1
|
Du P, Wu X, Xu J, Dong F, Liu X, Zheng Y. Effects of trifluralin on the soil microbial community and functional groups involved in nitrogen cycling. JOURNAL OF HAZARDOUS MATERIALS 2018; 353:204-213. [PMID: 29674095 DOI: 10.1016/j.jhazmat.2018.04.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 03/13/2018] [Accepted: 04/04/2018] [Indexed: 06/08/2023]
Abstract
Large amounts of trifluralin are applied each year for weed control; however, its effects on soil microbial communities and functions are unknown. Two agricultural soils, one silty loam and one silty clay were spiked with TFL (0, 0.84, 8.4, and 84 mg kg-1) and studied the effects using a laboratory microcosm approach. The half-lives were 44.19-61.83 d in all cases. Bacterial abundance increased 1.12-5.56 times by TFL, but the diversity decreased. From the next-generation sequencing results, TFL altered the bacterial community structure, which initially diverged from the control community structure, then recovered, and then diverged again. Linear discriminant analysis effect size indicated that Sphingomonas and Xanthomonadaceae were the predominant species on day 7 and 15 in TFL treatments. N2-fixing bacteria were initially increased, then decreased, and then recovered, and it was positively correlated with NH4+-N content. Compared with the control, ammonia-oxidizing bacteria were decreased by 25.51-92.63%, ammonia-oxidizing archaea were decreased by 17.12-85.21% (except day 7), and the NO3--N concentration was also inhibited. In contrast to bacteria, fungal abundance was inhibited without any observable effects on fungal diversity or community structure. These results suggest that TFL impacts soil bacterial community and alters functional microorganisms involved in soil N processing.
Collapse
Affiliation(s)
- Pengqiang Du
- College of Chemistry, Central China Normal University, No. 152 Luoyu Road, Wuhan, 430079, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Xiaohu Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Jun Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Fengshou Dong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, China.
| | - Xingang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, China.
| | - Yongquan Zheng
- College of Chemistry, Central China Normal University, No. 152 Luoyu Road, Wuhan, 430079, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, China.
| |
Collapse
|
2
|
Evaluation of antifungal, phosphate solubilisation, and siderophore and chitinase release activities of endophytic fungi from Pistacia vera. Mycol Prog 2017. [DOI: 10.1007/s11557-017-1315-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
3
|
Peraza-Vega RI, Castañeda-Sortibrán AN, Valverde M, Rojas E, Rodríguez-Arnaiz R. Assessing genotoxicity of diuron on Drosophila melanogaster by the wing-spot test and the wing imaginal disk comet assay. Toxicol Ind Health 2016; 33:443-453. [PMID: 27777339 DOI: 10.1177/0748233716670536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The aim of this study was to evaluate the genotoxicity of the herbicide diuron in the wing-spot test and a novel wing imaginal disk comet assay in Drosophila melanogaster. The wing-spot test was performed with standard (ST) and high-bioactivation (HB) crosses after providing chronic 48 h treatment to third instar larvae. A positive dose-response effect was observed in both crosses, but statistically reduced spot frequencies were registered for the HB cross compared with the ST. This latter finding suggests that metabolism differences play an important role in the genotoxic effect of diuron. To verify diuron's ability to produce DNA damage, a wing imaginal disk comet assay was performed after providing 24 h diuron treatment to ST and HB third instar larvae. DNA damage induced by the herbicide had a significantly positive dose-response effect even at very low concentrations in both strains. However, as noted for the wing-spot test, a significant difference between strains was not observed that could be related to the duration of exposure between both assays. A positive correlation between the comet assay and the wing-spot test was found with regard to diuron genotoxicity.
