1
|
Wu W, Oguz UM, Banga A, Zhao S, Thota AK, Gadamidi VK, Vasa CH, Harmouch KM, Naser A, Tieliwaerdi X, Chatzizisis YS. 3D reconstruction of coronary artery bifurcations from intravascular ultrasound and angiography. Sci Rep 2023; 13:13031. [PMID: 37563354 PMCID: PMC10415353 DOI: 10.1038/s41598-023-40257-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023] Open
Abstract
Coronary bifurcation lesions represent a challenging anatomical subset, and the understanding of their 3D anatomy and plaque composition appears to play a key role in devising the optimal stenting strategy. This study proposes a new approach for the 3D reconstruction of coronary bifurcations and plaque materials by combining intravascular ultrasound (IVUS) and angiography. Three patient-specific silicone bifurcation models were 3D reconstructed and compared to micro-computed tomography (µCT) as the gold standard to test the accuracy and reproducibility of the proposed methodology. The clinical feasibility of the method was investigated in three diseased patient-specific bifurcations of varying anatomical complexity. The IVUS-based 3D reconstructed bifurcation models showed high agreement with the µCT reference models, with r2 values ranging from 0.88 to 0.99. The methodology successfully 3D reconstructed all the patient bifurcations, including plaque materials, in less than 60 min. Our proposed method is a simple, time-efficient, and user-friendly tool for accurate 3D reconstruction of coronary artery bifurcations. It can provide valuable information about bifurcation anatomy and plaque burden in the clinical setting, assisting in bifurcation stent planning and education.
Collapse
Affiliation(s)
- Wei Wu
- Center for Digital Cardiovascular Innovations, Division of Cardiovascular Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Usama M Oguz
- Center for Digital Cardiovascular Innovations, Division of Cardiovascular Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Akshat Banga
- Center for Digital Cardiovascular Innovations, Division of Cardiovascular Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Shijia Zhao
- Center for Digital Cardiovascular Innovations, Division of Cardiovascular Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Anjani Kumar Thota
- Center for Digital Cardiovascular Innovations, Division of Cardiovascular Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Vinay Kumar Gadamidi
- Center for Digital Cardiovascular Innovations, Division of Cardiovascular Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Charu Hasini Vasa
- Center for Digital Cardiovascular Innovations, Division of Cardiovascular Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Khaled M Harmouch
- Center for Digital Cardiovascular Innovations, Division of Cardiovascular Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Abdallah Naser
- Center for Digital Cardiovascular Innovations, Division of Cardiovascular Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Xiarepati Tieliwaerdi
- Center for Digital Cardiovascular Innovations, Division of Cardiovascular Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Yiannis S Chatzizisis
- Center for Digital Cardiovascular Innovations, Division of Cardiovascular Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA.
- Division of Cardiovascular Medicine, Leonard M. Miller School of Medicine, University of Miami Health System, University of Miami, 1120 NW 14th Street, Suite 1124, Miami, FL, 33136, USA.
| |
Collapse
|
2
|
Emfietzoglou M, Mavrogiannis MC, García-García HM, Stamatelopoulos K, Kanakakis I, Papafaklis MI. Current Toolset in Predicting Acute Coronary Thrombotic Events: The “Vulnerable Plaque” in a “Vulnerable Patient” Concept. Life (Basel) 2023; 13:life13030696. [PMID: 36983851 PMCID: PMC10052113 DOI: 10.3390/life13030696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Despite major advances in pharmacotherapy and interventional procedures, coronary artery disease (CAD) remains a principal cause of morbidity and mortality worldwide. Invasive coronary imaging along with the computation of hemodynamic forces, primarily endothelial shear stress and plaque structural stress, have enabled a comprehensive identification of atherosclerotic plaque components, providing a unique insight into the understanding of plaque vulnerability and progression, which may help guide patient treatment. However, the invasive-only approach to CAD has failed to show high predictive value. Meanwhile, it is becoming increasingly evident that along with the “vulnerable plaque”, the presence of a “vulnerable patient” state is also necessary to precipitate an acute coronary thrombotic event. Non-invasive imaging techniques have also evolved, providing new opportunities for the identification of high-risk plaques, the study of atherosclerosis in asymptomatic individuals, and general population screening. Additionally, risk stratification scores, circulating biomarkers, immunology, and genetics also complete the armamentarium of a broader “vulnerable plaque and patient” concept approach. In the current review article, the invasive and non-invasive modalities used for the detection of high-risk plaques in patients with CAD are summarized and critically appraised. The challenges of the vulnerable plaque concept are also discussed, highlighting the need to shift towards a more interdisciplinary approach that can identify the “vulnerable plaque” in a “vulnerable patient”.
Collapse
Affiliation(s)
| | - Michail C. Mavrogiannis
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Hector M. García-García
- Section of Interventional Cardiology, MedStar Washington Hospital Center, Washington, DC 20010, USA
| | - Kimon Stamatelopoulos
- Department of Therapeutics, Faculty of Medicine, National and Kapodistrian University of Athens, 157 72 Athens, Greece
| | - Ioannis Kanakakis
- Catheterization and Hemodynamic Unit, Alexandra University Hospital, 115 28 Athens, Greece
| | - Michail I. Papafaklis
- Catheterization and Hemodynamic Unit, Alexandra University Hospital, 115 28 Athens, Greece
- Correspondence: ; Tel.: +30-6944376572
| |
Collapse
|
3
|
Poon EKW, Ono M, Wu X, Dijkstra J, Sato Y, Kutyna M, Torii R, Reiber JHC, Bourantas CV, Barlis P, El-Kurdi MS, Cox M, Virmani R, Onuma Y, Serruys PW. An optical coherence tomography and endothelial shear stress study of a novel bioresorbable bypass graft. Sci Rep 2023; 13:2941. [PMID: 36805474 PMCID: PMC9941467 DOI: 10.1038/s41598-023-29573-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 02/07/2023] [Indexed: 02/22/2023] Open
Abstract
Endothelial shear stress (ESS) plays a key role in the clinical outcomes in native and stented segments; however, their implications in bypass grafts and especially in a synthetic biorestorative coronary artery bypass graft are yet unclear. This report aims to examine the interplay between ESS and the morphological alterations of a biorestorative coronary bypass graft in an animal model. Computational fluid dynamics (CFD) simulation derived from the fusion of angiography and optical coherence tomography (OCT) imaging was used to reconstruct data on the luminal anatomy of a bioresorbable coronary bypass graft with an endoluminal "flap" identified during OCT acquisition. The "flap" compromised the smooth lumen surface and considerably disturbed the local flow, leading to abnormally low ESS and high oscillatory shear stress (OSI) in the vicinity of the "flap". In the presence of the catheter, the flow is more stable (median OSI 0.02384 versus 0.02635, p < 0.0001; maximum OSI 0.4612 versus 0.4837). Conversely, OSI increased as the catheter was withdrawn which can potentially cause back-and-forth motions of the "flap", triggering tissue fatigue failure. CFD analysis in this report provided sophisticated physiological information that complements the anatomic assessment from imaging enabling a complete understanding of biorestorative graft pathophysiology.
Collapse
Affiliation(s)
- Eric K. W. Poon
- grid.1008.90000 0001 2179 088XDepartment of Medicine, St Vincent’s & Northern Hospitals, Melbourne Medical School, University of Melbourne, Victoria, Australia
| | - Masafumi Ono
- Department of Cardiology, University of Galway, University Road, Galway, H91 TK33 Ireland ,grid.7177.60000000084992262Department of Clinical and Experimental Cardiology, Amsterdam UMC, Heart Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Xinlei Wu
- Department of Cardiology, University of Galway, University Road, Galway, H91 TK33 Ireland ,grid.417384.d0000 0004 1764 2632Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jouke Dijkstra
- grid.10419.3d0000000089452978Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Yu Sato
- grid.417701.40000 0004 0465 0326CVPath Institute, Inc, Gaithersburg, MD USA
| | - Matthew Kutyna
- grid.417701.40000 0004 0465 0326CVPath Institute, Inc, Gaithersburg, MD USA
| | - Ryo Torii
- grid.83440.3b0000000121901201Department of Mechanical Engineering, University College London, London, UK
| | - Johan H. C. Reiber
- grid.10419.3d0000000089452978Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Christos V. Bourantas
- grid.83440.3b0000000121901201Institute of Cardiovascular Science, University College London, London, UK ,grid.416353.60000 0000 9244 0345Department of Cardiology, Barts Heart Centre, London, UK
| | - Peter Barlis
- grid.1008.90000 0001 2179 088XDepartment of Medicine, St Vincent’s & Northern Hospitals, Melbourne Medical School, University of Melbourne, Victoria, Australia
| | | | - Martijn Cox
- Xeltis BV, De Lismortel 31, 5612AR Eindhoven, The Netherlands
| | - Renu Virmani
- grid.417701.40000 0004 0465 0326CVPath Institute, Inc, Gaithersburg, MD USA
| | - Yoshinobu Onuma
- Department of Cardiology, University of Galway, University Road, Galway, H91 TK33 Ireland
| | - Patrick W. Serruys
- Department of Cardiology, University of Galway, University Road, Galway, H91 TK33 Ireland ,grid.6906.90000000092621349Emeritus Professor of Medicine, Erasmus University, Rotterdam, The Netherlands ,CÚRAM, SFI Research Centre for Medical Devices, Galway, H91 TK33 Ireland
| |
Collapse
|
4
|
Karanasiou GS, Tsompou PI, Tachos N, Karanasiou GE, Sakellarios A, Kyriakidis S, Antonini L, Pennati G, Petrini L, Gijsen F, Vaughan T, Katsouras C, Michalis L, Fotiadis DI. An in silico trials platform for the evaluation of stent design effect in post-implantation outcomes. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:4970-4973. [PMID: 36086562 DOI: 10.1109/embc48229.2022.9871483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bioresorbable Vascular Scaffolds (BVS), developed to allow drug deliver and mechanical support, followed by complete resorption, have revolutionized atherosclerosis treatment. InSilc is a Cloud platform for in silico clinical trials (ISCT) used in the design, development and evaluation pipeline of stents. The platform integrates beyond the state-of-the-art multi-disciplinary and multiscale models, which predict the scaffold's performance in the short/acute and medium/long term. In this study, a use case scenario of two Bioabsorbable Vascular Stents (BVSs) implanted in the same arterial anatomy is presented, allowing the whole InSilc in silico pipeline to be applied and predict how the different aspects of this intervention affect the success of stenting process.
Collapse
|
5
|
|
6
|
Kim HO, Jiang B, Poon EK, Thondapu V, Kim CJ, Kurihara O, Araki M, Nakajima A, Mamon C, Dijkstra J, Lee H, Ooi A, Barlis P, Jang IK. High endothelial shear stress and stress gradient at plaque erosion persist up to 12 months. Int J Cardiol 2022; 357:1-7. [DOI: 10.1016/j.ijcard.2022.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/08/2022] [Accepted: 03/14/2022] [Indexed: 11/29/2022]
|
7
|
Karanasiou GS, Tsompou PI, Tachos N, Karanasiou GE, Sakellarios A, Kyriakidis S, Antonini L, Pennati G, Petrini L, Gijsen F, Nezami FR, Tzafriri R, Fawdry M, Fotiadis DI. An in silico trials platform for the evaluation of effect of the arterial anatomy configuration on stent implantation . ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:4213-4217. [PMID: 34892153 DOI: 10.1109/embc46164.2021.9629950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The introduction of Bioresorbable Vascular Scaffolds (BVS) has revolutionized the treatment of atherosclerosis. InSilc is an in silico clinical trial (ISCT) platform in a Cloud-based environment used for the design, development and evaluation of BVS. Advanced multi-disciplinary and multiscale models are integrated in the platform towards predicting the short/acute and medium/long term scaffold performance. In this study, InSilc platform is employed in a use case scenario and demonstrates how the whole in silico pipeline allows the interpretation of the effect of the arterial anatomy configuration on stent implantation.
