothesis, we synthesized the peptide with these 9 amino acid residues, called Ts19 Frag-III. As expected, Ts19 Frag-III showed to be cytolytic and did not block the Kv1.2 channel. The post-translational modifications of Ts19 and its fragments (I-III) are also discussed here. A mechanism of post-translational processing (post-splitting) is suggested to explain Ts19 fragments production. In addition to the discovery of this new toxin, this report provides further evidence for the existence of several compounds in the scorpion venom contributing to the diversity of the venom arsenal.
Collapse
Affiliation(s)
- Felipe Augusto Cerni
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Manuela Berto Pucca
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Fernanda Gobbi Amorim
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Karla de Castro Figueiredo Bordon
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Julien Echterbille
- Laboratory of Mass Spectrometry, Department of Chemistry, University of Liège, Allée de la chimie 6, B6c, B-4000 Liège, Belgium
| | - Loïc Quinton
- Laboratory of Mass Spectrometry, Department of Chemistry, University of Liège, Allée de la chimie 6, B6c, B-4000 Liège, Belgium
| | - Edwin De Pauw
- Laboratory of Mass Spectrometry, Department of Chemistry, University of Liège, Allée de la chimie 6, B6c, B-4000 Liège, Belgium
| | - Steve Peigneur
- Toxicology and Pharmacology, University of Leuven, O&N 2, Herestraat 49, P.O. Box 922, 3000 Leuven, Belgium
| | - Jan Tytgat
- Toxicology and Pharmacology, University of Leuven, O&N 2, Herestraat 49, P.O. Box 922, 3000 Leuven, Belgium
| | - Eliane Candiani Arantes
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
30
|
Pucca MB, Bertolini TB, Cerni FA, Bordon KCF, Peigneur S, Tytgat J, Bonato VL, Arantes EC. Immunosuppressive evidence of Tityus serrulatus toxins Ts6 and Ts15: insights of a novel K(+) channel pattern in T cells. Immunology 2016; 147:240-50. [PMID: 26595158 DOI: 10.1111/imm.12559] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 11/05/2015] [Accepted: 11/10/2015] [Indexed: 12/25/2022] Open
Abstract
The voltage-gated potassium channel Kv1.3 is a novel target for immunomodulation of autoreactive effector memory T cells, which play a major role in the pathogenesis of autoimmune diseases. In this study, the Ts6 and Ts15 toxins isolated from Tityus serrulatus (Ts) were investigated for their immunosuppressant roles on CD4(+) cell subsets: naive, effector (TEF ), central memory (TCM) and effector memory (TEM). The electrophysiological assays confirmed that both toxins were able to block Kv1.3 channels. Interestingly, an extended Kv channel screening shows that Ts15 blocks Kv2.1 channels. Ts6 and Ts15 significantly inhibit the proliferation of TEM cells and interferon-γ production; however, Ts15 also inhibits other CD4(+) cell subsets (naive, TEF and TCM). Based on the Ts15 inhibitory effect of proliferation of all CD4(+) cell subsets, and based on its blocking effect on Kv2.1, we investigated the Kv2.1 expression in T cells. The assays showed that CD4(+) and CD8(+) cells express the Kv2.1 channels mainly extracellularly with TCM cells expressing the highest number of Kv2.1 channels. We also provide in vivo experimental evidence to the protective effect of Ts6 and Ts15 on delayed-type hypersensitivity reaction. Altogether, this study presents the immunosuppressive behaviour of Ts6 and Ts15 toxins, indicating that these toxins could be promising candidates for autoimmune disease therapy. Moreover, this is the first report illustrating the involvement of a novel K(+) channel subtype, Kv2.1, and its distribution in T-cell subsets.
