1
|
Machado LMQ, Serra DS, Neves TG, Cavalcante FSÁ, Ceccatto VM, Leal‐Cardoso JH, Zin WA, Moreira‐Gomes MD. Pulmonary impairment in type 2 diabetic rats and its improvement by exercise. Acta Physiol (Oxf) 2022; 234:e13708. [PMID: 34185958 DOI: 10.1111/apha.13708] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 01/24/2023]
Abstract
AIM We aimed to evaluate whether the streptozotocin-induced diabetic model can generate lung functional, histological and biochemical impairments and whether moderate exercise can prevent these changes. METHODS Wistar rats were assigned to control (CTRL), exercise (EXE), diabetic (D) and diabetic with exercise (D+EXE) groups. We used the n5-STZ model of diabetes mellitus triggered by a single injection of streptozotocin (STZ, 120 mg/kg b.w., i.p.) in newborn rats on their 5th day of life. EXE and D+EXE rats were trained by running on a motorized treadmill, 5 days a week for 9 weeks. Blood glucose, body weight, food intake, exercise capacity, lung mechanics, morphology, and antioxidant enzymatic activity were analysed. RESULTS On the 14th week of life, diabetic rats exhibited a significant impairment in post-prandial glycaemia, glucose tolerance, body weight, food intake, lung function (tissue viscance, elastance, Newtonian resistance and hysteresis), morphological parameters, redox balance and exercise capacity. Physical training completely prevented the diabetes-induced alterations, except for those on fasting blood glucose, which nevertheless remained stable. CONCLUSIONS Mild diabetes in n5-STZ-treated rats jeopardized pulmonary mechanics, morphology and redox balance, which confirms the occurrence of diabetes-induced pneumopathy. Moreover, moderate exercise completely prevented all diabetes-induced respiratory alterations.
Collapse
Affiliation(s)
- Liz Maria Queiroz Machado
- Electrophysiology Laboratory Superior Institute of Biomedical SciencesState University of Ceará Fortaleza Brazil
| | - Daniel Silveira Serra
- Laboratory of Biophysics of Respiration Science and Technology Center State University of Ceará Ceará Brazil
| | - Thayanne Gomes Neves
- Electrophysiology Laboratory Superior Institute of Biomedical SciencesState University of Ceará Fortaleza Brazil
| | | | - Vânia Marilande Ceccatto
- Gene Expression Laboratory Superior Institute of Biomedical SciencesState University of Ceará Fortaleza Brazil
| | - Jose Henrique Leal‐Cardoso
- Electrophysiology Laboratory Superior Institute of Biomedical SciencesState University of Ceará Fortaleza Brazil
| | - Walter Araujo Zin
- Laboratory of Respiration Physiology Carlos Chagas Filho Institute of BiophysicsUniversidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| | - Maria Diana Moreira‐Gomes
- Electrophysiology Laboratory Superior Institute of Biomedical SciencesState University of Ceará Fortaleza Brazil
| |
Collapse
|
2
|
Choudhury TZ, Majumdar U, Basu M, Garg V. Impact of maternal hyperglycemia on cardiac development: Insights from animal models. Genesis 2021; 59:e23449. [PMID: 34498806 PMCID: PMC8599640 DOI: 10.1002/dvg.23449] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/17/2021] [Accepted: 08/23/2021] [Indexed: 12/19/2022]
Abstract
Congenital heart disease (CHD) is the leading cause of birth defect-related death in infants and is a global pediatric health concern. While the genetic causes of CHD have become increasingly recognized with advances in genome sequencing technologies, the etiology for the majority of cases of CHD is unknown. The maternal environment during embryogenesis has a profound impact on cardiac development, and numerous environmental factors are associated with an elevated risk of CHD. Maternal diabetes mellitus (matDM) is associated with up to a fivefold increased risk of having an infant with CHD. The rising prevalence of diabetes mellitus has led to a growing interest in the use of experimental diabetic models to elucidate mechanisms underlying this associated risk for CHD. The purpose of this review is to provide a comprehensive summary of rodent models that are being used to investigate alterations in cardiac developmental pathways when exposed to a maternal diabetic setting and to summarize the key findings from these models. The majority of studies in the field have utilized the chemically induced model of matDM, but recent advances have also been made using diet based and genetic models. Each model provides an opportunity to investigate unique aspects of matDM and is invaluable for a comprehensive understanding of the molecular and cellular mechanisms underlying matDM-associated CHD.
