1
|
Alp E, Doguizi S, Mutlu Icduygu F, Akgun E, Sekeroglu MA, Ozer MA. An analysis of the relationship between ABCC8 and KCNJ11 gene polymorphisms and diabetic retinopathy in Turkish population. Ophthalmic Genet 2024; 45:126-132. [PMID: 38411150 DOI: 10.1080/13816810.2024.2317279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 02/06/2024] [Indexed: 02/28/2024]
Abstract
BACKGROUND Diabetic retinopathy (DR) occurs due to high blood glucose damage to the retina and leads to blindness if left untreated. KATP and related genes (KCNJ11 and ABCC8) play an important role in insulin secretion by glucose-stimulated pancreatic beta cells and the regulation of insulin secretion. KCNJ11 E23K (rs5219), ABCC8-3 C/T (rs1799854), Thr759Thr (rs1801261) and Arg1273Arg (rs1799859) are among the possible related single nucleotide polymorphisms (SNPs). The aim of this study is to find out how DR and these SNPs are associated with one another in the Turkish population. MATERIALS AND METHODS This study included 176 patients with type 2 diabetes mellitus without retinopathy (T2DM-rp), 177 DR patients, and 204 controls. Genomic DNA was extracted from whole blood, and genotypes were determined by the PCR-RFLP method. RESULTS In the present study, a significant difference was not found between all the groups in terms of Arg1273Arg polymorphism located in the ABCC8 gene. The T allele and the TT genotype in the -3 C/T polymorphism in this gene may have a protective effect in the development of DR (p = 0.036 for the TT genotype; p = 0.034 for T allele) and PDR (p = 0.042 and 0.025 for the TT genotype). The AA genotype showed a significant increase in the DR group compared to T2DM-rp in the KCNJ11 E23K polymorphism (p = 0.046). CONCLUSIONS Consequently, the T allele and TT genotype in the -3 C/T polymorphism of the ABCC8 gene may have a protective marker on the development of DR and PDR, while the AA genotype in the E23K polymorphism of the KCNJ11 gene may be effective in the development of DR in the Turkish population.
Collapse
Affiliation(s)
- Ebru Alp
- Faculty of Medicine, Department of Medical Biology, Giresun University, Giresun, Turkey
| | - Sibel Doguizi
- Department of Ophthalmology, Ulucanlar Eye Education and Research Hospital, Ministry of Health University, Ankara, Turkey
| | - Fadime Mutlu Icduygu
- Faculty of Medicine, Department of Medical Genetics, Giresun University, Giresun, Turkey
| | - Egemen Akgun
- Faculty of Medicine, Department of Medical Biology, Giresun University, Giresun, Turkey
| | - Mehmet Ali Sekeroglu
- Department of Ophthalmology, Ulucanlar Eye Education and Research Hospital, Ministry of Health University, Ankara, Turkey
| | - Murat Atabey Ozer
- Faculty of Medicine, Department of Ophthalmology, Giresun University, Giresun, Turkey
| |
Collapse
|
2
|
Ferreira G, Santander A, Cardozo R, Chavarría L, Domínguez L, Mujica N, Benítez M, Sastre S, Sobrevia L, Nicolson GL. Nutrigenomics of inward rectifier potassium channels. Biochim Biophys Acta Mol Basis Dis 2023:166803. [PMID: 37406972 DOI: 10.1016/j.bbadis.2023.166803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/27/2023] [Accepted: 06/30/2023] [Indexed: 07/07/2023]
Abstract
Inwardly rectifying potassium (Kir) channels play a key role in maintaining the resting membrane potential and supporting potassium homeostasis. There are many variants of Kir channels, which are usually tetramers in which the main subunit has two trans-membrane helices attached to two N- and C-terminal cytoplasmic tails with a pore-forming loop in between that contains the selectivity filter. These channels have domains that are strongly modulated by molecules present in nutrients found in different diets, such as phosphoinositols, polyamines and Mg2+. These molecules can impact these channels directly or indirectly, either allosterically by modulation of enzymes or via the regulation of channel expression. A particular type of these channels is coupled to cell metabolism and inhibited by ATP (KATP channels, essential for insulin release and for the pathogenesis of metabolic diseases like diabetes mellitus). Genomic changes in Kir channels have a significant impact on metabolism, such as conditioning the nutrients and electrolytes that an individual can take. Thus, the nutrigenomics of ion channels is an important emerging field in which we are attempting to understand how nutrients and diets can affect the activity and expression of ion channels and how genomic changes in such channels may be the basis for pathological conditions that limit nutrition and electrolyte intake. In this contribution we briefly review Kir channels, discuss their nutrigenomics, characterize how different components in the diet affect their function and expression, and suggest how their genomic changes lead to pathological phenotypes that affect diet and electrolyte intake.
Collapse
Affiliation(s)
- Gonzalo Ferreira
- Laboratory of Ion Channels, Biological Membranes and Cell Signaling, Dept. of Biophysics, Facultad de Medicina, CP 11800, Universidad de la Republica, Montevideo, Uruguay.
| | - Axel Santander
- Laboratory of Ion Channels, Biological Membranes and Cell Signaling, Dept. of Biophysics, Facultad de Medicina, CP 11800, Universidad de la Republica, Montevideo, Uruguay
| | - Romina Cardozo
- Laboratory of Ion Channels, Biological Membranes and Cell Signaling, Dept. of Biophysics, Facultad de Medicina, CP 11800, Universidad de la Republica, Montevideo, Uruguay
| | - Luisina Chavarría
- Laboratory of Ion Channels, Biological Membranes and Cell Signaling, Dept. of Biophysics, Facultad de Medicina, CP 11800, Universidad de la Republica, Montevideo, Uruguay
| | - Lucía Domínguez
- Laboratory of Ion Channels, Biological Membranes and Cell Signaling, Dept. of Biophysics, Facultad de Medicina, CP 11800, Universidad de la Republica, Montevideo, Uruguay
| | - Nicolás Mujica
- Laboratory of Ion Channels, Biological Membranes and Cell Signaling, Dept. of Biophysics, Facultad de Medicina, CP 11800, Universidad de la Republica, Montevideo, Uruguay
| | - Milagros Benítez
- Laboratory of Ion Channels, Biological Membranes and Cell Signaling, Dept. of Biophysics, Facultad de Medicina, CP 11800, Universidad de la Republica, Montevideo, Uruguay
| | - Santiago Sastre
- Laboratory of Ion Channels, Biological Membranes and Cell Signaling, Dept. of Biophysics, Facultad de Medicina, CP 11800, Universidad de la Republica, Montevideo, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo CP 11800, Uruguay
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville E-41012, Spain; Medical School (Faculty of Medicine), Sao Paulo State University (UNESP), Brazil; University of Queensland, Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, 4029, Queensland, Australia; Tecnologico de Monterrey, Eutra, The Institute for Obesity Research (IOR), School of Medicine and Health Sciences, Monterrey, Nuevo León, Mexico
| | - Garth L Nicolson
- Department of Molecular Pathology, The Institute for Molecular Medicine, Huntington Beach, CA, USA
| |
Collapse
|
3
|
Azimi M, Paseban M, Ghareh S, Sharifi F, Bandarian F, Hasanzad M. Association of ABCC8 gene variants with response to sulfonylurea in type 2 diabetes mellitus. J Diabetes Metab Disord 2023; 22:649-655. [PMID: 37255830 PMCID: PMC10225415 DOI: 10.1007/s40200-023-01189-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 01/11/2023] [Accepted: 01/14/2023] [Indexed: 06/01/2023]
Abstract
Background Diabetes mellitus (DM) is associated with high blood glucose levels and sulfonylureas (SFUs) are one of the treatment options for DM. SFUs bind to sulfonylurea-1 receptor (SUR1), which is encoded by the ABCC8 gene and leads to blood glucose reduction. Genetic variants like rs757110 and rs1799854 of ABCC8 can influence the response to the drug's efficiency. Therefore, this study aimed to investigate the association between the ABCC8 rs757110 and rs1799854 genetic variants and response to SFUs treatment. Methods Totally, 61 DM patients with SFUs treatment were included. Baseline characteristics of the patients were recorded and 5 ml of blood was taken from each patient. After DNA extraction, a sequence containing rs757110 and rs1799854 was synthesized by the PCR method, and the PCR products were used for Sanger sequencing. Results Frequencies of GG, GA, and AA genotypes of rs1799854 variant was 12 (40%), 14 (46.7%), and 4 (13.3%), and the frequencies of CC, AC, and AA genotypes for rs757110 variant was 3 (9.7%), 5 (16.1%) and 23 (74.2%) in, respectively. Patients with different genotypes had the same age, BMI (body mass index), initial FBS (Fasting blood sugar), initial HbA1c, treatment duration, gender and history of smoking, alcohol consumption, and exercise. There was no significant difference in FBS and HbA1c changes after SFUs treatment between patients with rs757110 variant (p = 0.39 for FBS and p = 0.76 for HbA1c) and rs1799854 (p = 0.24 for FBS and p = 0.36 for HbA1c). Conclusion The rs1799854 and rs757110 variants of the ABCC8 gene had no significant influence on response to SFUs treatment.