Collapse
Affiliation(s)
- Manuela B Pucca
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Thaís B Bertolini
- Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Felipe A Cerni
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Karla C F Bordon
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Steve Peigneur
- Toxicology and Pharmacology, University of Leuven, Leuven, Belgium
| | - Jan Tytgat
- Toxicology and Pharmacology, University of Leuven, Leuven, Belgium
| | - Vânia L Bonato
- Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Eliane C Arantes
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
31
|
Lima PC, Bordon KCF, Pucca MB, Cerni FA, Zoccal KF, Faccioli LH, Arantes EC. Partial purification and functional characterization of Ts19 Frag-I, a novel toxin from Tityus serrulatus scorpion venom. J Venom Anim Toxins Incl Trop Dis 2015; 21:49. [PMID: 26628901 PMCID: PMC4666072 DOI: 10.1186/s40409-015-0051-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 11/19/2015] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The yellow scorpion Tityus serrulatus (Ts) is responsible for the highest number of accidents and the most severe scorpion envenoming in Brazil. Although its venom has been studied since the 1950s, it presents a number of orphan peptides that have not been studied so far. The objective of our research was to isolate and identify the components present in the fractions VIIIA and VIIIB of Ts venom, in order to search for a novel toxin. The major isolated toxins were further investigated for macrophage modulation. METHODS The fractions VIIIA and VIIIB, obtained from Ts venom cation exchange chromatography, were rechromatographed on a C18 column (4.6 × 250 mm) followed by a reversed-phase chromatography using another C18 column (2.1 × 250 mm). The main eluted peaks were analyzed by MALDI-TOF and Edman's degradation and tested on macrophages. RESULTS The previously described toxins Ts2, Ts3-KS, Ts4, Ts8, Ts8 propeptide, Ts19 Frag-II and the novel peptide Ts19 Frag-I were isolated from the fractions VIIIA and VIIIB. Ts19 Frag-I, presenting 58 amino acid residues, a mass of 6,575 Da and a theoretical pI of 8.57, shares high sequence identity with potassium channel toxins (KTx). The toxins Ts4, Ts3-KS and the partially purified Ts19 Frag-I did not produce cytotoxic effects on macrophage murine cells line (J774.1). On the other hand, Ts19 Frag-I induced the release of nitric oxide (NO) by macrophages, while Ts4 and Ts3-KS did not affect the NO production at the tested concentration (50 μg/mL). At the same concentration, Ts19 Frag-I and Ts3-KS increased the production of interleukin-6 (IL-6). Ts19 Frag-I and Ts4 did not induce the release of IL-10, IL-1β or tumor necrosis factor-α by macrophage cells using the tested concentration (50 μg/mL). CONCLUSIONS We partially purified and determined the complete sequence and chemical/physical parameters of a new β-KTx, denominated Ts19 Frag-I. The toxins Ts4, Ts3-KS and Ts19 Frag-I showed no cytotoxicity toward macrophages and induced IL-6 release. Ts19 Frag-I also induced the release of NO, suggesting a pro-inflammatory activity.
Collapse
Affiliation(s)
- Priscila C Lima
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP Brazil
| | - Karla C F Bordon
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP Brazil
| | - Manuela B Pucca
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP Brazil
| | - Felipe A Cerni
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP Brazil
| | - Karina F Zoccal
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP Brazil
| | - Lucia H Faccioli
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP Brazil
| | - Eliane C Arantes
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP Brazil.,Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Avenida do Café, s/n, Ribeirão Preto, SP 14.040-903 Brazil
| |
Collapse
|
32
|
Abstract
Tityus serrulatus (Ts) is the main scorpion species of medical importance in Brazil. Ts venom is composed of several compounds such as mucus, inorganic salts, lipids, amines, nucleotides, enzymes, kallikrein inhibitor, natriuretic peptide, proteins with high molecular mass, peptides, free amino acids and neurotoxins. Neurotoxins are considered the most responsible for the envenoming syndrome due to their pharmacological action on ion channels such as voltage-gated sodium (Nav) and potassium (Kv) channels. The major goal of this review is to present important advances in Ts envenoming research, correlating both the crude Ts venom and isolated toxins with alterations observed in all human systems. The most remarkable event lies in the Ts induced massive releasing of neurotransmitters influencing, directly or indirectly, the entire body. Ts venom proved to extremely affect nervous and muscular systems, to modulate the immune system, to induce cardiac disorders, to cause pulmonary edema, to decrease urinary flow and to alter endocrine, exocrine, reproductive, integumentary, skeletal and digestive functions. Therefore, Ts venom possesses toxins affecting all anatomic systems, making it a lethal cocktail. However, its low lethality may be due to the low venom mass injected, to the different venom compositions, the body characteristics and health conditions of the victim and the local of Ts sting. Furthermore, we also described the different treatments employed during envenoming cases. In particular, throughout the review, an effort will be made to provide information from an extensive documented studies concerning Ts venom in vitro, in animals and in humans (a total of 151 references).
Collapse
|
33
|
Cordeiro FA, Amorim FG, Anjolette FAP, Arantes EC. Arachnids of medical importance in Brazil: main active compounds present in scorpion and spider venoms and tick saliva. J Venom Anim Toxins Incl Trop Dis 2015; 21:24. [PMID: 26273285 PMCID: PMC4535291 DOI: 10.1186/s40409-015-0028-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 07/21/2015] [Indexed: 11/30/2022] Open
Abstract
Arachnida is the largest class among the arthropods, constituting over 60,000 described species (spiders, mites, ticks, scorpions, palpigrades, pseudoscorpions, solpugids and harvestmen). Many accidents are caused by arachnids, especially spiders and scorpions, while some diseases can be transmitted by mites and ticks. These animals are widely dispersed in urban centers due to the large availability of shelter and food, increasing the incidence of accidents. Several protein and non-protein compounds present in the venom and saliva of these animals are responsible for symptoms observed in envenoming, exhibiting neurotoxic, dermonecrotic and hemorrhagic activities. The phylogenomic analysis from the complementary DNA of single-copy nuclear protein-coding genes shows that these animals share some common protein families known as neurotoxins, defensins, hyaluronidase, antimicrobial peptides, phospholipases and proteinases. This indicates that the venoms from these animals may present components with functional and structural similarities. Therefore, we described in this review the main components present in spider and scorpion venom as well as in tick saliva, since they have similar components. These three arachnids are responsible for many accidents of medical relevance in Brazil. Additionally, this study shows potential biotechnological applications of some components with important biological activities, which may motivate the conducting of further research studies on their action mechanisms.