Collapse
Affiliation(s)
- Talita Z. Choudhury
- Center for Cardiovascular Research and Heart Center, Nationwide Children’s Hospital, Columbus, OH 43205, United States
- Graduate Program in Molecular, Cellular and Developmental Biology, The Ohio State University, Columbus, OH 43210, United States
| | - Uddalak Majumdar
- Center for Cardiovascular Research and Heart Center, Nationwide Children’s Hospital, Columbus, OH 43205, United States
| | - Madhumita Basu
- Center for Cardiovascular Research and Heart Center, Nationwide Children’s Hospital, Columbus, OH 43205, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210, United States
| | - Vidu Garg
- Center for Cardiovascular Research and Heart Center, Nationwide Children’s Hospital, Columbus, OH 43205, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210, United States
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, United States
| |
Collapse
|
3
|
Paula VG, Sinzato YK, Moraes Souza RQ, Soares TS, Souza FQG, Karki B, Andrade Paes AM, Corrente JE, Damasceno DC, Volpato GT. Metabolic changes in female rats exposed to intrauterine Hyperglycemia and post-weaning consumption of high-fat diet. Biol Reprod 2021; 106:200-212. [PMID: 34668971 DOI: 10.1093/biolre/ioab195] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/01/2021] [Accepted: 10/14/2021] [Indexed: 12/25/2022] Open
Abstract
We evaluated the influence of the hyperglycemic intrauterine environment and post-weaning consumption of a high-fat diet on the glycemia, insulin, lipid and immunological profile of rat offspring in adulthood. Female rats received citrate buffer (Control - C) or Streptozotocin (a beta cell-cytotoxic drug to induce diabetes - D) on post-natal day 5. In adulthood, these rats were mated to obtain female offspring, who were fed a standard diet (SD) or high-fat diet (HFD) from weaning to adulthood (n = 10 rats/group). OC/SD and OC/HFD represent female offspring of control mothers and received SD or HFD, respectively; OD/SD and OD/HFD represent female offspring of diabetic mothers and received SD or HFD, respectively. At adulthood, the Oral Glucose Tolerance Test (OGTT) was performed and, next, the rats were anesthetized and euthanized. Pancreas was collected and analyzed, and adipose tissue was weighted. Blood samples were collected to determine biochemical and immunological profiles. The food intake was lower in HFD-fed rats and visceral fat weight was increased in the OD/HFD group. OC/HFD, OD/SD, and OD/HFD groups presented glucose intolerance and lower insulin secretion during OGTT. An impaired pancreatic beta-cell function was shown in the adult offspring of diabetic rats, regardless of diet. Interleukin (IL)-6 and IL-10 concentrations were lower in the OD/HFD group and associated to a low-grade inflammatory condition. The fetal programming was responsible for impaired beta cell function in experimental animals. The association of maternal diabetes and post-weaning high-fat diet is responsible for greater glucose intolerance, impaired insulin secretion and immunological change.