Collapse
Affiliation(s)
- Melika Azimi
- Medical Genomics Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Melika Paseban
- Medical Genomics Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sahar Ghareh
- Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Farshad Sharifi
- Elderly Health Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Bandarian
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular- Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mandana Hasanzad
- Personalized Medicine Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Ivanoshchuk D, Shakhtshneider E, Mikhailova S, Ovsyannikova A, Rymar O, Valeeva E, Orlov P, Voevoda M. The Mutation Spectrum of Rare Variants in the Gene of Adenosine Triphosphate (ATP)-Binding Cassette Subfamily C Member 8 in Patients with a MODY Phenotype in Western Siberia. J Pers Med 2023; 13:jpm13020172. [PMID: 36836406 PMCID: PMC9967647 DOI: 10.3390/jpm13020172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/10/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
During differential diagnosis of diabetes mellitus, the greatest difficulties are encountered with young patients because various types of diabetes can manifest themselves in this age group (type 1, type 2, and monogenic types of diabetes mellitus, including maturity-onset diabetes of the young (MODY)). The MODY phenotype is associated with gene mutations leading to pancreatic-β-cell dysfunction. Using next-generation sequencing technology, targeted sequencing of coding regions and adjacent splicing sites of MODY-associated genes (HNF4A, GCK, HNF1A, PDX1, HNF1B, NEUROD1, KLF11, CEL, PAX4, INS, BLK, KCNJ11, ABCC8, and APPL1) was carried out in 285 probands. Previously reported missense variants c.970G>A (p.Val324Met) and c.1562G>A (p.Arg521Gln) in the ABCC8 gene were found once each in different probands. Variant c.1562G>A (p.Arg521Gln) in ABCC8 was detected in a compound heterozygous state with a pathogenic variant of the HNF1A gene in a diabetes patient and his mother. Novel frameshift mutation c.4609_4610insC (p.His1537ProfsTer22) in this gene was found in one patient. All these variants were detected in available family members of the patients and cosegregated with diabetes mellitus. Thus, next-generation sequencing of MODY-associated genes is an important step in the diagnosis of rare MODY subtypes.
Collapse
Affiliation(s)
- Dinara Ivanoshchuk
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Prospekt Lavrentyeva 10, 630090 Novosibirsk, Russia
- Institute of Internal and Preventive Medicine—Branch of Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Bogatkova Str. 175/1, 630004 Novosibirsk, Russia
- Correspondence: ; Tel.: +7-(383)-363-4963; Fax: +7-(383)-333-1278
| | - Elena Shakhtshneider
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Prospekt Lavrentyeva 10, 630090 Novosibirsk, Russia
- Institute of Internal and Preventive Medicine—Branch of Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Bogatkova Str. 175/1, 630004 Novosibirsk, Russia
| | - Svetlana Mikhailova
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Prospekt Lavrentyeva 10, 630090 Novosibirsk, Russia
| | - Alla Ovsyannikova
- Institute of Internal and Preventive Medicine—Branch of Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Bogatkova Str. 175/1, 630004 Novosibirsk, Russia
| | - Oksana Rymar
- Institute of Internal and Preventive Medicine—Branch of Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Bogatkova Str. 175/1, 630004 Novosibirsk, Russia
| | - Emil Valeeva
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Prospekt Lavrentyeva 10, 630090 Novosibirsk, Russia
| | - Pavel Orlov
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Prospekt Lavrentyeva 10, 630090 Novosibirsk, Russia
- Institute of Internal and Preventive Medicine—Branch of Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Bogatkova Str. 175/1, 630004 Novosibirsk, Russia
| | - Mikhail Voevoda
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Prospekt Lavrentyeva 10, 630090 Novosibirsk, Russia
| |
Collapse
|
5
|
Moazzam-Jazi M, Najd-Hassan-Bonab L, Masjoudi S, Tohidi M, Hedayati M, Azizi F, Daneshpour MS. Risk of type 2 diabetes and KCNJ11 gene polymorphisms: a nested case-control study and meta-analysis. Sci Rep 2022; 12:20709. [PMID: 36456687 PMCID: PMC9715540 DOI: 10.1038/s41598-022-24931-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022] Open
Abstract
Due to the central role in insulin secretion, the potassium inwardly-rectifying channel subfamily J member 11 (KCNJ11) gene is one of the essential genes for type 2 diabetes (T2D) predisposition. However, the relevance of this gene to T2D development is not consistent among diverse populations. In the current study, we aim to capture the possible association of common KCNJ11 variants across Iranian adults, followed by a meta-analysis. We found that the tested variants of KCNJ11 have not contributed to T2D incidence in Iranian adults, consistent with similar insulin secretion levels among individuals with different genotypes. The integration of our results with 72 eligible published case-control studies (41,372 cases and 47,570 controls) as a meta-analysis demonstrated rs5219 and rs5215 are significantly associated with the increased T2D susceptibility under different genetic models. Nevertheless, the stratified analysis according to ethnicity showed rs5219 is involved in the T2D risk among disparate populations, including American, East Asian, European, and Greater Middle Eastern, but not South Asian. Additionally, the meta-regression analysis demonstrated that the sample size of both case and control groups was significantly associated with the magnitude of pooled genetic effect size. The present study can expand our knowledge about the KCNJ11 common variant's contributions to T2D incidence, which is valuable for designing SNP-based panels for potential clinical applications in precision medicine. It also highlights the importance of similar sample sizes for avoiding high heterogeneity and conducting a more precise meta-analysis.
Collapse
Affiliation(s)
- Maryam Moazzam-Jazi
- Cellular, and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Najd-Hassan-Bonab
- Cellular, and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajedeh Masjoudi
- Cellular, and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Tohidi
- Prevention of Metabolic Disorder Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Hedayati
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereidoun Azizi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam S Daneshpour
- Cellular, and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Mota-Zamorano S, González LM, Robles NR, Valdivielso JM, Arévalo-Lorido JC, López-Gómez J, Gervasini G. Polymorphisms in glucose homeostasis genes are associated with cardiovascular and renal parameters in patients with diabetic nephropathy. Ann Med 2022; 54:3039-3051. [PMID: 36314849 PMCID: PMC9635471 DOI: 10.1080/07853890.2022.2138531] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) has become the major cause of end-stage kidney disease and is associated to an extremely high cardiovascular (CV) risk. METHODS We screened 318 DN patients for 23 SNPs in four glucose transporters (SLC2A1, SLC2A2, SLC5A1 and SLC5A2) and in KCNJ11 and ABCC8, which participate in insulin secretion. Regression models were utilised to identify associations with renal parameters, atherosclerosis measurements and CV events. In addition, 506 individuals with normal renal function were also genotyped as a control group. RESULTS In the patient's cohort, common carotid intima media thickness values were higher in carriers of ABCC8 rs3758953 and rs2188966 vs. non-carriers [0.78(0.25) vs. 0.72(0.22) mm, p < 0.05 and 0.79(0.26) vs. 0.72(0.22) mm, p < 0.05], respectively. Furthermore, ABCC8 rs1799859 was linked to presence of plaque in these patients [1.89(1.03-3.46), p < 0.05]. Two variants, SLC2A2 rs8192675 and SLC5A2 rs9924771, were associated with better [OR = 0.49 (0.30-0.81), p < 0.01] and worse [OR = 1.92 (1.15-3.21), p < 0.05] CV event-free survival, respectively. With regard to renal variables, rs841848 and rs710218 in SLC2A1, as well as rs3813008 in SLC5A2, significantly altered estimated glomerular filtration rate values [carriers vs. non-carriers: 30.41(22.57) vs. 28.25(20.10), p < 0.05; 28.95(21.11) vs. 29.52(21.66), p < 0.05 and 32.03(18.06) vs. 28.14(23.06) ml/min/1.73 m2, p < 0.05]. In addition, ABCC8 rs3758947 was associated with higher albumin-to-creatinine ratios [193.5(1139.91) vs. 160(652.90) mg/g, p < 0.05]. The epistasis analysis of SNP-pairs interactions showed that ABCC8 rs3758947 interacted with several SNPs in SLC2A2 to significantly affect CV events (p < 0.01). No SNPs were associated with DN risk. CONCLUSIONS Polymorphisms in genes determining glucose homeostasis may play a relevant role in renal parameters and CV-related outcomes of DN patients.
Collapse
Affiliation(s)
- Sonia Mota-Zamorano
- Department of Medical and Surgical Therapeutics, Medical School, Universidad de Extremadura, Badajoz, Spain.,RICORS2040 Renal Research Network, Madrid, Spain
| | - Luz M González
- Department of Medical and Surgical Therapeutics, Medical School, Universidad de Extremadura, Badajoz, Spain
| | - Nicolás R Robles
- RICORS2040 Renal Research Network, Madrid, Spain.,Service of Nephrology, Badajoz University Hospital, Badajoz, Spain
| | - José M Valdivielso
- RICORS2040 Renal Research Network, Madrid, Spain.,Vascular and Renal Translational Research Group, UDETMA, IRBLleida, Lleida, Spain
| | | | - Juan López-Gómez
- Service of Clinical Analyses, Badajoz University Hospital, Badajoz, Spain
| | - Guillermo Gervasini
- Department of Medical and Surgical Therapeutics, Medical School, Universidad de Extremadura, Badajoz, Spain.,RICORS2040 Renal Research Network, Madrid, Spain.,Institute of Biomarkers of Molecular and Metabolic Pathologies, Universidad de Extremadura, Badajoz, Spain
| |
Collapse
|
7
|
Alqadri N. Independent case-control study in KCNJ11 gene polymorphism with Type 2 diabetes Mellitus. Saudi J Biol Sci 2022; 29:2794-2799. [PMID: 35531169 PMCID: PMC9073069 DOI: 10.1016/j.sjbs.2022.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/31/2021] [Accepted: 01/02/2022] [Indexed: 01/01/2023] Open
Abstract
Background Type 2 Diabetes Mellitus (T2DM) is the most common form of diabetes in the aging population. This chronic metabolic disorder has discovered many candidate genes, and KCNJ11 was one of the genes associated with insulin secretion pathways mediated by potassium channels. There have been limited studies on the rs5210 polymorphism in T2DM patients, and none of them have been conducted in Saudi Arabia. Aim The aim of this study is to investigate at genotyping levels of rs5210 polymorphism in the KCNJ11 gene in older population with T2DM in the Saudi Population. Methods Based on the sample size design, this case-control study included 102 T2DM cases and 102 controls. Using the PCR-RFLP assay, 204 patients extracted DNA was genotyped for the rs5210 polymorphism. SPSS software was used for statistical analysis, including t-tests, HWE, genotyping, and multiple logistic regression analysis. Results The t-tests performed on T2DM cases and controls revealed a significant association in age, weight, BMI, FBG, Hb1Ac, SBP, DBP, HDLC, TC, and TG parameters (p < 0.05). HWE analysis found to be in consistent with rs5210 polymorphism. Allelic association was found in the rs5210 polymorphism (OR-1.64 [95 %CI: 1.08-2.49]; p = 0.01); however, no association (p > 0.05) was observed in the multivariate logistic regression assessment performed in this study. Conclusion These results indicate that the rs5210 polymorphism was primarily associated with allele frequencies, which could be attributable to the small sample size. Large sample size studies will be required to determine whether KCNJ11 gene polymorphisms may be required as a risk marker for T2DM in the Saudi population.
