1
|
Wang S, Shi Z, Zhang H, Hou J, Lee D, Xu J, Guo Y. Cycloartane-type triterpenoids and steroids from Trichilia connaroides and their multidrug resistance reversal activities. PHYTOCHEMISTRY 2023; 216:113867. [PMID: 37757926 DOI: 10.1016/j.phytochem.2023.113867] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/04/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023]
Abstract
Four undescribed cycloartane-type triterpenoids (1-4) and seven undescribed steroids (6-12), along with five known analogues (5 and 13-16), were isolated from the leaves of Trichilia connaroides. Their structures were identified based on the NMR data and HRESIMS, and the absolute configurations were determined through single-crystal X-ray diffraction analysis, Mosher's method, and ECD calculations. The multidrug resistance (MDR) reversal activities of all the isolates were assessed, and compounds 10 and 11 showed significant activities to reverse the MDR of MCF-7/DOX cells with IC50 values of 2.90 and 3.76 μM, respectively. These bioactive compounds may bring fresh insights into the research and development of MDR reversal agents.
Collapse
Affiliation(s)
- Sibei Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China
| | - Zhaoyu Shi
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China
| | - Han Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China
| | - Jiantong Hou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China
| | - Dongho Lee
- Department of Plant Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Jing Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, People's Republic of China.
| | - Yuanqiang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
2
|
Markowski A, Jaromin A, Migdał P, Olczak E, Zygmunt A, Zaremba-Czogalla M, Pawlik K, Gubernator J. Design and Development of a New Type of Hybrid PLGA/Lipid Nanoparticle as an Ursolic Acid Delivery System against Pancreatic Ductal Adenocarcinoma Cells. Int J Mol Sci 2022; 23:5536. [PMID: 35628352 PMCID: PMC9143619 DOI: 10.3390/ijms23105536] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/08/2022] [Accepted: 05/13/2022] [Indexed: 11/17/2022] Open
Abstract
Despite many attempts, trials, and treatment procedures, pancreatic ductal adenocarcinoma (PDAC) still ranks among the most deadly and treatment-resistant types of cancer. Hence, there is still an urgent need to develop new molecules, drugs, and therapeutic methods against PDAC. Naturally derived compounds, such as pentacyclic terpenoids, have gained attention because of their high cytotoxic activity toward pancreatic cancer cells. Ursolic acid (UA), as an example, possesses a wide anticancer activity spectrum and can potentially be a good candidate for anti-PDAC therapy. However, due to its minimal water solubility, it is necessary to prepare an optimal nano-sized vehicle to overcome the low bioavailability issue. Poly(lactic-co-glycolic acid) (PLGA) polymeric nanocarriers seem to be an essential tool for ursolic acid delivery and can overcome the lack of biological activity observed after being incorporated within liposomes. PLGA modification, with the addition of PEGylated phospholipids forming the lipid shell around the polymeric core, can provide additional beneficial properties to the designed nanocarrier. We prepared UA-loaded hybrid PLGA/lipid nanoparticles using a nanoprecipitation method and subsequently performed an MTT cytotoxicity assay for AsPC-1 and BxPC-3 cells and determined the hemolytic effect on human erythrocytes with transmission electron microscopic (TEM) visualization of the nanoparticles and their cellular uptake. Hybrid UA-loaded lipid nanoparticles were also examined in terms of their stability, coating dynamics, and ursolic acid loading. We established innovative and repeatable preparation procedures for novel hybrid nanoparticles and obtained biologically active nanocarriers for ursolic acid with an IC50 below 20 µM, with an appropriate size for intravenous dosage (around 150 nm), high homogeneity of the sample (below 0.2), satisfactory encapsulation efficiency (up to 70%) and excellent stability. The new type of hybrid UA-PLGA nanoparticles represents a further step in the development of potentially effective PDAC therapies based on novel, biologically active, and promising triterpenoids.
Collapse
Affiliation(s)
- Adam Markowski
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland; (A.J.); (E.O.); (A.Z.); (M.Z.-C.)
| | - Anna Jaromin
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland; (A.J.); (E.O.); (A.Z.); (M.Z.-C.)
| | - Paweł Migdał
- Polish Academy of Science Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Weigla 12, 53-114 Wrocław, Poland; (P.M.); (K.P.)
- Department of Environment Hygiene and Animal Welfare, Bee Division, Wroclaw University of Environmental and Life Sciences, Chelmońskiego 38C, 51-630 Wrocław, Poland
| | - Ewa Olczak
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland; (A.J.); (E.O.); (A.Z.); (M.Z.-C.)
| | - Adrianna Zygmunt
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland; (A.J.); (E.O.); (A.Z.); (M.Z.-C.)
| | - Magdalena Zaremba-Czogalla
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland; (A.J.); (E.O.); (A.Z.); (M.Z.-C.)
| | - Krzysztof Pawlik
- Polish Academy of Science Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Weigla 12, 53-114 Wrocław, Poland; (P.M.); (K.P.)
| | - Jerzy Gubernator
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland; (A.J.); (E.O.); (A.Z.); (M.Z.-C.)