Collapse
Affiliation(s)
- Verônyca Gonçalves Paula
- Laboratory of Experimental Research on Gynecology and Obstetrics, Tocogynecology Postgraduate Course, Botucatu Medical School, São Paulo State University (Unesp), Botucatu, São Paulo State, Brazil.,Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, Federal University of Mato Grosso (UFMT), Barra do Garças, Mato Grosso State, Brazil
| | - Yuri Karen Sinzato
- Laboratory of Experimental Research on Gynecology and Obstetrics, Tocogynecology Postgraduate Course, Botucatu Medical School, São Paulo State University (Unesp), Botucatu, São Paulo State, Brazil
| | - Rafaianne Queiroz Moraes Souza
- Laboratory of Experimental Research on Gynecology and Obstetrics, Tocogynecology Postgraduate Course, Botucatu Medical School, São Paulo State University (Unesp), Botucatu, São Paulo State, Brazil.,Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, Federal University of Mato Grosso (UFMT), Barra do Garças, Mato Grosso State, Brazil
| | - Thaigra Souza Soares
- Laboratory of Experimental Research on Gynecology and Obstetrics, Tocogynecology Postgraduate Course, Botucatu Medical School, São Paulo State University (Unesp), Botucatu, São Paulo State, Brazil.,Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, Federal University of Mato Grosso (UFMT), Barra do Garças, Mato Grosso State, Brazil
| | - Franciane Quintanilha Gallego Souza
- Laboratory of Experimental Research on Gynecology and Obstetrics, Tocogynecology Postgraduate Course, Botucatu Medical School, São Paulo State University (Unesp), Botucatu, São Paulo State, Brazil
| | - Barshana Karki
- Laboratory of Experimental Research on Gynecology and Obstetrics, Tocogynecology Postgraduate Course, Botucatu Medical School, São Paulo State University (Unesp), Botucatu, São Paulo State, Brazil
| | - Antonio Marcus Andrade Paes
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão - UFMA -Maranhão State, Brazil
| | - José Eduardo Corrente
- Research Support Office, Botucatu Medical School, Univ Estadual Paulista_Unesp, Botucatu, São Paulo State, Brazil
| | - Débora Cristina Damasceno
- Laboratory of Experimental Research on Gynecology and Obstetrics, Tocogynecology Postgraduate Course, Botucatu Medical School, São Paulo State University (Unesp), Botucatu, São Paulo State, Brazil
| | - Gustavo Tadeu Volpato
- Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, Federal University of Mato Grosso (UFMT), Barra do Garças, Mato Grosso State, Brazil
| |
Collapse
|
4
|
Characteristics of the New Insulin-Resistant Zebrafish Model. Pharmaceuticals (Basel) 2021; 14:ph14070642. [PMID: 34358068 PMCID: PMC8308799 DOI: 10.3390/ph14070642] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 01/09/2023] Open
Abstract
Insulin resistance, which occurs when insulin levels are sufficiently high over a prolonged period, causing the cells to fail to respond normally to the hormone. As a system for insulin resistance and diabetes drug development, insulin-resistant rodent models have been clearly established, but there is a limitation to high-throughput drug screening. Recently, zebrafish have been identified as an excellent system for drug discovery and identification of therapeutic targets, but studies on insulin resistance models have not been extensively performed. Therefore, we aimed to make a rapid insulin-resistant zebrafish model that complements the existing rodent models. To establish this model, zebrafish were treated with 10 μM insulin for 48 h. This model showed characteristics of insulin-resistant disease such as damaged pancreatic islets. Then we confirmed the recovery of the pancreatic islets after pioglitazone treatment. In addition, it was found that insulin-resistant drugs have as significant an effect in zebrafish as in humans, and these results proved the value of the zebrafish insulin resistance model for drug selection. In addition, RNA sequencing was performed to elucidate the mechanism involved. KEGG pathway enrichment analysis of differentially expressed genes showed that insulin resistance altered gene expression due to the MAPK signaling and calcium signaling pathways. This model demonstrates the utility of the zebrafish model for drug testing and drug discovery in insulin resistance and diabetes.
Collapse
|
5
|
Merdzo I, Rutkai I, Sure VNLR, Katakam PVG, Busija DW. Effects of prolonged type 2 diabetes on mitochondrial function in cerebral blood vessels. Am J Physiol Heart Circ Physiol 2019; 317:H1086-H1092. [PMID: 31490734 DOI: 10.1152/ajpheart.00341.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
One of the major characteristics of hyperglycemic states such as type 2 diabetes is increased reactive oxygen species (ROS) generation. Since mitochondria are a major source of ROS, it is vital to understand the involvement of these organelles in the pathogenesis of ROS-mediated conditions. Therefore, we investigated mitochondrial function and ROS production in cerebral blood vessels of 21-wk-old Zucker diabetic fatty obese rats and their lean controls. We have previously shown that in the early stages of insulin resistance, and short periods of type 2 diabetes mellitus, only mild differences exist in mitochondrial function. In the present study, we examined mitochondrial respiration, mitochondrial protein expression, and ROS production in large-surface cerebral arteries. We used 21-wk-old animals exposed to peak glucose levels for 7 wk and compared them with our previous studies on younger diabetic animals. We found that the same segments of mitochondrial respiration (basal respiration and proton leak) were diminished in diabetic groups as they were in younger diabetic animals. Levels of rattin, a rat humanin analog, tended to decrease in the diabetic group but did not reach statistical significance (P = 0.08). Other mitochondrial proteins were unaffected, which might indicate the existence of compensatory mechanisms with extension of this relatively mild form of diabetes. Superoxide levels were significantly higher in large cerebral vessels of diabetic animals compared with the control group. In conclusion, prolonged dietary diabetes leads to stabilization, rather than deterioration, of metabolic status in the cerebral circulation, despite continued overproduction of ROS.NEW & NOTEWORTHY We have characterized for the first time the dynamics of mitochondrial function during the progression of type 2 diabetes mellitus with regard to mitochondrial respiration, protein expression, and reactive oxygen species production. In addition, this is the first measurement of rattin levels in the cerebral vasculature, which could potentially lead to novel treatment options.