Collapse
Affiliation(s)
- Francielle A Cordeiro
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Avenida do Café, s/n, Ribeirão Preto, SP 14.040-903 Brazil
| | - Fernanda G Amorim
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Avenida do Café, s/n, Ribeirão Preto, SP 14.040-903 Brazil
| | - Fernando A P Anjolette
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Avenida do Café, s/n, Ribeirão Preto, SP 14.040-903 Brazil
| | - Eliane C Arantes
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Avenida do Café, s/n, Ribeirão Preto, SP 14.040-903 Brazil
| |
Collapse
|
34
|
Santibáñez-López CE, Possani LD. Overview of the Knottin scorpion toxin-like peptides in scorpion venoms: Insights on their classification and evolution. Toxicon 2015; 107:317-26. [PMID: 26187850 DOI: 10.1016/j.toxicon.2015.06.029] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 06/21/2015] [Accepted: 06/23/2015] [Indexed: 12/29/2022]
Abstract
Scorpion venoms include several compounds with different pharmacological activities. Within these compounds, toxins affecting ion channels are among the most studied. They are all peptides that have been classified based on their 3D structure, chain size and function. Usually, they show a spatial arrangement characterized by the presence of a cysteine-stabilized alpha beta motif; most of them affect Na(+) and K(+) ion-channels. These features have been revised in several occasions before, but a complete phylogenetic analysis of the disulfide containing peptides is not been done. In the present contribution, two databases (Pfam and InterPro) including more than 800 toxins from different scorpions were analyzed. Pfam database included toxins from several organisms other than scorpions such as insects and plants, while InterPro included only scorpion toxins. Our results suggest that Na(+) toxins have evolved independently from those of K(+) toxins no matter the length of the peptidic chains. These preliminary results suggest that current classification needs a more detailed revision, in order to have better characterized toxin families, so the new peptides obtained from transcriptomic analyses would be properly classified.
Collapse
Affiliation(s)
- Carlos E Santibáñez-López
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Apartado Postal 510-3, Cuernavaca Morelos 62210, Mexico.
| | - Lourival D Possani
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Apartado Postal 510-3, Cuernavaca Morelos 62210, Mexico
| |
Collapse
|
35
|
Pucca MB, Cerni FA, Peigneur S, Bordon KCF, Tytgat J, Arantes EC. Revealing the Function and the Structural Model of Ts4: Insights into the "Non-Toxic" Toxin from Tityus serrulatus Venom. Toxins (Basel) 2015; 7:2534-50. [PMID: 26153865 PMCID: PMC4516927 DOI: 10.3390/toxins7072534] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 06/20/2015] [Accepted: 06/25/2015] [Indexed: 01/21/2023] Open
Abstract
The toxin, previously described as a "non-toxic" toxin, was isolated from the scorpion venom of Tityus serrulatus (Ts), responsible for the most severe and the highest number of accidents in Brazil. In this study, the subtype specificity and selectivity of Ts4 was investigated using six mammalian Nav channels (Nav1.2→Nav1.6 and Nav1.8) and two insect Nav channels (DmNav1 and BgNav). The electrophysiological assays showed that Ts4 specifically inhibited the fast inactivation of Nav1.6 channels, the most abundant sodium channel expressed in the adult central nervous system, and can no longer be classified as a "non-toxic peptide". Based on the results, we could classify the Ts4 as a classical α-toxin. The Ts4 3D-structural model was built based on the solved X-ray Ts1 3D-structure, the major toxin from Ts venom with which it shares high sequence identity (65.57%). The Ts4 model revealed a flattened triangular shape constituted by three-stranded antiparallel β-sheet and one α-helix stabilized by four disulfide bonds. The absence of a Lys in the first amino acid residue of the N-terminal of Ts4 is probably the main responsible for its low toxicity. Other key amino acid residues important to the toxicity of α- and β-toxins are discussed here.