Collapse
Affiliation(s)
- Nada Alqadri
- Department of Biology, Turabah University College, Taif University, PO Box-11099, Taif 21944, Saudi Arabia
| |
Collapse
|
8
|
Liu C, Lai Y, Guan T, Zhan J, Pei J, Wu D, Ying S, Shen Y. Associations of ATP-Sensitive Potassium Channel’s Gene Polymorphisms With Type 2 Diabetes and Related Cardiovascular Phenotypes. Front Cardiovasc Med 2022; 9:816847. [PMID: 35402560 PMCID: PMC8984103 DOI: 10.3389/fcvm.2022.816847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Type 2 diabetes (T2D) is characterized by increased levels of blood glucose but is increasingly recognized as a heterogeneous disease, especially its multiple discrete cardiovascular phenotypes. Genetic variations play key roles in the heterogeneity of diabetic cardiovascular phenotypes. This study investigates possible associations of ATP-sensitive potassium channel (KATP) variants with cardiovascular phenotypes among the Chinese patients with T2D. Six hundred thirty-six patients with T2D and 634 non-diabetic individuals were analyzed in the study. Nine KATP variants were determined by MassARRAY. The KATP rs2285676 (AA + GA, OR = 1.43, 95% CI: 1.13–1.81, P = 0.003), rs1799858 (CC, OR = 1.42, 95% CI: 1.12–1.78, P = 0.004), and rs141294036 (CC, OR = 1.45, 95% CI: 1.15–1.83, P = 0.002) are associated with increased T2D risk. A follow-up of at least 45.8-months (median) indicates further association between the 3 variants and risks of diabetic-related cardiovascular conditions. The associations are categorized as follows: new-onset/recurrent acute coronary syndrome (ACS) (rs2285676/AA + GA, HR = 1.37, 95% CI: 1.10–1.70, P = 0.005; rs141294036/TT + CT, HR = 1.59, 95% CI: 1.28–1.99, P < 0.001), new-onset stroke (rs1799858/CC, HR = 2.58, 95% CI: 1.22–5.43, P = 0.013; rs141294036/CC, HR = 2.30, 95% CI: 1.16–4.55, P = 0.017), new-onset of heart failure (HF) (rs1799858/TT + CT, HR = 2.78, 95% CI: 2.07–3.74, P < 0.001; rs141294036/TT + CT, HR = 1.45, 95% CI: 1.07–1.96, P = 0.015), and new-onset atrial fibrillation (AF) (rs1799858/TT + CT, HR = 2.05, 95% CI: 1.25–3.37, P = 0.004; rs141294036/CC, HR = 2.31, 95% CI: 1.40–3.82, P = 0.001). In particular, the CC genotype of rs1799858 (OR = 2.38, 95% CI: 1.11–5.10, P = 0.025) and rs141294036 (OR = 1.95, 95% CI: 1.04–3.66, P = 0.037) are only associated with the risk of ischemic stroke while its counterpart genotype (TT + CT) is associated with the risks of HF with preserved ejection fraction (HFpEF) (rs1799858, OR = 3.46, 95% CI: 2.31–5.18, P < 0.001) and HF with mildly reduced ejection fraction (HFmrEF) (rs141294036, OR = 2.74, 95% CI: 1.05–7.15, P = 0.039). Furthermore, the 3 variants are associated with increased risks of abnormal serum levels of triglyceride (TIRG) (≥ 1.70 mmol/L), low-density lipoprotein cholesterol (LDL-C) (≥ 1.40 mmol/L), apolipoprotein B (ApoB) (≥ 80 mg/dL), apolipoprotein A-I (ApoA-I) level (< 120 mg/dL), lipoprotein(a) Lp(a) (≥ 300 mg/dL) and high-sensitivity C-reactive protein (HsCRP) (≥ 3.0 mg/L) but exhibited heterogeneity (all P < 0.05). The KATP rs2285676, rs1799858, and rs141294036 are associated with increased risks of T2D and its related cardiovascular phenotypes (ACS, stroke, HF, and AF), but show heterogeneity. The 3 KATP variants may be promising markers for diabetic cardiovascular events favoring “genotype-phenotype” oriented prevention and treatment strategies.
Collapse
Affiliation(s)
- Cheng Liu
- Department of Cardiology, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, China
- Department of Cardiology, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Cheng Liu,
| | - Yanxian Lai
- Department of Cardiology, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Tianwang Guan
- Department of Cardiology, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Junfang Zhan
- Department of Health Management Center, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, China
| | - Jingxian Pei
- Department of Cardiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Daihong Wu
- Department of Cardiology, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Songsong Ying
- Department of Gastroenterology, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, China
| | - Yan Shen
- Department of Cardiology, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
9
|
Malekizadeh A, Rahbaran M, Afshari M, Abbasi D, Aghaei Meybodi HR, Hasanzad M. Association of common genetic variants of KCNJ11 gene with the risk of type 2 diabetes mellitus. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2021; 40:530-541. [PMID: 33853507 DOI: 10.1080/15257770.2021.1905841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 03/06/2021] [Accepted: 03/16/2021] [Indexed: 10/21/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a multifactorial polygenic disease. Potassium inwardly-rectifying channel, subfamily J, member 11 (KCNJ11) gene mutations can result in susceptibility of T2DM. The aim of this study is to investigate the relationship between risk of T2DM and its complications (retinopathy & renal) and polymorphisms rs5210 and rs5215 of the KCNJ11 gene in a group of Iranian population. In this case-control study, 111 Iranian patients with T2DM and 82 control subjects were genotyped for each polymorphism by polymerase chain reaction (PCR) and Sanger Sequencing methods. Frequencies of genotypes of rs5210 polymorphism among subjects with and without diabetes mellitus were 53.15% vs. 51.22% for GG and 37.84% vs. 42.68% for AG (p = 0.7), respectively. Corresponding frequencies for rs5215 polymorphism among diabetics and non-diabetics were 13.51% vs. 13.41% for CC and 50.45% vs. 37.80% for CT (p = 0.2). G allele carriers (rs5210 polymorphism) and C allele carriers (rs5215 polymorphism) had the same frequency among diabetics and non-diabetics (p = 0.9 for G allele and p = 0.2 for C allele). Our results suggested that none of the polymorphisms of KCNJ11, rs5210 (p = 0.7) and rs5215 (p = 0.2), were significantly associated with T2DM. Only, the relationship between CT genotype of rs5215 and retinopathy (p = 0.01) showed a borderline significant association.
Collapse
Affiliation(s)
- Azadeh Malekizadeh
- Medical Genomics Research Center, Islamic Azad Tehran Medical Sciences University, Tehran, Iran
| | - Marzieh Rahbaran
- Medical Genomics Research Center, Islamic Azad Tehran Medical Sciences University, Tehran, Iran
- Personalized Medicine Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Afshari
- Department of Community Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Davood Abbasi
- Iranian Diabetes Society, Eslamshahr Branch, Eslamshahr, Iran
| | - Hamid Reza Aghaei Meybodi
- Personalized Medicine Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mandana Hasanzad
- Medical Genomics Research Center, Islamic Azad Tehran Medical Sciences University, Tehran, Iran
- Personalized Medicine Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Blasetti A, Castorani V, Comegna L, Franchini S, Prezioso G, Provenzano M, Di Giulio C, Iannucci D, Matonti L, Tumini S, Chiarelli F, Stuppia L. Role of the KCNJ Gene Variants in the Clinical Outcome of Type 1 Diabetes. Horm Metab Res 2020; 52:856-860. [PMID: 32693412 DOI: 10.1055/a-1204-5443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Diabetes is considered as a disease with a wide and continuous clinical spectrum, ranging from Type 1 (T1D) and Type 2 Diabetes (T2D) with complex multifactorial causes. In the last years, particular attention has been focused on the predictive value and therapeutic potential of single nucleotide polymorphisms (SNPs). SNPs can alter the seed-sequence in miRNA's loci and miRNA target sites causing changes in the structure and influencing the binding function. Only few studies have investigated the clinical influence of SNPs, in particular potassium inwardly rectifying channel, subfamily J, member 11 (KCNJ) gene variants in T1D population. The aim of the study is to investigate the occurrence and the possible metabolic significance of KCNJ polymorphism in a group of pediatric patients with T1D. The study was performed in a cohort of 90 Caucasian children and adolescents with T1D and 93 healthy subjects. Rs5210 polymorphism has been analyzed with a prevalence of the GG genotype in the patient group suggesting its association with T1D. Therefore, a relationship was found between GG genotype and body mass index (BMI) at diagnosis and insulin requirement (IR) after 6 months. The study suggested an action for rs5210 in determining the metabolic features of T1D pediatric patients, by showing some clues of insulin resistance in patients carrying that polymorphism.