Collapse
Affiliation(s)
- Ivan Merdzo
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana.,Department of Pharmacology, University of Mostar, School of Medicine, Mostar, Bosnia and Herzegovina
| | - Ibolya Rutkai
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Venkata N L R Sure
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Prasad V G Katakam
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - David W Busija
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| |
Collapse
|
6
|
Aeimlapa R, Charoenphandhu N, Suntornsaratoon P, Wongdee K, Tiyasatkulkovit W, Kengkoom K, Krishnamra N. Insulin does not rescue cortical and trabecular bone loss in type 2 diabetic Goto-Kakizaki rats. J Physiol Sci 2018; 68:531-540. [PMID: 28689272 PMCID: PMC10717542 DOI: 10.1007/s12576-017-0558-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 06/28/2017] [Indexed: 02/07/2023]
Abstract
In type 2 diabetes mellitus (T2DM), the decreased bone strength is often associated with hyperglycemia and bone cell insulin resistance. Since T2DM is increasingly reported in young adults, it is not known whether the effect of T2DM on bone would be different in young adolescents and aging adults. Here, we found shorter femoral and tibial lengths in 7-month, but not 13-month, Goto-Kakizaki (GK) T2DM rats as compared to wild-type rats. Bone µCT analysis showed long-lasting impairment of both cortical and trabecular bones in GK rats. Although insulin treatment effectively improved hyperglycemia, it was not able to rescue trabecular BMD and cortical thickness in young adult GK rats. In conclusion, insulin treatment and alleviation of hyperglycemia did not increase BMD of osteopenic GK rats. It is likely that early prevention of insulin resistance should prevail over treatment of full-blown T2DM-related osteopathy.
Collapse
Affiliation(s)
- Ratchaneevan Aeimlapa
- Department of Physiology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Narattaphol Charoenphandhu
- Department of Physiology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand.
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand.
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand.
| | - Panan Suntornsaratoon
- Department of Physiology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Kannikar Wongdee
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
- Office of Academic Management, Faculty of Allied Health Sciences, Burapha University, Chonburi, Thailand
| | - Wacharaporn Tiyasatkulkovit
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Kanchana Kengkoom
- National Laboratory Animal Center, Mahidol University, Nakhon Pathom, Thailand
| | - Nateetip Krishnamra
- Department of Physiology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
7
|
Li X, Lu J, Wang Y, Huo X, Li Z, Zhang S, Li C, Guo M, Du X, Chen Z. Establishment and Characterization of a Newly Established Diabetic Gerbil Line. PLoS One 2016; 11:e0159420. [PMID: 27427908 PMCID: PMC4948894 DOI: 10.1371/journal.pone.0159420] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 07/01/2016] [Indexed: 01/09/2023] Open
Abstract
Objectives We aimed to selectively breed a spontaneous diabetic gerbil when a sub-line of inbred gerbil showed increased blood glucose levels was found recently. Then we investigated the characteristics including the serum insulin, triglyceride, cholesterol, leptin, adiponectin and explored the underlying molecular mechanism for the diabetic phenotype. Methods The spontaneous diabetic line of gerbils was selectively inbreed the sub-line of gerbil by monitoring blood glucose of each animal. The serum insulin, adiponectin, and leptin levels were tested using an ELISA kit. The expression levels of GLUT4, Akt, leptin, adiponectin, and calpain 10 (CAPN10) were tested by western blot and Quantitative Real-time PCR (qPCR) in liver, skeletal muscle, and white adipose. Results Our results show that the percentages of animals with FPG≥5.2 (mmol/l), PG2h≥6.8 (mmol/l) and both FPG≥5.2 and PG2h≥6.8 (mmol/l) were increased with the number of breeding generations from F0 (21.33%) to F6 (38.46%). These diabetic gerbils exhibited insulin resistance and leptin resistance as well as decreased adiponectin level in the serum. We also observed decreased expression of adiponectin and increased expression of leptin in the skeletal muscle, respectively. Conclusions These results indicate that we have primarily established a spontaneous diabetic gerbil line, and the diabetic phenotypes may have been accounted for by altered expression of leptin and adiponectin.