Collapse
Affiliation(s)
- Manuela B Pucca
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Preto, SP 14040-903, Brazil.
| | - Felipe A Cerni
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Preto, SP 14040-903, Brazil.
| | - Steve Peigneur
- Toxicology and Pharmacology, University of Leuven, O&N 2, Herestraat 49, P.O. Box 922, Leuven 3000, Belgium.
| | - Karla C F Bordon
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Preto, SP 14040-903, Brazil.
| | - Jan Tytgat
- Toxicology and Pharmacology, University of Leuven, O&N 2, Herestraat 49, P.O. Box 922, Leuven 3000, Belgium.
| | - Eliane C Arantes
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Preto, SP 14040-903, Brazil.
| |
Collapse
|
36
|
Coronas FIV, Diego-García E, Restano-Cassulini R, de Roodt AR, Possani LD. Biochemical and physiological characterization of a new Na(+)-channel specific peptide from the venom of the Argentinean scorpion Tityus trivittatus. Peptides 2015; 68:11-6. [PMID: 24862827 DOI: 10.1016/j.peptides.2014.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 05/13/2014] [Accepted: 05/14/2014] [Indexed: 01/12/2023]
Abstract
A new peptide with 61 amino acids cross-linked by 4 disulfide bridges, with molecular weight of 6938.12Da, and an amidated C-terminal amino acid residue was purified and characterized. The primary structure was obtained by direct Edman degradation and sequencing its gene. The peptide is lethal to mammals and was shown to be similar (95% identity) to toxin Ts1 (gamma toxin) from the Brazilian scorpion Tityus serrulatus; it was named Tt1g (from T. trivittatus toxin 1 gamma-like). Tt1g was assayed on several sub-types of Na(+)-channels showing displacement of the currents to more negative voltages, being the hNav1.3 the most affected channel. This toxin displays characteristics typical to the β-type sodium scorpion toxins. Lethality tests and physiological assays indicate that this peptide is probably the most important toxic component of this species of scorpion, known for causing human fatalities in the South American continent.
Collapse
Affiliation(s)
- Fredy I V Coronas
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Mexico
| | - Elia Diego-García
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Mexico
| | - Rita Restano-Cassulini
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Mexico
| | - Adolfo R de Roodt
- Laboratorio de Toxinopatología, Centro de Patología Experimental y Aplicada, Facultad de Medicina, Universidad de Buenos Aires and Ministerio de Salud de la Nación, Argentina.
| | - Lourival D Possani
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Mexico.
| |
Collapse
|
37
|
de Melo ET, Estrela AB, Santos ECG, Machado PRL, Farias KJS, Torres TM, Carvalho E, Lima JPMS, Silva-Júnior AA, Barbosa EG, Fernandes-Pedrosa MDF. Structural characterization of a novel peptide with antimicrobial activity from the venom gland of the scorpion Tityus stigmurus: Stigmurin. Peptides 2015; 68:3-10. [PMID: 25805002 DOI: 10.1016/j.peptides.2015.03.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 03/02/2015] [Accepted: 03/05/2015] [Indexed: 01/05/2023]
Abstract
A new antimicrobial peptide, herein named Stigmurin, was selected based on a transcriptomic analysis of the Brazilian yellow scorpion Tityus stigmurus venom gland, an underexplored source for toxic peptides with possible biotechnological applications. Stigmurin was investigated in silico, by circular dichroism (CD) spectroscopy, and in vitro. The CD spectra suggested that this peptide interacts with membranes, changing its conformation in the presence of an amphipathic environment, with predominance of random coil and beta-sheet structures. Stigmurin exhibited antibacterial and antifungal activity, with minimal inhibitory concentrations ranging from 8.7 to 69.5μM. It was also showed that Stigmurin is toxic against SiHa and Vero E6 cell lines. The results suggest that Stigmurin can be considered a potential anti-infective drug.
Collapse
Affiliation(s)
- Edinara Targino de Melo
- Laboratório de Tecnologia e Biotecnologia Farmacêutica, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Andréia Bergamo Estrela
- Laboratório de Tecnologia e Biotecnologia Farmacêutica, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | | | | | | | - Taffarel Melo Torres
- Departamento de Ciências Animais, Universidade Federal Rural do Semi-Árido, Mossoró, RN, Brazil
| | - Enéas Carvalho
- Centro de Biotecnologia, Instituto Butantan, São Paulo, SP, Brazil
| | | | - Arnóbio Antonio Silva-Júnior
- Laboratório de Tecnologia e Biotecnologia Farmacêutica, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | | | - Matheus de Freitas Fernandes-Pedrosa
- Laboratório de Tecnologia e Biotecnologia Farmacêutica, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil; Programa de Pós-Graduação em Bioquímica, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil.
