1
|
Han S, Ding H, Peng H, Dai C, Zhang S, Yang J, Gao J, Kan X. Sturnidae sensu lato Mitogenomics: Novel Insights into Codon Aversion, Selection, and Phylogeny. Animals (Basel) 2024; 14:2777. [PMID: 39409726 PMCID: PMC11475038 DOI: 10.3390/ani14192777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/12/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
The Sturnidae family comprises 123 recognized species in 35 genera. The taxa Mimidae and Buphagidae were formerly treated as subfamilies within Sturnidae. The phylogenetic relationships among the Sturnidae and related taxa (Sturnidae sensu lato) remain unresolved due to high rates of morphological change and concomitant morphological homoplasy. This study presents five new mitogenomes of Sturnidae sensu lato and comprehensive mitogenomic analyses. The investigated mitogenomes exhibit an identical gene composition of 37 genes-including 13 protein-coding genes (PCGs), 2 rRNA genes, and 22 tRNA genes-and one control region (CR). The most important finding of this study is drawn from CAM analyses. The surprisingly unique motifs for each species provide a new direction for the molecular species identification of avian. Furthermore, the pervasiveness of the natural selection of PCGs is found in all examined species when analyzing their nucleotide composition and codon usage. We also determine the structures of mt-tRNA, mt-rRNA, and CR structures of Sturnidae sensu lato. Lastly, our phylogenetic analyses not only well support the monophyly of Sturnidae, Mimidae, and Buphagidae, but also define nine stable subclades. Taken together, our findings will enable the further elucidation of the evolutionary relationships within Sturnidae sensu lato.
Collapse
Affiliation(s)
- Shiyun Han
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (S.H.); (H.D.); (S.Z.); (J.Y.); (J.G.)
| | - Hengwu Ding
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (S.H.); (H.D.); (S.Z.); (J.Y.); (J.G.)
| | - Hui Peng
- Teaching and Research Office of Evidence-Based Medicine, Wannan Medical College, Wuhu 241002, China
| | - Chenwei Dai
- Anhui Academy of Medical Sciences, Anhui Medical College, Hefei 230061, China;
| | - Sijia Zhang
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (S.H.); (H.D.); (S.Z.); (J.Y.); (J.G.)
| | - Jianke Yang
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (S.H.); (H.D.); (S.Z.); (J.Y.); (J.G.)
- School of Basic Medical Sciences, Wannan Medical College, Wuhu 241002, China
| | - Jinming Gao
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (S.H.); (H.D.); (S.Z.); (J.Y.); (J.G.)
| | - Xianzhao Kan
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (S.H.); (H.D.); (S.Z.); (J.Y.); (J.G.)
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| |
Collapse
|
2
|
Eleiwa A, Nadal J, Vilaprinyo E, Marin-Sanguino A, Sorribas A, Basallo O, Lucido A, Richart C, Pena RN, Ros-Freixedes R, Usie A, Alves R. Hybrid assembly and comparative genomics unveil insights into the evolution and biology of the red-legged partridge. Sci Rep 2024; 14:19531. [PMID: 39174643 PMCID: PMC11341709 DOI: 10.1038/s41598-024-70018-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/12/2024] [Indexed: 08/24/2024] Open
Abstract
The red-legged partridge Alectoris rufa plays a crucial role in the ecosystem of southwestern Europe, and understanding its genetics is vital for conservation and management. Here we sequence, assemble, and annotate a highly contiguous and nearly complete version of its genome. This assembly encompasses 96.9% of the avian genes flagged as essential in the BUSCO aves_odb10 dataset. Moreover, we pinpointed RNA and protein-coding genes, 95% of which had functional annotations. Notably, we observed significant chromosome rearrangements in comparison to quail (Coturnix japonica) and chicken (Gallus gallus). In addition, a comparative phylogenetic analysis of these genomes suggests that A. rufa and C. japonica diverged roughly 20 million years ago and that their common ancestor diverged from G. gallus 35 million years ago. Our assembly represents a significant advancement towards a complete reference genome for A. rufa, facilitating comparative avian genomics, and providing a valuable resource for future research and conservation efforts for the red-legged partridge.
Collapse
Affiliation(s)
| | | | - Ester Vilaprinyo
- Institut de Recerca Biomédica (IRBLleida), Lleida, Spain
- Universitat de Lleida (UdL), Lleida, Spain
| | - Alberto Marin-Sanguino
- Institut de Recerca Biomédica (IRBLleida), Lleida, Spain
- Universitat de Lleida (UdL), Lleida, Spain
| | - Albert Sorribas
- Institut de Recerca Biomédica (IRBLleida), Lleida, Spain
- Universitat de Lleida (UdL), Lleida, Spain
| | - Oriol Basallo
- Institut de Recerca Biomédica (IRBLleida), Lleida, Spain
- Universitat de Lleida (UdL), Lleida, Spain
| | - Abel Lucido
- Institut de Recerca Biomédica (IRBLleida), Lleida, Spain
- Universitat de Lleida (UdL), Lleida, Spain
| | | | - Ramona N Pena
- Universitat de Lleida (UdL), Lleida, Spain
- AGROTECNIO CERCA Center, Lleida, Spain
| | - Roger Ros-Freixedes
- Universitat de Lleida (UdL), Lleida, Spain
- AGROTECNIO CERCA Center, Lleida, Spain
| | - Anabel Usie
- Universitat de Lleida (UdL), Lleida, Spain
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL)/Instituto Politécnico de Beja (IPBeja), Beja, Portugal
- MED-Instituto Mediterrâneo para a Agricultura, Ambiente e Desenvolvimento & CHANGE-Global Change and Sustainability Institute, Évora, Portugal
| | - Rui Alves
- Institut de Recerca Biomédica (IRBLleida), Lleida, Spain.
- Universitat de Lleida (UdL), Lleida, Spain.
| |
Collapse
|
3
|
Dey P, Ray SD, Kochiganti VHS, Pukazhenthi BS, Koepfli KP, Singh RP. Mitogenomic Insights into the Evolution, Divergence Time, and Ancestral Ranges of Coturnix Quails. Genes (Basel) 2024; 15:742. [PMID: 38927678 PMCID: PMC11202683 DOI: 10.3390/genes15060742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/29/2024] [Accepted: 06/01/2024] [Indexed: 06/28/2024] Open
Abstract
The Old-World quails, Coturnix coturnix (common quail) and Coturnix japonica (Japanese quail), are morphologically similar yet occupy distinct geographic ranges. This study aimed to elucidate their evolutionary trajectory and ancestral distribution patterns through a thorough analysis of their mitochondrial genomes. Mitogenomic analysis revealed high structural conservation, identical translational mechanisms, and similar evolutionary pressures in both species. Selection analysis revealed significant evidence of positive selection across the Coturnix lineage for the nad4 gene tree owing to environmental changes and acclimatization requirements during its evolutionary history. Divergence time estimations imply that diversification among Coturnix species occurred in the mid-Miocene (13.89 Ma), and their current distributions were primarily shaped by dispersal rather than global vicariance events. Phylogenetic analysis indicates a close relationship between C. coturnix and C. japonica, with divergence estimated at 2.25 Ma during the Pleistocene epoch. Ancestral range reconstructions indicate that the ancestors of the Coturnix clade were distributed over the Oriental region. C. coturnix subsequently dispersed to Eurasia and Africa, and C. japonica to eastern Asia. We hypothesize that the current geographic distributions of C. coturnix and C. japonica result from their unique dispersal strategies, developed to evade interspecific territoriality and influenced by the Tibetan Plateau's geographic constraints. This study advances our understanding of the biogeographic and evolutionary processes leading to the diversification of C. coturnix and C. japonica, laying important groundwork for further research on this genus.
Collapse
Affiliation(s)
- Prateek Dey
- Sálim Ali Centre for Ornithology and Natural History (South India Centre of Wildlife Institute of India), Anaikatti, Coimbatore 641108, Tamil Nadu, India; (P.D.); (S.D.R.)
- Bharathiar University, Coimbatore 641046, Tamil Nadu, India
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA 22630, USA;
| | - Swapna Devi Ray
- Sálim Ali Centre for Ornithology and Natural History (South India Centre of Wildlife Institute of India), Anaikatti, Coimbatore 641108, Tamil Nadu, India; (P.D.); (S.D.R.)
| | | | - Budhan S. Pukazhenthi
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA 22630, USA;
| | - Klaus-Peter Koepfli
- Smithsonian-Mason School of Conservation, George Mason University, Front Royal, VA 22630, USA
| | - Ram Pratap Singh
- Department of Life Science, Central University of South Bihar, Gaya 824236, Bihar, India
| |
Collapse
|
4
|
Feng H, Lv S, Li R, Shi J, Wang J, Cao P. Mitochondrial genome comparison reveals the evolution of cnidarians. Ecol Evol 2023; 13:e10157. [PMID: 37325715 PMCID: PMC10261974 DOI: 10.1002/ece3.10157] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 04/18/2023] [Accepted: 05/17/2023] [Indexed: 06/17/2023] Open
Abstract
Cnidarians are the most primitive metazoans, but their evolutionary relationships are poorly understood, although recent studies present several phylogenetic hypotheses. Here, we collected 266 complete cnidarian mitochondrial genomes and re-evaluated the phylogenetic relationships between the major lineages. We described the gene rearrangement patterns of Cnidaria. Anthozoans had significantly greater mitochondrial genome size and lower A + T content than medusozoans. Most of the protein-coding genes in anthozoans such as COX 13, ATP6, and CYTB displayed a faster rate of evolution based on selection analysis. There were 19 distinct patterns of mitochondrial gene order, including 16 unique gene orders in anthozoans and 3 mtDNA gene orders pattern in medusozoans, were identified among cnidarians. The gene order arrangement suggested that a linearized mtDNA structure may be more conducive to Medusozoan mtDNA stability. Based on phylogenetic analyses, the monophyly of the Anthozoa was strongly supported compared to previous mitochondrial genome-based analyses rather than octocorals forming a sister group relationship with medusozoans. In addition, Staurozoa were more closely related to Anthozoa than to Medusozoa. In conclusion, these results largely support the traditional phylogenetic view of the relationships of cnidarians and provide new insights into the evolutionary processes for studying the most ancient animal radiations.