Collapse
Affiliation(s)
- Ricardo I Peraza-Vega
- 1 Faculty of Sciences, National Autonomous University of Mexico, Distrito Federal, Mexico
| | | | - Mahara Valverde
- 2 Institute of Biomedical Investigations, National Autonomous University of Mexico, Distrito Federal, Mexico
| | - Emilio Rojas
- 2 Institute of Biomedical Investigations, National Autonomous University of Mexico, Distrito Federal, Mexico
| | | |
Collapse
|
4
|
Goswami D, Borah SN, Lahkar J, Handique PJ, Deka S. Antifungal properties of rhamnolipid produced by Pseudomonas aeruginosa DS9 against Colletotrichum falcatum. J Basic Microbiol 2015; 55:1265-74. [PMID: 26173581 DOI: 10.1002/jobm.201500220] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 06/23/2015] [Indexed: 11/12/2022]
Abstract
The rhamnolipid biosurfactant (RL-DS9) extracted from the bacterial strain Pseudomonas aeruginosa DS9 was evaluated for its antifungal activity against Colletotrichum falcatum that causes red rot in sugarcane. The surface tension (ST) reduction, biosurfactant production, and antifungal activity of biosurfactant against C. falcatum were investigated by using the medium with different carbon sources and it was found to be maximum in glucose. Moreover, highest reduction of ST and production of biosurfactant was achieved at 4.5% (w/v) concentration of glucose. The efficacy of RL-DS9 was compared with a commercially available rhamnolipid (RL-R95) using microtitre plate assay. Results showed that at 100 μg ml(-1) concentration RL-DS9 exhibited 86.6% inhibition against C. falcatum spore germination, and in the same concentration RL-R95 showed 83.3% inhibition. From liquid chromatography-mass spectrometry (LC-MS) analysis, it was revealed that only two similar congeners Rha-(C10 ) and Rha-Rha-(C10:1 ) were found to be in common among both the rhamnolipids. In the plant bioassay test, it was noted that red rot incidence was reduced on the sugarcane plants treated with RL-DS9. This is the first report that rhamnolipid biosurfactant produced by Pseudomonas aeruginosa DS9 could be able to control red rot disease of sugarcane caused due to the infection with the fungus Colletotrichum falcatum.
Collapse
Affiliation(s)
- Debahuti Goswami
- Environmental Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Paschim Boragaon, Guwahati, Assam, India
| | - Siddhartha Narayan Borah
- Environmental Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Paschim Boragaon, Guwahati, Assam, India
| | - Jiumoni Lahkar
- Environmental Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Paschim Boragaon, Guwahati, Assam, India
| | | | - Suresh Deka
- Environmental Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Paschim Boragaon, Guwahati, Assam, India
| |
Collapse
|
5
|
de Sant’Anna JR, Franco CCDS, Mathias PCDF, de Castro-Prado MAA. Assessment of in vivo and in vitro genotoxicity of glibenclamide in eukaryotic cells. PLoS One 2015; 10:e0120675. [PMID: 25803314 PMCID: PMC4372363 DOI: 10.1371/journal.pone.0120675] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 01/25/2015] [Indexed: 12/18/2022] Open
Abstract
Glibenclamide is an oral hypoglycemic drug commonly prescribed for the treatment of type 2 diabetes mellitus, whose anti-tumor activity has been recently described in several human cancer cells. The mutagenic potential of such an antidiabetic drug and its recombinogenic activity in eukaryotic cells were evaluated, the latter for the first time. The mutagenic potential of glibenclamide in therapeutically plasma (0.6 μM) and higher concentrations (10 μM, 100 μM, 240 μM and 480 μM) was assessed by the in vitro mammalian cell micronucleus test in human lymphocytes. Since the loss of heterozygosity arising from allelic recombination is an important biologically significant consequence of oxidative damage, the glibenclamide recombinogenic activity at 1 μM, 10 μM and 100 μM concentrations was evaluated by the in vivo homozygotization assay. Glibenclamide failed to alter the frequency of micronuclei between 0.6 μM and 480 μM concentrations and the cytokinesis block proliferation index between 0.6 μM and 240 μM concentrations. On the other hand, glibenclamide changed the cell-proliferation kinetics when used at 480 μM. In the homozygotization assay, the homozygotization indices for the analyzed markers were lower than 2.0 and demonstrated the lack of recombinogenic activity of glibenclamide. Data in the current study demonstrate that glibenclamide, in current experimental conditions, is devoid of significant genotoxic effects. This fact encourages further investigations on the use of this antidiabetic agent as a chemotherapeutic drug.