Collapse
|
8
|
Farola Barata B, Tran PT, Borghesan G, McCutcheon K, Dall'Alba D, Fiorini P, Vander Sloten J, Poorten EV. IVUS-Based Local Vessel Estimation for Robotic Intravascular Navigation. IEEE Robot Autom Lett 2021. [DOI: 10.1109/lra.2021.3102307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
9
|
Ozaki Y, Kuku KO, Sakellarios A, Haude M, Hideo-Kajita A, Desale S, Siogkas P, Sioros S, Ince H, Abizaid A, Tölg R, Lemos PA, von Birgelen C, Christiansen EH, Wijns W, Escaned J, Michalis L, Fotiadis DI, Djikstra J, Waksman R, Garcia-Garcia HM. Impact of Endothelial Shear Stress on Absorption Process of Resorbable Magnesium Scaffold: A BIOSOLVE-II Substudy. CARDIOVASCULAR REVASCULARIZATION MEDICINE 2021; 29:9-15. [PMID: 33863661 DOI: 10.1016/j.carrev.2021.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/12/2021] [Accepted: 04/05/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND/PURPOSE Local hemodynamic forces such as endothelial shear stress (ESS) may have an influence on appropriate neointimal healing, vessel remodeling, and struts' absorption process following second-generation drug-eluting resorbable magnesium scaffold (RMS, Magmaris, Biotronik AG, Buelach, Switzerland) placement. The aim of this study was to investigate the impact of ESS assessed by optical coherence tomography (OCT)-based computational fluid dynamic (CFD) simulations on absorption process and coronary lumen dimension after Magmaris implantation. METHODS AND RESULTS A total of 22 patients who were enrolled in the BIOSOLVE-II trial and underwent serial OCT assessment immediately after Magmaris implantation and at 6- and 12-month follow-up were included. We evaluated qualitative OCT findings frame by frame, and CFD simulations were performed to calculate the ESS at 3-dimensional (3D) reconstructed arteries. For quantitative calculation, the average ESS within each 1-mm section was classified into three groups: low (<1.0 Pa), intermediate (1.0-2.5 Pa), or high (>2.5 Pa). A significant difference of percentage remnants of scaffold was observed among the 3 groups at 12-month follow-up (P = 0.001) but not at 6-month follow-up. Low-ESS segment at baseline resulted in a greater lumen change of -1.857 ± 1.902 mm2 at 1 year compared to -1.277 ± 1.562 mm2 in the intermediate-ESS segment (P = 0.017) and - 0.709 ± 1.213 mm2 in the high-ESS segment (P = 0.001). CONCLUSION After Magmaris implantation, the presence of higher ESS might be associated with slower strut absorption process but less luminal loss.
Collapse
Affiliation(s)
- Yuichi Ozaki
- Section of Interventional Cardiology, MedStar Washington Hospital Center, Washington DC, USA
| | - Kayode O Kuku
- Section of Interventional Cardiology, MedStar Washington Hospital Center, Washington DC, USA
| | - Antonis Sakellarios
- Department of Materials Science and Engineering, University of Ioannina, Ioannina, Greece.
| | - Michael Haude
- Medical Clinic I, Städtische Kliniken Neuss, Lukaskrankenhaus GmbH, Neuss, Germany
| | - Alexandre Hideo-Kajita
- Section of Interventional Cardiology, MedStar Washington Hospital Center, Washington DC, USA
| | - Sameer Desale
- Section of Interventional Cardiology, MedStar Washington Hospital Center, Washington DC, USA
| | - Panagiotis Siogkas
- Department of Materials Science and Engineering, University of Ioannina, Ioannina, Greece
| | - Spyros Sioros
- Department of Cardiology, Medical School, University of Ioannina, Ioannina, Greece
| | - Hüseyin Ince
- Department of Cardiology, Vivantes Klinikum im Friedrichschain and Am Urban, Berlin, Germany
| | | | - Ralph Tölg
- Herzzentrum Segeberger Kliniken GmbH, Bad Segeberg, Germany
| | - Pedro Alves Lemos
- Instituto do Coração - HCFMUSP, University of Sao Paulo, São Paulo, Brazil; Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Clemens von Birgelen
- Department of Cardiology, Thoraxcentrum Twente, Medisch Spectrum Twente, Enschede, Netherlands
| | | | - William Wijns
- Cardiology Department, Cardiovascular Research Center Aalst, OLV Hospital, Aalst, Belgium
| | - Javier Escaned
- Hospital Clinico San Carlos IDISSC, Complutense University of Madrid, Madrid, Spain
| | - Lampros Michalis
- Medical Clinic I, Städtische Kliniken Neuss, Lukaskrankenhaus GmbH, Neuss, Germany
| | - Dimitrios I Fotiadis
- Department of Materials Science and Engineering, University of Ioannina, Ioannina, Greece
| | | | - Ron Waksman
- Section of Interventional Cardiology, MedStar Washington Hospital Center, Washington DC, USA
| | - Hector M Garcia-Garcia
- Section of Interventional Cardiology, MedStar Washington Hospital Center, Washington DC, USA.
| |
Collapse
|
10
|
Pleouras D, Sakellarios A, Rigas G, Karanasiou GS, Tsompou P, Karanasiou G, Kigka V, Kyriakidis S, Pezoulas V, Gois G, Tachos N, Ramos A, Pelosi G, Rocchiccioli S, Michalis L, Fotiadis DI. A Novel Approach to Generate a Virtual Population of Human Coronary Arteries for In Silico Clinical Trials of Stent Design. IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY 2021; 2:201-209. [PMID: 35402969 PMCID: PMC8901009 DOI: 10.1109/ojemb.2021.3082328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/06/2021] [Accepted: 05/17/2021] [Indexed: 11/15/2022] Open
Abstract
Goal: To develop a cardiovascular virtual population using statistical modeling and computational biomechanics. Methods: A clinical data augmentation algorithm is implemented to efficiently generate virtual clinical data using a real clinical dataset. An atherosclerotic plaque growth model is employed to 3D reconstructed coronary arterial segments to generate virtual coronary arterial geometries (geometrical data). Last, the combination of the virtual clinical and geometrical data is achieved using a methodology that allows for the generation of a realistic virtual population which can be used in in silico clinical trials. Results: The results show good agreement between real and virtual clinical data presenting a mean gof 0.1 ± 0.08. 400 virtual coronary arteries were generated, while the final virtual population includes 10,000 patients. Conclusions: The virtual arterial geometries are efficiently matched to the generated clinical data, both increasing and complementing the variability of the virtual population.
Collapse
Affiliation(s)
| | - Antonis Sakellarios
- Department of Biomedical ResearchFORTH-IMBB GR 45110 Ioannina Greece
- Unit of Medical Technology and Intelligent Information Systems, Department of Materials Science and EngineeringUniversity of Ioannina GR 45110 Greece
| | - George Rigas
- Unit of Medical Technology and Intelligent Information Systems, Department of Materials Science and EngineeringUniversity of Ioannina GR 45110 Greece
| | | | - Panagiota Tsompou
- Unit of Medical Technology and Intelligent Information Systems, Department of Materials Science and EngineeringUniversity of Ioannina GR 45110 Greece
| | - Gianna Karanasiou
- Department of Biomedical ResearchFORTH-IMBB GR 45110 Ioannina Greece
| | - Vassiliki Kigka
- Unit of Medical Technology and Intelligent Information Systems, Department of Materials Science and EngineeringUniversity of Ioannina GR 45110 Greece
| | - Savvas Kyriakidis
- Department of Biomedical ResearchFORTH-IMBB GR 45110 Ioannina Greece
| | - Vasileios Pezoulas
- Unit of Medical Technology and Intelligent Information Systems, Department of Materials Science and EngineeringUniversity of Ioannina GR 45110 Greece
| | - George Gois
- Department of Biomedical ResearchFORTH-IMBB GR 45110 Ioannina Greece
| | - Nikolaos Tachos
- Department of Biomedical ResearchFORTH-IMBB GR 45110 Ioannina Greece
| | - Aidonis Ramos
- Department of Cardiology, Medical SchoolUniversity of Ioannina Ioannina GR 45110 Greece
| | - Gualtiero Pelosi
- Institute of Clinical PhysiologyNational Research Council 56124 Pisa Italy
| | | | - Lampros Michalis
- Department of Cardiology, Medical SchoolUniversity of Ioannina Ioannina GR 45110 Greece
| | - Dimitrios I Fotiadis
- Department of Biomedical ResearchFORTH-IMBB GR 45110 Ioannina Greece
- Unit of Medical Technology and Intelligent Information Systems, Department of Materials Science and EngineeringUniversity of Ioannina GR 45110 Greece
| |
Collapse
|
11
|
Gijsen F, Katagiri Y, Barlis P, Bourantas C, Collet C, Coskun U, Daemen J, Dijkstra J, Edelman E, Evans P, van der Heiden K, Hose R, Koo BK, Krams R, Marsden A, Migliavacca F, Onuma Y, Ooi A, Poon E, Samady H, Stone P, Takahashi K, Tang D, Thondapu V, Tenekecioglu E, Timmins L, Torii R, Wentzel J, Serruys P. Expert recommendations on the assessment of wall shear stress in human coronary arteries: existing methodologies, technical considerations, and clinical applications. Eur Heart J 2020; 40:3421-3433. [PMID: 31566246 PMCID: PMC6823616 DOI: 10.1093/eurheartj/ehz551] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/09/2019] [Accepted: 09/23/2019] [Indexed: 01/09/2023] Open
Affiliation(s)
- Frank Gijsen
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Yuki Katagiri
- Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Peter Barlis
- Department of Medicine and Radiology, Melbourne Medical School, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia.,Department of Cardiology, Northern Hospital, 185 Cooper Street, Epping, Australia.,St Vincent's Heart Centre, Building C, 41 Victoria Parade, Fitzroy, Australia
| | - Christos Bourantas
- Institute of Cardiovascular Sciences, University College of London, London, UK.,Department of Cardiology, Barts Heart Centre, London, UK.,School of Medicine and Dentistry, Queen Mary University London, London, UK
| | - Carlos Collet
- Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Umit Coskun
- Division of Cardiovascular Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Joost Daemen
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Jouke Dijkstra
- LKEB-Division of Image Processing, Department of Radiology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Elazer Edelman
- Division of Cardiovascular Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA.,Institute for Medical Engineering and Science, MIT, Cambridge, MA, USA
| | - Paul Evans
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, UK
| | - Kim van der Heiden
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Rod Hose
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, UK.,Department of Circulation and Imaging, NTNU, Trondheim, Norway
| | - Bon-Kwon Koo
- Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul, Korea.,Institute of Aging, Seoul National University, Seoul, Korea
| | - Rob Krams
- School of Engineering and Materials Science Queen Mary University of London, London, UK
| | - Alison Marsden
- Departments of Bioengineering and Pediatrics, Institute of Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
| | - Francesco Migliavacca
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Yoshinobu Onuma
- Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Andrew Ooi
- Department of Mechanical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne, VIC, Australia
| | - Eric Poon
- Department of Mechanical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne, VIC, Australia
| | - Habib Samady
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Peter Stone
- Division of Cardiovascular Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kuniaki Takahashi
- Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Dalin Tang
- Department of Mathematics, Southeast University, Nanjing, China; Mathematical Sciences Department, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Vikas Thondapu
- Department of Medicine and Radiology, Melbourne Medical School, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia.,Department of Mechanical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne, VIC, Australia.,Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Erhan Tenekecioglu
- Department of Interventional Cardiology, Thoraxcentre, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Lucas Timmins
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT.,Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT
| | - Ryo Torii
- Department of Mechanical Engineering, University College London, UK
| | - Jolanda Wentzel
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Patrick Serruys
- Erasmus University Medical Center, Rotterdam, the Netherlands.,Imperial College London, London, UK.,Melbourne School of Engineering, University of Melbourne, Melbourne, Australia
| |
Collapse
|
12
|
Ono M, Kawashima H, Hara H, Gao C, Wang R, Kogame N, Takahashi K, Chichareon P, Modolo R, Tomaniak M, Wykrzykowska JJ, Piek JJ, Mori I, Courtney BK, Wijns W, Sharif F, Bourantas C, Onuma Y, Serruys PW. Advances in IVUS/OCT and Future Clinical Perspective of Novel Hybrid Catheter System in Coronary Imaging. Front Cardiovasc Med 2020; 7:119. [PMID: 32850981 PMCID: PMC7411139 DOI: 10.3389/fcvm.2020.00119] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/05/2020] [Indexed: 12/14/2022] Open
Abstract
Intravascular ultrasound (IVUS) and optical coherence tomography (OCT) have been developed and improved as both diagnostic and guidance tools for interventional procedures over the past three decades. IVUS has a resolution of 100 μm with a high tissue penetration and capability of assessing the entire structure of a coronary artery including the external elastic membrane, whereas OCT has a higher resolution of 10–20 μm to assess endoluminal structures with a limited tissue penetration compared to IVUS. Recently, two companies, CONAVI and TERUMO, integrated IVUS and OCT into a single catheter system. With their inherent strength and limitations, the combined IVUS and OCT probes are complementary and work synergistically to enable a comprehensive depiction of coronary artery. In this review, we summarize the performance of the two intracoronary imaging modalities—IVUS and OCT—and discuss the expected potential of the novel hybrid IVUS–OCT catheter system in the clinical field.