Collapse
Affiliation(s)
- Hui Feng
- Marine Microorganism Ecological & Application LabZhejiang Ocean UniversityZhoushanChina
| | - Sitong Lv
- Graduate School of Life SciencesTohoku UniversitySendaiJapan
| | - Rong Li
- Marine Microorganism Ecological & Application LabZhejiang Ocean UniversityZhoushanChina
| | - Jing Shi
- Marine Microorganism Ecological & Application LabZhejiang Ocean UniversityZhoushanChina
| | - Jianxing Wang
- Marine Microorganism Ecological & Application LabZhejiang Ocean UniversityZhoushanChina
| | - Pinglin Cao
- Marine Microorganism Ecological & Application LabZhejiang Ocean UniversityZhoushanChina
| |
Collapse
|
5
|
Smith SS, Chu D, Qu T, Aggleton JA, Schneider RA. Species-specific sensitivity to TGFβ signaling and changes to the Mmp13 promoter underlie avian jaw development and evolution. eLife 2022; 11:e66005. [PMID: 35666955 PMCID: PMC9246370 DOI: 10.7554/elife.66005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 06/03/2022] [Indexed: 12/02/2022] Open
Abstract
Precise developmental control of jaw length is critical for survival, but underlying molecular mechanisms remain poorly understood. The jaw skeleton arises from neural crest mesenchyme (NCM), and we previously demonstrated that these progenitor cells express more bone-resorbing enzymes including Matrix metalloproteinase 13 (Mmp13) when they generate shorter jaws in quail embryos versus longer jaws in duck. Moreover, if we inhibit bone resorption or Mmp13, we can increase jaw length. In the current study, we uncover mechanisms establishing species-specific levels of Mmp13 and bone resorption. Quail show greater activation of and sensitivity to transforming growth factor beta (TGFβ) signaling than duck; where intracellular mediators like SMADs and targets like Runt-related transcription factor 2 (Runx2), which bind Mmp13, become elevated. Inhibiting TGFβ signaling decreases bone resorption, and overexpressing Mmp13 in NCM shortens the duck lower jaw. To elucidate the basis for this differential regulation, we examine the Mmp13 promoter. We discover a SMAD-binding element and single nucleotide polymorphisms (SNPs) near a RUNX2-binding element that distinguish quail from duck. Altering the SMAD site and switching the SNPs abolish TGFβ sensitivity in the quail Mmp13 promoter but make the duck promoter responsive. Thus, differential regulation of TGFβ signaling and Mmp13 promoter structure underlie avian jaw development and evolution.
Collapse
Affiliation(s)
- Spenser S Smith
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, United States
| | - Daniel Chu
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, United States
| | - Tiange Qu
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, United States
| | - Jessye A Aggleton
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, United States
| | - Richard A Schneider
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
6
|
Fontaneto D, Viola P, Pizzirani C, Chiesa S, Rossetti A, Amici A, Lucentini L. Mismatches between Morphology and DNA in Italian Partridges May Not Be Explained Only by Recent Artificial Release of Farm-Reared Birds. Animals (Basel) 2022; 12:ani12050541. [PMID: 35268110 PMCID: PMC8908819 DOI: 10.3390/ani12050541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 11/18/2022] Open
Abstract
Translocations and releases of farm-reared birds are considered among the major drivers of genetic pollution with consequent loss of genetic diversity in wild populations. In this study, we aimed to assess the extent of hybridization and introgression in the Italian partridges as a consequence of translocation. We surveyed two mitochondrial markers and one nuclear marker of Alectoris and Perdix from collections (museums and private collections), extant wild populations and farms. Consistent with previous studies, we found haplotypes of allochthonous species within the same genus, likely due to introductions for hunting activities. In addition, we found hybrids between Perdix and Alectoris species with genetic markers from both genera in single individuals. Such introgression was bidirectional and in both mitochondrial and nuclear markers. Counterintuitively, most of the hybrid samples came from collections before the 1950s, when large-scale translocations started, from wild populations where Grey Partridge (Perdix perdix) and Rock Partridge (Alectoris graeca) overlap in their distribution, whereas only one hybrid occurred among the farmed birds. Our results suggest that Perdix and Alectoris species can hybridize in nature and that artificial translocations and releases of farm-reared birds for restocking or reintroduction purposes may be only partially responsible for the genomic mismatches of Italian partridges.
Collapse
Affiliation(s)
- Diego Fontaneto
- Molecular Ecology Group (MEG), Water Research Institute (IRSA), National Research Council of Italy (CNR), 28922 Verbania Pallanza, Italy;
| | - Paolo Viola
- Department of Agriculture and Forest Science, University of Tuscia, 01100 Viterbo, Italy;
| | - Claudia Pizzirani
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, 06123 Perugia, Italy; (C.P.); (L.L.)
| | - Stefania Chiesa
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, 30172 Venice, Italy;
- ISPRA—The Italian Institute for Environmental Protection and Research, 00144 Rome, Italy
| | | | - Andrea Amici
- Department of Agriculture and Forest Science, University of Tuscia, 01100 Viterbo, Italy;
- Correspondence: ; Tel.: +39-3391731327
| | - Livia Lucentini
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, 06123 Perugia, Italy; (C.P.); (L.L.)
| |
Collapse
|
7
|
When good mitochondria go bad: Cyto-nuclear discordance in landfowl (Aves: Galliformes). Gene 2021; 801:145841. [PMID: 34274481 DOI: 10.1016/j.gene.2021.145841] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/10/2021] [Accepted: 07/13/2021] [Indexed: 11/22/2022]
Abstract
Mitochondrial sequences were among the first molecular data collected for phylogenetic studies and they are plentiful in DNA sequence archives. However, the future value of mitogenomic data in phylogenetics is uncertain, because its phylogenetic signal sometimes conflicts with that of the nuclear genome. A thorough understanding of the causes and prevalence of cyto-nuclear discordance would aid in reconciling different results owing to sequence data type, and provide a framework for interpreting megaphylogenies when taxa which lack substantial nuclear data are placed using mitochondrial data. Here, we examine the prevalence and possible causes of cyto-nuclear discordance in the landfowl (Aves: Galliformes), leveraging 47 new mitogenomes assembled from off-target reads recovered as part of a target-capture study. We evaluated two hypotheses, that cyto-nuclear discordance is "genuine" and a result of biological processes such as incomplete lineage sorting or introgression, and that cyto-nuclear discordance is an artifact of inaccurate mitochondrial tree estimation (the "inaccurate estimation" hypothesis). We identified seven well-supported topological differences between the mitogenomic tree and trees based on nuclear data. These well-supported topological differences were robust to model selection. An examination of sites suggests these differences were driven by small number of sites, particularly from third-codon positions, suggesting that they were not confounded by convergent directional selection. Hence, the hypothesis of genuine discordance was supported.
Collapse
|
8
|
Allen VR, Kilbourne BM, Hutchinson JR. The evolution of pelvic limb muscle moment arms in bird-line archosaurs. SCIENCE ADVANCES 2021; 7:7/12/eabe2778. [PMID: 33741593 PMCID: PMC7978429 DOI: 10.1126/sciadv.abe2778] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 02/03/2021] [Indexed: 06/07/2023]
Abstract
Bipedal locomotion evolved along the archosaurian lineage to birds, shifting from "hip-based" to "knee-based" mechanisms. However, the roles of individual muscles in these changes and their evolutionary timings remain obscure. Using 13 three-dimensional musculoskeletal models of the hindlimbs of bird-line archosaurs, we quantify how the moment arms (i.e., leverages) of 35 locomotor muscles evolved. Our results support two hypotheses: From early theropod dinosaurs to birds, knee flexors' moment arms decreased relative to knee extensors', and medial long-axis rotator moment arms for the hip increased (trading off with decreased hip abductor moment arms). Our results reveal how, from the Triassic Period, bipedal theropod dinosaurs gradually modified their hindlimb form and function, shifting more from hip-based to knee-based locomotion and hip-abductor to hip-rotator balancing mechanisms inherited by birds. Yet, we also discover unexpected ancestral specializations in larger Jurassic theropods, lost later in the bird-line, complicating the paradigm of gradual transformation.