| |
Collapse
|
3
|
Pacheco PA, Louvandini H, Giglioti R, Wedy BCR, Ribeiro JC, Verissimo CJ, Ferreira JFDS, Amarante AFT, Katiki LM. Phytochemicals modulation of P-Glycoprotein and its gene expression in an ivermectin resistant Haemonchus contortus isolate in vitro. Vet Parasitol 2022; 305:109713. [DOI: 10.1016/j.vetpar.2022.109713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 04/25/2022] [Accepted: 04/30/2022] [Indexed: 10/18/2022]
|
4
|
Paes de Melo B, Carpinetti PDA, Fraga OT, Rodrigues-Silva PL, Fioresi VS, de Camargos LF, Ferreira MFDS. Abiotic Stresses in Plants and Their Markers: A Practice View of Plant Stress Responses and Programmed Cell Death Mechanisms. PLANTS (BASEL, SWITZERLAND) 2022; 11:1100. [PMID: 35567101 PMCID: PMC9103730 DOI: 10.3390/plants11091100] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 05/12/2023]
Abstract
Understanding how plants cope with stress and the intricate mechanisms thereby used to adapt and survive environmental imbalances comprise one of the most powerful tools for modern agriculture. Interdisciplinary studies suggest that knowledge in how plants perceive, transduce and respond to abiotic stresses are a meaningful way to design engineered crops since the manipulation of basic characteristics leads to physiological remodeling for plant adaption to different environments. Herein, we discussed the main pathways involved in stress-sensing, signal transduction and plant adaption, highlighting biochemical, physiological and genetic events involved in abiotic stress responses. Finally, we have proposed a list of practice markers for studying plant responses to multiple stresses, highlighting how plant molecular biology, phenotyping and genetic engineering interconnect for creating superior crops.
Collapse
Affiliation(s)
- Bruno Paes de Melo
- Trait Development Department, LongPing HighTech, Cravinhos 14140-000, SP, Brazil
| | - Paola de Avelar Carpinetti
- Genetics and Breeding Program, Universidade Federal do Espírito Santo, Alegre 29500-000, ES, Brazil; (P.d.A.C.); (V.S.F.); (M.F.d.S.F.)
| | - Otto Teixeira Fraga
- Applied Biochemistry Program, Universidade Federal de Viçosa, Viçosa 36570-000, MG, Brazil;
| | | | - Vinícius Sartori Fioresi
- Genetics and Breeding Program, Universidade Federal do Espírito Santo, Alegre 29500-000, ES, Brazil; (P.d.A.C.); (V.S.F.); (M.F.d.S.F.)
| | | | - Marcia Flores da Silva Ferreira
- Genetics and Breeding Program, Universidade Federal do Espírito Santo, Alegre 29500-000, ES, Brazil; (P.d.A.C.); (V.S.F.); (M.F.d.S.F.)
| |
Collapse
|
5
|
Pareri AU, Koijam AS, Kumar C. Breaking the Silence of Tumor Response: Future Prospects of Targeted Radionuclide Therapy. Anticancer Agents Med Chem 2021; 22:1845-1858. [PMID: 34477531 DOI: 10.2174/1871520621666210903152354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/12/2021] [Accepted: 07/19/2021] [Indexed: 01/10/2023]
Abstract
Therapy-induced tumor resistance has always been a paramount hurdle in the clinical triumph of cancer therapy. Resistance acquired by tumor through interventions of chemotherapeutic drugs, ionizing radiation, and immunotherapy in the patientsis a severe drawback and major cause of recurrence of tumor and failure of therapeutic responses. To counter acquired resistance in tumor cells, several strategies are practiced such as chemotherapy regimens, immunotherapy, and immunoconjugates, but the outcome is very disappointing for the patients as well as clinicians. Radionuclide therapy using alpha or beta-emitting radionuclide as payload became state-of-the-art for cancer therapy. With the improvement in dosimetric studies, development of high-affinity target molecules, and design of several novel chelating agents which provide thermodynamically stable complexes in vivo, the scope of radionuclide therapy has increased by leaps and bounds. Additionally, radionuclide therapy along with the combination of chemotherapy is gaining importance in pre-clinics, which is quite encouraging. Thus, it opens an avenue for newer cancer therapy modalities where chemotherapy, radiation therapy, and immunotherapy are unable to break the silence of tumor response. This article describes, in brief, the causes of tumor resistance and discusses the potential of radionuclide therapy to enhance tumor response.
Collapse
Affiliation(s)
| | | | - Chandan Kumar
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre Mumbai-400085, India
| |
Collapse
|
6
|
Evaluation of the In Vitro Cytotoxic Activity of Ursolic Acid PLGA Nanoparticles against Pancreatic Ductal Adenocarcinoma Cell Lines. MATERIALS 2021; 14:ma14174917. [PMID: 34501007 PMCID: PMC8434451 DOI: 10.3390/ma14174917] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/13/2022]
Abstract
Among all the types of cancer, Pancreatic Ductal Adenocarcinoma remains one of the deadliest and hardest to fight and there is a critical unmet need for new drugs and therapies for its treatment. Naturally derived compounds, such as pentacyclic triterpenoids, have gathered attention because of their high cytotoxic potential towards pancreatic cancer cells, with a wide biological activity spectrum, with ursolic acid (UA) being one of the most interesting. However, due to its minimal water solubility, it is necessary to prepare a nanocarrier vehicle to aid in the delivery of this compound. Poly(lactic-co-glycolic acid) or PLGA polymeric nanocarriers are an essential tool for ursolic acid delivery and can overcome the lack in its biological activity observed after incorporating within liposomes. We prepared UA-PLGA nanoparticles with a PEG modification, to achieve a long circulation time, by using a nanoprecipitation method and subsequently performed an MTT cytotoxicity assay towards AsPC-1 and BxPC-3 cells, with TEM visualization of the nanoparticles and their cellular uptake. We established repeatable preparation procedures of the nanoparticles and achieved biologically active nanocarriers with an IC50 below 30 µM, with an appropriate size for intravenous dosage (around 140 nm), high sample homogeneity (below 0.2) and reasonable encapsulation efficiency (up to 50%). These results represent the first steps in the development of potentially effective PDAC therapies based on novel biologically active and promising triterpenoids.