Collapse
Affiliation(s)
- Masafumi Ono
- Department of Clinical and Experimental Cardiology, Heart Center, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Department of Cardiology, National University of Ireland, Galway (NUIG), Galway, Ireland
| | - Hideyuki Kawashima
- Department of Clinical and Experimental Cardiology, Heart Center, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Department of Cardiology, National University of Ireland, Galway (NUIG), Galway, Ireland
| | - Hironori Hara
- Department of Clinical and Experimental Cardiology, Heart Center, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Department of Cardiology, National University of Ireland, Galway (NUIG), Galway, Ireland
| | - Chao Gao
- Department of Cardiology, National University of Ireland, Galway (NUIG), Galway, Ireland.,Department of Cardiology, Radboud University, Nijmegen, Netherlands.,Depatrment of Cardiology, Xijing hospital, Xi'an, China
| | - Rutao Wang
- Department of Cardiology, National University of Ireland, Galway (NUIG), Galway, Ireland.,Department of Cardiology, Radboud University, Nijmegen, Netherlands.,Depatrment of Cardiology, Xijing hospital, Xi'an, China
| | - Norihiro Kogame
- Department of Clinical and Experimental Cardiology, Heart Center, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Kuniaki Takahashi
- Department of Clinical and Experimental Cardiology, Heart Center, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Ply Chichareon
- Department of Clinical and Experimental Cardiology, Heart Center, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Division of Cardiology, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Rodrigo Modolo
- Department of Clinical and Experimental Cardiology, Heart Center, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Cardiology Division, Department of Internal Medicine, University of Campinas (UNICAMP), Campinas, Brazil
| | - Mariusz Tomaniak
- Thoraxcentre, Erasmus Medical Centre, Rotterdam, Netherlands.,First Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Joanna J Wykrzykowska
- Department of Clinical and Experimental Cardiology, Heart Center, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Jan J Piek
- Department of Clinical and Experimental Cardiology, Heart Center, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | | | - Brian K Courtney
- Schulich Heart Program, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada.,Conavi Medical, North York, ON, Canada
| | - William Wijns
- Department of Cardiology, National University of Ireland, Galway (NUIG), Galway, Ireland
| | - Faisal Sharif
- Department of Cardiology, National University of Ireland, Galway (NUIG), Galway, Ireland
| | | | - Yoshinobu Onuma
- Department of Cardiology, National University of Ireland, Galway (NUIG), Galway, Ireland
| | - Patrick W Serruys
- Department of Cardiology, National University of Ireland, Galway (NUIG), Galway, Ireland
| |
Collapse
|
13
|
Karanasiou GS, Tsobou PI, Tachos NS, Antonini L, Petrini L, Pennati G, Gijsen F, Nezami FR, Tzafiri R, Vaughan T, Fawdry M, Fotiadis DI. Design and implementation of in silico clinical trial for Bioresorbable Vascular Scaffolds. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:2675-2678. [PMID: 33018557 DOI: 10.1109/embc44109.2020.9176317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In the recent years, Bioresorbable Vascular Scaffolds (BVS) for the treatment of atherosclerosis have been introduced. InSilc is a cloud based in silico clinical trial (ISCT) platform for drug-eluting BVS. The platform integrates multidisciplinary and multiscale models predicting the BVS performance. In this study, we present a use case scenario and demonstrate the functioning of the individual modules and of the whole pipeline and the ability to predict BVS short, medium, long-term outcomes.
Collapse
|
14
|
Andrikos IO, Sakellarios AI, Siogkas PK, Tsompou PI, Kigka VI, Michalis LK, Fotiadis DI. A new method for the 3D reconstruction of coronary bifurcations pre and post the angioplasty procedure using the QCA. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:5757-5760. [PMID: 31947160 DOI: 10.1109/embc.2019.8857228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The aim of this study is to propose a new semi-automated method for three-dimensional (3D) reconstruction of coronary bifurcations arteries using X-ray Coronary Angiographies (CA). Considering two monoplane angiographic views as the input data, the method is based on a four-step approach. In the first step, the image pre-processing and the vessel segmentation is performed. In the second step the 3D centerline is reconstructed by implementing the back-projection algorithm. In the third step, the lumen borders are reconstructed around the centerline to result to the fourth step, during which the 3D point cloud of the side branch is adjusted to the main branch, to produce the final 3D model of the coronary bifurcation artery. Imaging data from seven patients (pre and post-stenting) were reconstructed in the 3D space. The validation of the proposed methodology was based on the comparison of the 3D model with the 2D CA. Blood flow simulations were performed both for the vessels before and after the angioplasty procedure. Decreased Endothelial Shear Stress (ESS) values were observed for the vessels after the Percutaneous Transluminal Coronary Intervention (PTCI).
Collapse
|
15
|
Katagiri Y, Torii R, Takahashi K, Tenekecioglu E, Asano T, Chichareon P, Tomaniak M, Piek JJ, Wykrzykowska JJ, Bullett N, Ahmed N, Al-Lamee K, Al-Lamee R, Leclerc G, Kitslaar P, Dijkstra J, Reiber JHC, Poon EKW, Bourantas CV, Gijsen FJH, Serruys PW, Onuma Y. Preclinical evaluation of a thin-strut bioresorbable scaffold (ArterioSorb): acute-phase invasive imaging assessment and hemodynamic implication. EUROINTERVENTION 2020; 16:e141-e146. [PMID: 31289016 DOI: 10.4244/eij-d-18-01190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
AIMS The aim of this study was to assess the acute performance of the 95 µm ArterioSorb oriented poly L-lactic acid (PLLA) scaffold in comparison with the XIENCE metallic drug-eluting stent (DES) in porcine coronary arteries. METHODS AND RESULTS In 15 non-atherosclerotic Yucatan mini pigs, the ArterioSorb (3.0/14 mm) and XIENCE (3.0/15 mm) were implanted in 25 and 15 vessels, respectively. Acute performance was evaluated by using quantitative coronary angiography (QCA) and optical coherence tomography (OCT). Following three-dimensional reconstruction of the coronary arteries, endothelial shear stress (ESS) was quantified using non-Newtonian steady-flow simulation. Acute recoil measured by QCA was comparable in the two arms. Post-procedural flow and scaffold/stent area by OCT did not differ between the two devices. ESS post procedure was comparable between ArterioSorb and XIENCE (2.21±1.97 vs 2.25±1.71 Pa, p=0.314). CONCLUSIONS Acute recoil, luminal dimensions and ESS in the ArterioSorb oriented PLLA scaffold with thin struts of 95 µm were comparable to those in the XIENCE metallic DES.
Collapse
Affiliation(s)
- Yuki Katagiri
- Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Kilic Y, Safi H, Bajaj R, Serruys PW, Kitslaar P, Ramasamy A, Tufaro V, Onuma Y, Mathur A, Torii R, Baumbach A, Bourantas CV. The Evolution of Data Fusion Methodologies Developed to Reconstruct Coronary Artery Geometry From Intravascular Imaging and Coronary Angiography Data: A Comprehensive Review. Front Cardiovasc Med 2020; 7:33. [PMID: 32296713 PMCID: PMC7136420 DOI: 10.3389/fcvm.2020.00033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/21/2020] [Indexed: 12/01/2022] Open
Abstract
Understanding the mechanisms that regulate atherosclerotic plaque formation and evolution is a crucial step for developing treatment strategies that will prevent plaque progression and reduce cardiovascular events. Advances in signal processing and the miniaturization of medical devices have enabled the design of multimodality intravascular imaging catheters that allow complete and detailed assessment of plaque morphology and biology. However, a significant limitation of these novel imaging catheters is that they provide two-dimensional (2D) visualization of the lumen and vessel wall and thus they cannot portray vessel geometry and 3D lesion architecture. To address this limitation computer-based methodologies and user-friendly software have been developed. These are able to off-line process and fuse intravascular imaging data with X-ray or computed tomography coronary angiography (CTCA) to reconstruct coronary artery anatomy. The aim of this review article is to summarize the evolution in the field of coronary artery modeling; we thus present the first methodologies that were developed to model vessel geometry, highlight the modifications introduced in revised methods to overcome the limitations of the first approaches and discuss the challenges that need to be addressed, so these techniques can have broad application in clinical practice and research.
Collapse
Affiliation(s)
- Yakup Kilic
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom
| | - Hannah Safi
- Institute of Cardiovascular Sciences, University College London, London, United Kingdom
| | - Retesh Bajaj
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom.,Centre for Cardiovascular Medicine and Device Innovation, Queen Mary University London, London, United Kingdom
| | - Patrick W Serruys
- Faculty of Medicine, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Pieter Kitslaar
- Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Anantharaman Ramasamy
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom.,Centre for Cardiovascular Medicine and Device Innovation, Queen Mary University London, London, United Kingdom
| | - Vincenzo Tufaro
- Centre for Cardiovascular Medicine and Device Innovation, Queen Mary University London, London, United Kingdom
| | | | - Anthony Mathur
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom.,Centre for Cardiovascular Medicine and Device Innovation, Queen Mary University London, London, United Kingdom
| | - Ryo Torii
- Department of Mechanical Engineering, University College London, London, United Kingdom
| | - Andreas Baumbach
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom.,Centre for Cardiovascular Medicine and Device Innovation, Queen Mary University London, London, United Kingdom
| | - Christos V Bourantas
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom.,Institute of Cardiovascular Sciences, University College London, London, United Kingdom.,Centre for Cardiovascular Medicine and Device Innovation, Queen Mary University London, London, United Kingdom
| |
Collapse
|
17
|
Utility of Multimodality Intravascular Imaging and the Local Hemodynamic Forces to Predict Atherosclerotic Disease Progression. JACC Cardiovasc Imaging 2020; 13:1021-1032. [PMID: 31202749 DOI: 10.1016/j.jcmg.2019.02.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/18/2019] [Accepted: 02/26/2019] [Indexed: 01/11/2023]
|
18
|
Tsompou PI, Siogkas PK, Sakellarios AI, Andrikos IO, Kigka VI, Lemos PA, Michalis LK, Fotiadis DI. A comparison of three multimodality coronary 3D reconstruction methods. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:5812-5815. [PMID: 31947173 DOI: 10.1109/embc.2019.8857582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The assessment of the severity of arterial stenoses is of utmost importance in clinical practice. Several image modalities invasive and non-invasive are nowadays available and can be utilized for the 3-dimensional (3D) reconstruction of the arterial geometry. Following our previous study, the present study was conducted to further strengthen the evaluation of three reconstruction methodologies, namely: (i) the Quantitative Coronary Analysis (QCA), (ii) the Virtual Histology Intravascular Ultrasound VH-IVUS-Angiography hybrid method and (iii) the Coronary Computed Tomography Angiography (CCTA). Data from 13 patients were employed to perform a quantitative analysis using specific metrics, such as, the Mean Wall Shear Stress (mWSS), the Minimum Lumen diameter (MLD), the Reference Vessel Diameter (RVD), the Degree of stenosis (DS%), and the Lesion length (LL). A high correlation was observed for the mWSS metric between the three reconstruction methods, especially between the QCA and CCTA (r=0.974, P<; 0.001).