Collapse
Affiliation(s)
- V R Allen
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hertfordshire AL9 7TA, UK
| | - B M Kilbourne
- Museum für Naturkunde Berlin, Leibniz Institut für Evolutions-und Biodiversitätsforschung, Invalidenstraße 43, 10115 Berlin, Germany
| | - J R Hutchinson
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hertfordshire AL9 7TA, UK.
| |
Collapse
|
9
|
Mariadassou M, Suez M, Sathyakumar S, Vignal A, Arca M, Nicolas P, Faraut T, Esquerré D, Nishibori M, Vieaud A, Chen CF, Manh Pham H, Roman Y, Hospital F, Zerjal T, Rognon X, Tixier-Boichard M. Unraveling the history of the genus Gallus through whole genome sequencing. Mol Phylogenet Evol 2020; 158:107044. [PMID: 33346111 DOI: 10.1016/j.ympev.2020.107044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/23/2020] [Accepted: 12/14/2020] [Indexed: 12/16/2022]
Abstract
The genus Gallus is distributed across a large part of Southeast Asia and has received special interest because the domestic chicken, Gallus gallus domesticus, has spread all over the world and is a major protein source for humans. There are four species: the red junglefowl (G. gallus), the green junglefowl (G. varius), the Lafayette's junglefowl (G. lafayettii) and the grey junglefowl (G. sonneratii). The aim of this study is to reconstruct the history of these species by a whole genome sequencing approach and resolve inconsistencies between well supported topologies inferred using different data and methods. Using deep sequencing, we identified over 35 million SNPs and reconstructed the phylogeny of the Gallus genus using both distance (BioNJ) and maximum likelihood (ML) methods. We observed discrepancies according to reconstruction methods and genomic components. The two most supported topologies were previously reported and were discriminated by using phylogenetic and gene flow analyses, based on ABBA statistics. Terminology fix requested by the deputy editor led to support a scenario with G. gallus as the earliest branching lineage of the Gallus genus, instead of G. varius. We discuss the probable causes for the discrepancy. A likely one is that G. sonneratii samples from parks or private collections are all recent hybrids, with roughly 10% of their autosomal genome originating from G. gallus. The removal of those regions is needed to provide reliable data, which was not done in previous studies. We took care of this and additionally included two wild G. sonneratii samples from India, showing no trace of introgression. This reinforces the importance of carefully selecting and validating samples and genomic components in phylogenomics.
Collapse
Affiliation(s)
| | - Marie Suez
- Université Paris Saclay, INRAE, MaIAGE, 78350 Jouy-en-Josas, France
| | | | - Alain Vignal
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31326 Castanet Tolosan, France
| | - Mariangela Arca
- Université Paris Saclay, INRAE, MaIAGE, 78350 Jouy-en-Josas, France
| | - Pierre Nicolas
- Université Paris Saclay, INRAE, MaIAGE, 78350 Jouy-en-Josas, France
| | - Thomas Faraut
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31326 Castanet Tolosan, France
| | - Diane Esquerré
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31326 Castanet Tolosan, France; Get-PlaGe, INRAE, 31326 Castanet Tolosan, France
| | - Masahide Nishibori
- Lab. of Animal Genetics, Department of Animal Life Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Agathe Vieaud
- Université Paris Saclay, INRAE, AgroParisTech, GABI, 78350 Jouy-en-Josas, France
| | - Chih-Feng Chen
- Department of Animal Science, iEGG and Animal Biotechnology Center, National Chung-Hsing University, Taichung 40227, Taiwan
| | - Hung Manh Pham
- Faculty of Animal Science, Vietnam National University of Agriculture, Trau Quy Town, Gia Lam District, Ha Noi City, Viet Nam
| | | | - Frédéric Hospital
- Université Paris Saclay, INRAE, AgroParisTech, GABI, 78350 Jouy-en-Josas, France
| | - Tatiana Zerjal
- Université Paris Saclay, INRAE, AgroParisTech, GABI, 78350 Jouy-en-Josas, France
| | - Xavier Rognon
- Université Paris Saclay, INRAE, AgroParisTech, GABI, 78350 Jouy-en-Josas, France
| | | |
Collapse
|
10
|
Jiang L, Peng L, Tang M, You Z, Zhang M, West A, Ruan Q, Chen W, Merilä J. Complete mitochondrial genome sequence of the Himalayan Griffon, Gyps himalayensis (Accipitriformes: Accipitridae): Sequence, structure, and phylogenetic analyses. Ecol Evol 2019; 9:8813-8828. [PMID: 31410282 PMCID: PMC6686361 DOI: 10.1002/ece3.5433] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/12/2019] [Accepted: 06/17/2019] [Indexed: 11/12/2022] Open
Abstract
This is the first study to describe the mitochondrial genome of the Himalayan Griffon, Gyps himalayensis, which is an Old World vulture belonging to the family Accipitridae and occurring along the Himalayas and the adjoining Tibetan Plateau. Its mitogenome is a closed circular molecule 17,381 bp in size containing 13 protein-coding genes, 22 tRNA coding genes, two rRNA-coding genes, a control region (CR), and an extra pseudo-control region (CCR) that are conserved in most Accipitridae mitogenomes. The overall base composition of the G. himalayensis mitogenome is 24.55% A, 29.49% T, 31.59% C, and 14.37% G, which is typical for bird mitochondrial genomes. The alignment of the Accipitridae species control regions showed high levels of genetic variation and abundant AT content. At the 5' end of the domain I region, a long continuous poly-C sequence was found. Two tandem repeats were found in the pseudo-control regions. Phylogenetic analysis with Bayesian inference and maximum likelihood based on 13 protein-coding genes indicated that the relationships at the family level were (Falconidae + (Cathartidae + (Sagittariidae + (Accipitridae + Pandionidae))). In the Accipitridae clade, G. himalayensis is more closely related to Aegypius monachus than to Spilornis cheela. The complete mitogenome of G. himalayensis provides a potentially useful resource for further exploration of the taxonomic status and phylogenetic history of Gyps species.
Collapse
Affiliation(s)
- Lichun Jiang
- Key Laboratory for Molecular Biology and Biopharmaceutics, School of Life Science and TechnologyMianyang Normal UniversityMianyangSichuanChina
- Ecological Security and Protection Key Laboratory of Sichuan ProvinceMianyang Normal UniversityMianyangSichuanChina
| | - Liqing Peng
- Ecological Security and Protection Key Laboratory of Sichuan ProvinceMianyang Normal UniversityMianyangSichuanChina
| | - Min Tang
- Ecological Security and Protection Key Laboratory of Sichuan ProvinceMianyang Normal UniversityMianyangSichuanChina
| | - Zhangqiang You
- Ecological Security and Protection Key Laboratory of Sichuan ProvinceMianyang Normal UniversityMianyangSichuanChina
| | - Min Zhang
- Key Laboratory for Molecular Biology and Biopharmaceutics, School of Life Science and TechnologyMianyang Normal UniversityMianyangSichuanChina
| | - Andrea West
- Centre for Integrative Ecology, School of Life and Environmental SciencesDeakin UniversityGeelongVicAustralia
| | - Qiping Ruan
- Key Laboratory for Molecular Biology and Biopharmaceutics, School of Life Science and TechnologyMianyang Normal UniversityMianyangSichuanChina
| | - Wei Chen
- Key Laboratory for Molecular Biology and Biopharmaceutics, School of Life Science and TechnologyMianyang Normal UniversityMianyangSichuanChina
- Ecological Security and Protection Key Laboratory of Sichuan ProvinceMianyang Normal UniversityMianyangSichuanChina
| | - Juha Merilä
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, Faculty Biological & Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
11
|
Lee CY, Hsieh PH, Chiang LM, Chattopadhyay A, Li KY, Lee YF, Lu TP, Lai LC, Lin EC, Lee H, Ding ST, Tsai MH, Chen CY, Chuang EY. Whole-genome de novo sequencing reveals unique genes that contributed to the adaptive evolution of the Mikado pheasant. Gigascience 2018; 7:4990948. [PMID: 29722814 PMCID: PMC5941149 DOI: 10.1093/gigascience/giy044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 04/13/2018] [Indexed: 01/10/2023] Open
Abstract
Background The Mikado pheasant (Syrmaticus mikado) is a nearly endangered species indigenous to high-altitude regions of Taiwan. This pheasant provides an opportunity to investigate evolutionary processes following geographic isolation. Currently, the genetic background and adaptive evolution of the Mikado pheasant remain unclear. Results We present the draft genome of the Mikado pheasant, which consists of 1.04 Gb of DNA and 15,972 annotated protein-coding genes. The Mikado pheasant displays expansion and positive selection of genes related to features that contribute to its adaptive evolution, such as energy metabolism, oxygen transport, hemoglobin binding, radiation response, immune response, and DNA repair. To investigate the molecular evolution of the major histocompatibility complex (MHC) across several avian species, 39 putative genes spanning 227 kb on a contiguous region were annotated and manually curated. The MHC loci of the pheasant revealed a high level of synteny, several rapidly evolving genes, and inverse regions compared to the same loci in the chicken. The complete mitochondrial genome was also sequenced, assembled, and compared against four long-tailed pheasants. The results from molecular clock analysis suggest that ancestors of the Mikado pheasant migrated from the north to Taiwan about 3.47 million years ago. Conclusions This study provides a valuable genomic resource for the Mikado pheasant, insights into its adaptation to high altitude, and the evolutionary history of the genus Syrmaticus, which could potentially be useful for future studies that investigate molecular evolution, genomics, ecology, and immunogenetics.