Collapse
|
7
|
Abstract
The present review describes 108 new examples of naturally occurring flavans and
flavanones having cytotoxic potential, which have been reported during the period of 2005 to
mid-2020. These compounds are found either as aglycones or as glycosides, comprising
flavans, flavanones, isoflavanones and miscellaneous flavanones (homo- and bi-flavanones).
The main topics addressed in this review are source, structure, and cytotoxic activity in detail
and the structure-activity relationship.
Collapse
Affiliation(s)
- Arindam Gangopadhyay
- Department of Chemistry, Rampurhat College, Rampurhat, Birbhum, West Bengal, India
| |
Collapse
|
8
|
Karthika C, Sureshkumar R. Incorporation of natural assumption to deal with cancer. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:4902-4917. [PMID: 33230796 DOI: 10.1007/s11356-020-11479-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 10/29/2020] [Indexed: 06/11/2023]
Abstract
The current state of the art for the use of natural ingredients for cancer therapy is by reviewing the publications and findings associated with cancer research with the employment of flavonoids. Cancer is the most furious disease making fear in the eyes of mankind. Though various treatment methods are prevalent, the patient's choices are shifting from synthetic treatment strategy to the natural ones. The plant-based metabolites are used very often in our life as a food additive and also as a medicine for primary health care. The safety profile and its efficacy add on advantage for the incorporation of the natural products separately or in combination as a remedy for cancer. Flavonoids, the plant-based metabolites are proven for their anti-inflammatory, anti-oxidant, and anti-cancer properties. Their chemotherapeutic and chemosensitizing power had made it interesting for the researchers to dig more on the health benefits of the flavonoids and incorporating it in a holistic approach, with its natural benefits to relieve the pain and the symptoms of the patient suffering from various medical conditions. The predominant approach for the management of cancer is by following safe and effective treatment modality. In this review, we mentioned the benefits of the flavonoids for the management of various cancers and its potency as a chemotherapeutic agent and as the chemosensitizer. Our mother nature had given remedies to cure various diseases in both human beings and animals by it; we just need to find out the sources and access to them.
Collapse
Affiliation(s)
- Chenmala Karthika
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Raman Sureshkumar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Nilgiris, Tamil Nadu, India.
| |
Collapse
|
9
|
Majolo F, Caye B, Stoll SN, Leipelt J, Abujamra AL, Goettert MI. Prevention and Therapy of Prostate Cancer: An Update on Alternatives for Treatment and Future Perspectives. CURRENT DRUG THERAPY 2020. [DOI: 10.2174/1574885514666190917150635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Prostate cancer is one of the most prevalent cancer types in men worldwide. With the
progression of the disease to independent stimulation by androgen hormones, it becomes more difficult
to control its progress. In addition, several studies have shown that chronic inflammation is
directly related to the onset and progression of this cancer. For many decades, conventional chemotherapeutic
drugs have not made significant progress in the treatment of prostate cancer. However,
the discovery of docetaxel yielded the first satisfactory responses of increased survival of
patients. In addition, alternative therapies using biomolecules derived from secondary metabolites
of natural products are promising in the search for new treatments. Despite the advances in the
treatment of this disease in the last two decades, the results are still insufficient and conventional
therapies do not present the expected results they once promised. Thus, a revision and
(re)establishment of prostate cancer therapeutic strategies are necessary. In this review, we also
approach suggested treatments for molecular biomarkers in advanced prostate cancer.
Collapse
Affiliation(s)
- Fernanda Majolo
- Instituto do Cérebro do Rio Grande do Sul (InsCer), Programa de Pós-Graduação em Medicina e Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Bruna Caye
- Laboratatório de Cultura de Células, Programa de Pós-Graduação em Biotecnologia, Universidade do Vale do Taquari – UNIVATES, Lajeado, Brazil
| | - Stefani Natali Stoll
- Laboratatório de Cultura de Células, Programa de Pós-Graduação em Biotecnologia, Universidade do Vale do Taquari – UNIVATES, Lajeado, Brazil
| | - Juliano Leipelt
- Laboratatório de Cultura de Células, Programa de Pós-Graduação em Biotecnologia, Universidade do Vale do Taquari – UNIVATES, Lajeado, Brazil
| | - Ana Lúcia Abujamra
- Laboratatório de Cultura de Células, Programa de Pós-Graduação em Biotecnologia, Universidade do Vale do Taquari – UNIVATES, Lajeado, Brazil
| | - Márcia Inês Goettert
- Laboratatório de Cultura de Células, Programa de Pós-Graduação em Biotecnologia, Universidade do Vale do Taquari – UNIVATES, Lajeado, Brazil
| |
Collapse
|
10
|
García Manzano MF, Joray MB, Laiolo J, Palacios SM, Carpinella MC. Cytotoxic Activity of Germacrane-Type Sesquiterpene Lactones from Dimerostemma aspilioides. JOURNAL OF NATURAL PRODUCTS 2020; 83:1909-1918. [PMID: 32496057 DOI: 10.1021/acs.jnatprod.0c00115] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The need for effective candidates as cytotoxic drugs that at the same time challenge cancer multidrug resistance encouraged a search for these in plants of central Argentina. Bioassay-guided fractionation of the cytotoxic extract from Dimerostemma aspilioides led to the isolation of the germacranolide tomenphantin A (1), along with three new analogues (2-4). These efficiently inhibited the proliferation of the leukemia cell lines K562 and CCRF-CEM and their resistant variants, Lucena 1 and CEM/ADR5000, respectively, with IC50 values ranging from 0.40 to 7.7 μM. The structures and relative configurations of compounds 1-4 were elucidated by analysis of the spectroscopic data, in particular NMR spectroscopy. The most active among these was compound 1 (IC50 = 0.40-5.1 μM), and, therefore, this was selected as a model for a mechanistic study, which revealed that its antiproliferative effect was mediated by cell cycle arrest in the G2/M phase followed by apoptosis. The activity of compound 1 was selective, given the absence of cytotoxicity toward peripheral blood mononuclear cells. The results show the potential of these compounds, and in particular of compound 1, as leads for the development of drug candidates to fight sensitive and resistant leukemia cells.