| |
Collapse
|
38
|
Luna-Ramírez K, Quintero-Hernández V, Juárez-González VR, Possani LD. Whole Transcriptome of the Venom Gland from Urodacus yaschenkoi Scorpion. PLoS One 2015; 10:e0127883. [PMID: 26020943 PMCID: PMC4447460 DOI: 10.1371/journal.pone.0127883] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 04/20/2015] [Indexed: 12/24/2022] Open
Abstract
Australian scorpion venoms have been poorly studied, probably because they do not pose an evident threat to humans. In addition, the continent has other medically important venomous animals capable of causing serious health problems. Urodacus yaschenkoi belongs to the most widely distributed family of Australian scorpions (Urodacidae) and it is found all over the continent, making it a useful model system for studying venom composition and evolution. This communication reports the whole set of mRNA transcripts produced by the venom gland. U. yaschenkoi venom is as complex as its overseas counterparts. These transcripts certainly code for several components similar to known scorpion venom components, such as: alpha-KTxs, beta-KTxs, calcins, protease inhibitors, antimicrobial peptides, sodium-channel toxins, toxin-like peptides, allergens, La1-like, hyaluronidases, ribosomal proteins, proteasome components and proteins related to cellular processes. A comparison with the venom gland transcriptome of Centruroides noxius (Buthidae) showed that these two scorpions have similar components related to biological processes, although important differences occur among the venom toxins. In contrast, a comparison with sequences reported for Urodacus manicatus revealed that these two Urodacidae species possess the same subfamily of scorpion toxins. A comparison with sequences of an U. yaschenkoi cDNA library previously reported by our group showed that both techniques are reliable for the description of the venom components, but the whole transcriptome generated with Next Generation Sequencing platform provides sequences of all transcripts expressed. Several of which were identified in the proteome, but many more transcripts were identified including uncommon transcripts. The information reported here constitutes a reference for non-Buthidae scorpion venoms, providing a comprehensive view of genes that are involved in venom production. Further, this work identifies new putative bioactive compounds that could be used to seed research into new pharmacological compounds and increase our understanding of the function of different ion channels.
Collapse
Affiliation(s)
- Karen Luna-Ramírez
- Australian Venom Research Unit, Department of Pharmacology and Therapeutics, University of Melbourne, Victoria, Australia
| | - Verónica Quintero-Hernández
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Víctor Rivelino Juárez-González
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Lourival D. Possani
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| |
Collapse
|
39
|
Pucca MB, Peigneur S, Cologna CT, Cerni FA, Zoccal KF, Bordon KDCF, Faccioli LH, Tytgat J, Arantes EC. Electrophysiological characterization of the first Tityus serrulatus alpha-like toxin, Ts5: Evidence of a pro-inflammatory toxin on macrophages. Biochimie 2015; 115:8-16. [PMID: 25906692 DOI: 10.1016/j.biochi.2015.04.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 04/10/2015] [Indexed: 12/16/2022]
Abstract
Tityus serrulatus (Ts) venom is composed of mainly neurotoxins specific for voltage-gated K(+) and Na(+) channels, which are expressed in many cells such as macrophages. Macrophages are the first line of defense invasion and they participate in the inflammatory response of Ts envenoming. However, little is known about the effect of Ts toxins on macrophage activation. This study investigated the effect of Ts5 toxin on different sodium channels as well as its role on the macrophage immunomodulation. The electrophysiological assays showed that Ts5 inhibits the rapid inactivation of the mammalian sodium channels Nav1.2, Nav1.3, Nav1.4, Nav1.5, Nav1.6 and Nav1.7. Interestingly, Ts5 also inhibits the inactivation of the insect Drosophila melanogaster sodium channel (DmNav1), and it is therefore classified as the first Ts α-like toxin. The immunological experiments on macrophages reveal that Ts5 is a pro-inflammatory toxin inducing the cytokine production of tumor necrosis factor (TNF)-α and interleukin (IL)-6. On the basis of recent literature, our study also stresses a possible mechanism responsible for venom-associated molecular patterns (VAMPs) internalization and macrophage activation and moreover we suggest two main pathways of VAMPs signaling: direct and indirect. This work provides useful insights for a better understanding of the involvement of VAMPs in macrophage modulation.
Collapse
Affiliation(s)
- Manuela B Pucca
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Steve Peigneur
- Toxicology and Pharmacology, University of Leuven, Leuven, Belgium
| | - Camila T Cologna
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Felipe A Cerni
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Karina F Zoccal
- Department of Clinical Analysis, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Karla de C F Bordon
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Lucia H Faccioli
- Department of Clinical Analysis, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Jan Tytgat
- Toxicology and Pharmacology, University of Leuven, Leuven, Belgium
| | - Eliane C Arantes
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
40
|
The transcriptome recipe for the venom cocktail of Tityus bahiensis scorpion. Toxicon 2015; 95:52-61. [DOI: 10.1016/j.toxicon.2014.12.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 12/13/2014] [Accepted: 12/27/2014] [Indexed: 12/23/2022]
|
41
|
Carmo AO, Chatzaki M, Horta CCR, Magalhães BF, Oliveira-Mendes BBR, Chávez-Olórtegui C, Kalapothakis E. Evolution of alternative methodologies of scorpion antivenoms production. Toxicon 2015; 97:64-74. [PMID: 25701676 DOI: 10.1016/j.toxicon.2015.02.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 11/10/2014] [Accepted: 02/17/2015] [Indexed: 12/23/2022]
Abstract
Scorpionism represents a serious public health problem resulting in the death of children and debilitated individuals. Scorpion sting treatment employs various strategies including the use of specific medicines such as antiserum, especially for patients with severe symptoms. In 1909 Charles Todd described the production of an antiserum against the venom of the scorpion Buthus quinquestriatus. Based on Todd's work, researchers worldwide began producing antiserum using the same approach i.e., immunization of horses with crude venom as antigen. Despite achieving satisfactory results using this approach, researchers in this field have developed alternative approaches for the production of scorpion antivenom serum. In this review, we describe the work published by experts in toxinology to the development of scorpion venom antiserum. Methods and results describing the use of specific antigens, detoxified venom or toxins, purified toxins and or venom fractions, native toxoids, recombinant toxins, synthetic peptides, monoclonal and recombinant antibodies, and alternative animal models are presented.