Collapse
Affiliation(s)
- Chien-Yueh Lee
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan
| | - Ping-Han Hsieh
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan
| | - Li-Mei Chiang
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan
| | - Amrita Chattopadhyay
- Bioinformatics and Biostatistics Core, Center of Genomic Medicine, National Taiwan University, Taipei 10055, Taiwan
| | - Kuan-Yi Li
- Department of Bio-Industrial Mechatronics Engineering, National Taiwan University, Taipei 10617, Taiwan.,Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Yi-Fang Lee
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan
| | - Tzu-Pin Lu
- Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei 10055, Taiwan
| | - Liang-Chuan Lai
- Graduate Institute of Physiology, National Taiwan University, Taipei 10051, Taiwan
| | - En-Chung Lin
- Department of Animal Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Hsinyu Lee
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan.,Department of Life Science, National Taiwan University, Taipei 10617, Taiwan.,Center for Biotechnology, National Taiwan University, Taipei 10672, Taiwan
| | - Shih-Torng Ding
- Department of Animal Science and Technology, National Taiwan University, Taipei 10617, Taiwan.,Center for Biotechnology, National Taiwan University, Taipei 10672, Taiwan
| | - Mong-Hsun Tsai
- Bioinformatics and Biostatistics Core, Center of Genomic Medicine, National Taiwan University, Taipei 10055, Taiwan.,Center for Biotechnology, National Taiwan University, Taipei 10672, Taiwan.,Institute of Biotechnology, National Taiwan University, Taipei 10672, Taiwan.,Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan University, Taipei, Taiwan
| | - Chien-Yu Chen
- Department of Bio-Industrial Mechatronics Engineering, National Taiwan University, Taipei 10617, Taiwan.,Center for Biotechnology, National Taiwan University, Taipei 10672, Taiwan.,Center for Systems Biology, National Taiwan University, Taipei 10672, Taiwan
| | - Eric Y Chuang
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan.,Bioinformatics and Biostatistics Core, Center of Genomic Medicine, National Taiwan University, Taipei 10055, Taiwan.,Graduate Institute of Chinese Medical Science, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
12
|
Jaiswal SK, Gupta A, Saxena R, Prasoodanan VPK, Sharma AK, Mittal P, Roy A, Shafer ABA, Vijay N, Sharma VK. Genome Sequence of Peacock Reveals the Peculiar Case of a Glittering Bird. Front Genet 2018; 9:392. [PMID: 30283495 PMCID: PMC6156156 DOI: 10.3389/fgene.2018.00392] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 08/29/2018] [Indexed: 12/03/2022] Open
Abstract
The unique ornamental features and extreme sexual traits of Peacock have always intrigued scientists and naturalists for centuries. However, the genomic basis of these phenotypes are yet unknown. Here, we report the first genome sequence and comparative analysis of peacock with the high quality genomes of chicken, turkey, duck, flycatcher and zebra finch. Genes involved in early developmental pathways including TGF-β, BMP, and Wnt signaling, which have been shown to be involved in feather patterning, bone morphogenesis, and skeletal muscle development, revealed signs of adaptive evolution and provided useful clues on the phenotypes of peacock. Innate and adaptive immune genes involved in complement system and T-cell response also showed signs of adaptive evolution in peacock suggesting their possible role in building a robust immune system which is consistent with the predictions of the Hamilton–Zuk hypothesis. This study provides novel genomic and evolutionary insights into the molecular understanding toward the phenotypic evolution of Indian peacock.
Collapse
Affiliation(s)
- Shubham K Jaiswal
- Metagenomics and Systems Biology Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Ankit Gupta
- Metagenomics and Systems Biology Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Rituja Saxena
- Metagenomics and Systems Biology Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Vishnu P K Prasoodanan
- Metagenomics and Systems Biology Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Ashok K Sharma
- Metagenomics and Systems Biology Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Parul Mittal
- Metagenomics and Systems Biology Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Ankita Roy
- Metagenomics and Systems Biology Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Aaron B A Shafer
- Forensic Science and Environmental and Life Sciences, Trent University, Peterborough, ON, Canada
| | - Nagarjun Vijay
- Computational Evolutionary Genomics Lab, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Vineet K Sharma
- Metagenomics and Systems Biology Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| |
Collapse
|
13
|
Ortega MT, Foote DJ, Nees N, Erdmann JC, Bangs CD, Rosenfeld CS. Karyotype analysis and sex determination in Australian Brush-turkeys (Alectura lathami). PLoS One 2017; 12:e0185014. [PMID: 28910392 PMCID: PMC5599057 DOI: 10.1371/journal.pone.0185014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 09/04/2017] [Indexed: 12/25/2022] Open
Abstract
Sexual differentiation across taxa may be due to genetic sex determination (GSD) and/or temperature sex determination (TSD). In many mammals, males are heterogametic (XY); whereas females are homogametic (XX). In most birds, the opposite is the case with females being heterogametic (ZW) and males the homogametic sex (ZZ). Many reptile species lack sex chromosomes, and instead, sexual differentiation is influenced by temperature with specific temperatures promoting males or females varying across species possessing this form of sexual differentiation, although TSD has recently been shown to override GSD in Australian central beaded dragons (Pogona vitticeps). There has been speculation that Australian Brush-turkeys (Alectura lathami) exhibit TSD alone and/or in combination with GSD. Thus, we sought to determine if this species possesses sex chromosomes. Blood was collected from one sexually mature female and two sexually mature males residing at Sylvan Heights Bird Park (SHBP) and shipped for karyotype analysis. Karyotype analysis revealed that contrary to speculation, Australian Brush-turkeys possess the classic avian ZW/ZZ sex chromosomes. It remains a possibility that a biased primary sex ratio of Australian Brush-turkeys might be influenced by maternal condition prior to ovulation that result in her laying predominantly Z- or W-bearing eggs and/or sex-biased mortality due to higher sensitivity of one sex in environmental conditions. A better understanding of how maternal and extrinsic factors might differentially modulate ovulation of Z- or W-bearing eggs and hatching of developing chicks possessing ZW or ZZ sex chromosomes could be essential in conservation strategies used to save endangered members of Megapodiidae.
Collapse
Affiliation(s)
- Madison T. Ortega
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Biomedical Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Dustin J. Foote
- Sylvan Heights Bird Park, Scotland Neck, North Carolina, United States of America
- Department of Biology, East Carolina University, Greenville, North Carolina, United States of America
| | - Nicholas Nees
- Sylvan Heights Bird Park, Scotland Neck, North Carolina, United States of America
| | - Jason C. Erdmann
- Cytogenetics Laboratory, Stanford Health Care, Palo Alto, California, United States of America
| | - Charles D. Bangs
- Cytogenetics Laboratory, Stanford Health Care, Palo Alto, California, United States of America
| | - Cheryl S. Rosenfeld
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Biomedical Sciences, University of Missouri, Columbia, Missouri, United States of America
- Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, Missouri, United States of America
- * E-mail:
| |
Collapse
|
14
|
Zhang Q, Wang Y, Chen R, Liu B, Kan X. The complete mitochondrial genome of Anas crecca (Anseriformes: Anatidae). MITOCHONDRIAL DNA PART B-RESOURCES 2017; 2:352-353. [PMID: 33473825 PMCID: PMC7799785 DOI: 10.1080/23802359.2017.1339216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The complete mitochondrial genome of Anas crecca is 16,596 bp in length. It was predicted to contain 13 PCGs, 22 tRNA genes, and 2 rRNA genes, and a putative control region. All of the PCGs initiate with ATG, except for MT-CO1, MT-CO2, and MT-ND5, which began with GTG. Four types of termination codons were identified. Phylogenetic analysis shows that A. crecca clustered with Anas acuta, and the monophyly of the genera Anser, Cygnus, Aythya, and Anas was strongly supported. Moreover, our results also support a sister-group relationship between Anas and Aythya.