Collapse
Affiliation(s)
- María F García Manzano
- Fine Chemical and Natural Products Laboratory, Research Institute of Natural Resources and Sustainability José Sánchez Labrador S.J. (IRNASUS-CONICET), School of Chemistry, Catholic University of Córdoba, Córdoba X5016DHK, Argentina
| | - Mariana B Joray
- Fine Chemical and Natural Products Laboratory, Research Institute of Natural Resources and Sustainability José Sánchez Labrador S.J. (IRNASUS-CONICET), School of Chemistry, Catholic University of Córdoba, Córdoba X5016DHK, Argentina
| | - Jerónimo Laiolo
- Fine Chemical and Natural Products Laboratory, Research Institute of Natural Resources and Sustainability José Sánchez Labrador S.J. (IRNASUS-CONICET), School of Chemistry, Catholic University of Córdoba, Córdoba X5016DHK, Argentina
| | - Sara M Palacios
- Fine Chemical and Natural Products Laboratory, Research Institute of Natural Resources and Sustainability José Sánchez Labrador S.J. (IRNASUS-CONICET), School of Chemistry, Catholic University of Córdoba, Córdoba X5016DHK, Argentina
| | - María C Carpinella
- Fine Chemical and Natural Products Laboratory, Research Institute of Natural Resources and Sustainability José Sánchez Labrador S.J. (IRNASUS-CONICET), School of Chemistry, Catholic University of Córdoba, Córdoba X5016DHK, Argentina
| |
Collapse
|
11
|
Keyvani-Ghamsari S, Khorsandi K, Gul A. Curcumin effect on cancer cells' multidrug resistance: An update. Phytother Res 2020; 34:2534-2556. [PMID: 32307747 DOI: 10.1002/ptr.6703] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 03/02/2020] [Accepted: 04/02/2020] [Indexed: 12/11/2022]
Abstract
Chemotherapy is one of the main methods for cancer treatment. However, despite many advances in the design of anticancer drugs, their efficiency is limited due to their high toxicity and resistance of cells to chemotherapeutic drugs. In order to improve the cancer therapy, it is essential to use the compounds that can overcome drug resistance and increase treatment efficiency. Researchers have studied the effects of natural compounds for the controlling various drug resistance mechanisms. Curcumin is a natural phenolic compound which shows potent anticancer activities in different tumors, alone or as an adjuvant with other antitumor drugs to prevent or inhibit the survival and cancer progression by various mechanisms. The role of curcumin in overcoming drug resistance was followed by reviewing different applications of curcumin in cancer therapy. Afterward, the clinical impacts of curcumin, role of curcumin in decreasing drug resistance in different cancer cells and its mechanisms were discussed. It has been demonstrated that curcumin regulates signaling pathways in cancer cells, reduces the expression of proteins related to drug resistance, and increases the performance of antitumor drugs at various levels. Curcumin reverses multidrug resistance mechanisms and increases sensitivity of resistance cells to chemotherapy. This review mainly focuses on different mechanisms of drug resistance and curcumin as a nontoxic natural substance to eliminate the effects of drug resistance through modulation and controlling cell resistance pathways and eventually suggests curcumin as a potent chemosensitizer in cancers.
Collapse
Affiliation(s)
| | - Khatereh Khorsandi
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - Asma Gul
- Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| |
Collapse
|
12
|
Fattahian M, Ghanadian M, Ali Z, Khan IA. Jatrophane and rearranged jatrophane-type diterpenes: biogenesis, structure, isolation, biological activity and SARs (1984-2019). PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2020; 19:265-336. [PMID: 32292314 PMCID: PMC7152985 DOI: 10.1007/s11101-020-09667-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 02/29/2020] [Indexed: 05/12/2023]
Abstract
Diterpene compounds specially macrocyclic ones comprising jatrophane, lathyrane, terracinolide, ingenane, pepluane, paraliane, and segetane skeletons occurring in plants of the Euphorbiaceae family are of considerable interest in the context of natural product drug discovery programs. They possess diverse complex skeletons and a broad spectrum of therapeutically relevant biological activities including anti-inflammatory, anti-chikungunya virus, anti-HIV, cytotoxic, and multidrug resistance-reversing activities as well as curative effects on thrombotic diseases. Among macrocyclic diterpenes of Euphorbia, the discovery of jatrophane and modified jatrophane diterpenes with a wide range of structurally unique polyoxygenated polycyclic derivatives and as a new class of powerful inhibitors of P-glycoprotein has opened new frontiers for research studies on this genus. In this review, an attempt has been made to give in-depth coverage of the articles on the naturally occurring jatrophanes and rearranged jatrophane-type diterpenes isolated from species belonging to the Euphorbiaceae family published from 1984 to March 2019, with emphasis on the biogenesis, isolation methods, structure, biological activity, and structure-activity relationship.