Collapse
|
19
|
Sharzehee M, Chang Y, Song JP, Han HC. Hemodynamic effects of myocardial bridging in patients with hypertrophic cardiomyopathy. Am J Physiol Heart Circ Physiol 2019; 317:H1282-H1291. [PMID: 31674812 DOI: 10.1152/ajpheart.00466.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Myocardial bridging (MB) is linked to angina and myocardial ischemia and may lead to sudden cardiac death in patients with hypertrophic cardiomyopathy (HCM). However, it remains unclear how MB affect the coronary blood flow in HCM patients. The aim of this study was to assess the effects of MB on coronary hemodynamics in HCM patients. Fifteen patients with MB (7 HCM and 8 non-HCM controls) in their left anterior descending (LAD) coronary artery were chosen. Transient computational fluid dynamics (CFD) simulations were conducted in anatomically realistic models of diseased (with MB) and virtually healthy (without MB) LAD from these patients, reconstructed from biplane angiograms. Our CFD simulation results demonstrated that dynamic compression of MB led to diastolic flow disturbances and could significantly reduce the coronary flow in HCM patients as compared with non-HCM group (P < 0.01). The pressure drop coefficient was remarkably higher (P < 0.05) in HCM patients. The flow rate change is strongly correlated with both upstream Reynolds number and MB compression ratio, while the MB length has less impact on coronary flow. The hemodynamic results and clinical outcomes revealed that HCM patients with an MB compression ratio higher than 65% required a surgical intervention. In conclusion, the transient MB compression can significantly alter the diastolic flow pattern and wall shear stress distribution in HCM patients. HCM patients with severe MB may need a surgical intervention.NEW & NOTEWORTHY In this study, the hemodynamic significance of myocardial bridging (MB) in patients with hypertrophic cardiomyopathy (HCM) was investigated to provide valuable information for surgical decision-making. Our results illustrated that the transient MB compression led to complex flow patterns, which can significantly alter the diastolic flow and wall shear stress distribution. The hemodynamic results and clinical outcomes demonstrated that patients with HCM and an MB compression ratio higher than 65% required a surgical intervention.
Collapse
Affiliation(s)
- Mohammadali Sharzehee
- Department of Mechanical Engineering, The University of Texas at San Antonio, San Antonio, Texas
| | - Yuan Chang
- Department of Cardiac Surgery, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Beijing, China
| | - Jiang-Ping Song
- Department of Cardiac Surgery, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Beijing, China
| | - Hai-Chao Han
- Department of Mechanical Engineering, The University of Texas at San Antonio, San Antonio, Texas
| |
Collapse
|
20
|
Bourantas CV, Ramasamy A, Karagiannis A, Sakellarios A, Zanchin T, Yamaji K, Ueki Y, Shen X, Fotiadis DI, Michalis LK, Mathur A, Serruys PW, Garcia-Garcia HM, Koskinas K, Torii R, Windecker S, Räber L. Angiographic derived endothelial shear stress: a new predictor of atherosclerotic disease progression. Eur Heart J Cardiovasc Imaging 2019; 20:314-322. [PMID: 30020435 DOI: 10.1093/ehjci/jey091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 06/19/2018] [Indexed: 12/16/2022] Open
Abstract
AIMS To examine the efficacy of angiography derived endothelial shear stress (ESS) in predicting atherosclerotic disease progression. METHODS AND RESULTS Thirty-five patients admitted with ST-elevation myocardial infarction that had three-vessel intravascular ultrasound (IVUS) immediately after revascularization and at 13 months follow-up were included. Three dimensional (3D) reconstruction of the non-culprit vessels were performed using (i) quantitative coronary angiography (QCA) and (ii) methodology involving fusion of IVUS and biplane angiography. In both models, blood flow simulation was performed and the minimum predominant ESS was estimated in 3 mm segments. Baseline plaque characteristics and ESS were used to identify predictors of atherosclerotic disease progression defied as plaque area increase and lumen reduction at follow-up. Fifty-four vessels were included in the final analysis. A moderate correlation was noted between ESS estimated in the 3D QCA and the IVUS-derived models (r = 0.588, P < 0.001); 3D QCA accurately identified segments exposed to low (<1 Pa) ESS in the IVUS-based reconstructions (AUC: 0.793, P < 0.001). Low 3D QCA-derived ESS (<1.75 Pa) was associated with an increase in plaque area, burden, and necrotic core at follow-up. In multivariate analysis, low ESS estimated either in 3D QCA [odds ratio (OR): 2.07, 95% confidence interval (CI): 1.17-3.67; P = 0.012) or in IVUS (<1 Pa; OR: 2.23, 95% CI: 1.23-4.03; P = 0.008) models, and plaque burden were independent predictors of atherosclerotic disease progression; 3D QCA and IVUS-derived models had a similar accuracy in predicting disease progression (AUC: 0.826 vs. 0.827, P = 0.907). CONCLUSIONS 3D QCA-derived ESS can predict disease progression. Further research is required to examine its value in detecting vulnerable plaques.
Collapse
Affiliation(s)
- Christos V Bourantas
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, UK.,Institute of Cardiovascular Sciences, University College London, London, UK
| | | | - Alexios Karagiannis
- CTU Bern, Institute of Social and Preventive Medicine, Bern University, Bern, Switzerland
| | - Antonis Sakellarios
- CTU Bern, Institute of Social and Preventive Medicine, Bern University, Bern, Switzerland
| | - Thomas Zanchin
- Department of Cardiology, Bern University Hospital, Bern, Switzerland
| | - Kyohei Yamaji
- Department of Cardiology, Bern University Hospital, Bern, Switzerland
| | - Yasushi Ueki
- Department of Cardiology, Bern University Hospital, Bern, Switzerland
| | - Xiaohui Shen
- Department of Mechanical Engineering, University College London, London, UK
| | - Dimitrios I Fotiadis
- Department of Materials Science and Engineering, University of Ioannina, Ioannina, Greece
| | - Lampros K Michalis
- 2nd Department of Cardiology, Medical School, University of Ioannina, Ioannina, Greece
| | - Anthony Mathur
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, UK
| | - Patrick W Serruys
- International Centre for Circulatory Health, NHLI, Imperial College London, London, UK
| | - Hector M Garcia-Garcia
- Section of Interventional Cardiology, MedStar Washington Hospital Center, Washington, DC, USA
| | | | - Ryo Torii
- Department of Mechanical Engineering, University College London, London, UK
| | - Stephan Windecker
- Department of Cardiology, Bern University Hospital, Bern, Switzerland
| | - Lorenz Räber
- Department of Cardiology, Bern University Hospital, Bern, Switzerland
| |
Collapse
|
21
|
Kweon J, Kang SJ, Kim YH, Lee JG, Han S, Ha H, Yang DH, Kang JW, Lim TH, Kwon O, Ahn JM, Lee PH, Park DW, Lee SW, Lee CW, Park SW, Park SJ. Impact of coronary lumen reconstruction on the estimation of endothelial shear stress: in vivo comparison of three-dimensional quantitative coronary angiography and three-dimensional fusion combining optical coherent tomography. Eur Heart J Cardiovasc Imaging 2019; 19:1134-1141. [PMID: 29028985 DOI: 10.1093/ehjci/jex222] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 09/02/2017] [Indexed: 11/14/2022] Open
Abstract
Aims It is not clearly elucidated how the fusion technique improves the accuracy of endothelial shear stress (ESS) prediction, in comparison with that of three-dimensional (3D) quantitative coronary angiography (QCA) alone. We aimed to evaluate the difference in geometric measurements and haemodynamic estimation between 3D QCA and a 3D fusion model combining 3D QCA and optical coherence tomography (OCT). Methods and results Computational fluid dynamics was assessed in the coronary models of 20 patients. In the plane-per-plane comparison, the difference and agreement were assessed using a generalized linear mixed model and concordance correlation coefficient (CCC), respectively. The haemodynamic feature around minimum-lumen-diameter (MLD) was characterized using CCC values calculated for 1-mm segments. In comparison with the 3D fusion model, 3D QCA showed a shorter maximum lumen diameter (2.54 ± 0.67 mm vs. 2.78 ± 0.73 mm, P < 0.001) and smaller lumen area (4.81 ± 2.56 mm2 vs. 5.66 ± 2.97 mm2, P < 0.001), resulting in a significantly higher ESS (4.64 Pa vs. 3.78 Pa, p = 0.029). A more asymmetric lumen shape of the 3D fusion model was more likely associated with under- and over-estimation of the maximum and minimum lumen diameters in the 3D QCA model, respectively. The circumferential ESS variations, which were blunted by 3D QCA, showed the worst concordance near the MLD site (CCC = 0.370) on segment-based comparison. Conclusion The 3D fusion technique may be a more relevant tool for the haemodynamic simulation of coronary arteries through providing more accurate lumen characterization than 3D QCA.
Collapse
Affiliation(s)
- Jihoon Kweon
- Department of Cardiology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-ro 43-Gil, Songpa-gu, Seoul, Korea
| | - Soo-Jin Kang
- Department of Cardiology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-ro 43-Gil, Songpa-gu, Seoul, Korea
| | - Young-Hak Kim
- Department of Cardiology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-ro 43-Gil, Songpa-gu, Seoul, Korea
| | - June-Goo Lee
- Department of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-ro 43-Gil, Songpa-gu, Seoul, Korea
| | - Seungbong Han
- Department of Applied Statistics, Gachon University, 1342, Seongnam-Daero, Sujeong-Gu, Seongnam, Korea
| | - Hojin Ha
- Department of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-ro 43-Gil, Songpa-gu, Seoul, Korea
| | - Dong Hyun Yang
- Department of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-ro 43-Gil, Songpa-gu, Seoul, Korea
| | - Joon-Won Kang
- Department of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-ro 43-Gil, Songpa-gu, Seoul, Korea
| | - Tae-Hwan Lim
- Department of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-ro 43-Gil, Songpa-gu, Seoul, Korea
| | - Osung Kwon
- Department of Cardiology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-ro 43-Gil, Songpa-gu, Seoul, Korea
| | - Jung-Min Ahn
- Department of Cardiology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-ro 43-Gil, Songpa-gu, Seoul, Korea
| | - Pil Hyung Lee
- Department of Cardiology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-ro 43-Gil, Songpa-gu, Seoul, Korea
| | - Duk-Woo Park
- Department of Cardiology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-ro 43-Gil, Songpa-gu, Seoul, Korea
| | - Seung-Whan Lee
- Department of Cardiology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-ro 43-Gil, Songpa-gu, Seoul, Korea
| | - Cheol Whan Lee
- Department of Cardiology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-ro 43-Gil, Songpa-gu, Seoul, Korea
| | - Seong-Wook Park
- Department of Cardiology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-ro 43-Gil, Songpa-gu, Seoul, Korea
| | - Seung-Jung Park
- Department of Cardiology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-ro 43-Gil, Songpa-gu, Seoul, Korea
| |
Collapse
|
22
|
Bourantas CV, Zanchin T, Sakellarios A, Karagiannis A, Ramasamy A, Yamaji K, Taniwaki M, Heg D, Moschovitis A, Fotiadis D, Mihalis L, Baumbach A, Torii R, Serruys P, Garcia-Garcia HM, Windecker S, Räber L. Implications of the local haemodynamic forces on the phenotype of coronary plaques. Heart 2019; 105:1078-1086. [PMID: 30877239 DOI: 10.1136/heartjnl-2018-314086] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/09/2019] [Accepted: 01/14/2019] [Indexed: 11/03/2022] Open
Abstract
AIM To examine the effect of endothelial shear stress (ESS) on the dynamic changes in plaque phenotype. METHODS Patients with myocardial infarction that had intravascular ultrasound-virtual histology (IVUS-VH) and optical coherence tomography (OCT) at baseline and 13-month follow-up were studied. The IVUS-VH data were used to reconstruct the nonculprit vessels, and in the obtained models the ESS was estimated in 3 mm segments. Plaque morphology was derived in each segment from IVUS-VH and OCT. Disease progression was defined as the presence of ≥2 out of the following criteria: reduction in lumen area, increase in plaque burden and change of plaque morphology to a more vulnerable phenotype. Linear mixed effects models were used to assess the effect of ESS in different phenotypes. RESULTS Sixty-eight vessels were included in the analysis. Low ESS was associated with plaque progression in all phenotypes. The effect of ESS on plaque burden (p for interaction=0.467) and phenotype (p for interaction=0.188) was similar in all plaque types, whereas the effect of ESS on the changes in lumen dimensions was more prominent in disease-free (β=0.70, p<0.001) than fibrotic/fibrocalcific (β=0.28, p<0.001) or lipid-rich plaques (β=0.15, p=0.015). Standalone IVUS-VH misclassified plaque morphology in one-third of the cases leading to erroneous estimations about the effect of ESS on plaque evolution in different phenotypes. CONCLUSIONS The effect of ESS on plaque progression is similar in all phenotypes and cannot be accurately assessed by standalone IVUS-VH which often misclassifies plaque morphology. Therefore, multimodality imaging should be considered to examine the implications of ESS on plaque evolution. CLINICAL TRIAL REGISTRATION NCT00962416; Post-results.