Collapse
Affiliation(s)
- A O Carmo
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG 31270-901, Brazil.
| | - M Chatzaki
- Department of Molecular Biology & Genetics, Democritus University of Thrace, University Campus, 69100 Komotini, Greece.
| | - C C R Horta
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG 31270-901, Brazil.
| | - B F Magalhães
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG 31270-901, Brazil.
| | - B B R Oliveira-Mendes
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG 31270-901, Brazil.
| | - C Chávez-Olórtegui
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG 31270-901, Brazil.
| | - E Kalapothakis
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG 31270-901, Brazil.
| |
Collapse
|
42
|
Carmo A, Oliveira-Mendes B, Horta C, Magalhães B, Dantas A, Chaves L, Chávez-Olórtegui C, Kalapothakis E. Molecular and functional characterization of metalloserrulases, new metalloproteases from the Tityus serrulatus venom gland. Toxicon 2014; 90:45-55. [DOI: 10.1016/j.toxicon.2014.07.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/10/2014] [Accepted: 07/24/2014] [Indexed: 11/29/2022]
|
43
|
Cajado Carvalho D, Kuniyoshi AK, Kodama RT, Oliveira AK, Serrano SMT, Tambourgi DV, Portaro FV. Neuropeptide Y family-degrading metallopeptidases in the Tityus serrulatus venom partially blocked by commercial antivenoms. Toxicol Sci 2014; 142:418-26. [PMID: 25239630 DOI: 10.1093/toxsci/kfu193] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Accidents caused by scorpions represent a relevant public health issue in Brazil, being more recurring than incidents with snakes and spiders. The main species responsible for this situation is the yellow scorpion, Tityus serrulatus, due especially to the great frequency with which accidents occur and the potential of its venom to induce severe clinical manifestations, even death, mainly among children. Although neurotoxins are well characterized, little information is known about other components of scorpion venoms, such as peptidases, and their effect on envenomation. Previous results from our group showed that the metallopeptidases present in this venom are capable of hydrolyzing the neuropeptide dynorphin 1-13 in vitro, releasing Leu-enkephalin, which may interact with ion channels and promote indirect neurotoxicity. Thus, this study aims to get more information about the effect of toxic peptidase activity present in the venom on biologically active peptides, and to evaluate the in vitro neutralizing potential of commercial antivenoms produced by the Butantan Institute. A set of human bioactive peptides were studied as substrates for the peptidases, and the members of the neuropeptide Y family were found to be the most susceptible ones. All new substrate hydrolyses were totally inhibited by ethylenediaminetetracetic and not blocked by phenylmethanesulfonylfluoride, indicating that metallopeptidases were responsible for the peptidase activity. Also, peptidase activities were only partially inhibited by therapeutic Brazilian scorpion antivenom (SAV) and arachnid antivenom (AAV). The dose-response inhibition by both antivenoms indicates that AAV neutralizes better than SAV at the used doses. These characterizations, unpublished until now, can contribute to the improvement of our knowledge about the venom and envenomation processes by T. serrulatus.