Collapse
Affiliation(s)
| | | | - Laura Comegna
- Department of Pediatrics, University of Chieti, Chieti, Italy
| | | | | | | | - Concetta Di Giulio
- S.O.D. Pediatrics and Neonatology, Hospital of Senigallia, Senigallia, Italy
| | | | - Lorena Matonti
- Department of Pediatrics, University of Chieti, Chieti, Italy
| | - Stefano Tumini
- Department of Pediatrics, University of Chieti, Chieti, Italy
| | | | | |
Collapse
|
11
|
Pharmacogenetic Aspects of Type 2 Diabetes Treatment. ACTA BIOMEDICA SCIENTIFICA 2020. [DOI: 10.29413/abs.2020-5.3.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this article, we analyze the role of different variants of the KCNJ11, TCF7L2, SLC22A1, SLC22A3, CYP2C9, CYP2C8, PPARγ genes polymorphisms in efficacy of diabetes mellitus pharmacotherapy. T allele of the KCNJ11 rs2285676 gene polymorphism and G allele of KCNJ11 rs5218 gene polymorphism are associated with the response to IDPP-4 therapy; the presence of KCNJ11 gene rs5210 polymorphism A allele is a predictor of poor response. The effect of rs7903146 polymorphism of TCF7L2 gene was evaluated on the response to treatment of patients taking linagliptin. Linagliptin significantly reduced HbA1c levels for all three rs7903146 genotypes (CC: –0.82 %; CT: –0.77 %; TT: –0.57 %). A significantly smaller effect of therapy was observed with the genotype with ТТ. The rs622342 polymorphism of SLC22A1 gene was studied in effectiveness of metformin. The researches demonstrated that carriers of variant AA had an average decrease of HbA1c of 0.53 %, heterozygous – decrease of 0.32 %, and carriers of a minor variant of SS had an increase of 0.2 % in the level of HbA1c. A significant effect of CYP2C9 polymorphisms on the pharmacokinetic parameters of PSM was noted. When studying the kinetics of glibenclamide, it was found that carriage of the allele *2 significantly reduces glibenclamide metabolism: homozygous carriers had clearance 90 % lower than homozygous carriers of the wild variant. The studies confirmed the association of the allelic variants of Thr394Thr and Gly482Ser of PPARγ gene with higher efficacy of the rosiglitazone. The data obtained from the analysis of the association of the Pro12Ala polymorphism of PPARγ gene and the response to therapy is contradictory. Thus the personalized approach, based on the knowledge of polymorphism options, will allow choosing the most effective drug with transparent kinetics for each individual patient.
Collapse
|
12
|
Gray ID, Kross AR, Renfrew ME, Wood P. Precision Medicine in Lifestyle Medicine: The Way of the Future? Am J Lifestyle Med 2020; 14:169-186. [PMID: 32231483 PMCID: PMC7092395 DOI: 10.1177/1559827619834527] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/21/2018] [Accepted: 02/08/2019] [Indexed: 02/06/2023] Open
Abstract
Precision medicine has captured the imagination of the medical community with visions of therapies precisely targeted to the specific individual's genetic, biological, social, and environmental profile. However, in practice it has become synonymous with genomic medicine. As such its successes have been limited, with poor predictive or clinical value for the majority of people. It adds little to lifestyle medicine, other than in establishing why a healthy lifestyle is effective in combatting chronic disease. The challenge of lifestyle medicine remains getting people to actually adopt, sustain, and naturalize a healthy lifestyle, and this will require an approach that treats the patient as a person with individual needs and providing them with suitable types of support. The future of lifestyle medicine is holistic and person-centered rather than technological.
Collapse
Affiliation(s)
- Ian D. Gray
- Avondale College of Higher Education, Cooranbong,
New South Wales, Australia
| | - Andrea R. Kross
- Avondale College of Higher Education, Cooranbong,
New South Wales, Australia
| | - Melanie E. Renfrew
- Avondale College of Higher Education, Cooranbong,
New South Wales, Australia
| | - Paul Wood
- Avondale College of Higher Education, Cooranbong,
New South Wales, Australia
| |
Collapse
|
13
|
Khan V, Verma AK, Bhatt D, Khan S, Hasan R, Goyal Y, Ramachandran S, Alsahli MA, Rahmani AH, Almatroudi A, Shareef MY, Meena B, Dev K. Association of Genetic Variants of KCNJ11 and KCNQ1 Genes with Risk of Type 2 Diabetes Mellitus (T2DM) in the Indian Population: A Case-Control Study. Int J Endocrinol 2020; 2020:5924756. [PMID: 33101408 PMCID: PMC7569458 DOI: 10.1155/2020/5924756] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/10/2020] [Accepted: 09/26/2020] [Indexed: 01/01/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a polygenic metabolic disease described by hyperglycemia, which is caused by insulin resistance or reduced insulin secretion. The interaction between various genetic variants and environmental factors triggers T2DM. The aim of this study was to find risk associated with genetic variants rs5210 and rs2237895 of KCNJ11 and KCNQ1 genes, respectively, in the development of T2DM in the Indian population. A total number of 300 cases of T2DM and 100 control samples were studied to find the polymorphism in KCNJ11 and KCNQ1 through PCR-RFLP. The genotype and allele frequencies in T2DM cases were significantly different compared to the control population. KCNJ11 rs5210 and KCNQ1 rs2237895 variants were found to be significantly associated with risk of T2DM in dominant (KCNJ11: OR, 2.07; 95% CI, 1.30-3.27; p - 0.001; KCNQ1: OR, 2.33; 95% CI, 1.46-3.70; p - 0.0003) and codominant models (KCNJ11: OR, 1.76; 95% CI, 1.09-2.84; p - 0.020; KCNQ1: OR, 1.85; 95% CI, 1.16-2.95; p - 0.009). We also compared clinicopathological characteristics between cases and control and observed a significant difference in all the parameters except HDL, gender, and family history. In this study, clinicopathological data with a carrier of a variant allele of both KCNJ11 and KCNQ1 genes were also analysed, and a significant association was found between the carrier of a variant allele with gender and PPG in KCNJ11 and with triglyceride in KCNQ1. We confirm the significant association of KCNJ11 (rs5210) and KCNQ1 (rs2237895) gene polymorphism with T2DM, indicating the role of these variants in developing risk for T2DM in Indian population.
Collapse
Affiliation(s)
- Vasiuddin Khan
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Amit Kumar Verma
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Deepti Bhatt
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Shahbaz Khan
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Rameez Hasan
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Yamini Goyal
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | | | - Mohammed A. Alsahli
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraidah, Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraidah, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraidah, Saudi Arabia
| | - M. Y. Shareef
- Faculty of Dentistry, Jamia Millia Islamia, New Delhi, India
| | - Babita Meena
- Faculty of Dentistry, Jamia Millia Islamia, New Delhi, India
| | - Kapil Dev
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
14
|
Genetic Variants of Potassium Voltage-gated Channel Subfamily J Member 11 in Gestational Diabetes Mellitus: A Case-control Study. MATERNAL-FETAL MEDICINE 2019. [DOI: 10.1097/fm9.0000000000000030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
15
|
Sarkar P, Bhowmick A, Baruah MP, Bhattacharjee S, Subhadra P, Banu S. Determination of individual type 2 diabetes risk profile in the North East Indian population & its association with anthropometric parameters. Indian J Med Res 2019; 150:390-398. [PMID: 31823921 PMCID: PMC6902361 DOI: 10.4103/ijmr.ijmr_888_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Background & objectives: Diabetes genomics research has illuminated single nucleotide polymorphism (SNP) in several genes including, fat mass and obesity associated (FTO) (rs9939609 and rs9926289), potassium voltage-gated channel subfamily J member 11 (rs5219), SLC30A8 (rs13266634) and peroxisome proliferator-activated receptor gamma 2 (rs1805192). The present study was conducted to investigate the involvement of these polymorphisms in conferring susceptibility to type 2 diabetes (T2D) in the North East Indian population, and also to establish their association with anthropometric parameters. Methods: DNA was extracted from blood samples of 155 patients with T2D and 100 controls. Genotyping was performed by polymerase chain reaction-restriction fragment length polymorphism and DNA sequencing. To confirm the association between the inheritance of SNP and T2D development, logistic regression analysis was performed. Results: For the rs9939609 variant (FTO), the dominant model AA/(AT+TT) revealed significant association with T2D [odds ratio (OR)=2.03, P=0.021], but was non-significant post correction for multiple testing (P=0.002). For the rs13266634 variant (SLC30A8), there was considerable but non-significant difference in the distribution pattern of genotypic polymorphisms between the patients and the controls (P=0.004). Significant association was observed in case of the recessive model (CC+CT)/TT (OR=4.56 P=0.001), after adjusting for age, gender and body mass index. In addition, a significant association (P=0.001) of low-density lipoprotein (mg/dl) could be established with the FTO (rs9926289) polymorphism assuming dominant model. Interpretation & conclusions: The current study demonstrated a modest but significant effect of SLC30A8 (rs13266634) polymorphisms on T2D predisposition. Considering the burgeoning prevalence of T2D in the Indian population, the contribution of these genetic variants studied, to the ever-increasing number of T2D cases, appears to be relatively low. This study may serve as a foundation for performing future genome-wide association studies (GWAS) involving larger populations.
Collapse
Affiliation(s)
- Purabi Sarkar
- Department of Bioengineering & Technology, Gauhati University, Guwahati, Assam, India
| | - Ananya Bhowmick
- Department of Bioengineering & Technology, Gauhati University, Guwahati, Assam, India
| | - Manash P Baruah
- Department of Endocrinology, Excelcare Hospitals, Guwahati, Assam, India
| | | | - Poornima Subhadra
- Department of Genetics & Molecular Medicine, Kamineni Academy of Medical Sciences & Research Center, Hyderabad, Telangana, India
| | - Sofia Banu
- Department of Bioengineering & Technology, Gauhati University, Guwahati, Assam, India
| |
Collapse
|
16
|
Werissa NA, Piko P, Fiatal S, Kosa Z, Sandor J, Adany R. SNP-Based Genetic Risk Score Modeling Suggests No Increased Genetic Susceptibility of the Roma Population to Type 2 Diabetes Mellitus. Genes (Basel) 2019; 10:genes10110942. [PMID: 31752367 PMCID: PMC6896051 DOI: 10.3390/genes10110942] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/12/2019] [Accepted: 11/18/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND In a previous survey, an elevated fasting glucose level (FG) and/or known type 2 diabetes mellitus (T2DM) were significantly more frequent in the Roma population than in the Hungarian general population. We assessed whether the distribution of 16 single nucleotide polymorphisms (SNPs) with unequivocal effects on the development of T2DM contributes to this higher prevalence. METHODS Genetic risk scores, unweighted (GRS) and weighted (wGRS), were computed and compared between the study populations. Associations between GRSs and FG levels and T2DM status were investigated in separate and combined study populations. RESULTS The Hungarian general population carried a greater genetic risk for the development of T2DM (GRSGeneral = 15.38 ± 2.70 vs. GRSRoma = 14.80 ± 2.68, p < 0.001; wGRSGeneral = 1.41 ± 0.32 vs. wGRSRoma = 1.36 ± 0.31, p < 0.001). In the combined population models, GRSs and wGRSs showed significant associations with elevated FG (p < 0.001) and T2DM (p < 0.001) after adjusting for ethnicity, age, sex, body mass index (BMI), high-density Lipoprotein Cholesterol (HDL-C), and triglyceride (TG). In these models, the effect of ethnicity was relatively strong on both outcomes (FG levels: βethnicity = 0.918, p < 0.001; T2DM status: ORethnicity = 2.484, p < 0.001). CONCLUSIONS The higher prevalence of elevated FG and/or T2DM among Roma does not seem to be directly linked to their increased genetic load but rather to their environmental/cultural attributes. Interventions targeting T2DM prevention among Roma should focus on harmful environmental exposures related to their unhealthy lifestyle.