Collapse
Affiliation(s)
- Maryam Fattahian
- School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mustafa Ghanadian
- School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677 USA
| | - Zulfiqar Ali
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677 USA
| | - Ikhlas A. Khan
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677 USA
| |
Collapse
|
13
|
Costea T, Vlad OC, Miclea LC, Ganea C, Szöllősi J, Mocanu MM. Alleviation of Multidrug Resistance by Flavonoid and Non-Flavonoid Compounds in Breast, Lung, Colorectal and Prostate Cancer. Int J Mol Sci 2020; 21:E401. [PMID: 31936346 PMCID: PMC7013436 DOI: 10.3390/ijms21020401] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/03/2020] [Accepted: 01/03/2020] [Indexed: 12/12/2022] Open
Abstract
The aim of the manuscript is to discuss the influence of plant polyphenols in overcoming multidrug resistance in four types of solid cancers (breast, colorectal, lung and prostate cancer). Effective treatment requires the use of multiple toxic chemotherapeutic drugs with different properties and targets. However, a major cause of cancer treatment failure and metastasis is the development of multidrug resistance. Potential mechanisms of multidrug resistance include increase of drug efflux, drug inactivation, detoxification mechanisms, modification of drug target, inhibition of cell death, involvement of cancer stem cells, dysregulation of miRNAs activity, epigenetic variations, imbalance of DNA damage/repair processes, tumor heterogeneity, tumor microenvironment, epithelial to mesenchymal transition and modulation of reactive oxygen species. Taking into consideration that synthetic multidrug resistance agents have failed to demonstrate significant survival benefits in patients with different types of cancer, recent research have focused on beneficial effects of natural compounds. Several phenolic compounds (flavones, phenolcarboxylic acids, ellagitannins, stilbens, lignans, curcumin, etc.) act as chemopreventive agents due to their antioxidant capacity, inhibition of proliferation, survival, angiogenesis, and metastasis, modulation of immune and inflammatory responses or inactivation of pro-carcinogens. Moreover, preclinical and clinical studies revealed that these compounds prevent multidrug resistance in cancer by modulating different pathways. Additional research is needed regarding the role of phenolic compounds in the prevention of multidrug resistance in different types of cancer.
Collapse
Affiliation(s)
- Teodora Costea
- Department of Pharmacognosy, Phytochemistry and Phytotherapy, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Oana Cezara Vlad
- Department of Biophysics, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (O.C.V.); (C.G.)
| | - Luminita-Claudia Miclea
- Department of Biophysics and Cellular Biotechnology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Research Excellence Center in Biophysics and Cellular Biotechnology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Constanta Ganea
- Department of Biophysics, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (O.C.V.); (C.G.)
| | - János Szöllősi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
- MTA-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Maria-Magdalena Mocanu
- Department of Biophysics, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (O.C.V.); (C.G.)
| |
Collapse
|
14
|
Maackia amurensis agglutinin induces apoptosis in cultured drug resistant human non-small cell lung cancer cells. Glycoconj J 2019; 36:473-485. [DOI: 10.1007/s10719-019-09891-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 08/15/2019] [Accepted: 09/09/2019] [Indexed: 12/21/2022]
|
15
|
Ribeiro ILA, de Andrade Lima Neto E, Valença AMG. Chemotherapy in Pediatric Oncology Patients and the Occurrence of Oral Mucositis. Int J Clin Pediatr Dent 2019; 12:261-267. [PMID: 31866707 PMCID: PMC6898864 DOI: 10.5005/jp-journals-10005-1633] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND It is known that chemotherapeutic agents are not equally stomatotoxic and oral cavity lesions are the most frequent complications encountered in antineoplastic chemotherapy. AIMS The objective of this study was to evaluate the occurrence of severe oral mucositis during a chemotherapy treatment and to identify its relationship with the chemotherapeutic class used. MATERIALS AND METHODS This is a longitudinal, prospective, and observational study that used an intensive direct observation technique for assessing the oral clinical conditions and the chemotherapy treatment administered to 105 patients (both children and adolescents). RESULTS Severe oral mucositis occurred in all the 10 weeks of evaluation (ranging from 16.2 to 31.4%) and the association between the type of chemotherapy and the occurrence of severe oral mucositis is recorded only in the 6th week, with the chance to develop severe oral mucositis being 3.07 (3.85-2.29) times higher in patients underwent chemotherapy with antimetabolites than in those who have not used chemotherapy (p = 0.012). CONCLUSION It was concluded that the chemotherapeutic agents most related to severe oral mucositis and to the interruption in chemotherapy are those of the class of antimetabolites, especially the methotrexate and the Ara C. HOW TO CITE THIS ARTICLE Ribeiro ILA, de Andrade Lima Neto E, et al. Chemotherapy in Pediatric Oncology Patients and the Occurrence of Oral Mucositis. Int J Clin Pediatr Dent 2019;12(4):261-267.