Collapse
Affiliation(s)
- Daniela Cajado Carvalho
- *Immunochemistry Laboratory, Butantan Institute, São Paulo, SP, Brazil and Special Laboratory of Applied Toxinology, Center of Toxins, Immune-response and Cell Signaling-CeTICS, Instituto Butantan, Brazil
| | - Alexandre K Kuniyoshi
- *Immunochemistry Laboratory, Butantan Institute, São Paulo, SP, Brazil and Special Laboratory of Applied Toxinology, Center of Toxins, Immune-response and Cell Signaling-CeTICS, Instituto Butantan, Brazil
| | - Roberto T Kodama
- *Immunochemistry Laboratory, Butantan Institute, São Paulo, SP, Brazil and Special Laboratory of Applied Toxinology, Center of Toxins, Immune-response and Cell Signaling-CeTICS, Instituto Butantan, Brazil
| | - Ana K Oliveira
- *Immunochemistry Laboratory, Butantan Institute, São Paulo, SP, Brazil and Special Laboratory of Applied Toxinology, Center of Toxins, Immune-response and Cell Signaling-CeTICS, Instituto Butantan, Brazil
| | - Solange M T Serrano
- *Immunochemistry Laboratory, Butantan Institute, São Paulo, SP, Brazil and Special Laboratory of Applied Toxinology, Center of Toxins, Immune-response and Cell Signaling-CeTICS, Instituto Butantan, Brazil
| | - Denise V Tambourgi
- *Immunochemistry Laboratory, Butantan Institute, São Paulo, SP, Brazil and Special Laboratory of Applied Toxinology, Center of Toxins, Immune-response and Cell Signaling-CeTICS, Instituto Butantan, Brazil
| | - Fernanda V Portaro
- *Immunochemistry Laboratory, Butantan Institute, São Paulo, SP, Brazil and Special Laboratory of Applied Toxinology, Center of Toxins, Immune-response and Cell Signaling-CeTICS, Instituto Butantan, Brazil
| |
Collapse
|
44
|
Pucca MB, Amorim FG, Cerni FA, Bordon KDCF, Cardoso IA, Anjolette FAP, Arantes EC. Influence of post-starvation extraction time and prey-specific diet in Tityus serrulatus scorpion venom composition and hyaluronidase activity. Toxicon 2014; 90:326-36. [PMID: 25199494 DOI: 10.1016/j.toxicon.2014.08.064] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 08/17/2014] [Accepted: 08/18/2014] [Indexed: 01/24/2023]
Abstract
The role of diet in venom composition has been a topic of intense research interest. This work presents evidence that the variation in the venom composition from the scorpion Tityus serrulatus (Ts) is closely associated with post-starvation extraction time and prey-specific diet. The scorpions were fed with cockroach, cricket, peanut beetle or giant Tenebrio. The venoms demonstrated a pronounced difference in the total protein and toxins composition, which was evaluated by electrophoresis, reversed-phase chromatography, densitometry, hyaluronidase activity and N-terminal sequencing. Indeed, many toxins and peptides, such as Ts1, Ts2, Ts4, Ts5, Ts6, Ts15, Ts19 frag. II, hypotensins 1 and 3, PAPE peptide and peptide 9797 (first described in Ts venom), were all identified in different proportions in the analyzed Ts venoms. This study is pioneer on assessing the influence of the starvation time and the prey diet on hyaluronidase activity as well as to describe a modification of Tricine-gel-electrophoresis to evaluate this enzyme activity. Altogether, this study reveal a large contribution of the extraction time and diet on Ts venom variability as well as present a background to recommend the cockroach diet to obtain higher protein content and the cricket diet to obtain higher hyaluronidase specific activity.
Collapse
Affiliation(s)
- Manuela Berto Pucca
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Fernanda Gobbi Amorim
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Felipe Augusto Cerni
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Karla de Castro Figueiredo Bordon
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Iara Aimê Cardoso
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Fernando Antonio Pino Anjolette
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Eliane Candiani Arantes
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, 14040-903, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
45
|
Diego-García E, Caliskan F, Tytgat J. The Mediterranean scorpion Mesobuthus gibbosus (Scorpiones, Buthidae): transcriptome analysis and organization of the genome encoding chlorotoxin-like peptides. BMC Genomics 2014; 15:295. [PMID: 24746279 PMCID: PMC4234519 DOI: 10.1186/1471-2164-15-295] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 04/09/2014] [Indexed: 11/29/2022] Open
Abstract
Background Transcrof toxin genes of scorpion species have been published. Up to this moment, no information on the gene characterization of M. gibbosus is available. Results This study provides the first insight into gene expression in venom glands from M. gibbosus scorpion. A cDNA library was generated from the venom glands and subsequently analyzed (301 clones). Sequences from 177 high-quality ESTs were grouped as 48 Mgib sequences, of those 48 sequences, 40 (29 “singletons” and 11 “contigs”) correspond with one or more ESTs. We identified putative precursor sequences and were grouped them in different categories (39 unique transcripts, one with alternative reading frames), resulting in the identification of 12 new toxin-like and 5 antimicrobial precursors (transcripts). The analysis of the gene families revealed several new components categorized among various toxin families with effect on ion channels. Sequence analysis of a new KTx precursor provides evidence to validate a new KTx subfamily (α-KTx 27.x). A second part of this work involves the genomic organization of three Meg-chlorotoxin-like genes (ClTxs). Genomic DNA sequence reveals close similarities (presence of one same-phase intron) with the sole genomic organization of chlorotoxins ever reported (from M. martensii). Conclusions Transcriptome analysis is a powerful strategy that provides complete information of the gene expression and molecular diversity of the venom glands (telson). In this work, we generated the first catalogue of the gene expression and genomic organization of toxins from M. gibbosus. Our result represents a relevant contribution to the knowledge of toxin transcripts and complementary information related with other cell function proteins and venom peptide transcripts. The genomic organization of the chlorotoxin genes may help to understand the diversity of this gene family.