Collapse
Affiliation(s)
- Nardos Abebe Werissa
- MTA−DE Public Health Research Group of the Hungarian Academy of Sciences, Public Health Research Institute, University of Debrecen, 4028 Debrecen, Hungary; (N.A.W.); (P.P.)
- Doctorial School of Health Sciences, University of Debrecen, 4028 Debrecen, Hungary
| | - Peter Piko
- MTA−DE Public Health Research Group of the Hungarian Academy of Sciences, Public Health Research Institute, University of Debrecen, 4028 Debrecen, Hungary; (N.A.W.); (P.P.)
| | - Szilvia Fiatal
- Department of Preventive Medicine, Faculty of Public Health, University of Debrecen, 4028 Debrecen, Hungary; (S.F.); (J.S.)
- WHO Collaborating Centre on Vulnerability and Health, University of Debrecen, 4028 Debrecen, Hungary
| | - Zsigmond Kosa
- Department of Health Visitor Methodology and Public Health, Faculty of Health, University of Debrecen, 4400 Nyíregyháza, Hungary;
| | - Janos Sandor
- Department of Preventive Medicine, Faculty of Public Health, University of Debrecen, 4028 Debrecen, Hungary; (S.F.); (J.S.)
- WHO Collaborating Centre on Vulnerability and Health, University of Debrecen, 4028 Debrecen, Hungary
| | - Roza Adany
- MTA−DE Public Health Research Group of the Hungarian Academy of Sciences, Public Health Research Institute, University of Debrecen, 4028 Debrecen, Hungary; (N.A.W.); (P.P.)
- WHO Collaborating Centre on Vulnerability and Health, University of Debrecen, 4028 Debrecen, Hungary
- Correspondence: ; Tel: +36-5251-2764
| |
Collapse
|
17
|
Khan IA, Jahan P, Hasan Q, Rao P. Genetic confirmation of T2DM meta-analysis variants studied in gestational diabetes mellitus in an Indian population. Diabetes Metab Syndr 2019; 13:688-694. [PMID: 30641791 DOI: 10.1016/j.dsx.2018.11.035] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 11/11/2018] [Indexed: 01/25/2023]
Abstract
BACKGROUND Meta-analysis is useful for combining the results of different studies statistically to confirm genuine associations in genetics. Based on earlier reports, we aimed to investigate the association between type 2 diabetes mellitus (T2DM) genetic variants identified in a previous meta-analysis in gestational diabetes mellitus (GDM) in an Indian woman. MATERIAL AND METHODS In this study, 137 pregnant women with GDM and 150 pregnant women were selected on the basis of their serum glucose levels. The six single nucleotide polymorphisms (SNPs) of different genes studied had known involvement in pancreatic β-cell function, particular pathways linked to T2DM, and other biological functions. Genomic DNA was isolated from the 287 women for polymerase chain reaction and restriction fragment length polymorphism analyses. RESULTS The rs7903146, rs13266634, rs2283228, rs5210 and rs179881 SNPs were found to be positively associated with GDM when calculated for genotype and allele frequencies (p < 0.05), but rs680 (ApaI) variant did not show statistically significant association (p = 0.31). The rs7903146, rs2283228, rs5210 and rs680 variants showed a strong association with oral glucose tolerance test values. CONCLUSION The SNPs studied in this GDM had the same role as those identified in a previous T2DM meta-analysis, and showed positive association in the Indian women. Meta-analyses should be implemented to assess the IGF2 gene in GDM subjects.
Collapse
Affiliation(s)
- Imran Ali Khan
- Department of Genetics and Molecular Medicine, Kamineni Hospitals, LB Nagar, Hyderabad, India; Department of Genetics, Vasavi Medical and Research Centre, Khairathabad, Hyderabad, India; Department of Genetics and Biotechnology, Osmania University, Tarnaka, Hyderabad, India
| | - Parveen Jahan
- Department of Genetics and Biotechnology, Osmania University, Tarnaka, Hyderabad, India
| | - Qurratulain Hasan
- Department of Genetics and Molecular Medicine, Kamineni Hospitals, LB Nagar, Hyderabad, India; Department of Genetics, Vasavi Medical and Research Centre, Khairathabad, Hyderabad, India
| | - Pragna Rao
- Department of Biochemistry, Kasturba Medical College, Manipal University, Manipal, Karnataka, India.
| |
Collapse
|
18
|
Strutynskyi RB, Voronkov LG, Nagibin VS, Mazur ID, Stroy D, Dosenko VE. Changes of the echocardiographic parameters in chronic heart failure patients with Ile337val, Glu23lys, and Ser1369ala polymorphisms of genes encoding the ATP‐sensitive potassium channels subunits in the Ukrainian population. Ann Hum Genet 2018; 82:272-279. [DOI: 10.1111/ahg.12250] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 11/29/2017] [Accepted: 03/01/2018] [Indexed: 11/28/2022]
Affiliation(s)
- R. B. Strutynskyi
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology National Academy of Sciences of Ukraine Kyiv Ukraine
| | - L. G. Voronkov
- Department of Heart Failure State Institution «National scientific center «M.D. Strazhesko Institute of Cardiology» National Academy of Medical Sciences of Ukraine Kyiv Ukraine
| | - V. S. Nagibin
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology National Academy of Sciences of Ukraine Kyiv Ukraine
| | - I. D. Mazur
- Department of Heart Failure State Institution «National scientific center «M.D. Strazhesko Institute of Cardiology» National Academy of Medical Sciences of Ukraine Kyiv Ukraine
| | - D. Stroy
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology National Academy of Sciences of Ukraine Kyiv Ukraine
| | - V. E. Dosenko
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology National Academy of Sciences of Ukraine Kyiv Ukraine
| |
Collapse
|
19
|
Association of KCNJ11(RS5219) gene polymorphism with biochemical markers of glycemic status and insulin resistance in gestational diabetes mellitus. Meta Gene 2018. [DOI: 10.1016/j.mgene.2018.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
20
|
Association of genetic variants with macronutrient intake in Circassian and Chechan populations in relation to diabetes. Meta Gene 2018. [DOI: 10.1016/j.mgene.2018.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
21
|
Severino P, D'Amato A, Netti L, Pucci M, De Marchis M, Palmirotta R, Volterrani M, Mancone M, Fedele F. Diabetes Mellitus and Ischemic Heart Disease: The Role of Ion Channels. Int J Mol Sci 2018. [PMID: 29534462 PMCID: PMC5877663 DOI: 10.3390/ijms19030802] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Diabetes mellitus is one the strongest risk factors for cardiovascular disease and, in particular, for ischemic heart disease (IHD). The pathophysiology of myocardial ischemia in diabetic patients is complex and not fully understood: some diabetic patients have mainly coronary stenosis obstructing blood flow to the myocardium; others present with coronary microvascular disease with an absence of plaques in the epicardial vessels. Ion channels acting in the cross-talk between the myocardial energy state and coronary blood flow may play a role in the pathophysiology of IHD in diabetic patients. In particular, some genetic variants for ATP-dependent potassium channels seem to be involved in the determinism of IHD.
Collapse
Affiliation(s)
- Paolo Severino
- Department of Cardiovascular, Respiratory, Nephrology, Anesthesiology and Geriatric Sciences, Sapienza University of Rome, 00161 Rome, Italy.
| | - Andrea D'Amato
- Department of Cardiovascular, Respiratory, Nephrology, Anesthesiology and Geriatric Sciences, Sapienza University of Rome, 00161 Rome, Italy.
| | - Lucrezia Netti
- Department of Cardiovascular, Respiratory, Nephrology, Anesthesiology and Geriatric Sciences, Sapienza University of Rome, 00161 Rome, Italy.
| | - Mariateresa Pucci
- Department of Cardiovascular, Respiratory, Nephrology, Anesthesiology and Geriatric Sciences, Sapienza University of Rome, 00161 Rome, Italy.
| | - Marialaura De Marchis
- Department of Cardiovascular, Respiratory, Nephrology, Anesthesiology and Geriatric Sciences, Sapienza University of Rome, 00161 Rome, Italy.
| | - Raffaele Palmirotta
- Department of Biomedical Sciences and Clinical Oncology Oncogenomic Research Center, 'Aldo Moro' University of Bari, 70124 Bari, Italy.
| | - Maurizio Volterrani
- Department of Cardiac Rehabilitation, IRCCS San Raffaele, 00163 Rome, Italy.
| | - Massimo Mancone
- Department of Cardiovascular, Respiratory, Nephrology, Anesthesiology and Geriatric Sciences, Sapienza University of Rome, 00161 Rome, Italy.
| | - Francesco Fedele
- Department of Cardiovascular, Respiratory, Nephrology, Anesthesiology and Geriatric Sciences, Sapienza University of Rome, 00161 Rome, Italy.