Collapse
Affiliation(s)
- Juliane Rocha de Sant’Anna
- Departamento de Biotecnologia, Genética e Biologia Celular, Laboratório de Genética de Microorganismos e Mutagênese, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | - Claudinéia Conationi da Silva Franco
- Departamento de Biotecnologia, Genética e Biologia Celular, Laboratório de Biologia Celular e Secreção, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | - Paulo Cezar de Freitas Mathias
- Departamento de Biotecnologia, Genética e Biologia Celular, Laboratório de Biologia Celular e Secreção, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | - Marialba Avezum Alves de Castro-Prado
- Departamento de Biotecnologia, Genética e Biologia Celular, Laboratório de Genética de Microorganismos e Mutagênese, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
- * E-mail:
| |
Collapse
|
6
|
Silva LJ, Crevelin EJ, Souza WR, Moraes LAB, Melo IS, Zucchi TD. Streptomyces araujoniae Produces a Multiantibiotic Complex with Ionophoric Properties to Control Botrytis cinerea. PHYTOPATHOLOGY 2014; 104:1298-305. [PMID: 24983843 DOI: 10.1094/phyto-11-13-0327-r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
A recently described actinomycete species (Streptomyces araujoniae ASBV-1(T)) is effective against many phytopathogenic fungi. In this study, we evaluated the capacity of this species to inhibit Botrytis cinerea development in strawberry pseudofruit, and we identified the chemical structures of its bioactive compounds. An ethyl acetate crude extract (0.1 mg ml(-1)) of ASBV-1(T) fermentation broth completely inhibited fungus growth in strawberry pseudofruit under storage conditions. The crude extract was fractionated by preparative high-performance liquid chromatography; the active fraction was further evaluated by tandem mass spectrometry. ASBV-1(T) produced a multiantibiotic complex with ionophoric properties. This complex contained members of the macrotetralides class (including monactin, dinactin, trinactin, and tetranactin) and the cyclodepsipeptide valinomycin, all of which were active against B. cinerea. Furthermore, the addition of 2 mM MgSO4 and 1 mM ZnSO4 enhanced macrotetralide and valinomycin production, respectively, in the culture broth. These compounds are considered to be the main active molecules that S. araujoniae produces to control B. cinerea. Their low to moderate toxicity to humans and the environment justifies the application of ASBV-1(T) in biological control programs that aim to mitigate the damage caused by this phytopathogen.
Collapse
|
7
|
Esquissato GNM, De Sant'anna JR, Franco CCS, Rosada LJ, Dos Santos PASR, De Castro-Prado MAA. Gene homozygosis and mitotic recombination induced by camptothecin and irinotecan in Aspergillus nidulans diploid cells. AN ACAD BRAS CIENC 2014; 86:1703-10. [PMID: 25590709 DOI: 10.1590/0001-3765201420130106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 02/17/2014] [Indexed: 11/22/2022] Open
Abstract
Mitotic recombination is a process involved in carcinogenesis which can lead to genetic loss through the loss of heterozygosity. The recombinogenic potentials of two anticancer drugs topoisomerase I inhibitors, camptothecin (CPT) and irinotecan (CPT-11), were evaluated in the present study. The homozygotization assay, which assess the induction of mitotic recombination and gene homozygosis, as well as the heterozygous A757//UT448 diploid strain of Aspergillus nidulans were employed. The three non-cytotoxic concentrations of CPT (3.5 ng mL-1, 10.5 ng mL-1 and 17.4 ng mL-1) were found to induce both mitotic recombination and gene homozygosis. CPT treatment produced three diploids homozygous, for nutritional and conidia color genes, and Homozygotization Indices (HI) significantly different from negative control. On the other hand, only the highest CPT-11 concentration tested (18 µg mL-1), corresponding to the maximal single chemotherapeutic dose, produced HI values higher than 2.0 and significantly different from negative control HI values. The recombinogenic effects of both topoisomerase I blockers were associated with the recombinational repair of DNA strand breaks induced by CPT and CPT-11. The anticancer drugs CPT and CPT-11 may be characterized as secondary malignancies promoters in cancer patients after chemotherapy treatment.