Collapse
Affiliation(s)
- Qin Zhang
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, China.,The Provincial Key Laboratory of Conservation and Exploitation Research of Biological Resources in Anhui, Wuhu, China
| | - Ying Wang
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, China.,The Provincial Key Laboratory of Conservation and Exploitation Research of Biological Resources in Anhui, Wuhu, China
| | - Renrui Chen
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, China.,The Provincial Key Laboratory of Conservation and Exploitation Research of Biological Resources in Anhui, Wuhu, China
| | - Birong Liu
- The Provincial Key Laboratory of Conservation and Exploitation Research of Biological Resources in Anhui, Wuhu, China
| | - Xianzhao Kan
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, China.,The Provincial Key Laboratory of Conservation and Exploitation Research of Biological Resources in Anhui, Wuhu, China
| |
Collapse
|
15
|
Zhou C, Hao Y, Ma J, Zhang W, Chen Y, Chen B, Zhang X, Yue B. The first complete mitogenome of Picumnus innominatus (Aves, Piciformes, Picidae) and phylogenetic inference within the Picidae. BIOCHEM SYST ECOL 2017. [DOI: 10.1016/j.bse.2016.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Complete mitochondrial genome of ring-necked pheasant Phasianus colchicus alaschanicus from China's Helan Mountains and description of its phylogenetic relationships in Galliformes. BIOCHEM SYST ECOL 2017. [DOI: 10.1016/j.bse.2016.10.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Smith FJ, Percival CJ, Young NM, Hu D, Schneider RA, Marcucio RS, Hallgrimsson B. Divergence of craniofacial developmental trajectories among avian embryos. Dev Dyn 2015; 244:1158-1167. [PMID: 25703037 PMCID: PMC4544654 DOI: 10.1002/dvdy.24262] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 01/21/2015] [Accepted: 02/16/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Morphological divergence among related species involves changes to developmental processes. When such variation arises in development has garnered considerable theoretical interest relating to the broader issue of how development may constrain evolutionary change. The hourglass model holds that while early developmental events may be highly evolvable, there is a phylotypic stage when key developmental events are conserved. Thus, evolutionary divergence among related species should tend to arise after such a stage of reduced evolvability and, consequently, reduced variation among species. We test this prediction by comparing developmental trajectories among three avian species of varying relatedness (chick, quail, and duck) to locate their putative point of divergence. Three-dimensional geometric morphometrics and trajectory analyses were used to measure the significance of the facial shape variation observed among these species. RESULTS Duck embryos, being more distantly related, differed from the more closely-related chick and quail embryos in the enlargement of their frontonasal prominences. Phenotypic trajectory analyses demonstrated divergence of the three species, most notably, duck. CONCLUSIONS The results demonstrate that the two more closely related species share similar facial morphologies for a longer time during development, while ducks diverge. This suggests a surprising lability of craniofacial development during early face formation. Developmental Dynamics 244:1158-1167, 2015. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Francis J. Smith
- Department of Cell Biology and Anatomy, The University of Calgary, Faculty of Medicine, Calgary, AB T2N 4N1, Canada
| | - Christopher J. Percival
- Department of Cell Biology and Anatomy, The University of Calgary, Faculty of Medicine, Calgary, AB T2N 4N1, Canada
| | - Nathan M. Young
- Department of Orthopaedic Surgery, San Francisco General Hospital, The University of California San Francisco, School of Medicine, San Francisco, CA 94110, USA
| | - Diane Hu
- Department of Orthopaedic Surgery, San Francisco General Hospital, The University of California San Francisco, School of Medicine, San Francisco, CA 94110, USA
| | - Richard A. Schneider
- Department of Orthopaedic Surgery, The University of California San Francisco, School of Medicine, San Francisco, CA 94143, USA
| | - Ralph S. Marcucio
- Department of Orthopaedic Surgery, San Francisco General Hospital, The University of California San Francisco, School of Medicine, San Francisco, CA 94110, USA
| | - Benedikt Hallgrimsson
- Department of Cell Biology and Anatomy, The University of Calgary, Faculty of Medicine, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
18
|
Jiang L, Chen J, Wang P, Ren Q, Yuan J, Qian C, Hua X, Guo Z, Zhang L, Yang J, Wang Y, Zhang Q, Ding H, Bi D, Zhang Z, Wang Q, Chen D, Kan X. The Mitochondrial Genomes of Aquila fasciata and Buteo lagopus (Aves, Accipitriformes): Sequence, Structure and Phylogenetic Analyses. PLoS One 2015; 10:e0136297. [PMID: 26295156 PMCID: PMC4546579 DOI: 10.1371/journal.pone.0136297] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 08/02/2015] [Indexed: 01/08/2023] Open
Abstract
The family Accipitridae is one of the largest groups of non-passerine birds, including 68 genera and 243 species globally distributed. In the present study, we determined the complete mitochondrial sequences of two species of accipitrid, namely Aquila fasciata and Buteo lagopus, and conducted a comparative mitogenome analysis across the family. The mitogenome length of A. fasciata and B. lagopus are 18,513 and 18,559 bp with an A + T content of 54.2% and 55.0%, respectively. For both the two accipitrid birds mtDNAs, obvious positive AT-skew and negative GC-skew biases were detected for all 12 PCGs encoded by the H strand, whereas the reverse was found in MT-ND6 encoded by the L strand. One extra nucleotide'C'is present at the position 174 of MT-ND3 gene of A. fasciata, which is not observed at that of B. lagopus. Six conserved sequence boxes in the Domain II, named boxes F, E, D, C, CSBa, and CSBb, respectively, were recognized in the CRs of A. fasciata and B. lagopus. Rates and patterns of mitochondrial gene evolution within Accipitridae were also estimated. The highest dN/dS was detected for the MT-ATP8 gene (0.32493) among Accipitridae, while the lowest for the MT-CO1 gene (0.01415). Mitophylogenetic analysis supported the robust monophyly of Accipitriformes, and Cathartidae was basal to the balance of the order. Moreover, we performed phylogenetic analyses using two other data sets (two mitochondrial loci, and combined nuclear and mitochondrial loci). Our results indicate that the subfamily Aquilinae and all currently polytypic genera of this subfamily are monophyletic. These two novel mtDNA data will be useful in refining the phylogenetic relationships and evolutionary processes of Accipitriformes.
Collapse
Affiliation(s)
- Lan Jiang
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
- The Provincial Key Laboratory of the Conservation and Exploitation Research of Biological Resources in Anhui, Wuhu, Anhui, China
| | - Juan Chen
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Ping Wang
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Qiongqiong Ren
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Jian Yuan
- The College of Life Sciences, Peking University, Beijing, China
| | - Chaoju Qian
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Department of Ecology and Agriculture Research, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, Gansu, China
| | - Xinghong Hua
- The Ningguo Museum of Natural History, Ningguo, Anhui, China
| | - Zhichun Guo
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Lei Zhang
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Jianke Yang
- The Department of Medical Biology, Wannan medical college, Wuhu, Anhui, China
| | - Ying Wang
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Qin Zhang
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Hengwu Ding
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - De Bi
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Zongmeng Zhang
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Qingqing Wang
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Dongsheng Chen
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Xianzhao Kan
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
- The Provincial Key Laboratory of the Conservation and Exploitation Research of Biological Resources in Anhui, Wuhu, Anhui, China
| |
Collapse
|
19
|
Foox J, Brugler M, Siddall ME, Rodríguez E. Multiplexed pyrosequencing of nine sea anemone (Cnidaria: Anthozoa: Hexacorallia: Actiniaria) mitochondrial genomes. Mitochondrial DNA A DNA Mapp Seq Anal 2015; 27:2826-32. [PMID: 26104159 DOI: 10.3109/19401736.2015.1053114] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Six complete and three partial actiniarian mitochondrial genomes were amplified in two semi-circles using long-range PCR and pyrosequenced in a single run on a 454 GS Junior, doubling the number of complete mitogenomes available within the order. Typical metazoan mtDNA features included circularity, 13 protein-coding genes, 2 ribosomal RNA genes, and length ranging from 17,498 to 19,727 bp. Several typical anthozoan mitochondrial genome features were also observed including the presence of only two transfer RNA genes, elevated A + T richness ranging from 54.9 to 62.4%, large intergenic regions, and group 1 introns interrupting NADH dehydrogenase subunit 5 and cytochrome c oxidase subunit I, the latter of which possesses a homing endonuclease gene. Within the sea anemone Alicia sansibarensis, we report the first mitochondrial gene order rearrangement within the Actiniaria, as well as putative novel non-canonical protein-coding genes. Phylogenetic analyses of all 13 protein-coding and 2 ribosomal genes largely corroborated current hypotheses of sea anemone interrelatedness, with a few lower-level differences.
Collapse
Affiliation(s)
- Jonathan Foox
- a Richard Gilder Graduate School, American Museum of Natural History , New York , NY , USA
| | - Mercer Brugler
- b Sackler Institute for Comparative Genomics, Division of Invertebrate Zoology, American Museum of Natural History , New York , NY , USA , and.,c Biological Sciences Department, NYC College of Technology (CUNY) , Brooklyn , NY , USA
| | - Mark Edward Siddall
- a Richard Gilder Graduate School, American Museum of Natural History , New York , NY , USA .,b Sackler Institute for Comparative Genomics, Division of Invertebrate Zoology, American Museum of Natural History , New York , NY , USA , and
| | - Estefanía Rodríguez
- a Richard Gilder Graduate School, American Museum of Natural History , New York , NY , USA .,b Sackler Institute for Comparative Genomics, Division of Invertebrate Zoology, American Museum of Natural History , New York , NY , USA , and
| |
Collapse
|
20
|
Foox J, Siddall ME. The Road To Cnidaria: History of Phylogeny of the Myxozoa. J Parasitol 2015; 101:269-74. [PMID: 25621522 DOI: 10.1645/14-671.1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Myxozoans are a clade of highly derived cnidarians. The phylogenetic identity of these extremely simplified parasites of aquatic vertebrates and invertebrates had long been uncertain, with all early classifications designating Myxozoa as protists. Though suggestions were frequently made that the infective spores of these parasites are multicellular and possibly of cnidarian origin, it would take a phylogenetic analysis of ultrastructural developmental characters in combination with rRNA gene sequences to verify the Myxozoa as secondarily reduced cnidarians, sister to the polypoidozoan parasite Polypodium hydriforme . While a series of subsequent molecular studies suggested hypotheses of Myxozoa as basal bilaterians, triploblasts, or even nematodes, phylogenomic analyses with improved taxon sampling corroborated the landmark paper that verified the cnidarian nature of this group. This review of the body of phylogenetic work on Myxozoa aims to clarify historical progress and current knowledge, as well as to emphasize the opportune position that myxozoan biologists now are in, to address fundamental questions of cell biology of these parasites as well as the evolution of animal life.