| |
Collapse
|
22
|
Han YY, Wang LJ, Zhang L, Zhang WW, Ma KT, Li L, Si JQ. Association between potassium channel SNPs and essential hypertension in Xinjiang Kazak Chinese patients. Exp Ther Med 2017; 14:1999-2006. [PMID: 28962116 PMCID: PMC5609208 DOI: 10.3892/etm.2017.4734] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 05/05/2017] [Indexed: 12/27/2022] Open
Abstract
The aim of the present study was to examine whether single-nucleotide polymorphisms (SNPs) of β1 subunit of large-conductance Ca2+-activated K+ channel (KCNMB1) and inwardly rectifying K+ channel, subfamily J, member-11 (KCNJ11) are associated with essential hypertension (EH) in Xinjiang Kazak Chinese patients. A polymerase chain reaction-restriction fragment length polymorphism technique was applied to detect the distribution of selected alleles and genotype frequencies in a cohort of Xinjiang Kazak Chinese patients. Samples from 267 patients with EH and 259 normotensive (NT) controls were analyzed. An unconditional logistic regression analysis was used to estimate the odds ratio and 95% confidence interval of the risk factors that are associated with the development of EH. Genotype and allele frequency analyses revealed that the frequency of genotypes KCNJ11-rs2285676 and KCNMB1-rs11739136 was not significantly different between the EH and NT groups. Individuals carrying the GG genotype of KCNJ11-rs5219 had a 2.08 times higher risk of having EH than individuals carrying the GA+AA genotype of KCNJ11-rs5219. Furthermore, the G allele frequency of KCNJ11-rs5219 in the EH group was significantly higher than that of the NT group (P=0.048). Additionally, logistic regression analysis revealed that the body weight and GG genotype of KCNJ11-rs5219 were positively associated with EH in Xinjiang Kazak Chinese patients (P<0.01).
Collapse
Affiliation(s)
- Yuan-Yuan Han
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Li-Jie Wang
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Liang Zhang
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang 832002, P.R. China.,The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Wen-Wen Zhang
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Ke-Tao Ma
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang 832002, P.R. China.,The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Li Li
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang 832002, P.R. China.,The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Jun-Qiang Si
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang 832002, P.R. China.,The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, Xinjiang 832002, P.R. China.,Department of Physiology, Huazhong University of Science and Technology of Basic Medical Sciences, Wuhan, Hubei 430070, P.R. China.,Department of Physiology, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei 430070, P.R. China
| |
Collapse
|
23
|
Jiang F, Liu N, Chen XZ, Han KY, Zhu CZ. Study on the correlation between KCNJ11 gene polymorphism and metabolic syndrome in the elderly. Exp Ther Med 2017; 14:2031-2035. [PMID: 28962121 PMCID: PMC5609148 DOI: 10.3892/etm.2017.4714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 06/12/2017] [Indexed: 11/06/2022] Open
Abstract
The aim of the study was to examine the correlation between KCNJ11 gene polymorphism and metabolic syndrome in elderly patients. From January 2014 to January 2015, 54 elderly patients with metabolic syndrome were enrolled in this study as the observation group. During the same period, 46 healthy elderly individuals were enrolled in this study as the control group. KCNJ11 gene polymorphism (rs28502) was analyzed using polymerase chain reaction-restriction fragment length polymorphism. The expression levels of mRNA in different genotypes were detected using FQ-PCR. ELISA was used to evaluate the KCNJ11 protein expression in different genotypes. KCNJ11 gene polymorphism and metabolic syndrome was studied by measuring the blood pressure levels in patients with different genotypes. Three genotypes of KCNJ11 gene in rs28502 were CC, CT and TT. The CC, CT and TT genotype frequencies in healthy population were 8.5, 9.2 and 82.2%, respectively, while the genotype frequencies in patients with metabolic syndrome were 42.4, 49.8 and 7.8%, respectively. There were significant differences between groups (P≤0.05). However, the genotype frequencies of C/T in healthy individuals and metabolic syndrome patients were 35.3 and 38.3%, respectively. There were no significant differences between groups (P>0.05). FQ-PCR results showed that the KCNJ11 mRNA expression levels in the control and observation groups had no significant differences (P>0.05). However, the results obtained from ELISA analysis revealed that KCNJ11 protein expression level in the observation group was significantly higher than that in the control group (P<0.05). In conclusion, KCNJ11 gene polymorphism is associated with metabolic syndrome in the elderly. Elderly patients with the CC and TT genotypes are more likely to develop metabolic syndrome.
Collapse
Affiliation(s)
- Fan Jiang
- Department of Geratology, Hainan General Hospital, Haikou, Hainan 570311, P.R. China
| | - Ning Liu
- Department of General Surgery, Hainan General Hospital, Haikou, Hainan 570311, P.R. China
| | - Xiao Zhuang Chen
- Department of Geratology, Hainan General Hospital, Haikou, Hainan 570311, P.R. China
| | - Kun Yuan Han
- Department of Geratology, Hainan General Hospital, Haikou, Hainan 570311, P.R. China
| | - Cai Zhong Zhu
- Department of Geratology, Hainan General Hospital, Haikou, Hainan 570311, P.R. China
| |
Collapse
|
24
|
Cheng M, Liu X, Yang M, Han L, Xu A, Huang Q. Computational analyses of type 2 diabetes-associated loci identified by genome-wide association studies. J Diabetes 2017; 9:362-377. [PMID: 27121852 DOI: 10.1111/1753-0407.12421] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 03/31/2016] [Accepted: 04/23/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Genome-wide association studies (GWAS) of type 2 diabetes (T2D) have discovered a number of loci that contribute to susceptibility to the disease. Future challenges include elucidation of functional mechanisms through which these GWAS-identified loci modulate T2D disease risk. The aim of the present study was to comprehensively characterize T2D associated single nucleotide polymorphisms (SNPs) and genes through computational approaches. METHODS Computational biology approaches used in the present study included comparative genomic analyses and functional annotation using GWAS3D and RegulomeDB, investigation of the effects of T2D-associated SNPs on miRNA binding and protein phosphorylation, and gene ontology, pathway enrichment, protein-protein interaction (PPI) networks and functional module analysis of T2D-associated genes from previously published GWAS. RESULTS Computational analysis identified a number of T2D GWAS-associated SNPs that were located at protein binding sites, including CCCTC-binding factor (CTCF), E1A binding protein p300 (EP300), hepatocyte nuclear factor 4alpha (HNF4A), transcription factor 7 like 2 (TCF7L2), forkhead box A1 (FOXA1) and A2 (FOXA2), and potentially affected the binding of miRNAs and protein phosphorylation. Pathway enrichment analysis confirmed two well-known maturity onset diabetes of the young and T2D pathways, whereas PPI network analysis identified highly interconnected "hub" genes, such as TCF7L2, melatonin receptor 1B (MTNR1B), and solute carrier family 30 (zinc transporter), member 8 (SLC30A8), that created two tight subnetworks. CONCLUSIONS The results provide objectives and clues for future experimental studies and further insights into the molecular pathogenesis of T2D.
Collapse
Affiliation(s)
- Mengrong Cheng
- College of Life Sciences, Central China Normal University, Wuhan, China
| | - Xinhong Liu
- College of Life Sciences, Central China Normal University, Wuhan, China
| | - Mei Yang
- College of Life Sciences, Central China Normal University, Wuhan, China
| | - Lanchun Han
- College of Life Sciences, Central China Normal University, Wuhan, China
- Institute of Public Health and Molecular Medicine Analysis, Central China Normal University, Wuhan, China
| | - Aimin Xu
- Li Cha Chung Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Qingyang Huang
- College of Life Sciences, Central China Normal University, Wuhan, China
- Institute of Public Health and Molecular Medicine Analysis, Central China Normal University, Wuhan, China
| |
Collapse
|
25
|
Kaul N, Ali S. Genes, Genetics, and Environment in Type 2 Diabetes: Implication in Personalized Medicine. DNA Cell Biol 2015; 35:1-12. [PMID: 26495765 DOI: 10.1089/dna.2015.2883] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Type 2 diabetes (T2D) is a multifactorial anomaly involving 57 genes located on 16 different chromosomes and 136 single nucleotide polymorphisms (SNPs). Ten genes are located on chromosome 1, followed by seven genes on chromosome 11 and six genes on chromosomes 3. Remaining chromosomes harbor two to five genes. Significantly, chromosomes 13, 14, 16, 18, 21, 22, X, and Y do not have any associated diabetogenic gene. Genetic components have their own pathways encompassing insulin secretion, resistance, signaling, and β-cell dysfunction. Environmental factors include epigenetic changes, nutrition, intrauterine surroundings, and obesity. In addition, ethnicity plays a role in conferring susceptibility to T2D. This scenario poses a challenge toward the development of biomarker for quick disease diagnosis or for generating a consensus to delineate different categories of T2D patients. We believe, before prescribing a generic drug, detailed genotypic information with the background of ethnicity and environmental factors may be taken into consideration. This nonconventional approach is envisaged to be more robust in the context of personalized medicine and perhaps would cause lot less burden on the patient ensuring better management of T2D.