Collapse
Affiliation(s)
- Xiaohong Li
- School of Basic Medical Science, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing 100069, China
| | - Jing Lu
- School of Basic Medical Science, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing 100069, China
| | - Ying Wang
- School of Basic Medical Science, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing 100069, China
| | - Xueyun Huo
- School of Basic Medical Science, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing 100069, China
| | - Zhenkun Li
- School of Basic Medical Science, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing 100069, China
| | - Shuangyue Zhang
- School of Basic Medical Science, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing 100069, China
| | - Changlong Li
- School of Basic Medical Science, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing 100069, China
| | - Meng Guo
- School of Basic Medical Science, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing 100069, China
| | - Xiaoyan Du
- School of Basic Medical Science, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing 100069, China
- * E-mail: (ZC); (XD)
| | - Zhenwen Chen
- School of Basic Medical Science, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing 100069, China
- * E-mail: (ZC); (XD)
| |
Collapse
|
8
|
Zucker diabetic fatty rats, a model for type 2 diabetes, develop an inner ear dysfunction that can be attenuated by losartan treatment. Cell Tissue Res 2015; 362:307-15. [DOI: 10.1007/s00441-015-2215-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 05/12/2015] [Indexed: 12/13/2022]
|
9
|
Identification of early transcriptome signatures in placenta exposed to insulin and obesity. Am J Obstet Gynecol 2015; 212:647.e1-11. [PMID: 25731694 DOI: 10.1016/j.ajog.2015.02.026] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 12/22/2015] [Accepted: 02/25/2015] [Indexed: 12/21/2022]
Abstract
OBJECTIVE The purpose of this study was to investigate the effects of insulin on human placental transcriptome and biological processes in first-trimester pregnancy. STUDY DESIGN Maternal plasma and placenta villous tissue were obtained at the time of voluntary termination of pregnancy (7-12 weeks) from 17 lean (body mass index, 20.9±1.5 kg/m2) and 18 obese (body mass index, 33.5±2.6 kg/m2) women. Trophoblast cells were immediately isolated for in vitro treatment with insulin or vehicle. Patterns of global gene expression were analyzed using genome microarray profiling after hybridization to Human Gene 1.1 ST and real time reverse transcription-polymerase chain reaction. RESULTS The global trophoblast transcriptome was qualitatively separated in insulin-treated vs untreated trophoblasts of lean women. The number of insulin-sensitive genes detected in the trophoblasts of lean women was 2875 (P<.001). Maternal obesity reduced the number of insulin-sensitive genes recovered by 30-fold. Insulin significantly impaired several gene networks regulating cell cycle and cholesterol homeostasis but did not modify pathways related to glucose transport. Obesity associated with high insulin and insulin resistance, but not maternal hyperinsulinemia alone, impaired the global gene profiling of early gestation placenta, highlighting mitochondrial dysfunction and decreased energy metabolism. CONCLUSION We report for the first time that human trophoblast cells are highly sensitive to insulin regulation in early gestation. Maternal obesity associated with insulin resistance programs the placental transcriptome toward refractoriness to insulin with potential adverse consequences for placental structure and function.