Collapse
Affiliation(s)
- Isabella LA Ribeiro
- Department of Clinical and Social Dentistry, Postgraduate Program in Dentistry, Federal University of Paraíba, Brazil
| | | | - Ana MG Valença
- Department of Clinical and Social Dentistry, Federal University of Paraíba, Brazil
| |
Collapse
|
16
|
Sagandykova GN, Pomastowski PP, Kaliszan R, Buszewski B. Modern analytical methods for consideration of natural biological activity. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.10.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
17
|
Li H, Krstin S, Wink M. Modulation of multidrug resistant in cancer cells by EGCG, tannic acid and curcumin. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 50:213-222. [PMID: 30466981 DOI: 10.1016/j.phymed.2018.09.169] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 08/10/2018] [Accepted: 09/17/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Cancer is one of the most common life-threatening diseases worldwide; many patients develop multidrug resistance after treatment with anticancer drugs. The main mechanism leading to multidrug resistance is the overexpression of ABC transporters in cancer cells. Chemosensitizers are needed to inhibit the activity of ABC transporters, resulting in higer intracellular concentration of anticancer drugs. Some secondary metabolites have been reported to be chemosensitizers by inhibiting ABC transporters. Epigallocatechin gallate (EGCG), tannic acid, and curcumin were employed in this study. Different assays were used to detect whether they have the ability to inhibit P-gp activity and overcome multidrug resistance in cancer cells overexpressing P-gp. Hypothesis/Purpose: CEM/ADR 5000 and Caco-2 cell lines, which overexpress P-gp, are multidrug resistant cell lines. We first detected whether the combination of polyphenols (EGCG, tannic acid, curcumin) and doxorubicin, an anticancer drug, is synergistic or not. To further understand the potential mechanism, EGCG, tannic acid, and curcumin were tested to check whether they have the ability to inhibit P-gp activity. When P-gp activity is inhibited, the intracellular concentration of doxorubicin is higher, resulting in enhanced cytotoxicity of doxorubicin. STUDY DESIGN The P-gp overexpressing human colon cancer cell line Caco-2 and human T-lymphoblastic leukemia cell line CEM/ADR 5000 were used in this study. Two-drug combinations (doxorubicin + polyphenol) and three-drug combinations (doxorubicin + polyphenol + digitonin) were tested to examine potential synergism. The potential mechanism leading to synergism would be the inhibition of P-gp activity. A Rhodamine 123 assay and Calcein-AM assay in Caco-2 and CEM/ADR 5000, respectively, were used to detect P-gp inhibition by EGCG, curcumin, and tannic acid. METHODS MTT assay was used to determine the cytotoxicity of doxorubicin, polyphenols and digitonin alone, and then their combinations. Furthermore, Rhodamine 123 and Calcein-AM were used to detect the effects of polyphenols on the activity of P-gp. RESULTS The results demonstrated that a combination of non-toxic concentrations of each polyphenol with doxorubicin synergistically sensitized Caco-2 and CEM/ADR 5000 cells. Furthermore, three-drug combinations (doxorubicin + polyphenol + digitonin) were much more effective. In addition, the activity of P-gp in Caco-2 and CEM/ADR 5000 cells was measured. Consistent with the combination results, tannic acid and curcumin decreased the activity of P-gp both in Caco-2 and CEM/ADR 5000. EGCG, which weakly affected the activity of P-gp in CEM/ADR 5000, only had an effect on P-gp under higher concentration in Caco-2 cells. CONCLUSION Our results show that EGCG, curcumin, and tannic acid, when combined with doxorubicin, can exert synergism, mediated by a reduced activity of P-gp. This study suggests that polyphenols, by modulating the activity of P-gp, may be used as chemosensitisers.
Collapse
Affiliation(s)
- Hanmei Li
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, D-69120, Heidelberg, Germany
| | - Sonja Krstin
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, D-69120, Heidelberg, Germany
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, D-69120, Heidelberg, Germany.
| |
Collapse
|
18
|
Popolo A, Pinto A, Daglia M, Nabavi SF, Farooqi AA, Rastrelli L. Two likely targets for the anti-cancer effect of indole derivatives from cruciferous vegetables: PI3K/Akt/mTOR signalling pathway and the aryl hydrocarbon receptor. Semin Cancer Biol 2017; 46:132-137. [PMID: 28596013 DOI: 10.1016/j.semcancer.2017.06.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/29/2017] [Accepted: 06/01/2017] [Indexed: 12/18/2022]
Abstract
Diets containing high quantities of plant foods are linked with a decreased likelihood of incidence of cancer. Several common plant-based dietary components exert effects on DNA methylation levels, and can positively influence genome stability and the transcription of tumor suppressors and oncogenes. Indole-3-carbinol (I3C) is a substance present in vegetables of the Brassicaeae family, especially broccoli, white cabbage, Brussels sprouts and cauliflower. The in vivo biological effects of I3C are ascribed to a series of oligomeric products (including 3,3'-diindolylmethane), developed under acidic conditions. I3C is one of the many natural products and bioactive compounds found in foods which have recently received much attention for its potential effects in cancer prevention and treatment. In vitro studies report that I3C suppresses the proliferation of different tumor cells, including those isolated from breast, prostate, endometrium, and colon cancers. I3C resulted to be a potent in vivo chemopreventive agent for certain hormone-dependent cancers, including breast and cervical cancer. However, the mechanisms underlying these effects are not well defined. In this review, we have analysed recent literature on the use of indole derivatives against various forms of cancer, and have identified the main signalling pathways involved in their anti-cancer effect as PI3K/Akt/mTOR and the aryl hydrocarbon receptor.