Collapse
Affiliation(s)
- Christos V Bourantas
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, UK.,Institute of Cardiovascular Sciences, University College London, London, UK.,School of Medicine and Dentistry, Queen Mary University London, London, UK
| | - Thomas Zanchin
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, UK.,Department of Cardiology, Swiss Cardiovascular Center, Bern University Hospital, Bern, Switzerland.,Department of Mechanical Engineering, University College London, London, UK
| | - Antonis Sakellarios
- Department of Materials Science and Engineering, University of Ioannina, Ioannina, Greece
| | - Alexios Karagiannis
- Clinical Trial Unit, Institute of Social and Preventive Medicine, Bern, Switzerland
| | | | - Kyohei Yamaji
- Department of Cardiology, Bern University Hospital, Bern, Switzerland
| | - Masanori Taniwaki
- Department of Cardiology, Bern University Hospital, Bern, Switzerland
| | - Dik Heg
- Clinical Trial Unit, Institute of Social and Preventive Medicine, Bern, Switzerland
| | - Aris Moschovitis
- Department of Cardiology, Bern University Hospital, Bern, Switzerland
| | - Dimitrios Fotiadis
- Department of Materials Science and Engineering, University of Ioannina, Ioannina, Greece
| | - Lampros Mihalis
- Department of Cardiology, University of Ioannina, Ioannina, Greece
| | - Andreas Baumbach
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, UK.,School of Medicine and Dentistry, Queen Mary University London, London, London, UK
| | - Ryo Torii
- Department of Mechanical Engineering, University College London, London, UK
| | - Patrick Serruys
- International Centre for Circulatory Health, Imperial College London Institute of Clinical Sciences, London, UK
| | - Hector M Garcia-Garcia
- Section of Interventional Cardiology, MedStar Washington Hospital Center, Washington, Columbia, USA
| | - Stephan Windecker
- Department of Cardiology, Swiss Cardiovascular Center, Bern University Hospital, Bern, Switzerland
| | - Lorenz Räber
- Department of Cardiology, Bern University Hospital, Bern, Switzerland
| |
Collapse
|
23
|
Athanasiou L, Nezami FR, Galon MZ, Lopes AC, Lemos PA, de la Torre Hernandez JM, Ben-Assa E, Edelman ER. Optimized Computer-Aided Segmentation and Three-Dimensional Reconstruction Using Intracoronary Optical Coherence Tomography. IEEE J Biomed Health Inform 2019; 22:1168-1176. [PMID: 29969405 DOI: 10.1109/jbhi.2017.2762520] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We present a novel and time-efficient method for intracoronary lumen detection, which produces three-dimensional (3-D) coronary arteries using optical coherence tomographic (OCT) images. OCT images are acquired for multiple patients and longitudinal cross-section (LOCS) images are reconstructed using different acquisition angles. The lumen contours for each LOCS image are extracted and translated to 2-D cross-sectional images. Using two angiographic projections, the centerline of the coronary vessel is reconstructed in 3-D, and the detected 2-D contours are transformed to 3-D and placed perpendicular to the centerline. To validate the proposed method, 613 manual annotations from medical experts were used as gold standard. The 2-D detected contours were compared with the annotated contours, and the 3-D reconstructed models produced using the detected contours were compared to the models produced by the annotated contours. Wall shear stress (WSS), as dominant hemodynamics factor, was calculated using computational fluid dynamics and 844 consecutive 2-mm segments of the 3-D models were extracted and compared with each other. High Pearson's correlation coefficients were obtained for the lumen area (r = 0.98) and local WSS (r = 0.97) measurements, while no significant bias with good limits of agreement was shown in the Bland-Altman analysis. The overlapping and nonoverlapping areas ratio between experts' annotations and presented method was 0.92 and 0.14, respectively. The proposed computer-aided lumen extraction and 3-D vessel reconstruction method is fast, accurate, and likely to assist in a number of research and clinical applications.
Collapse
|
24
|
Latus S, Griese F, Schlüter M, Otte C, Möddel M, Graeser M, Saathoff T, Knopp T, Schlaefer A. Bimodal intravascular volumetric imaging combining OCT and MPI. Med Phys 2019; 46:1371-1383. [PMID: 30657597 DOI: 10.1002/mp.13388] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 11/27/2018] [Accepted: 12/27/2018] [Indexed: 02/06/2023] Open
Abstract
PURPOSE Intravascular optical coherence tomography (IVOCT) is a catheter-based image modality allowing for high-resolution imaging of vessels. It is based on a fast sequential acquisition of A-scans with an axial spatial resolution in the range of 5-10 μm, that is, one order of magnitude higher than in conventional methods like intravascular ultrasound or computed tomography angiography. However, position and orientation of the catheter in patient coordinates cannot be obtained from the IVOCT measurements alone. Hence, the pose of the catheter needs to be established to correctly reconstruct the three-dimensional vessel shape. Magnetic particle imaging (MPI) is a three-dimensional tomographic, tracer-based, and radiation-free image modality providing high temporal resolution with unlimited penetration depth. Volumetric MPI images are angiographic and hence suitable to complement IVOCT as a comodality. We study simultaneous bimodal IVOCT MPI imaging with the goal of estimating the IVOCT pullback path based on the 3D MPI data. METHODS We present a setup to study and evaluate simultaneous IVOCT and MPI image acquisition of differently shaped vessel phantoms. First, the influence of the MPI tracer concentration on the optical properties required for IVOCT is analyzed. Second, using a concentration allowing for simultaneous imaging, IVOCT and MPI image data are acquired sequentially and simultaneously. Third, the luminal centerline is established from the MPI image volumes and used to estimate the catheter pullback trajectory for IVOCT image reconstruction. The image volumes are compared to the known shape of the phantoms. RESULTS We were able to identify a suitable MPI tracer concentration of 2.5 mmol/L with negligible influence on the IVOCT signal. The pullback trajectory estimated from MPI agrees well with the centerline of the phantoms. Its mean absolute error ranges from 0.27 to 0.28 mm and from 0.25 mm to 0.28 mm for sequential and simultaneous measurements, respectively. Likewise, reconstructing the shape of the vessel phantoms works well with mean absolute errors for the diameter ranging from 0.11 to 0.21 mm and from 0.06 to 0.14 mm for sequential and simultaneous measurements, respectively. CONCLUSIONS Magnetic particle imaging can be used in combination with IVOCT to estimate the catheter trajectory and the vessel shape with high precision and without ionizing radiation.
Collapse
Affiliation(s)
- Sarah Latus
- Institute of Medical Technology, Hamburg University of Technology, Hamburg, 21073, Germany
| | - Florian Griese
- Section for Biomedical Imaging, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany.,Institute for Biomedical Imaging, Hamburg University of Technology, Hamburg, 21073, Germany
| | - Matthias Schlüter
- Institute of Medical Technology, Hamburg University of Technology, Hamburg, 21073, Germany
| | - Christoph Otte
- Institute of Medical Technology, Hamburg University of Technology, Hamburg, 21073, Germany
| | - Martin Möddel
- Section for Biomedical Imaging, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany.,Institute for Biomedical Imaging, Hamburg University of Technology, Hamburg, 21073, Germany
| | - Matthias Graeser
- Section for Biomedical Imaging, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany.,Institute for Biomedical Imaging, Hamburg University of Technology, Hamburg, 21073, Germany
| | - Thore Saathoff
- Institute of Medical Technology, Hamburg University of Technology, Hamburg, 21073, Germany
| | - Tobias Knopp
- Section for Biomedical Imaging, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany.,Institute for Biomedical Imaging, Hamburg University of Technology, Hamburg, 21073, Germany
| | - Alexander Schlaefer
- Institute of Medical Technology, Hamburg University of Technology, Hamburg, 21073, Germany
| |
Collapse
|
25
|
Abstract
Computational cardiology is the scientific field devoted to the development of methodologies that enhance our mechanistic understanding, diagnosis and treatment of cardiovascular disease. In this regard, the field embraces the extraordinary pace of discovery in imaging, computational modeling, and cardiovascular informatics at the intersection of atherogenesis and vascular biology. This paper highlights existing methods, practices, and computational models and proposes new strategies to support a multidisciplinary effort in this space. We focus on the means by that to leverage and coalesce these multiple disciplines to advance translational science and computational cardiology. Analyzing the scientific trends and understanding the current needs we present our perspective for the future of cardiovascular treatment.
Collapse
|
26
|
Karanasiou GS, Tachos NS, Sakellarios A, Michalis LK, Conway C, Edelman ER, Fotiadis DI. In silico assessment of the effects of material on stent deployment. PROCEEDINGS. IEEE INTERNATIONAL SYMPOSIUM ON BIOINFORMATICS AND BIOENGINEERING 2018; 2017:462-467. [PMID: 30079407 DOI: 10.1109/bibe.2017.00-11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Coronary stents are expandable scaffolds that are used to widen occluded diseased arteries and restore blood flow. Because of the strain they are exposed to and forces they must resist as well as the importance of surface interactions, material properties are dominant. Indeed, a common differentiating factors amongst commercially available stents is their material. Several performance requirements relate to stent materials including radial strength for adequate arterial support post-deployment. This study investigated the effect of the stent material in three finite element models using different stents made of: (i) Cobalt-Chromium (CoCr), (ii) Stainless Steel (SS316L), and (iii) Platinum Chromium (PtCr). Deployment was investigated in a patient specific arterial geometry, created based on a fusion of angiographic data and intravascular ultrasound images. In silico results show that: (i) the maximum von Mises stress occurs for the CoCr, however the curved areas of the stent links present higher stresses compared to the straight stent segments for all stents, (ii) more areas of high inner arterial stress exist in the case of the CoCr stent deployment, (iii) there is no significant difference in the percentage of arterial stress volume distribution among all models.