Collapse
|
10
|
White V, Jawerbaum A, Mazzucco MB, Gauster M, Desoye G, Hiden U. Diabetes-associated changes in the fetal insulin/insulin-like growth factor system are organ specific in rats. Pediatr Res 2015; 77:48-55. [PMID: 25268143 DOI: 10.1038/pr.2014.139] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 06/23/2014] [Indexed: 11/09/2022]
Abstract
BACKGROUND Diabetes in pregnancy affects fetal growth and development. The insulin/insulin-like growth factors (IGF) system comprising insulin, IGF, their receptors, and binding proteins, has been implicated in fetal growth regulation. This study tested the hypothesis that maternal diabetes alters the fetal insulin/IGF system in a tissue-specific manner. METHODS Wistar rats were rendered diabetic by neonatal administration of streptozotocin and mated with control rats. At day 21 of gestation, the weights of fetuses, placentas, and fetal organs (heart, lung, liver, stomach, intestine, and pancreas) were determined. Maternal and fetal plasma concentrations of insulin, IGF1, and IGF2 were measured by ELISA, and expression of IGF1, IGF2, IGF1R, IGF2R, IR, IGFBP1, BP2, and BP3 in placenta and fetal organs by qPCR. RESULTS The well-known increase in fetal growth in this model of mild diabetes is accompanied by elevated insulin and IGF1 levels and alterations of the insulin/IGF system in the fetus and the placenta. These alterations were organ and gene specific. The insulin/IGF system was generally upregulated, especially in the fetal heart, while it was downregulated in fetal lung. CONCLUSION In our model of mild diabetes, the effect of maternal diabetes on fetal weight and fetal insulin/IGF system expression is organ specific with highly sensitive organs such as lung and heart, and organs that were less affected, such as stomach.
Collapse
Affiliation(s)
- Verónica White
- Laboratory of Reproduction and Metabolism, Center for Pharmacological and Botanical Studies, CEFyBO-CONICET, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Alicia Jawerbaum
- Laboratory of Reproduction and Metabolism, Center for Pharmacological and Botanical Studies, CEFyBO-CONICET, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - María B Mazzucco
- Laboratory of Reproduction and Metabolism, Center for Pharmacological and Botanical Studies, CEFyBO-CONICET, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Martin Gauster
- Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| | - Gernot Desoye
- Department of Obstetrics and Gynaecology, Medical University of Graz, Graz, Austria
| | - Ursula Hiden
- Department of Obstetrics and Gynaecology, Medical University of Graz, Graz, Austria
| |
Collapse
|
11
|
Lapmanee S, Charoenphandhu N, Aeimlapa R, Suntornsaratoon P, Wongdee K, Tiyasatkulkovit W, Kengkoom K, Chaimongkolnukul K, Seriwatanachai D, Krishnamra N. High dietary cholesterol masks type 2 diabetes-induced osteopenia and changes in bone microstructure in rats. Lipids 2014; 49:975-86. [PMID: 25200330 DOI: 10.1007/s11745-014-3950-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 08/27/2014] [Indexed: 12/11/2022]
Abstract
Type 2 diabetes mellitus (T2DM) often occurs concurrently with high blood cholesterol or dyslipidemia. Although T2DM has been hypothesized to impair bone microstructure, several investigations showed that, when compared to age-matched healthy individuals, T2DM patients had normal or relatively high bone mineral density (BMD). Since cholesterol and lipids profoundly affect the function of osteoblasts and osteoclasts, it might be cholesterol that obscured the changes in BMD and bone microstructure in T2DM. The present study, therefore, aimed to determine bone elongation, epiphyseal histology, and bone microstructure in non-obese T2DM Goto-Kakizaki rats treated with normal (GK-ND) and high cholesterol diet. We found that volumetric BMD was lower in GK-ND rats than the age-matched wild-type controls. In histomorphometric study of tibial metaphysis, T2DM evidently suppressed osteoblast function as indicated by decreases in osteoblast surface, mineral apposition rate, and bone formation rate in GK-ND rats. Meanwhile, the osteoclast surface and eroded surface were increased in GK-ND rats, thus suggesting an activation of bone resorption. T2DM also impaired bone elongation, presumably by retaining the chondrogenic precursor cells in the epiphyseal resting zone. Interestingly, several bone changes in GK rats (e.g., increased osteoclast surface) disappeared after high cholesterol treatment as compared to wild-type rats fed high cholesterol diet. In conclusion, high cholesterol diet was capable of masking the T2DM-induced osteopenia and changes in several histomorphometric parameters that indicated bone microstructural defect. Cholesterol thus explained, in part, why a decrease in BMD was not observed in T2DM, and hence delayed diagnosis of the T2DM-associated bone disease.