Collapse
Affiliation(s)
- Ada Popolo
- Dipartimento di Farmacia, University of Salerno, via Giovanni Paolo II, 84084, Fisciano, Italy
| | - Aldo Pinto
- Dipartimento di Farmacia, University of Salerno, via Giovanni Paolo II, 84084, Fisciano, Italy
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, Pavia University, Italy
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Luca Rastrelli
- Dipartimento di Farmacia, University of Salerno, via Giovanni Paolo II, 84084, Fisciano, Italy.
| |
Collapse
|
19
|
González ML, Vera DMA, Laiolo J, Joray MB, Maccioni M, Palacios SM, Molina G, Lanza PA, Gancedo S, Rumjanek V, Carpinella MC. Mechanism Underlying the Reversal of Drug Resistance in P-Glycoprotein-Expressing Leukemia Cells by Pinoresinol and the Study of a Derivative. Front Pharmacol 2017; 8:205. [PMID: 28487651 PMCID: PMC5403950 DOI: 10.3389/fphar.2017.00205] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 03/31/2017] [Indexed: 11/17/2022] Open
Abstract
P-glycoprotein (P-gp) is a membrane protein associated with multidrug resistance (MDR) due to its key role in mediating the traffic of chemotherapeutic drugs outside cancer cells, leading to a cellular response that hinders efforts toward successful therapy. With the aim of finding agents that circumvent the MDR phenotype mediated by P-gp, 15 compounds isolated from native and naturalized plants of Argentina were screened. Among these, the non-cytotoxic lignan (±) pinoresinol successfully restored sensitivity to doxorubicin from 7 μM in the P-gp overexpressed human myelogenous leukemia cells, Lucena 1. This resistance-reversing effect was confirmed by competitively increasing the intracellular doxorubicin accumulation and by significantly inhibiting the efflux of doxorubicin and, to a lesser extent, that of rhodamine 123. The activity obtained was similar to that observed with verapamil. No such results were observed in the sensitive parental K562 cell line. To gain deeper insight into the mode of action of pinoresinol, its effect on P-gp function and expression was examined. The docking simulations indicated that the lignan bound to P-gp at the apex of the V-shaped transmembrane cavity, involving transmembrane helices 4, 5, and 6, and partially overlapped the binding region of tariquidar, which was used as a positive control. These results would shed some light on the nature of its interaction with P-gp at molecular level and merit further mechanistic and kinetic studies. In addition, it showed a maximum 29% activation of ATP hydrolysis and antagonized verapamil-stimulated ATPase activity with an IC50 of 20.9 μM. On the other hand, pinoresinol decreased the presence of P-gp in the cell surface. Derivatives of pinoresinol with improved activity were identified by docking studies. The most promising one, the non-cytotoxic 1-acetoxypinoresinol, caused a reversion of doxorubicin resistance from 0.11 μM and thus higher activity than the lead compound. It also caused a significant increase in doxorubicin accumulation. Results were similar to those observed with verapamil. The results obtained positioned these compounds as potential candidates for effective agents to overcome P-gp-mediated MDR, leading to better outcomes for leukemia chemotherapy.
Collapse
Affiliation(s)
- María L González
- Fine Chemical and Natural Products Laboratory, School of Chemistry, Catholic University of CórdobaCórdoba, Argentina
| | - D Mariano A Vera
- Department of Chemistry, QUIAMM-INBIOTEC-CONICET, College of Exact and Natural Sciences, National University of Mar del PlataMar del Plata, Argentina
| | - Jerónimo Laiolo
- Fine Chemical and Natural Products Laboratory, School of Chemistry, Catholic University of CórdobaCórdoba, Argentina
| | - Mariana B Joray
- Fine Chemical and Natural Products Laboratory, School of Chemistry, Catholic University of CórdobaCórdoba, Argentina
| | - Mariana Maccioni
- Immunology, Department of Biochemical Chemistry, CIBICI-CONICET, School of Chemical Sciences, National University of CórdobaCórdoba, Argentina
| | - Sara M Palacios
- Fine Chemical and Natural Products Laboratory, School of Chemistry, Catholic University of CórdobaCórdoba, Argentina
| | - Gabriela Molina
- Fine Chemical and Natural Products Laboratory, School of Chemistry, Catholic University of CórdobaCórdoba, Argentina
| | - Priscila A Lanza
- Department of Chemistry, QUIAMM-INBIOTEC-CONICET, College of Exact and Natural Sciences, National University of Mar del PlataMar del Plata, Argentina
| | - Samanta Gancedo
- Immunology, Department of Biochemical Chemistry, CIBICI-CONICET, School of Chemical Sciences, National University of CórdobaCórdoba, Argentina
| | - Vivian Rumjanek
- Institute of Medical Biochemistry, Federal University of Rio de JaneiroRio de Janeiro, Brazil
| | - María C Carpinella
- Fine Chemical and Natural Products Laboratory, School of Chemistry, Catholic University of CórdobaCórdoba, Argentina
| |
Collapse
|
20
|
Rhinacanthin-C enhances doxorubicin cytotoxicity via inhibiting the functions of P-glycoprotein and MRP2 in breast cancer cells. Eur J Pharmacol 2017; 795:50-57. [DOI: 10.1016/j.ejphar.2016.12.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 11/28/2016] [Accepted: 12/01/2016] [Indexed: 11/23/2022]
|
21
|
Cruz-Morales S, Castañeda-Gómez J, Rosas-Ramírez D, Fragoso-Serrano M, Figueroa-González G, Lorence A, Pereda-Miranda R. Resin Glycosides from Ipomoea alba Seeds as Potential Chemosensitizers in Breast Carcinoma Cells. JOURNAL OF NATURAL PRODUCTS 2016; 79:3093-3104. [PMID: 28006904 DOI: 10.1021/acs.jnatprod.6b00782] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Multidrug resistance is the expression of one or more efflux pumps, such as P-glycoprotein, and is a major obstacle in cancer therapy. The use of new potent and noncytotoxic efflux pump modulators, coadministered with antineoplastic agents, is an alternative approach for increasing the success rate of therapy regimes with different drug combinations. This report describes the isolation and structure elucidation of six new resin glycosides from moon vine seeds (Ipomoea alba) as potential mammalian multidrug-resistance-modifying agents. Albinosides IV-IX (1-6), along with the known albinosides I-III (7-9), were purified from the CHCl3-soluble extract. Degradative chemical reactions in combination with NMR spectroscopy and mass spectrometry were used for their structural elucidation. Four new glycosidic acids, albinosinic acids D-G (10-13), were released by saponification of natural products 3-6. They were characterized as tetrasaccharides of either convolvulinolic (11S-hydroxytetradecanoic) or jalapinolic (11S-hydroxyhexadecanoic) acids. The potentiation of vinblastine susceptibility in multidrug-resistant human breast carcinoma cells of albinosides 1-6 was evaluated by modulation assays. The noncytotoxic albinosides VII (4) and VIII (5), at a concentration of 25 μg/mL, exerted the strongest potentiation of vinblastine susceptibility, with a reversal factor (RFMCF-7/Vin+) of 201- and >2517-fold, respectively.