Collapse
Affiliation(s)
- Georgia S Karanasiou
- Department of Biomedical Research, Institute of Molecular Biology and Biotechnology, FORTH Ioannina, Greece,
| | - Nikolaos S Tachos
- Department of Biomedical Research, Institute of Molecular Biology and Biotechnology, FORTH Ioannina, Greece
| | - Antonios Sakellarios
- Department of Biomedical Research, Institute of Molecular Biology and Biotechnology, FORTH Ioannina, Greece
| | - Lampros K Michalis
- Department of Cardiology, Medical School, University of Ioannina, Ioannina, Greece
| | - Claire Conway
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, CBSET, Lexington, MA, USA.
| | - Elazer R Edelman
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MACBSET, Lexington, MA, USA.
| | - Dimitrios I Fotiadis
- University of Ioannina, Department of Materials Science, Unit of Medical Technology and Intelligent Information Systems
| |
Collapse
|
27
|
Liu B, Jiang Q, Liu W, Wang M, Zhang S, Zhang X, Zhang B, Yue Z. A vessel segmentation method for serialized cerebralvascular DSA images based on spatial feature point set of rotating coordinate system. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2018; 161:55-72. [PMID: 29852968 DOI: 10.1016/j.cmpb.2018.04.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 05/31/2017] [Accepted: 04/14/2018] [Indexed: 06/08/2023]
Abstract
Cerebrovascular pathology is one of the main fatal diseases which seriously affect the human's health. Extracting the accurate image of cerebral vascular tissue is the key of clinical diagnosis. However, the motion artifacts in DSA images seriously affected the quality of vascular subtraction image. In this paper, an automatic and accurate segmentation method is presented to extract the vascular region in the live image of brain. Firstly, a coarse registration for the live image and the mask image is implemented. And then, the SIFT algorithm is utilized to detect geometrical feature points in the serialized subtraction images. After that, a spatial model of rotating coordinate system and a calculative strategy of contextual information are designed to eliminate the error feature points. Finally, based on a dynamic threshold method, the blood vessel image can be obtained by region growing. The context information in the adjacent subtraction images is fully used. The experimental result shows that the segmented cerebral vascular image is satisfactory. This method can provide accurate vessel image data for the clinical operation based on DSA interventional therapy.
Collapse
Affiliation(s)
- Bin Liu
- Department of Digital Media Technology, Dalian University of Technology, Dalian 116620, China; Key Laboratory for Ubiquitous Network and Service Software of Liaoning Province, Dalian 116620, China
| | - Qianfeng Jiang
- Department of Digital Media Technology, Dalian University of Technology, Dalian 116620, China
| | - Wenpeng Liu
- Department of Digital Media Technology, Dalian University of Technology, Dalian 116620, China
| | - Mingzhe Wang
- Department of Digital Media Technology, Dalian University of Technology, Dalian 116620, China
| | - Song Zhang
- Department of Digital Media Technology, Dalian University of Technology, Dalian 116620, China
| | - Xiaohui Zhang
- Department of Digital Media Technology, Dalian University of Technology, Dalian 116620, China
| | - Bingbing Zhang
- Modern Technology and Educational Department, Dalian Medical University, Dalian 116044, China.
| | - Zongge Yue
- Affiliated Hospital, Dalian University of Technology, Dalian 116023, China
| |
Collapse
|
28
|
Shi C, Luo X, Guo J, Najdovski Z, Fukuda T, Ren H. Three-Dimensional Intravascular Reconstruction Techniques Based on Intravascular Ultrasound: A Technical Review. IEEE J Biomed Health Inform 2018; 22:806-817. [DOI: 10.1109/jbhi.2017.2703903] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
29
|
Siasos G, Sara JD, Zaromytidou M, Park KH, Coskun AU, Lerman LO, Oikonomou E, Maynard CC, Fotiadis D, Stefanou K, Papafaklis M, Michalis L, Feldman C, Lerman A, Stone PH. Local Low Shear Stress and Endothelial Dysfunction in Patients With Nonobstructive Coronary Atherosclerosis. J Am Coll Cardiol 2018; 71:2092-2102. [PMID: 29747829 DOI: 10.1016/j.jacc.2018.02.073] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 02/21/2018] [Accepted: 02/25/2018] [Indexed: 11/26/2022]
|
30
|
Katagiri Y, Tenekecioglu E, Serruys PW, Collet C, Katsikis A, Asano T, Miyazaki Y, Piek JJ, Wykrzykowska JJ, Bourantas C, Onuma Y. What does the future hold for novel intravascular imaging devices: a focus on morphological and physiological assessment of plaque. Expert Rev Med Devices 2017; 14:985-999. [DOI: 10.1080/17434440.2017.1407646] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Yuki Katagiri
- Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | - Carlos Collet
- Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Athanasios Katsikis
- Department of Cardiology, General Military Hospital of Athens, Athens, Greece
| | - Taku Asano
- Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Yosuke Miyazaki
- ThoraxCenter, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jan J Piek
- Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Christos Bourantas
- Barts Heart Centre, Barts Health NHS Trust, London, UK
- Institute of Cardiovascular Sciences, University College London, London, UK
| | - Yoshinobu Onuma
- ThoraxCenter, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
31
|
Vessel centerline reconstruction from non-isocentric and non-orthogonal paired monoplane angiographic images. Int J Cardiovasc Imaging 2017; 34:673-682. [PMID: 29139034 DOI: 10.1007/s10554-017-1275-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/11/2017] [Indexed: 10/18/2022]
Abstract
PURPOSE Three-dimensional reconstruction of a vessel centerline from paired planar coronary angiographic images is critical to reconstruct the complex three-dimensional structure of the coronary artery lumen and the relative positioning of implanted devices. In this study, a new vessel centerline reconstruction method that can utilize non-isocentric and non-orthogonal pairs of angiographic images was developed and tested. METHODS Our new method was developed in in vitro phantom models of bifurcated coronary artery with and without stent, and then tested in in vivo swine models (twelve coronary arteries). This method was also validated using data from six patients. RESULTS Our new method demonstrated high accuracy (root mean square error = 0.27 mm or 0.76 pixel), and high reproducibility across a broad imaging angle (20°-130°) and between different cardiac cycles in vitro and in vivo. Use of this method demonstrated that the vessel centerline in the stented segment did not deform significantly over a cardiac cycle in vivo. In addition, the total movement of the isocenter in each image could be accurately estimated in vitro and in vivo. The performance of this new method for patient data was similar to that for in vitro phantom models and in vivo animal models. CONCLUSIONS We developed a vessel centerline reconstruction method for non-isocentric and non-orthogonal angiographic images. It demonstrated high accuracy and good reproducibility in vitro, in vivo, and in clinical setting, suggesting that our new method is clinically applicable despite the small sample size of clinical data.
Collapse
|
32
|
Stone PH, Maehara A, Coskun AU, Maynard CC, Zaromytidou M, Siasos G, Andreou I, Fotiadis D, Stefanou K, Papafaklis M, Michalis L, Lansky AJ, Mintz GS, Serruys PW, Feldman CL, Stone GW. Role of Low Endothelial Shear Stress and Plaque Characteristics in the Prediction of Nonculprit Major Adverse Cardiac Events: The PROSPECT Study. JACC Cardiovasc Imaging 2017; 11:462-471. [PMID: 28917684 DOI: 10.1016/j.jcmg.2017.01.031] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 01/15/2017] [Accepted: 01/17/2017] [Indexed: 11/15/2022]
Abstract
OBJECTIVES This study sought to determine whether low endothelial shear stress (ESS) adds independent prognostication for future major adverse cardiac events (MACE) in coronary lesions in patients with high-risk acute coronary syndrome (ACS) from the United States and Europe. BACKGROUND Low ESS is a proinflammatory, proatherogenic stimulus associated with coronary plaque development, progression, and destabilization in human-like animal models and in humans. Previous natural history studies including baseline ESS characterization investigated low-risk patients. METHODS In the PROSPECT (Providing Regional Observations to Study Predictors of Events in the Coronary Tree) study, 697 patients with ACS underwent 3-vessel intracoronary imaging. Independent predictors of MACE attributable to untreated nonculprit (nc) coronary lesions during 3.4-year follow-up were large plaque burden (PB), small minimum lumen area (MLA), and thin-cap fibroatheroma (TCFA) morphology. In this analysis, baseline ESS of nc lesions leading to new MACE (nc-MACE lesions) and randomly selected control nc lesions without MACE (nc-non-MACE lesions) were calculated. A propensity score for ESS was constructed for each lesion, and the relationship between ESS and subsequent nc-MACE was examined. RESULTS A total of 145 lesions were analyzed in 97 patients: 23 nc-MACE lesions (13 TCFAs, 10 thick-cap fibroatheromas [ThCFAs]), and 122 nc-non-MACE lesions (63 TCFAs, 59 ThCFAs). Low local ESS (<1.3 Pa) was strongly associated with subsequent nc-MACE compared with physiological/high ESS (≥1.3 Pa) (23 of 101 [22.8%]) versus (0 of 44 [0%]). In propensity-adjusted Cox regression, low ESS was strongly associated with MACE (hazard ratio: 4.34; 95% confidence interval: 1.89 to 10.00; p < 0.001). Categorizing plaques by anatomic risk (high risk: ≥2 high-risk characteristics PB ≥70%, MLA ≤4 mm2, or TCFA), high anatomic risk, and low ESS were prognostically synergistic: 3-year nc-MACE rates were 52.1% versus 14.4% versus 0.0% in high-anatomic risk/low-ESS, low-anatomic risk/low-ESS, and physiological/high-ESS lesions, respectively (p < 0.0001). No lesion without low ESS led to nc-MACE during follow-up, regardless of PB, MLA, or lesion phenotype at baseline. CONCLUSIONS Local low ESS provides incremental risk stratification of untreated coronary lesions in high-risk patients, beyond measures of PB, MLA, and morphology.
Collapse
Affiliation(s)
- Peter H Stone
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School Boston, Massachusetts.
| | - Akiko Maehara
- Division of Cardiology, New York Presbyterian Hospital, Columbia University Medical Center, and the Cardiovascular Research Foundation, New York, New York
| | - Ahmet Umit Coskun
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School Boston, Massachusetts
| | - Charles C Maynard
- Department of Health Services, University of Washington, Seattle, Washington
| | - Marina Zaromytidou
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School Boston, Massachusetts
| | - Gerasimos Siasos
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School Boston, Massachusetts
| | - Ioannis Andreou
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School Boston, Massachusetts
| | - Dimitris Fotiadis
- Department of Materials Science and Engineering, University of Ioannina, Ioannina, Greece
| | - Kostas Stefanou
- Department of Materials Science and Engineering, University of Ioannina, Ioannina, Greece
| | - Michail Papafaklis
- Department of Materials Science and Engineering, University of Ioannina, Ioannina, Greece
| | - Lampros Michalis
- Department of Materials Science and Engineering, University of Ioannina, Ioannina, Greece
| | - Alexandra J Lansky
- Section of Cardiology, Yale University School of Medicine, New Haven, Connecticut
| | - Gary S Mintz
- Division of Cardiology, New York Presbyterian Hospital, Columbia University Medical Center, and the Cardiovascular Research Foundation, New York, New York
| | - Patrick W Serruys
- International Centre for Cardiovascular Health, Imperial College, London, United Kingdom
| | - Charles L Feldman
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School Boston, Massachusetts
| | - Gregg W Stone
- Division of Cardiology, New York Presbyterian Hospital, Columbia University Medical Center, and the Cardiovascular Research Foundation, New York, New York
| |
Collapse
|
33
|
Migliori S, Chiastra C, Bologna M, Montin E, Dubini G, Aurigemma C, Fedele R, Burzotta F, Mainardi L, Migliavacca F. A framework for computational fluid dynamic analyses of patient-specific stented coronary arteries from optical coherence tomography images. Med Eng Phys 2017; 47:105-116. [PMID: 28711588 DOI: 10.1016/j.medengphy.2017.06.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 06/09/2017] [Accepted: 06/16/2017] [Indexed: 01/09/2023]
Abstract
The clinical challenge of percutaneous coronary interventions (PCI) is highly dependent on the recognition of the coronary anatomy of each individual. The classic imaging modality used for PCI is angiography, but advanced imaging techniques that are routinely performed during PCI, like optical coherence tomography (OCT), may provide detailed knowledge of the pre-intervention vessel anatomy as well as the post-procedural assessment of the specific stent-to-vessel interactions. Computational fluid dynamics (CFD) is an emerging investigational tool in the setting of optimization of PCI results. In this study, an OCT-based reconstruction method was developed for the execution of CFD simulations of patient-specific coronary artery models which include the actual geometry of the implanted stent. The method was applied to a rigid phantom resembling a stented segment of the left anterior descending coronary artery. The segmentation algorithm was validated against manual segmentation. A strong correlation was found between automatic and manual segmentation of lumen in terms of area values. Similarity indices resulted >96% for the lumen segmentation and >77% for the stent strut segmentation. The 3D reconstruction achieved for the stented phantom was also assessed with the geometry provided by X-ray computed micro tomography scan, used as ground truth, and showed the incidence of distortion from catheter-based imaging techniques. The 3D reconstruction was successfully used to perform CFD analyses, demonstrating a great potential for patient-specific investigations. In conclusion, OCT may represent a reliable source for patient-specific CFD analyses which may be optimized using dedicated automatic segmentation algorithms.