Collapse
Affiliation(s)
- Sarawut Lapmanee
- Department of Physiology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Aeimlapa R, Wongdee K, Charoenphandhu N, Suntornsaratoon P, Krishnamra N. Premature chondrocyte apoptosis and compensatory upregulation of chondroregulatory protein expression in the growth plate of Goto-Kakizaki diabetic rats. Biochem Biophys Res Commun 2014; 452:395-401. [PMID: 25159845 DOI: 10.1016/j.bbrc.2014.08.085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 08/18/2014] [Indexed: 12/28/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is much more detrimental to bone than previously thought. Specifically, it is associated with aberrant bone remodeling, defective bone microstructure, poor bone quality, and growth retardation. The T2DM-associated impairment of bone elongation may result from a decrease in growth plate function, but the detailed mechanism has been unknown. The present study, therefore, aimed to test hypothesis that T2DM led to premature apoptosis of growth plate chondrocytes in Goto-Kakizaki (GK) type 2 diabetic rats, and thus triggered the compensatory responses to overcome this premature apoptosis, such as overexpression of Runt-related transcription factor (Runx)-2 and vascular endothelial growth factor (VEGF), the essential mediators for bone elongation. The terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) of epiphyseal sections successfully revealed increases in chondrocyte apoptosis in the hypertrophic zone (HZ) and chondro-osseous junction of GK rats. Quantitative immunohistochemical analysis further confirmed the overexpression of parathyroid hormone-related protein (PTHrP), Runx2 and VEGF, but not Indian hedgehog (Ihh) in the HZ. Analysis of blood chemistry indicated suppression of bone remodeling with a marked decrease in parathyroid hormone level. In conclusion, GK rats manifested a premature increase in chondrocyte apoptosis in the HZ of growth plate, and a compensatory overexpression of chondroregulatory proteins, such as PTHrP, Runx2, and VEGF. Our results, therefore, help explain how T2DM leads to impaired bone elongation and growth retardation.
Collapse
Affiliation(s)
- Ratchaneevan Aeimlapa
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand; Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Kannikar Wongdee
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand; Office of Academic Management, Faculty of Allied Health Sciences, Burapha University, Chonburi, Thailand.
| | - Narattaphol Charoenphandhu
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand; Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Panan Suntornsaratoon
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand; Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Nateetip Krishnamra
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand; Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
13
|
Marín-Juez R, Jong-Raadsen S, Yang S, Spaink HP. Hyperinsulinemia induces insulin resistance and immune suppression via Ptpn6/Shp1 in zebrafish. J Endocrinol 2014; 222:229-41. [PMID: 24904114 DOI: 10.1530/joe-14-0178] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Type 2 diabetes, obesity, and metabolic syndrome are pathologies where insulin resistance plays a central role, and that affect a large population worldwide. These pathologies are usually associated with a dysregulation of insulin secretion leading to a chronic exposure of the tissues to high insulin levels (i.e. hyperinsulinemia), which diminishes the concentration of key downstream elements, causing insulin resistance. The complexity of the study of insulin resistance arises from the heterogeneity of the metabolic states where it is observed. To contribute to the understanding of the mechanisms triggering insulin resistance, we have developed a zebrafish model to study insulin metabolism and its associated disorders. Zebrafish larvae appeared to be sensitive to human recombinant insulin, becoming insulin-resistant when exposed to a high dose of the hormone. Moreover RNA-seq-based transcriptomic profiling of these larvae revealed a strong downregulation of a number of immune-relevant genes as a consequence of the exposure to hyperinsulinemia. Interestingly, as an exception, the negative immune modulator protein tyrosine phosphatase nonreceptor type 6 (ptpn6) appeared to be upregulated in insulin-resistant larvae. Knockdown of ptpn6 was found to counteract the observed downregulation of the immune system and insulin signaling pathway caused by hyperinsulinemia. These results indicate that ptpn6 is a mediator of the metabolic switch between insulin-sensitive and insulin-resistant states. Our zebrafish model for hyperinsulinemia has therefore demonstrated its suitability for discovery of novel regulators of insulin resistance. In addition, our data will be very useful in further studies of the function of immunological determinants in a non-obese model system.