Collapse
Affiliation(s)
- Nabodita Kaul
- Molecular Genetics Laboratory, National Institute of Immunology , New Delhi, India
| | - Sher Ali
- Molecular Genetics Laboratory, National Institute of Immunology , New Delhi, India
| |
Collapse
|
26
|
Khan IA, Vattam KK, Jahan P, Mukkavali KK, Hasan Q, Rao P. Correlation between KCNQ1 and KCNJ11 gene polymorphisms and type 2 and post-transplant diabetes mellitus in the Asian Indian population. Genes Dis 2015; 2:276-282. [PMID: 30258870 PMCID: PMC6150093 DOI: 10.1016/j.gendis.2015.02.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 02/24/2015] [Indexed: 12/18/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) and post-transplant diabetes mellitus (PTDM) share a common pathophysiology. However, diabetes mellitus is a complex disease, and T2DM and PTDM have different etiologies. T2DM is a metabolic disorder, characterized by persistent hyperglycemia, whereas PTDM is a condition of abnormal glucose tolerance, with variable onset after organ transplant. The KCNQ1 and KCNJ11 gene encode potassium channels, which mediate insulin secretion from pancreatic β-cells, and KCN gene mutations are correlated with the development of diabetes. However, no studies have been carried out to establish an association between KCNQ1 and KCNJ11 gene polymorphisms and T2DM and PTDM. Therefore, our study was aimed at the identification of the role of KCNQ1 and KCNJ11 gene polymorphisms associated with T2DM and the risk of developing PTDM in the Asian Indian population. We have carried out a case-control study including 250 patients with T2DM, 250 control subjects, 42 patients with PTDM and 98 subjects with non-PTDM. PCR-RFLP analysis was carried out following the isolation of genomic DNA from EDTA-blood samples. The results of the present study reveal that two single nucleotide polymorphisms (rs2283228 and rs5210, of the KCNQ1 and KCNJ11 genes, respectively) are associated with both T2DM and PTDM. The results of our study suggest a role of KCNQ1 and KCNJ11 gene variants in the increased risk of T2DM and PTDM in the Asian Indian population.
Collapse
Affiliation(s)
- Imran Ali Khan
- Department of Genetics and Molecular Medicine, Kamineni Hospitals, Hyderabad, India
- Department of Genetics, Vasavi Medical and Research Centre, Khairathabad, Hyderabad, India
- Department of Genetics and Biotechnology, Osmania University, Tarnaka, Hyderabad, India
| | - Kiran Kumar Vattam
- Department of Genetics and Molecular Medicine, Kamineni Hospitals, Hyderabad, India
| | - Parveen Jahan
- Department of Genetics and Biotechnology, Osmania University, Tarnaka, Hyderabad, India
| | | | - Qurratulain Hasan
- Department of Genetics and Molecular Medicine, Kamineni Hospitals, Hyderabad, India
- Department of Genetics, Vasavi Medical and Research Centre, Khairathabad, Hyderabad, India
| | - Pragna Rao
- Department of Biochemistry, Kasturba Medical College, Manipal University, Manipal, Karnataka, India
| |
Collapse
|
27
|
Sokolova EA, Bondar IA, Shabelnikova OY, Pyankova OV, Filipenko ML. Replication of KCNJ11 (p.E23K) and ABCC8 (p.S1369A) Association in Russian Diabetes Mellitus 2 Type Cohort and Meta-Analysis. PLoS One 2015; 10:e0124662. [PMID: 25955821 PMCID: PMC4425644 DOI: 10.1371/journal.pone.0124662] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 03/17/2015] [Indexed: 12/26/2022] Open
Abstract
The genes ABCC8 and KCNJ11 have received intense focus in type 2 diabetes mellitus (T2DM) research over the past two decades. It has been hypothesized that the p.E23K (KCNJ11) mutation in the 11p15.1 region may play an important role in the development of T2DM. In 2009, Hamming et al. found that the p.1369A (ABCC8) variant may be a causal factor in the disease; therefore, in this study we performed a meta-analysis to evaluate the association between these single nucleotide polymorphisms (SNPs), including our original data on the Siberian population (1384 T2DM and 414 controls). We found rs5219 and rs757110 were not associated with T2DM in this population, and that there was linkage disequilibrium in Siberians (D’=0.766, r2= 0.5633). In addition, the haplotype rs757110[T]-rs5219[C] (p.23K/p.S1369) was associated with T2DM (OR = 1.52, 95% CI: 1.04-2.24). We included 44 original studies published by June 2014 in a meta-analysis of the p.E23K association with T2DM. The total OR was 1.14 (95% CI: 1.11-1.17) for p.E23K for a total sample size of 137,298. For p.S1369A, a meta-analysis was conducted on a total of 10 studies with a total sample size of 14,136 and pooled OR of 1.14 [95% CI (1.08-1.19); p = 2 x 10-6]. Our calculations identified causal genetic variation within the ABCC8/KCNJ11 region for T2DM with an OR of approximately 1.15 in Caucasians and Asians. Moreover, the OR value was not dependent on the frequency of p.E23K or p.S1369A in the populations.
Collapse
Affiliation(s)
- Ekaterina Alekseevna Sokolova
- Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine, Siberian Division, Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Irina Arkadievna Bondar
- Novosibirsk State Regional Hospital, Regional Diabetes center, Novosibirsk, Russia
- Novosibirsk State Medical University, Novosibirsk, Russia
| | - Olesya Yurievna Shabelnikova
- Novosibirsk State Regional Hospital, Regional Diabetes center, Novosibirsk, Russia
- Novosibirsk State Medical University, Novosibirsk, Russia
| | - Olga Vladimirovna Pyankova
- Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine, Siberian Division, Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Maxim Leonidovich Filipenko
- Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine, Siberian Division, Russian Academy of Sciences, Novosibirsk, Russia
- Kazan Federal University, Kazan, Russia
- * E-mail:
| |
Collapse
|
28
|
Anderson D, Cordell HJ, Fakiola M, Francis RW, Syn G, Scaman ESH, Davis E, Miles SJ, McLeay T, Jamieson SE, Blackwell JM. First genome-wide association study in an Australian aboriginal population provides insights into genetic risk factors for body mass index and type 2 diabetes. PLoS One 2015; 10:e0119333. [PMID: 25760438 PMCID: PMC4356593 DOI: 10.1371/journal.pone.0119333] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 01/28/2015] [Indexed: 12/15/2022] Open
Abstract
A body mass index (BMI) >22kg/m2 is a risk factor for type 2 diabetes (T2D) in Aboriginal Australians. To identify loci associated with BMI and T2D we undertook a genome-wide association study using 1,075,436 quality-controlled single nucleotide polymorphisms (SNPs) genotyped (Illumina 2.5M Duo Beadchip) in 402 individuals in extended pedigrees from a Western Australian Aboriginal community. Imputation using the thousand genomes (1000G) reference panel extended the analysis to 6,724,284 post quality-control autosomal SNPs. No associations achieved genome-wide significance, commonly accepted as P<5x10-8. Nevertheless, genes/pathways in common with other ethnicities were identified despite the arrival of Aboriginal people in Australia >45,000 years ago. The top hit (rs10868204 Pgenotyped = 1.50x10-6; rs11140653 Pimputed_1000G = 2.90x10-7) for BMI lies 5’ of NTRK2, the type 2 neurotrophic tyrosine kinase receptor for brain-derived neurotrophic factor (BDNF) that regulates energy balance downstream of melanocortin-4 receptor (MC4R). PIK3C2G (rs12816270 Pgenotyped = 8.06x10-6; rs10841048 Pimputed_1000G = 6.28x10-7) was associated with BMI, but not with T2D as reported elsewhere. BMI also associated with CNTNAP2 (rs6960319 Pgenotyped = 4.65x10-5; rs13225016 Pimputed_1000G = 6.57x10-5), previously identified as the strongest gene-by-environment interaction for BMI in African-Americans. The top hit (rs11240074 Pgenotyped = 5.59x10-6, Pimputed_1000G = 5.73x10-6) for T2D lies 5’ of BCL9 that, along with TCF7L2, promotes beta-catenin’s transcriptional activity in the WNT signaling pathway. Additional hits occurred in genes affecting pancreatic (KCNJ6, KCNA1) and/or GABA (GABRR1, KCNA1) functions. Notable associations observed for genes previously identified at genome-wide significance in other populations included MC4R (Pgenotyped = 4.49x10-4) for BMI and IGF2BP2 Pimputed_1000G = 2.55x10-6) for T2D. Our results may provide novel functional leads in understanding disease pathogenesis in this Australian Aboriginal population.
Collapse
Affiliation(s)
- Denise Anderson
- Telethon Kids Institute, The University of Western Australia, Subiaco, Western Australia, 6008, Australia
| | - Heather J. Cordell
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, NE1 3BZ, United Kingdom
| | - Michaela Fakiola
- Telethon Kids Institute, The University of Western Australia, Subiaco, Western Australia, 6008, Australia
- Cambridge Institute for Medical Research, Department of Medicine, and Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Richard W. Francis
- Telethon Kids Institute, The University of Western Australia, Subiaco, Western Australia, 6008, Australia
| | - Genevieve Syn
- Telethon Kids Institute, The University of Western Australia, Subiaco, Western Australia, 6008, Australia
| | - Elizabeth S. H. Scaman
- Telethon Kids Institute, The University of Western Australia, Subiaco, Western Australia, 6008, Australia
| | - Elizabeth Davis
- Telethon Kids Institute, The University of Western Australia, Subiaco, Western Australia, 6008, Australia
- Department of Endocrinology and Diabetes, Princess Margaret Hospital for Children, Subiaco, Western Australia, 6008, Australia
| | - Simon J. Miles
- Ngangganawili Aboriginal Health Service, Wiluna, Western Australia, 6646, Australia
| | - Toby McLeay
- Ngangganawili Aboriginal Health Service, Wiluna, Western Australia, 6646, Australia
| | - Sarra E. Jamieson
- Telethon Kids Institute, The University of Western Australia, Subiaco, Western Australia, 6008, Australia
| | - Jenefer M. Blackwell
- Telethon Kids Institute, The University of Western Australia, Subiaco, Western Australia, 6008, Australia
- Cambridge Institute for Medical Research, Department of Medicine, and Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
29
|
Bonfanti DH, Alcazar LP, Arakaki PA, Martins LT, Agustini BC, de Moraes Rego FG, Frigeri HR. ATP-dependent potassium channels and type 2 diabetes mellitus. Clin Biochem 2015; 48:476-82. [PMID: 25583094 DOI: 10.1016/j.clinbiochem.2014.12.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 12/29/2014] [Accepted: 12/30/2014] [Indexed: 12/24/2022]
Abstract
Diabetes mellitus is a public health problem, which affects a millions worldwide. Most diabetes cases are classified as type 2 diabetes mellitus, which is highly associated with obesity. Type 2 diabetes is considered a multifactorial disorder, with both environmental and genetic factors contributing to its development. An important issue linked with diabetes development is the failure of the insulin releasing mechanism involving abnormal activity of the ATP-dependent potassium channel, KATP. This channel is a transmembrane protein encoded by the KCNJ11 and ABCC8 genes. Furthermore, polymorphisms in these genes have been linked to type 2 diabetes because of the role of KATP in insulin release. While several genetic variations have been reported to be associated with this disease, the E23K polymorphism is most commonly associated with this pathology, as well as to obesity. Here, we review the molecular genetics of the potassium channel and discusses its most described polymorphisms and their associations with type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Dianne Heloisa Bonfanti
- Health and Biosciences School, Pontifical Catholic University of Parana, Curitiba, Parana, Brazil
| | - Larissa Pontes Alcazar
- Health and Biosciences School, Pontifical Catholic University of Parana, Curitiba, Parana, Brazil
| | - Priscila Akemi Arakaki
- Health and Biosciences School, Pontifical Catholic University of Parana, Curitiba, Parana, Brazil
| | - Laysa Toschi Martins
- Health and Biosciences School, Pontifical Catholic University of Parana, Curitiba, Parana, Brazil
| | - Bruna Carla Agustini
- Health and Biosciences School, Pontifical Catholic University of Parana, Curitiba, Parana, Brazil
| | | | | |
Collapse
|
30
|
Liao WL, Tsai FJ. Personalized medicine in Type 2 Diabetes. Biomedicine (Taipei) 2014; 4:8. [PMID: 25520921 PMCID: PMC4264975 DOI: 10.7603/s40681-014-0008-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 05/03/2014] [Indexed: 12/11/2022] Open
Abstract
Type 2 diabetes (T2D) is a global public health concern, its prevalence in Asia, especially Taiwan, rising every year. The risk of developing T2D and diabetes complications is not only controlled by environmental but also by genetic factors. Genetic association studies have shown polymorphisms at specific loci may help identify individuals at greatest risk and response to oral antidiabetic drugs. This review probes effect of genetic profiling on T2D and its complications, using our study population as examples. Also, pharmacogenetics and pharmacogenomics of oral anitdiabetic drug will be explored.