Collapse
Affiliation(s)
- Susanna Migliori
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy.
| | - Claudio Chiastra
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Marco Bologna
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy; Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Eros Montin
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Gabriele Dubini
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Cristina Aurigemma
- Institute of Cardiology, Catholic University of the Sacred Heart, Rome, Italy
| | - Roberto Fedele
- Department of Civil and Environmental Engineering, Politecnico di Milano, Milan, Italy
| | - Francesco Burzotta
- Institute of Cardiology, Catholic University of the Sacred Heart, Rome, Italy
| | - Luca Mainardi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Francesco Migliavacca
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy.
| |
Collapse
|
34
|
Bourantas CV, Jaffer FA, Gijsen FJ, van Soest G, Madden SP, Courtney BK, Fard AM, Tenekecioglu E, Zeng Y, van der Steen AF, Emelianov S, Muller J, Stone PH, Marcu L, Tearney GJ, Serruys PW. Hybrid intravascular imaging: recent advances, technical considerations, and current applications in the study of plaque pathophysiology. Eur Heart J 2017; 38:400-412. [PMID: 27118197 PMCID: PMC5837589 DOI: 10.1093/eurheartj/ehw097] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 01/31/2016] [Accepted: 02/22/2016] [Indexed: 11/14/2022] Open
Abstract
Cumulative evidence from histology-based studies demonstrate that the currently available intravascular imaging techniques have fundamental limitations that do not allow complete and detailed evaluation of plaque morphology and pathobiology, limiting the ability to accurately identify high-risk plaques. To overcome these drawbacks, new efforts are developing for data fusion methodologies and the design of hybrid, dual-probe catheters to enable accurate assessment of plaque characteristics, and reliable identification of high-risk lesions. Today several dual-probe catheters have been introduced including combined near infrared spectroscopy-intravascular ultrasound (NIRS-IVUS), that is already commercially available, IVUS-optical coherence tomography (OCT), the OCT-NIRS, the OCT-near infrared fluorescence (NIRF) molecular imaging, IVUS-NIRF, IVUS intravascular photoacoustic imaging and combined fluorescence lifetime-IVUS imaging. These multimodal approaches appear able to overcome limitations of standalone imaging and provide comprehensive visualization of plaque composition and plaque biology. The aim of this review article is to summarize the advances in hybrid intravascular imaging, discuss the technical challenges that should be addressed in order to have a use in the clinical arena, and present the evidence from their first applications aiming to highlight their potential value in the study of atherosclerosis.
Collapse
Affiliation(s)
| | - Farouc A. Jaffer
- Cardiovascular Research Center and Cardiology Division, Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA
| | - Frank J. Gijsen
- Thorax Center, Erasmus MC, ‘s-Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands
| | - Gijs van Soest
- Thorax Center, Erasmus MC, ‘s-Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands
| | | | - Brian K. Courtney
- Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Ali M. Fard
- Wellman Center for Photomedicine, Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA
| | - Erhan Tenekecioglu
- Thorax Center, Erasmus MC, ‘s-Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands
| | - Yaping Zeng
- Thorax Center, Erasmus MC, ‘s-Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands
| | | | - Stanislav Emelianov
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | | | - Peter H. Stone
- Cardiovascular Division, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Laura Marcu
- Department of Biomedical Engineering, University of California, CA, USA
| | - Guillermo J. Tearney
- Wellman Center for Photomedicine, Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA
| | - Patrick W. Serruys
- Thorax Center, Erasmus MC, ‘s-Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands
- International Centre for Cardiovascular Health, NHLI, Imperial College London, London, UK
| |
Collapse
|
35
|
Intravascular hemodynamics and coronary artery disease: New insights and clinical implications. Hellenic J Cardiol 2016; 57:389-400. [PMID: 27894949 DOI: 10.1016/j.hjc.2016.11.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 07/26/2016] [Indexed: 11/23/2022] Open
Abstract
Intracoronary hemodynamics play a pivotal role in the initiation and progression of the atherosclerotic process. Low pro-inflammatory endothelial shear stress impacts vascular physiology and leads to the occurrence of coronary artery disease and its implications.
Collapse
|
36
|
Karanasiou GS, Gatsios DA, Lykissas MG, Stefanou KA, Rigas GA, Lagaris IE, Kostas-Agnantis IP, Gkiatas I, Beris AE, Fotiadis DI. Modeling of blood flow through sutured micro-vascular anastomoses. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2015:1877-80. [PMID: 26736648 DOI: 10.1109/embc.2015.7318748] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Microanastomosis is a surgical procedure used to reconnect two blood vessels using sutures. The optimal microanastomosis may be predicted by assessing the factors that influence this invasive procedure. Blood flow and hemodynamics following microanastomosis are important factors for the successful longevity of this operation. How is the blood flow affected by the presence of sutures? Computational Fluid Dynamics (CFD) is a powerful tool that permits the estimation of specific quantities, such as fluid stresses, that are hardly measurable in vivo. In this study, we propose a methodology which evaluates the alterations in the hemodynamic status due to microanastomosis. A CFD model of a reconstructed artery has been developed, based on anatomical information provided by intravascular ultrasound and angiography, and was used to simulate blood flow after microanastomosis. The 3D reconstructed arterial segments are modeled as non-compliant 1.24 - 1.47 mm diameter ducts, with approximately 0.1 mm arterial thickness. The blood flow is considered laminar and the no-slip condition is imposed on the boundary wall, which is assumed to be rigid. In analyzing the results, the distribution of the wall shear stress (WSS) is presented in the region of interest, near the sutures. The results indicate that high values of WSS appear in the vicinity of sutures. Such regions may promote thrombus formation and subsequently anastomotic failure, therefore their meticulous study is of high importance.
Collapse
|
37
|
Zhao L, Giannarou S, Lee SL, Yang GZ. SCEM+: Real-Time Robust Simultaneous Catheter and Environment Modeling for Endovascular Navigation. IEEE Robot Autom Lett 2016. [DOI: 10.1109/lra.2016.2524984] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
38
|
O’Brien CC, Kolandaivelu K, Brown J, Lopes AC, Kunio M, Kolachalama VB, Edelman ER. Constraining OCT with Knowledge of Device Design Enables High Accuracy Hemodynamic Assessment of Endovascular Implants. PLoS One 2016; 11:e0149178. [PMID: 26906566 PMCID: PMC4764338 DOI: 10.1371/journal.pone.0149178] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 12/27/2015] [Indexed: 11/21/2022] Open
Abstract
Background Stacking cross-sectional intravascular images permits three-dimensional rendering of endovascular implants, yet introduces between-frame uncertainties that limit characterization of device placement and the hemodynamic microenvironment. In a porcine coronary stent model, we demonstrate enhanced OCT reconstruction with preservation of between-frame features through fusion with angiography and a priori knowledge of stent design. Methods and Results Strut positions were extracted from sequential OCT frames. Reconstruction with standard interpolation generated discontinuous stent structures. By computationally constraining interpolation to known stent skeletons fitted to 3D ‘clouds’ of OCT-Angio-derived struts, implant anatomy was resolved, accurately rendering features from implant diameter and curvature (n = 1 vessels, r2 = 0.91, 0.90, respectively) to individual strut-wall configurations (average displacement error ~15 μm). This framework facilitated hemodynamic simulation (n = 1 vessel), showing the critical importance of accurate anatomic rendering in characterizing both quantitative and basic qualitative flow patterns. Discontinuities with standard approaches systematically introduced noise and bias, poorly capturing regional flow effects. In contrast, the enhanced method preserved multi-scale (local strut to regional stent) flow interactions, demonstrating the impact of regional contexts in defining the hemodynamic consequence of local deployment errors. Conclusion Fusion of planar angiography and knowledge of device design permits enhanced OCT image analysis of in situ tissue-device interactions. Given emerging interests in simulation-derived hemodynamic assessment as surrogate measures of biological risk, such fused modalities offer a new window into patient-specific implant environments.
Collapse
Affiliation(s)
- Caroline C. O’Brien
- Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States of America
- * E-mail:
| | - Kumaran Kolandaivelu
- Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States of America
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Jonathan Brown
- Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Augusto C. Lopes
- Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States of America
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Mie Kunio
- Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Vijaya B. Kolachalama
- Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States of America
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States of America
- Charles Stark Draper Laboratory, 555 Technology Square, Cambridge, MA, United States of America
| | - Elazer R. Edelman
- Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States of America
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
39
|
Athanasiou L, Rigas G, Sakellarios AI, Exarchos TP, Siogkas PK, Bourantas CV, Garcia-Garcia HM, Lemos PA, Falcao BA, Michalis LK, Parodi O, Vozzi F, Fotiadis DI. Three-dimensional reconstruction of coronary arteries and plaque morphology using CT angiography--comparison and registration with IVUS. BMC Med Imaging 2016; 16:9. [PMID: 26785613 PMCID: PMC4719213 DOI: 10.1186/s12880-016-0111-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 01/13/2016] [Indexed: 12/02/2022] Open
Abstract
Background The aim of this study is to present a new methodology for three-dimensional (3D) reconstruction of coronary arteries and plaque morphology using Computed Tomography Angiography (CTA). Methods The methodology is summarized in six stages: 1) pre-processing of the initial raw images, 2) rough estimation of the lumen and outer vessel wall borders and approximation of the vessel’s centerline, 3) manual adaptation of plaque parameters, 4) accurate extraction of the luminal centerline, 5) detection of the lumen - outer vessel wall borders and calcium plaque region, and 6) finally 3D surface construction. Results The methodology was compared to the estimations of a recently presented Intravascular Ultrasound (IVUS) plaque characterization method. The correlation coefficients for calcium volume, surface area, length and angle vessel were 0.79, 0.86, 0.95 and 0.88, respectively. Additionally, when comparing the inner and outer vessel wall volumes of the reconstructed arteries produced by IVUS and CTA the observed correlation was 0.87 and 0.83, respectively. Conclusions The results indicated that the proposed methodology is fast and accurate and thus it is likely in the future to have applications in research and clinical arena.