Collapse
Affiliation(s)
- Jonathan Foox
- Richard Gilder Graduate School, American Museum of Natural History, Central Park West at 79th Street, New York, New York 10024
| | - Mark E Siddall
- Richard Gilder Graduate School, American Museum of Natural History, Central Park West at 79th Street, New York, New York 10024
| |
Collapse
|
21
|
MacDonald AJ, Knopp T, Pepper M, Keogh JS, Sarre SD. The first complete mitochondrial genome of Pygopodidae (Aprasia parapulchella Kluge). AUST J ZOOL 2015. [DOI: 10.1071/zo14092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The Pygopodidae comprise an enigmatic group of legless lizards endemic to the Australo-Papuan region. Here we present the first complete mitochondrial genome for a member of this family, Aprasia parapulchella, from Australia. The mitochondrial genome of A. parapulchella is 16 528 base pairs long and contains 13 protein-coding genes, 22 tRNA genes, two rRNA genes and the control region, conforming to the typical vertebrate gene order. The overall mitochondrial nucleotide composition is 31.7% A, 24.5% T, 30.5% C and 13.2% G. This corresponds to a total A+T content of 56.3%, which is similar to that of other squamate lizard genomes.
Collapse
|
22
|
Li W, Zhang XC, Zhao J, Shi Y, Zhu XP. Complete mitochondrial genome of Cuora trifasciata (Chinese three-striped box turtle), and a comparative analysis with other box turtles. Gene 2014; 555:169-77. [PMID: 25445281 DOI: 10.1016/j.gene.2014.10.060] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 10/22/2014] [Accepted: 10/31/2014] [Indexed: 11/26/2022]
Abstract
Cuora trifasciata has become one of the most critically endangered species in the world. The complete mitochondrial genome of C. trifasciata (Chinese three-striped box turtle) was determined in this study. Its mitochondrial genome is a 16,575-bp-long circular molecule that consists of 37 genes that are typically found in other vertebrates. And the basic characteristics of the C. trifasciata mitochondrial genome were also determined. Moreover, a comparison of C. trifasciata with Cuora cyclornata, Cuora pani and Cuora aurocapitata indicated that the four mitogenomics differed in length, codons, overlaps, 13 protein-coding genes (PCGs), ND3, rRNA genes, control region, and other aspects. Phylogenetic analysis with Bayesian inference and maximum likelihood based on 12 protein-coding genes of the genus Cuora indicated the phylogenetic position of C. trifasciata within Cuora. The phylogenetic analysis also showed that C. trifasciata from Vietnam and China formed separate monophyletic clades with different Cuora species. The results of nucleotide base compositions, protein-coding genes and phylogenetic analysis showed that C. trifasciata from these two countries may represent different Cuora species.
Collapse
Affiliation(s)
- Wei Li
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, PR China; College of Life Science and Fisheries, Shanghai Ocean University, Shanghai 201306, PR China
| | - Xin-Cheng Zhang
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, PR China
| | - Jian Zhao
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, PR China; College of Life Science and Fisheries, Shanghai Ocean University, Shanghai 201306, PR China
| | - Yan Shi
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, PR China
| | - Xin-Ping Zhu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, PR China.
| |
Collapse
|
23
|
Kan X, Ren Q, Wang P, Jiang L, Zhang L, Wang Y, Zhang Q. Complete mitochondrial genome of the Eurasian siskin, Spinus spinus (Passeriformes: Fringillidae). Mitochondrial DNA A DNA Mapp Seq Anal 2014; 27:1833-5. [PMID: 25319308 DOI: 10.3109/19401736.2014.971247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The Eurasian siskin (Spinus spinus), also called the European siskin, common siskin or just siskin, is found throughout Europe and Asia. In this study, the complete mitochondrial genome of S. spinus was determined to be 16,828 bp. The size of protein-coding genes (PCGs) in the S. spinus mitochondrial genome was 11,400 bp. The longest PCG of S. spinus mtDNA was nad5 (1818 bp), whereas the shortest is atp8 (168 bp). The nad6 gene of S. spinus mitogenome had strong skews of T versus A (-0.54), and G versus C (0.64). According to the distribution of the conserved motifs in other avian CRs, the CR of S. spinus can be divided into three domains: ETAS domain I, central conserved domain II, and CSB domain III.
Collapse
Affiliation(s)
- Xianzhao Kan
- a The Provincial Key Laboratory of the Conservation and Exploitation Research of Biological Resources in Anhui , Wuhu , People's Republic of China and.,b The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University , Wuhu , People's Republic of China
| | - Qiongqiong Ren
- a The Provincial Key Laboratory of the Conservation and Exploitation Research of Biological Resources in Anhui , Wuhu , People's Republic of China and.,b The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University , Wuhu , People's Republic of China
| | - Ping Wang
- a The Provincial Key Laboratory of the Conservation and Exploitation Research of Biological Resources in Anhui , Wuhu , People's Republic of China and
| | - Lan Jiang
- a The Provincial Key Laboratory of the Conservation and Exploitation Research of Biological Resources in Anhui , Wuhu , People's Republic of China and
| | - Liqin Zhang
- a The Provincial Key Laboratory of the Conservation and Exploitation Research of Biological Resources in Anhui , Wuhu , People's Republic of China and
| | - Ying Wang
- a The Provincial Key Laboratory of the Conservation and Exploitation Research of Biological Resources in Anhui , Wuhu , People's Republic of China and
| | - Qin Zhang
- a The Provincial Key Laboratory of the Conservation and Exploitation Research of Biological Resources in Anhui , Wuhu , People's Republic of China and
| |
Collapse
|
24
|
Meiklejohn KA, Danielson MJ, Faircloth BC, Glenn TC, Braun EL, Kimball RT. Incongruence among different mitochondrial regions: A case study using complete mitogenomes. Mol Phylogenet Evol 2014; 78:314-23. [DOI: 10.1016/j.ympev.2014.06.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 05/31/2014] [Accepted: 06/02/2014] [Indexed: 01/22/2023]
|
25
|
Houssaye A, Tafforeau P, Herrel A. Amniote vertebral microanatomy - what are the major trends? Biol J Linn Soc Lond 2014. [DOI: 10.1111/bij.12311] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Alexandra Houssaye
- Steinmann Institut für Geologie; Paläontologie und Mineralogie; Universität Bonn; Nussallee 8 53115 Bonn Germany
- UMR 7179 du CNRS; Département Ecologie et Gestion de la Biodiversité; Muséum National d'Histoire Naturelle; 57 rue Cuvier CP-55 75000 Paris France
| | - Paul Tafforeau
- European Synchrotron Radiation Facility; BP220, 6 rue Jules Horowitz 38043 Grenoble Cedex France
| | - Anthony Herrel
- UMR 7179 du CNRS; Département Ecologie et Gestion de la Biodiversité; Muséum National d'Histoire Naturelle; 57 rue Cuvier CP-55 75000 Paris France
- Evolutionary Morphology of Vertebrates; Ghent University; K.L. Ledeganckstraat 35 B-9000 Ghent Belgium
| |
Collapse
|
26
|
Shahzadi I, Janjua S, Fakhar-i-Abbas, Galbreath GJ. A universal primer set to amplify the cytochrome c oxidase subunit I gene in bears. URSUS 2014. [DOI: 10.2192/ursus-d-13-00014.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Shen YY, Dai K, Cao X, Murphy RW, Shen XJ, Zhang YP. The updated phylogenies of the phasianidae based on combined data of nuclear and mitochondrial DNA. PLoS One 2014; 9:e95786. [PMID: 24748132 PMCID: PMC3991718 DOI: 10.1371/journal.pone.0095786] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 03/31/2014] [Indexed: 02/05/2023] Open
Abstract
The phylogenetic relationships of species in the Phasianidae, Order Galliformes, are the object of intensive study. However, convergent morphological evolution and rapid species radiation result in much ambiguity in the group. Further, matrilineal (mtDNA) genealogies conflict with trees based on nuclear DNA retrotransposable elements. Herein, we analyze 39 nearly complete mitochondrial genomes (three new) and up to seven nuclear DNA segments. We combine these multiple unlinked, more informative genetic markers to infer historical relationships of the major groups of phasianids. The nuclear DNA tree is largely congruent with the tree derived from mt genomes. However, branching orders of mt/nuclear trees largely conflict with those based on retrotransposons. For example, Gallus/Bambusicola/Francolinus forms the sister-group of Coturnix/Alectoris in the nuclear/mtDNA trees, yet the tree based on retrotransposable elements roots the former at the base of the tree and not with the latter. Further, while peafowls cluster with Gallus/Coturnix in the mt tree, they root at the base of the phasianids following Gallus in the tree based on retrotransposable elements. The conflicting branch orders in nuclear/mtDNA and retrotransposons-based trees in our study reveal the complex topology of the Phasianidae.