Collapse
Affiliation(s)
- Wen-Ling Liao
- Center for Personalized Medicine, China Medical University Hospital, Taichung, Taiwan ; Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
| | - Fuu-Jen Tsai
- Department of Medical Research and Medical Genetics, China Medical University Hospital Taichung, Taichung, Taiwan ; School of Chinese Medicine, China Medical University, Taichung, Taiwan ; Department of Pediatrics, China Medical University Hospital, Taichung, Taiwan ; Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan ; Department of Medical Genetics, Pediatrics and Medical Research, China Medical University Hospital, No.2 Yuh-Der Road, 404 Taichung, Taiwan
| |
Collapse
|
31
|
Parvizi Z, Azarpira N, Kohan L, Darai M, Kazemi K, Parvizi MM. Association between E23K variant in KCNJ11 gene and new-onset diabetes after liver transplantation. Mol Biol Rep 2014; 41:6063-9. [PMID: 24996284 DOI: 10.1007/s11033-014-3483-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 06/17/2014] [Indexed: 12/24/2022]
Abstract
New-onset diabetes after transplantation (NODAT) is an important complication after solid organ transplantation. NODAT is a polygenic disease and KCNJ11 E23K polymorphism is considered as a diabetes-susceptibility gene. The present study aimed to assess the association between KCNJ11 (rs5219) variants and the risk of developing NODAT after liver transplantation. This study was conducted on 120 liver transplant recipients who had received tacrolimus-based immunosuppressive drugs. The liver transplant recipients were divided into an new onset diabetes mellitus (NODM) and a non-NODM group. The NODAT group consisted of 60 patients who developed diabetes in the first 6 months after transplantation, while the non-NODAT group included 60 patients who remained euglycemic. The patients were genotyped using polymerase chain reaction-restriction fragment length polymorphism and the incidence of NODAT was compared between the two groups. Nongenetic risk factors including donor gender and cold ischemia time, and recipient (MELD score, presence of viral hepatitis, acute rejection and steroid pulse therapy) were also considered. The KCNJ11 KK variant was associated with an increased risk for NODAT with respective odds ratio of 6.03 (95 % confidence interval 2.37-15.4; P < 0.001]. Donor age and male sex, recipient age as well as fasting plasma glucose before transplantation were significantly different between NODAT and non-NODAT groups (P < 0.05). The prednisolone daily dosage was significantly higher in the NODAT group (P = 0.01). These patients received pulse of methyl prednisolone for treatment of acute rejection. This study showed that polymorphisms in KCNJ11 might predispose the patients treated by tacrolimus to development of NODAT after liver transplantation.
Collapse
Affiliation(s)
- Zahra Parvizi
- Transplant Research Center, Nemazi Hospital, Shiraz University of Medical Sciences, Zand Street, 7193711351, Shiraz, Iran
| | | | | | | | | | | |
Collapse
|
32
|
Qiu L, Na R, Xu R, Wang S, Sheng H, Wu W, Qu Y. Quantitative assessment of the effect of KCNJ11 gene polymorphism on the risk of type 2 diabetes. PLoS One 2014; 9:e93961. [PMID: 24710510 PMCID: PMC3977990 DOI: 10.1371/journal.pone.0093961] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 02/19/2014] [Indexed: 12/31/2022] Open
Abstract
To clarify the role of potassium inwardly-rectifying-channel, subfamily-J, member 11 (KCNJ11) variation in susceptibility to type 2 diabetes (T2D), we performed a systematic meta-analysis to investigate the association between the KCNJ11 E23K polymorphism (rs5219) and the T2D in different genetic models. Databases including PubMed, Medline, EMBASE, and ISI Web of Science were searched to identify relevant studies. A total of 48 published studies involving 56,349 T2D cases, 81,800 controls, and 483 family trios were included in this meta-analysis. Overall, the E23K polymorphism was significantly associated with increased T2D risk with per-allele odds ratio (OR) of 1.12 (95% CI: 1.09-1.16; P<10-5). The summary OR for T2D was 1.09 (95% CI: 1.03-1.14; P<10-5), and 1.26 (95% CI: 1.17-1.35; P<10-5), for heterozygous and homozygous, respectively. Similar results were also detected under dominant and recessive genetic models. When stratified by ethnicity, significantly increased risks were found for the polymorphism in Caucasians and East Asians. However, no such associations were detected among Indian and other ethnic populations. Significant associations were also observed in the stratified analyses according to different mean BMI of cases and sample size. Although significant between study heterogeneity was identified, meta-regression analysis suggested that the BMI of controls significantly correlated with the magnitude of the genetic effect. The current meta-analysis demonstrated that a modest but statistically significant effect of the 23K allele of rs5219 polymorphism in susceptibility to T2D. But the contribution of its genetic variants to the epidemic of T2D in Indian and other ethnic populations appears to be relatively low.
Collapse
Affiliation(s)
- Ling Qiu
- Department of Geriatrics, Shanghai Xuhui Central Hospital, Shanghai Clinical Center, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Risu Na
- Department of Endocrinology, Shanghai Xuhui Central Hospital, Shanghai Clinical Center, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Rong Xu
- Department of Geriatrics, Shanghai Xuhui Central Hospital, Shanghai Clinical Center, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Siyang Wang
- Department of Geriatrics, Shanghai Xuhui Central Hospital, Shanghai Clinical Center, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Hongguang Sheng
- Department of Endocrinology, Shanghai Xuhui Central Hospital, Shanghai Clinical Center, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Wanling Wu
- Department of Endocrinology, The Ninth People's Hospital Attach to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yi Qu
- Department of Geriatrics, Shanghai Xuhui Central Hospital, Shanghai Clinical Center, Chinese Academy of Sciences, Shanghai, People's Republic of China
- * E-mail:
| |
Collapse
|
33
|
CYP2C9, KCNJ11 and ABCC8 polymorphisms and the response to sulphonylurea treatment in type 2 diabetes patients. Eur J Clin Pharmacol 2014; 70:421-8. [PMID: 24442125 DOI: 10.1007/s00228-014-1641-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 01/01/2014] [Indexed: 01/11/2023]
Abstract
PURPOSE Sulphonylureas (SU) are widely used in the management of type 2 diabetes. We investigated the influence of CYP2C9, KCNJ11 and ABCC8 polymorphisms on the response to SU currently used in everyday clinical practice. METHODS Patients treated for type 2 diabetes with sulphonylurea in monotherapy (n = 21) or in combination with metformin (n = 135) were provided with glucose-monitoring devices and instructed to measure fasting blood glucose levels once per week and additionally at any signs and symptoms suggesting low blood glucose for a period of three months. All patients were genotyped for CYP2C9 rs1799853 and rs1057910 (*2 and *3 allele, respectively), KCNJ11 rs5219 and rs5215, and ABCC8 rs757110. RESULTS The average duration of diabetes in the study group was 10.6 ± 7.1 years. Most of the patients achieved relatively good blood glucose control (HbA1c 7.0 ± 0.9). In total, 76 hypoglycemia events were observed (mean 0.48 ± 1.3). No severe hypoglycemia was reported; the lowest blood glucose was 2.1 mmol/l. Although 124 (79.5 %) patients never experienced hypoglycemia, 32 (20.5 %) patients experienced from one to eight events. None of the investigated polymorphisms influenced HbA1c levels or risk for hypoglycemia episodes in the whole group of patients. CYP2C9 genotype significantly influenced the occurrence of hypoglycemia events among the elderly patients (aged 60 years and over; n = 103). Among them, carriers of two wild-type alleles suffered 0.36 ± 0.98 events, while patients with one or two polymorphic alleles had 0.79 ± 1.7 or 2.67 ± 4.6 events, respectively (p = 0.014). CONCLUSIONS Our results indicate that the CYP2C9 genotype may influence the risk for hypoglycemia events in elderly patients, but not in the overall population of type 2 diabetes patients.
Collapse
|