Collapse
Affiliation(s)
- Rubén Marín-Juez
- ZF-Screens BVJ.H. Oortweg 19, 2333 CH Leiden, The NetherlandsInstitute of BiologyLeiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Susanne Jong-Raadsen
- ZF-Screens BVJ.H. Oortweg 19, 2333 CH Leiden, The NetherlandsInstitute of BiologyLeiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Shuxin Yang
- ZF-Screens BVJ.H. Oortweg 19, 2333 CH Leiden, The NetherlandsInstitute of BiologyLeiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Herman P Spaink
- ZF-Screens BVJ.H. Oortweg 19, 2333 CH Leiden, The NetherlandsInstitute of BiologyLeiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| |
Collapse
|
14
|
Skovsø S. Modeling type 2 diabetes in rats using high fat diet and streptozotocin. J Diabetes Investig 2014; 5:349-58. [PMID: 25411593 PMCID: PMC4210077 DOI: 10.1111/jdi.12235] [Citation(s) in RCA: 371] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 03/07/2014] [Accepted: 03/14/2014] [Indexed: 12/21/2022] Open
Abstract
The pathology of type 2 diabetes is complex, with multiple stages culminating in a functional β‐cell mass that is insufficient to meet the body's needs. Although the broad outlines of the disease etiology are known, many critical questions remain to be answered before next‐generation therapeutics can be developed. In order to further elucidate the pathobiology of this disease, animal models mimicking the pathology of human type 2 diabetes are of great value. One example of a type 2 diabetes animal model is the high‐fat diet‐fed, streptozotocin (HFD/STZ)‐treated rat model. The present review first summarizes the current understanding of the metabolic profile and pathology involved in the different stages of the type 2 diabetes disease progression in humans. Second, the known characteristics of the HFD/STZ rat model are reviewed and compared with the pathophysiology of human type 2 diabetes. Next, the suitability of the HFD/STZ model as a model of type 2 diabetes with a focus on identifying critical caveats and unanswered questions about the model is discussed. The improved understanding of refined animal models will hopefully lead to more relevant preclinical studies and development of improved therapeutics for diabetes. Depending on the amount of residual functional β‐cells mass, the HFD/STZ rat model might be a suitable animal model of the final stage of type 2 diabetes.
Collapse
Affiliation(s)
- Søs Skovsø
- In vivo Pharmacology Graduate Program Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| |
Collapse
|
15
|
Effect of streptozotocin-induced diabetes mellitus on the cerebellar cortex of adult male albino rats. ACTA ACUST UNITED AC 2013. [DOI: 10.1097/01.ehx.0000424090.98199.b8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
16
|
Gopurappilly R, Bhonde R. Can multiple intramuscular injections of mesenchymal stromal cells overcome insulin resistance offering an alternative mode of cell therapy for type 2 diabetes? Med Hypotheses 2011; 78:393-5. [PMID: 22192909 DOI: 10.1016/j.mehy.2011.11.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 11/27/2011] [Indexed: 12/14/2022]
Abstract
Insulin resistance is a hallmark of type 2 diabetes (T2D). The mechanisms underpinning β-cell mass expansion and their functionality in insulin-resistant states still remain elusive. It has recently been shown that insulin resistance in skeletal muscles leads to production of myokines that impact negatively on β-cell function. We hypothesize that multiple intramuscular injections (IM) of mesenchymal stromal cells (MSCs) at different sites would aid in countering the insulin resistance in T2D. These IM injections are expected to have dual effects in overcoming muscle insulin resistance. It is likely to modulate the micro environmental niche of insulin-insensitive myocytes under the influence of paracrine secretions from MSCs, in turn changing the myokine secretion pattern to positively regulate β-cell function. Further, it may stimulate the satellite cell population to generate new myocytes, which would be insulin-sensitive. If our hypothesis proves to be right, it might offer a user-friendly approach to control T2D.
Collapse
Affiliation(s)
- Renjitha Gopurappilly
- Manipal Institute of Regenerative Medicine, Manipal University, Bangalore 560 071, India
| | | |
Collapse
|