Collapse
Affiliation(s)
- Yong-Yi Shen
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, China
- Joint Influenza Research Centre (SUMC/HKU), Shantou University Medical College, Shantou, China
| | - Kun Dai
- Xinjiang Institute of Ecology and Geography, the Chinese Academy of Sciences, Urumqi, China
| | - Xue Cao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Robert W. Murphy
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, China
- Department of Natural History, Royal Ontario Museum, Toronto, Canada
| | - Xue-Juan Shen
- Joint Influenza Research Centre (SUMC/HKU), Shantou University Medical College, Shantou, China
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, China
- Laboratory for Conservation and Utilization of Bio-resources, Yunnan University, Kunming, China
| |
Collapse
|
28
|
Ren Q, Li X, Yuan J, Chen D, Zhang L, Guo W, Jiang L, Wang P, Kan X. Complete mitochondrial genome of the Blue Eared Pheasant,Crossoptilon auritum(Galliformes: Phasianidae). ACTA ACUST UNITED AC 2014; 27:615-7. [DOI: 10.3109/19401736.2014.908371] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
29
|
Phylogenetic and molecular dating analysis of Taiwan Blue Pheasant (Lophura swinhoii). Gene 2014; 539:21-9. [DOI: 10.1016/j.gene.2014.01.067] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 01/26/2014] [Accepted: 01/29/2014] [Indexed: 01/20/2023]
|
30
|
Ren Q, Yuan J, Zhu X, Wang P, Zhang L, Jiang L, Kan X. Complete mitochondrial genome of a Light-vented Bulbul subspecies,Pycnonotus sinensis hainanus(Passeriformes: Pycnonotidae). ACTA ACUST UNITED AC 2014; 27:375-7. [DOI: 10.3109/19401736.2014.895993] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
31
|
Comparison of the Chromosome Structures between the Chicken and Three Anserid Species, the Domestic Duck ( Anas platyrhynchos), Muscovy Duck ( Cairina moschata), and Chinese Goose ( Anser cygnoides), and the Delineation of their Karyotype Evolution by Comparative Chromosome Mapping. J Poult Sci 2014. [DOI: 10.2141/jpsa.0130090] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
32
|
Awan AR, Umar E, Zia ul Haq M, Firyal S. Molecular classification of Pakistani collared dove through DNA barcoding. Mol Biol Rep 2013; 40:6329-31. [PMID: 24072655 DOI: 10.1007/s11033-013-2747-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 09/14/2013] [Indexed: 11/30/2022]
Abstract
Pakistan is bestowed by a diversified array of wild bird species including collared doves of which the taxonomy has been least studied and reported. DNA barcoding is a geno-taxonomic tool that has been used for characterization of bird species using mitochondrial cytochrome c oxidase I gene (COI). This study aimed to identify taxonomic order of Pakistani collared dove using DNA barcoding. Purposely herein, we present a phylogenetic analysis of Pakistani collared dove based on 650 base pairs of COI gene sequences. Analysis of phylogenetic tree revealed that Pakistani collared dove shared a common clade with Eurasian collared dove (Streptopelia decaocto) and African collared dove (Streptopelia roseogrisea) which indicated a super-species group in Streptopelia genus. This is the first report of molecular classification of Pakistani collared dove using DNA barcoding.
Collapse
Affiliation(s)
- Ali Raza Awan
- Institute of Biochemistry & Biotechnology, University of Veterinary and Animal Sciences, Civil Lines, Outfall Road, Lahore, Pakistan,
| | | | | | | |
Collapse
|
33
|
Wang N, Kimball RT, Braun EL, Liang B, Zhang Z. Assessing phylogenetic relationships among galliformes: a multigene phylogeny with expanded taxon sampling in Phasianidae. PLoS One 2013; 8:e64312. [PMID: 23741315 PMCID: PMC3669371 DOI: 10.1371/journal.pone.0064312] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Accepted: 04/11/2013] [Indexed: 12/16/2022] Open
Abstract
Galliform birds (relatives of the chicken and turkey) have attracted substantial attention due to their importance to society and value as model systems. This makes understanding the evolutionary history of Galliformes, especially the species-rich family Phasianidae, particularly interesting and important for comparative studies in this group. Previous studies have differed in their conclusions regarding galliform phylogeny. Some of these studies have suggested that specific clades within this order underwent rapid radiations, potentially leading to the observed difficulty in resolving their phylogenetic relationships. Here we presented analyses of six nuclear intron sequences and two mitochondrial regions, an amount of sequence data larger than many previous studies, and expanded taxon sampling by collecting data from 88 galliform species and four anseriform outgroups. Our results corroborated recent studies describing relationships among the major families, and provided further evidence that the traditional division of the largest family, the Phasianidae into two major groups ("pheasants" and "partridges") is not valid. Within the Phasianidae, relationships among many genera have varied among studies and there has been little consensus for the placement of many taxa. Using this large dataset, with substantial sampling within the Phasianidae, we obtained strong bootstrap support to confirm some previously hypothesized relationships and we were able to exclude others. In addition, we added the first nuclear sequence data for the partridge and quail genera Ammoperdix, Caloperdix, Excalfactoria, and Margaroperdix, placing these taxa in the galliform tree of life with confidence. Despite the novel insights obtained by combining increased sampling of taxa and loci, our results suggest that additional data collection will be necessary to solve the remaining uncertainties.
Collapse
Affiliation(s)
- Ning Wang
- Key Laboratory for Biodiversity Sciences and Ecological Engineering of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
- Department of Biology, University of Florida, Gainesville, Florida, United States of America
- Key Laboratory for Tropical Plant and Animal Ecology of Ministry of Education, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Rebecca T. Kimball
- Department of Biology, University of Florida, Gainesville, Florida, United States of America
| | - Edward L. Braun
- Department of Biology, University of Florida, Gainesville, Florida, United States of America
| | - Bin Liang
- Key Laboratory for Tropical Plant and Animal Ecology of Ministry of Education, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Zhengwang Zhang
- Key Laboratory for Biodiversity Sciences and Ecological Engineering of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
34
|
Kan X, Yuan J, Zhang L, Li X, Yu L, Chen L, Guo Z, Yang J. Complete mitochondrial genome of the Tristram's Bunting,Emberiza tristrami(Aves: Passeriformes): The first representative of the family Emberizidae with six boxes in the central conserved domain II of control region. ACTA ACUST UNITED AC 2013; 24:648-50. [DOI: 10.3109/19401736.2013.772165] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
35
|
Kayal E, Roure B, Philippe H, Collins AG, Lavrov DV. Cnidarian phylogenetic relationships as revealed by mitogenomics. BMC Evol Biol 2013; 13:5. [PMID: 23302374 PMCID: PMC3598815 DOI: 10.1186/1471-2148-13-5] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 12/21/2012] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Cnidaria (corals, sea anemones, hydroids, jellyfish) is a phylum of relatively simple aquatic animals characterized by the presence of the cnidocyst: a cell containing a giant capsular organelle with an eversible tubule (cnida). Species within Cnidaria have life cycles that involve one or both of the two distinct body forms, a typically benthic polyp, which may or may not be colonial, and a typically pelagic mostly solitary medusa. The currently accepted taxonomic scheme subdivides Cnidaria into two main assemblages: Anthozoa (Hexacorallia + Octocorallia) - cnidarians with a reproductive polyp and the absence of a medusa stage - and Medusozoa (Cubozoa, Hydrozoa, Scyphozoa, Staurozoa) - cnidarians that usually possess a reproductive medusa stage. Hypothesized relationships among these taxa greatly impact interpretations of cnidarian character evolution. RESULTS We expanded the sampling of cnidarian mitochondrial genomes, particularly from Medusozoa, to reevaluate phylogenetic relationships within Cnidaria. Our phylogenetic analyses based on a mitochogenomic dataset support many prior hypotheses, including monophyly of Hexacorallia, Octocorallia, Medusozoa, Cubozoa, Staurozoa, Hydrozoa, Carybdeida, Chirodropida, and Hydroidolina, but reject the monophyly of Anthozoa, indicating that the Octocorallia + Medusozoa relationship is not the result of sampling bias, as proposed earlier. Further, our analyses contradict Scyphozoa [Discomedusae + Coronatae], Acraspeda [Cubozoa + Scyphozoa], as well as the hypothesis that Staurozoa is the sister group to all the other medusozoans. CONCLUSIONS Cnidarian mitochondrial genomic data contain phylogenetic signal informative for understanding the evolutionary history of this phylum. Mitogenome-based phylogenies, which reject the monophyly of Anthozoa, provide further evidence for the polyp-first hypothesis. By rejecting the traditional Acraspeda and Scyphozoa hypotheses, these analyses suggest that the shared morphological characters in these groups are plesiomorphies, originated in the branch leading to Medusozoa. The expansion of mitogenomic data along with improvements in phylogenetic inference methods and use of additional nuclear markers will further enhance our understanding of the phylogenetic relationships and character evolution within Cnidaria.