Collapse
Affiliation(s)
| | - Jhon Castañeda-Gómez
- Grupo Químico de Investigación y Desarrollo Ambiental, Programa de Licenciatura en Ciencias, Facultad de Educación, Universidad Surcolombiana , Neiva, Colombia
| | | | | | - Gabriela Figueroa-González
- Laboratorio de Genómica, Unidad de Investigación Básica, Instituto Nacional de Cancerología , 14080, Mexico City, Mexico
| | - Argelia Lorence
- Arkansas Biosciences Institute and Department of Chemistry and Physics, Arkansas State University , P.O. Box 639, Jonesboro, Arkansas 72467, United States
| | | |
Collapse
|
22
|
Reis MA, Ahmed OB, Spengler G, Molnár J, Lage H, Ferreira MJU. Jatrophane diterpenes and cancer multidrug resistance - ABCB1 efflux modulation and selective cell death induction. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:968-978. [PMID: 27387405 DOI: 10.1016/j.phymed.2016.05.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 05/04/2016] [Accepted: 05/21/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Modulation of P-glycoprotein (ABCB1) and evaluation of the collateral sensitivity effect are among the most promising approaches to overcome multidrug resistance (MDR) in cancer. In a previous study, two rare 12,17-cyclojatrophanes (1-2) and other novel jatrophanes (3-4), isolated from Euphorbia welwitschii, were screened for collateral sensitivity effect. Herein, the isolation of another jatrophane (5) is presented, being the broader goal of this work to investigate the role of euphowelwitschines A (1) and B (2), welwitschene (3), epoxywelwitschene (4) and esulatin M (5) as ABCB1 modulators and/or collateral sensitivity agents. METHODS Compounds 1-5 were evaluated for ABCB1 modulation ability through combination of transport and chemosensitivity assays, using a mouse T-lymphoma MDR1-transfected cell model. Moreover, the nature of interaction of compound 4 with ABCB1 was studied, using an ATPase assay. The MDR-selective antiproliferative activity of compound 5 was evaluated against gastric (EPG85-257) and pancreatic (EPP85-181) human cancer cells and their drug-selected counterparts (EPG85-257RDB, EPG85-257RNOV, EPP85-181RDB, EPP85-181RNOV). The drug induced cell death was investigated for compounds 4 and 5, using the annexin V/PI staining and the active caspase-3 assay. RESULTS The jatrophanes 1-5 were able to modulate the efflux activity of ABCB1, and at 2µM, 3-5 maintained the strong modulator profile. Structure activity results indicated that high conformational flexibility of the twelve-membered ring of compounds 3-5 favored ABCB1 modulation, in contrast to the tetracyclic scaffold of compounds 1 and 2. The effects of epoxywelwitschene (4) on the ATPase activity of ABCB1 showed it to interact with the transporter and to be able to reduce the transport of a second subtrate. Drug combination experiments also corroborated the anti-MDR potential of these diterpenes due to their synergistic interaction with doxorubicin (combination index <0.7). Esulatin M (5) showed a strong MDR-selective antiproliferative activity against EPG85-257RDB and EPP85-181RDB cells, with IC50 of 1.8 and 4.8 µM, respectively. Compounds 4 and 5 induced apoptosis via caspase-3 activation. A significant discrimination was observed between the resistant cell lines and parental cells. CONCLUSIONS This study strengthens the role of jatrophane diterpenes as lead candidates for the development of MDR reversal agents, higlighting the action of compounds 4 and 5.
Collapse
Affiliation(s)
- Mariana Alves Reis
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenue Prof. Gama Pinto, 1649-003 Lisbon, Portugal.
| | - Omar Bauomy Ahmed
- Institute of Pathology, University Hospital Charité, 10117 Berlin, Germany.
| | - Gabriella Spengler
- Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, Dóm tér 10, H-6720 Szeged, Hungary.
| | - Joseph Molnár
- Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, Dóm tér 10, H-6720 Szeged, Hungary.
| | - Hermann Lage
- Institute of Pathology, University Hospital Charité, 10117 Berlin, Germany; Department of Pathology, Vivantes Clinics, Berlin, Germany.
| | - Maria-José U Ferreira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenue Prof. Gama Pinto, 1649-003 Lisbon, Portugal.
| |
Collapse
|