Collapse
Affiliation(s)
| | | | - Jan Tytgat
- Toxicology and Pharmacology, University of Leuven, Campus Gasthuisberg O& N2,PO Box 922, Herestraat 49, 3000 Leuven, Belgium.
| |
Collapse
|
46
|
Horta CCR, Magalhães BDF, Oliveira-Mendes BBR, do Carmo AO, Duarte CG, Felicori LF, Machado-de-Ávila RA, Chávez-Olórtegui C, Kalapothakis E. Molecular, immunological, and biological characterization of Tityus serrulatus venom hyaluronidase: new insights into its role in envenomation. PLoS Negl Trop Dis 2014; 8:e2693. [PMID: 24551256 PMCID: PMC3923731 DOI: 10.1371/journal.pntd.0002693] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 12/28/2013] [Indexed: 12/15/2022] Open
Abstract
Background Scorpionism is a public health problem in Brazil, and Tityus serrulatus (Ts) is primarily responsible for severe accidents. The main toxic components of Ts venom are low-molecular-weight neurotoxins; however, the venom also contains poorly characterized high-molecular-weight enzymes. Hyaluronidase is one such enzyme that has been poorly characterized. Methods and principal findings We examined clones from a cDNA library of the Ts venom gland and described two novel isoforms of hyaluronidase, TsHyal-1 and TsHyal-2. The isoforms are 83% identical, and alignment of their predicted amino acid sequences with other hyaluronidases showed conserved residues between evolutionarily distant organisms. We performed gel filtration followed by reversed-phase chromatography to purify native hyaluronidase from Ts venom. Purified native Ts hyaluronidase was used to produce anti-hyaluronidase serum in rabbits. As little as 0.94 µl of anti-hyaluronidase serum neutralized 1 LD50 (13.2 µg) of Ts venom hyaluronidase activity in vitro. In vivo neutralization assays showed that 121.6 µl of anti-hyaluronidase serum inhibited mouse death 100%, whereas 60.8 µl and 15.2 µl of serum delayed mouse death. Inhibition of death was also achieved by using the hyaluronidase pharmacological inhibitor aristolochic acid. Addition of native Ts hyaluronidase (0.418 µg) to pre-neutralized Ts venom (13.2 µg venom+0.94 µl anti-hyaluronidase serum) reversed mouse survival. We used the SPOT method to map TsHyal-1 and TsHyal-2 epitopes. More peptides were recognized by anti-hyaluronidase serum in TsHyal-1 than in TsHyal-2. Epitopes common to both isoforms included active site residues. Conclusions Hyaluronidase inhibition and immunoneutralization reduced the toxic effects of Ts venom. Our results have implications in scorpionism therapy and challenge the notion that only neurotoxins are important to the envenoming process. In Brazil, accidents with scorpion stings have been a serious public health problem, and Tityus serrulatus (Ts) is primarily responsible for severe accidents. Therefore, efforts have been made to understand the characteristics of the molecules present in scorpion venoms. These venoms are complex mixtures, in which neurotoxins are the main toxic components. Ts venom also contains enzymes, such as hyaluronidase, that have not been well characterized. In this study, we described for the first time two sequences of Ts hyaluronidase isoforms: TsHyal-1 and TsHyal-2. We purified native hyaluronidase from Ts venom and produced anti-hyaluronidase serum in rabbits. This serum neutralized hyaluronidase activity present in Ts venom. In vivo neutralization assays showed that anti-hyaluronidase serum inhibited and delayed mouse death after injection of a lethal dose (50% lethal dose, LD50) of Ts venom. This work confirms the influence of hyaluronidase in Ts venom lethality and paves the way for the development of new strategies for scorpionism therapy.
Collapse
Affiliation(s)
- Carolina Campolina Rebello Horta
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia e Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Bárbara de Freitas Magalhães
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Anderson Oliveira do Carmo
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Clara Guerra Duarte
- Departamento de Bioquímica-Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Liza Figueiredo Felicori
- Departamento de Bioquímica-Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ricardo Andrez Machado-de-Ávila
- Departamento de Bioquímica-Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Carlos Chávez-Olórtegui
- Departamento de Bioquímica-Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Evanguedes Kalapothakis
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
47
|
Abdel-Rahman MA, Quintero-Hernandez V, Possani LD. Venom proteomic and venomous glands transcriptomic analysis of the Egyptian scorpion Scorpio maurus palmatus (Arachnida: Scorpionidae). Toxicon 2013; 74:193-207. [DOI: 10.1016/j.toxicon.2013.08.064] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 08/20/2013] [Accepted: 08/22/2013] [Indexed: 12/21/2022]
|