Collapse
Affiliation(s)
- Giovana N M Esquissato
- Genética e Biologia Celular, Departamento de Biotecnologia, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - Juliane R De Sant'anna
- Genética e Biologia Celular, Departamento de Biotecnologia, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - Claudinéia C S Franco
- Genética e Biologia Celular, Departamento de Biotecnologia, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - Lúcia J Rosada
- Genética e Biologia Celular, Departamento de Biotecnologia, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - Paula A S R Dos Santos
- Genética e Biologia Celular, Departamento de Biotecnologia, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - Marialba A A De Castro-Prado
- Genética e Biologia Celular, Departamento de Biotecnologia, Universidade Estadual de Maringá, Maringá, PR, Brasil
| |
Collapse
|
8
|
Cai J, Feng J, Xie S, Wang F, Xu Q. Laminaria japonica Extract, an Inhibitor of Clavibater michiganense Subsp. Sepedonicum. PLoS One 2014; 9:e94329. [PMID: 24714388 PMCID: PMC3979835 DOI: 10.1371/journal.pone.0094329] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 03/14/2014] [Indexed: 12/29/2022] Open
Abstract
Bacterial ring rot of potato is one of the most serious potato plant and tuber diseases. Laminaria japonica extract was investigated for its antimicrobial activity against Clavibater michiganense subsp. sepedonicum (Spieckermann & Kotthoff) Davis et al., the causative agent of bacterial ring rot of potato. The results showed that the optimum extraction conditions of antimicrobial substances from L. japonica were an extraction temperature of 80°C, an extraction time of 12 h, and a solid to liquid ratio of 1∶25. Active compounds of L. japonica were isolated by solvent partition, thin layer chromatography (TLC) and column chromatography. All nineteen fractionations had antimicrobial activities against C. michiganense subsp. sepedonicum, while Fractionation three (Fr.3) had the highest (P<0.05) antimicrobial activity. Chemical composition analysis identified a total of 26 components in Fr.3. The main constituents of Fr.3 were alkanes (80.97%), esters (5.24%), acids (4.87%) and alcohols (2.21%). Antimicrobial activity of Fr.3 against C. michiganense subsp. sepedonicum could be attributed to its ability to damage the cell wall and cell membrane, induce the production of reactive oxygen species (ROS), increase cytosolic Ca2+ concentration, inhibit the glycolytic pathway (EMP) and tricarboxylic acid (TCA) cycle, inhibit protein and nucleic acid synthesis, and disrupt the normal cycle of DNA replication. These findings indicate that L. japonica extracts have potential for inhibiting C. michiganense subsp. sepedonicum.
Collapse
Affiliation(s)
- Jin Cai
- School of Life Science, Shanxi University, Taiyuan, People’s Republic of China
| | - Jia Feng
- School of Life Science, Shanxi University, Taiyuan, People’s Republic of China
| | - Shulian Xie
- School of Life Science, Shanxi University, Taiyuan, People’s Republic of China
| | - Feipeng Wang
- School of Life Science, Shanxi University, Taiyuan, People’s Republic of China
| | - Qiufeng Xu
- School of Life Science, Shanxi University, Taiyuan, People’s Republic of China
| |
Collapse
|
9
|
Isolation and characterization of phytotoxic compounds produced by Streptomyces sp. AMC 23 from red mangrove (Rhizophora mangle). Appl Biochem Biotechnol 2013; 171:1602-16. [PMID: 23979946 DOI: 10.1007/s12010-013-0418-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 07/29/2013] [Indexed: 10/26/2022]
Abstract
Natural products produced by microorganisms have been utilized as sources of new drugs possessing a wide range of agrochemical and pharmacological activities. During our research on Actinomycetes from Brazilian mangroves, the ethyl acetate extract of Streptomyces sp. AMC 23 isolated from the red mangrove (Rhizophora mangle) rhizosphere produced a highly active compound against the microalga Chlorella vulgaris, often used to assess the phytotoxic activity. As a result, the bioassay-guided fractionation led to the isolation of the mixture of the known compounds bafilomycin B1 and bafilomycin B2. The chemical structures of bafilomycin B1 and bafilomycin B2 were established based on their spectroscopic data by infrared (IR), mass spectrometry (MS), (1)H nuclear magnetic resonance (NMR), gradient-enhanced heteronuclear multiple quantum coherence (gHMQC), and gradient-enhanced heteronuclear multiple-bond connectivity (gHMBC) as well as comparison with reference data from the literature. Moreover, it was also possible to identify other bafilomycins using non-chromatographic-dependent techniques (Tandem mass spectrometry). Additionally, this is the first report on the phytotoxic activity of bafilomycin B1.