Collapse
Affiliation(s)
- Ehsan Kayal
- Dept. Ecology, Evolution, and Organismal Biology, Iowa State University, 50011, Ames, Iowa, USA
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, 20013-7012, Washington, DC, USA
| | - Béatrice Roure
- Dept. Biochimie, Fac. Médecine, Université de Montral, Pavillon Roger-Gaudry, C.P. 6128, Succ. Centre-Ville, H3C 3J7, Montral, QC, Canada
| | - Hervé Philippe
- Dept. Biochimie, Fac. Médecine, Université de Montral, Pavillon Roger-Gaudry, C.P. 6128, Succ. Centre-Ville, H3C 3J7, Montral, QC, Canada
| | - Allen G Collins
- National Systematics Laboratory of NOAA’s Fisheries Service, National Museum of Natural History, MRC-153, Smithsonian Institution, PO Box 37012, 20013-7012, Washington, DC, USA
| | - Dennis V Lavrov
- Dept. Ecology, Evolution, and Organismal Biology, Iowa State University, 50011, Ames, Iowa, USA
| |
Collapse
|
36
|
Zhang L, Wang L, Gowda V, Wang M, Li X, Kan X. The mitochondrial genome of the Cinnamon Bittern, Ixobrychus cinnamomeus (Pelecaniformes: Ardeidae): sequence, structure and phylogenetic analysis. Mol Biol Rep 2012; 39:8315-26. [PMID: 22699875 DOI: 10.1007/s11033-012-1681-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 06/05/2012] [Indexed: 11/26/2022]
Abstract
Ixobrychus cinnamomeus is a member of the large wading bird family, known as Ardeidae. In the present study, we determined the complete mitochondrial genome of I. cinnamomeus for use in future phylogenetic analysis. This circular mitochondrial genome is 17,180 bp in length and composed of 13 protein-coding genes, 22 tRNA genes, two rRNA genes and one putative control region. Three conserved domains and a minisatellite of 17 nucleotides with 22 tandem repeats were detected at the end of the control region. Phylogenetic relationships were reconstructed using the nucleotide and corresponding amino acid datasets of 12 concatenated protein-coding genes from the mitochondrial genome. Using maximum likelihood, maximum parsimony and Bayesian inference methods, the monophyly of Ciconiidae, Ardeidae and Threskiornithidae were confirmed; however, the monophyly of traditional Ciconiiformes and Pelecaniformes failed to be recovered. Although further studies are recommended to clarify relationships among and within the orders of Ciconiiformes, Pelecaniformes, Suliformes and Phaethontiformes, our results provide preliminary exploratory results that can be useful in the current understanding of avian phylogenetics.
Collapse
Affiliation(s)
- Liqin Zhang
- The Provincial Key Laboratory of the Conservation and Exploitation Research of Biological Resources in Anhui, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | | | | | | | | | | |
Collapse
|
37
|
CR1 retroposons provide a new insight into the phylogeny of Phasianidae species (Aves: Galliformes). Gene 2012; 502:125-32. [PMID: 22565186 DOI: 10.1016/j.gene.2012.04.068] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Revised: 04/20/2012] [Accepted: 04/22/2012] [Indexed: 01/21/2023]
Abstract
Chicken repeat 1 (CR1) elements, a class of retroposons belonging to non-long-terminal repeats, have been recognized as powerful tools for phylogenetic studies. Here we examine the phylogenetic relationships of 11 Phasianidae species based on CR1 retroposons. Together with 19 loci reported previously, a total of 99 CR1 loci were identified from chicken genome and turkey BAC clone sequences. 75 insertion events were used to address the branching order of 11 species in Phasianidae. The topology of our tree suggests that: 1) Gallus gallus possessed a basal phylogenetic position within Phasianidae and was related to Bambusicola thoracica (BSP=100%); 2) After the split of G. gallus and B. thoracica, Arborophila rufipectus diverged from Phasianidae (BSP=100%). Nine unambiguous insertion events supported a phylogenetic position of A. rufipectus different to previous mitochondrial data suggesting a hybrid origin or an ancient introgression of A. rufipectus; and 3) 22 CR1 insertion events strongly supported the eight phasianids under investigation sharing a common ancestor. Our study has revisited the phylogenetic position of G. gallus and A. rufipectus and provided a new insight into the phylogeny of Phasianidae birds. It showed that a CR1-based methodology has a great potential to be informative within Phasianidae in resolving relationships of closely related species whose radiation and speciation have occurred very recently.
Collapse
|
38
|
Zhang WQ, Zhang MH. Phylogeny and evolution of Cervidae based on complete mitochondrial genomes. GENETICS AND MOLECULAR RESEARCH 2012; 11:628-35. [PMID: 22535398 DOI: 10.4238/2012.march.14.6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Mitochondrial DNA sequences can be used to estimate phylogenetic relationships among animal taxa and for molecular phylogenetic evolution analysis. With the development of sequencing technology, more and more mitochondrial sequences have been made available in public databases, including whole mitochondrial DNA sequences. These data have been used for phylogenetic analysis of animal species, and for studies of evolutionary processes. We made phylogenetic analyses of 19 species of Cervidae, with Bos taurus as the outgroup. We used neighbor joining, maximum likelihood, maximum parsimony, and Bayesian inference methods on whole mitochondrial genome sequences. The consensus phylogenetic trees supported monophyly of the family Cervidae; it was divided into two subfamilies, Plesiometacarpalia and Telemetacarpalia, and four tribes, Cervinae, Muntiacinae, Hydropotinae, and Odocoileinae. The divergence times in these families were estimated by phylogenetic analysis using the Bayesian method with a relaxed molecular clock method; the results were consistent with those of previous studies. We concluded that the evolutionary structure of the family Cervidae can be reconstructed by phylogenetic analysis based on whole mitochondrial genomes; this method could be used broadly in phylogenetic evolutionary analysis of animal taxa.
Collapse
Affiliation(s)
- W-Q Zhang
- College of Wildlife Resources, Northeast Forestry University, Harbin, China
| | | |
Collapse
|
39
|
Zhao S, Ma Y, Wang G, Li H, Liu X, Yu J, Yue B, Zou F. Molecular phylogeny of major lineages of the avian family Phasianidae inferred from complete mitochondrial genome sequences. J NAT HIST 2012. [DOI: 10.1080/00222933.2011.653588] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
40
|
Li HM, Shi JP, Zeng DL, Zeng ZH, Qin XM. The complete mitochondrial genome of Chrysolophus pictus (Galliformes: Phasianidae) and a phylogenetic analysis with related species. MITOCHONDRIAL DNA 2011; 22:159-61. [PMID: 22165827 DOI: 10.3109/19401736.2011.636433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The 16,678 bp mitochondrial genome of the Chrysolophus pictus has been sequenced in this paper. To determine the phylogentic position of C. pictus with related species within Phasianidae, the phylogenetic tree was reconstructed with the concatenated nucleotide dataset of the 12 heavy-strand-encoded protein genes. The phylogenetic analysis was carried out using maximum parsimony (MP) and Bayesian inference (BI) methods. MP and BI phylogenetic trees here showed similar topology and consistently suggested that C. pictus shared a close relationship with Phasianus versicolor. The results also showed that the Meleagris gallopavo possessed a basal phylogenetic position within Phasianidae, which may imply that it should be classified into the Phasianidae.
Collapse
Affiliation(s)
- Hui-Min Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education, College of Life Sciences, Guangxi Normal University, Guilin, PR China
| | | | | | | | | |
Collapse
|
41
|
Merchán P, Bardet SM, Puelles L, Ferran JL. Comparison of Pretectal Genoarchitectonic Pattern between Quail and Chicken Embryos. Front Neuroanat 2011; 5:23. [PMID: 21503155 PMCID: PMC3074437 DOI: 10.3389/fnana.2011.00023] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 03/23/2011] [Indexed: 01/08/2023] Open
Abstract
Regionalization of the central nervous system is controlled by local networks of transcription factors that establish and maintain the identities of neuroepithelial progenitor areas and their neuronal derivatives. The conserved cerebral Bauplan of vertebrates must result essentially from conserved patterns of developmentally expressed transcription factors. We have previously produced detailed molecular maps for the alar plate of prosomere 1 (the pretectal region) in chicken (Ferran et al., 2007, 2008, 2009). Here we compare the early molecular signature of the pretectum of two closely related avian species of the family Phasianidae, Coturnix japonica (Japanese quail) and Gallus gallus (chicken), aiming to test conservation of the described pattern at a microevolutionary level. We studied the developmental pretectal expression of Bhlhb4, Dbx1, Ebf1, Gata3, Gbx2, Lim1, Meis1, Meis2, Pax3, Pax6, Six3, Tal2, and Tcf7l2 (Tcf4) mRNA, using in situ hybridization, and PAX7 immunohistochemistry. The genoarchitectonic profile of individual pretectal domains and strata was produced, using comparable section planes. Remarkable conservation of the combinatorial genoarchitectonic code was observed, fundamented in a tripartite anteroposterior subdivision. However, we found that at corresponding developmental stages the pretectal region of G. gallus was approximately 30% larger than that of C. japonica, but seemed relatively less mature. Altogether, our results on a conserved genoarchitectonic pattern highlight the importance of early developmental gene networks that causally underlie the production of homologous derivatives in these two evolutionarily closely related species. The shared patterns probably apply to sauropsids in general, as well as to more distantly related vertebrate species.
Collapse
Affiliation(s)
- Paloma Merchán
- Department of Human Anatomy and Psychobiology, Centre for Biomedical Research on Rare Diseases (CIBERER 736), School of Medicine, University of MurciaMurcia, Spain
| | - Sylvia M. Bardet
- Unité de Génétique Moléculaire Animale, INRA UMR 1061, University of LimogesLimoges, France
| | - Luis Puelles
- Department of Human Anatomy and Psychobiology, Centre for Biomedical Research on Rare Diseases (CIBERER 736), School of Medicine, University of MurciaMurcia, Spain
| | - José L. Ferran
- Department of Human Anatomy and Psychobiology, Centre for Biomedical Research on Rare Diseases (CIBERER 736), School of Medicine, University of MurciaMurcia, Spain
| |
Collapse
|