Collapse
|
10
|
Cai J, Xie S, Feng J, Wang F, Xu Q. Protective effect of Polygonum orientale L. extracts against Clavibater michiganense subsp. sepedonicum, the causal agent of bacterial ring rot of potato. PLoS One 2013; 8:e68480. [PMID: 23861908 PMCID: PMC3701652 DOI: 10.1371/journal.pone.0068480] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 06/04/2013] [Indexed: 11/19/2022] Open
Abstract
The Polygonum orientale L. extracts were investigated for antibacterial activity against Clavibater michiganense subsp. sepedonicum (Spieckermann & Kotthoff) Davis et al., the causal agent of a serious disease called bacterial ring rot of potato. The results showed that the leaf extracts of P. orientale had significantly (p<0.05) greater antibacterial activity against C. michiganense subsp. sepedonicum than root, stem, flower extracts in vitro. According to the results of single factor experiments and L(27)3(13) orthogonal experiments, optimum extraction conditions were A1B3C1, extraction time 6 h, temperature 80°C, solid to liquid ratio 1∶10 (g:mL). The highest (p<0.05) antibacterial activity was observed when pH was 5, excluding the effect of control. The extracts were stable under ultraviolet (UV). In vivo analysis revealed that 50 mg/mL of P. orientale leaf extracts was effective in controlling decay. Under field conditions, 50 mg/mL of P. orientale leaf extracts also improved growth parameters (whole plant length, shoot length, root length, plant fresh weight, shoot fresh weight, root fresh weight, dry weight, and number of leaves), in the 2010 and 2011 two growing seasons. Further solvent partition assays showed that the most active compounds were in the petroleum ether fractionation. Transmission electron microscopy (TEM) showed drastic ultrastructural changes caused by petroleum ether fractionation, including bacterial deformation, electron-dense particles, formation of vacuoles and lack of cytoplasmic materials. These results indicated that P. orientale extracts have strong antibacterial activity against C. michiganense subsp. sepedonicum and a promising effect in control of bacterial ring rot of potato disease.
Collapse
Affiliation(s)
- Jin Cai
- School of Life Science, Shanxi University, Taiyuan, Shanxi, People’s Republic of China
| | - Shulian Xie
- School of Life Science, Shanxi University, Taiyuan, Shanxi, People’s Republic of China
| | - Jia Feng
- School of Life Science, Shanxi University, Taiyuan, Shanxi, People’s Republic of China
| | - Feipeng Wang
- School of Life Science, Shanxi University, Taiyuan, Shanxi, People’s Republic of China
| | - Qiufeng Xu
- School of Life Science, Shanxi University, Taiyuan, Shanxi, People’s Republic of China
| |
Collapse
|
11
|
Sant'Anna JR, Yajima JPRS, Rosada LJ, Franco CCS, Prioli AJ, Della-Rosa VA, Mathias PCF, Castro-Prado MAA. Metformin's performance in in vitro and in vivo genetic toxicology studies. Exp Biol Med (Maywood) 2013; 238:803-10. [PMID: 23788173 DOI: 10.1177/1535370213480744] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Metformin is a hypoglycemiant drug prescribed for the treatment and control of the type 2 diabetes mellitus. Recently, the potential efficacy of this antidiabetic drug as an anticancer agent has been demonstrated in various mammalian cancer cells. This report evaluates the mutagenic as well as the recombinogenic potentials of the metformin drug in therapeutically relevant plasma concentrations (12.5 µM, 25.0 µM or 50.0 µM). Since the loss of heterozygosity is a process associated with carcinogenesis, the recombinogenic potential of such a drug was evaluated by the homozygotization assay using a heterozygous diploid strain of Aspergillus nidulans. The homozigotization indices (HI) for the genetic markers from the metformin-treated diploids were not statistically different from the negative control (non-treated diploids). For the first time, this indicated a lack of recombinogenic activity of the antidiabetic drug. The mutagenic potential of the metformin drug was evaluated by the chromosome aberrations and the micronuclei tests in human lymphocytes cultures. The metformin drug did not show any significant increase either in the numerical or in the structural chromosome aberrations and did not affect significantly the mitotic index when compared to the negative control. In the in vitro micronucleus test, the drug did not increase the number of micronuclei or nuclear buds when compared with the negative control. The data in this study suggest that the metformin drug is not a secondary cancer inducer, since it has neither showed recombinogenic nor mutagenic activities when used in pharmacological concentrations.
Collapse
Affiliation(s)
- Juliane R Sant'Anna
- Laboratório de Genética de Microorganismos e Mutagênese, Departamento de Biotecnologia, Genética e Biologia Celular, Universidade Estadual de Maringá, 87020-900, Maringá, PR, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Canova SP, Petta T, Reyes LF, Zucchi TD, Moraes LAB, Melo IS. Characterization of lipopeptides from Paenibacillus sp. (IIRAC30) suppressing Rhizoctonia solani. World J Microbiol Biotechnol 2010. [DOI: 10.1007/s11274-010-0412-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|