Collapse
Affiliation(s)
- Lambros Athanasiou
- Unit of Medical Technology and Intelligent Information Systems, Department of Materials Science and Engineering, University of Ioannina, PO Box 1186, GR 45110, Ioannina, Greece
| | - George Rigas
- Unit of Medical Technology and Intelligent Information Systems, Department of Materials Science and Engineering, University of Ioannina, PO Box 1186, GR 45110, Ioannina, Greece
| | - Antonis I Sakellarios
- Unit of Medical Technology and Intelligent Information Systems, Department of Materials Science and Engineering, University of Ioannina, PO Box 1186, GR 45110, Ioannina, Greece
| | - Themis P Exarchos
- Unit of Medical Technology and Intelligent Information Systems, Department of Materials Science and Engineering, University of Ioannina, PO Box 1186, GR 45110, Ioannina, Greece.,FORTH-Institute of Molecular Biology and Biotechnology, Department of Biomedical Research, GR 45110, Ioannina, Greece
| | - Panagiotis K Siogkas
- Unit of Medical Technology and Intelligent Information Systems, Department of Materials Science and Engineering, University of Ioannina, PO Box 1186, GR 45110, Ioannina, Greece
| | - Christos V Bourantas
- Department of Cardiology, Barts Heart Centre, London, UK.,Department of Cardiovascular Science, University College London, London, UK
| | - Hector M Garcia-Garcia
- Department of Interventional Cardiology, Erasmus University Medical Centre, Thoraxcenter, Rotterdam, The Netherlands
| | - Pedro A Lemos
- Department of Interventional Cardiology, Heart Institute, University of São Paulo, Medical School, São Paulo, Brazil
| | - Breno A Falcao
- Department of Interventional Cardiology, Heart Institute, University of São Paulo, Medical School, São Paulo, Brazil
| | - Lampros K Michalis
- Michaelidion Cardiac Center and Department of Cardiology, Medical School, University of Ioannina, GR 45110, Ioannina, Greece
| | - Oberdan Parodi
- Michaelidion Cardiac Center and Department of Cardiology, Medical School, University of Ioannina, GR 45110, Ioannina, Greece
| | - Federico Vozzi
- Institute of Clinical Physiology, National Research Council, Pisa, IT 56124, Italy
| | - Dimitrios I Fotiadis
- Unit of Medical Technology and Intelligent Information Systems, Department of Materials Science and Engineering, University of Ioannina, PO Box 1186, GR 45110, Ioannina, Greece. .,FORTH-Institute of Molecular Biology and Biotechnology, Department of Biomedical Research, GR 45110, Ioannina, Greece. .,Michaelidion Cardiac Center and Department of Cardiology, Medical School, University of Ioannina, GR 45110, Ioannina, Greece.
| |
Collapse
|
40
|
Schrauwen JTC, Karanasos A, van Ditzhuijzen NS, Aben JP, van der Steen AFW, Wentzel JJ, Gijsen FJH. Influence of the Accuracy of Angiography-Based Reconstructions on Velocity and Wall Shear Stress Computations in Coronary Bifurcations: A Phantom Study. PLoS One 2015; 10:e0145114. [PMID: 26690897 PMCID: PMC4686962 DOI: 10.1371/journal.pone.0145114] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 11/28/2015] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Wall shear stress (WSS) plays a key role in the onset and progression of atherosclerosis in human coronary arteries. Especially sites with low and oscillating WSS near bifurcations have a higher propensity to develop atherosclerosis. WSS computations in coronary bifurcations can be performed in angiography-based 3D reconstructions. It is essential to evaluate how reconstruction errors influence WSS computations in mildly-diseased coronary bifurcations. In mildly-diseased lesions WSS could potentially provide more insight in plaque progression. MATERIALS METHODS Four Plexiglas phantom models of coronary bifurcations were imaged with bi-plane angiography. The lumens were segmented by two clinically experienced readers. Based on the segmentations 3D models were generated. This resulted in three models per phantom: one gold-standard from the phantom model itself, and one from each reader. Steady-state and transient simulations were performed with computational fluid dynamics to compute the WSS. A similarity index and a noninferiority test were used to compare the WSS in the phantoms and their reconstructions. The margin for this test was based on the resolution constraints of angiography. RESULTS The reconstruction errors were similar to previously reported data; in seven out of eight reconstructions less than 0.10 mm. WSS in the regions proximal and far distal of the stenosis showed a good agreement. However, the low WSS areas directly distal of the stenosis showed some disagreement between the phantoms and the readers. This was due to small deviations in the reconstruction of the stenosis that caused differences in the resulting jet, and consequently the size and location of the low WSS area. DISCUSSION This study showed that WSS can accurately be computed within angiography-based 3D reconstructions of coronary arteries with early stage atherosclerosis. Qualitatively, there was a good agreement between the phantoms and the readers. Quantitatively, the low WSS regions directly distal to the stenosis were sensitive to small reconstruction errors.
Collapse
Affiliation(s)
- Jelle T C Schrauwen
- Department of Biomedical Engineering, Thoraxcenter, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Antonios Karanasos
- Department of Cardiology, Thoraxcenter, Erasmus Medical Center, Rotterdam, the Netherlands
| | | | | | - Antonius F W van der Steen
- Department of Biomedical Engineering, Thoraxcenter, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Imaging Physics, Delft University of Technology, Delft, the Netherlands
| | - Jolanda J Wentzel
- Department of Biomedical Engineering, Thoraxcenter, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Frank J H Gijsen
- Department of Biomedical Engineering, Thoraxcenter, Erasmus Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
41
|
Karanasiou GS, Conway C, Papafaklis MI, Lopes AC, Stefanou KA, Athanasiou LS, Michalis LK, Edelman ER, Fotiadis DI. Finite element analysis of stent implantation in a three-dimensional reconstructed arterial segment. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2014:5623-6. [PMID: 25571270 DOI: 10.1109/embc.2014.6944902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Endovascular stent deployment is a mechanical procedure used to rehabilitate a diseased arterial segment by restoring blood flow in occluded regions. The success or failure of the stent implantation depends on the stent device and the deployment technique. The optimal stent deployment can be predicted by investigating the factors that influence this minimally invasive procedure. In this study, we propose a methodology which evaluates the alterations in the arterial environment caused by stent deployment. A finite element model of a reconstructed right coronary artery with a stenosis was created based on anatomical information provided by intravascular ultrasound and angiography. The model was used to consider placement and performance after intervention with a commercially available Leader Plus stent. The performance of the stent, within this patient-specific arterial segment is presented, as well as the induced arterial deformation and straightening. The arterial stress distribution is analyzed with respect to possible regions of arterial injury. Our approach can be used to optimize stent deployment and to provide cardiologists with a valuable tool to visually select the position and deploy stents in patient-specific reconstructed arterial segments, thereby enabling new methods for optimal cardiovascular stent positioning.
Collapse
|
42
|
Bourantas CV, Räber L, Zaugg S, Sakellarios A, Taniwaki M, Heg D, Moschovitis A, Radu M, Papafaklis MI, Kalatzis F, Naka KK, Fotiadis DI, Michalis LK, Serruys PW, Garcia Garcia HM, Windecker S. Impact of local endothelial shear stress on neointima and plaque following stent implantation in patients with ST-elevation myocardial infarction: A subgroup-analysis of the COMFORTABLE AMI–IBIS 4 trial. Int J Cardiol 2015; 186:178-85. [PMID: 25828109 DOI: 10.1016/j.ijcard.2015.03.160] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 03/02/2015] [Accepted: 03/15/2015] [Indexed: 10/23/2022]
|
43
|
Toutouzas K, Chatzizisis YS, Riga M, Giannopoulos A, Antoniadis AP, Tu S, Fujino Y, Mitsouras D, Doulaverakis C, Tsampoulatidis I, Koutkias VG, Bouki K, Li Y, Chouvarda I, Cheimariotis G, Maglaveras N, Kompatsiaris I, Nakamura S, Reiber JHC, Rybicki F, Karvounis H, Stefanadis C, Tousoulis D, Giannoglou GD. Accurate and reproducible reconstruction of coronary arteries and endothelial shear stress calculation using 3D OCT: comparative study to 3D IVUS and 3D QCA. Atherosclerosis 2015; 240:510-9. [PMID: 25932791 DOI: 10.1016/j.atherosclerosis.2015.04.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 03/15/2015] [Accepted: 04/06/2015] [Indexed: 11/29/2022]
Abstract
BACKGROUND Geometrically-correct 3D OCT is a new imaging modality with the potential to investigate the association of local hemodynamic microenvironment with OCT-derived high-risk features. We aimed to describe the methodology of 3D OCT and investigate the accuracy, inter- and intra-observer agreement of 3D OCT in reconstructing coronary arteries and calculating ESS, using 3D IVUS and 3D QCA as references. METHODS-RESULTS 35 coronary artery segments derived from 30 patients were reconstructed in 3D space using 3D OCT. 3D OCT was validated against 3D IVUS and 3D QCA. The agreement in artery reconstruction among 3D OCT, 3D IVUS and 3D QCA was assessed in 3-mm-long subsegments using lumen morphometry and ESS parameters. The inter- and intra-observer agreement of 3D OCT, 3D IVUS and 3D QCA were assessed in a representative sample of 61 subsegments (n = 5 arteries). The data processing times for each reconstruction methodology were also calculated. There was a very high agreement between 3D OCT vs. 3D IVUS and 3D OCT vs. 3D QCA in terms of total reconstructed artery length and volume, as well as in terms of segmental morphometric and ESS metrics with mean differences close to zero and narrow limits of agreement (Bland-Altman analysis). 3D OCT exhibited excellent inter- and intra-observer agreement. The analysis time with 3D OCT was significantly lower compared to 3D IVUS. CONCLUSIONS Geometrically-correct 3D OCT is a feasible, accurate and reproducible 3D reconstruction technique that can perform reliable ESS calculations in coronary arteries.
Collapse
Affiliation(s)
- Konstantinos Toutouzas
- First Department of Cardiology, Hippokration Hospital, Athens University Medical School, Athens, Greece
| | - Yiannis S Chatzizisis
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; First Department of Cardiology, AHEPA University Hospital, Aristotle University Medical School, Thessaloniki, Greece.
| | - Maria Riga
- First Department of Cardiology, Hippokration Hospital, Athens University Medical School, Athens, Greece
| | - Andreas Giannopoulos
- First Department of Cardiology, AHEPA University Hospital, Aristotle University Medical School, Thessaloniki, Greece
| | - Antonios P Antoniadis
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; First Department of Cardiology, AHEPA University Hospital, Aristotle University Medical School, Thessaloniki, Greece
| | - Shengxian Tu
- Division of Image Processing, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands; Biomedical Instrument Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yusuke Fujino
- Department of Cardiology, New Tokyo Hospital, Chiba, Japan
| | - Dimitrios Mitsouras
- Applied Imaging Science Laboratory, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Charalampos Doulaverakis
- Information Technologies Institute, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Ioannis Tsampoulatidis
- Information Technologies Institute, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Vassilis G Koutkias
- Laboratory of Medical Informatics, Aristotle University Medical School, Thessaloniki, Greece; Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Konstantina Bouki
- Second Department of Cardiology, General Hospital of Nikaia, Piraeus, Greece
| | - Yingguang Li
- Division of Image Processing, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ioanna Chouvarda
- Laboratory of Medical Informatics, Aristotle University Medical School, Thessaloniki, Greece; Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Grigorios Cheimariotis
- Laboratory of Medical Informatics, Aristotle University Medical School, Thessaloniki, Greece; Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Nicos Maglaveras
- Laboratory of Medical Informatics, Aristotle University Medical School, Thessaloniki, Greece; Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Ioannis Kompatsiaris
- Information Technologies Institute, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Sunao Nakamura
- Department of Cardiology, New Tokyo Hospital, Chiba, Japan
| | - Johan H C Reiber
- Division of Image Processing, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Frank Rybicki
- Applied Imaging Science Laboratory, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Haralambos Karvounis
- First Department of Cardiology, AHEPA University Hospital, Aristotle University Medical School, Thessaloniki, Greece
| | - Christodoulos Stefanadis
- First Department of Cardiology, Hippokration Hospital, Athens University Medical School, Athens, Greece
| | - Dimitris Tousoulis
- First Department of Cardiology, Hippokration Hospital, Athens University Medical School, Athens, Greece
| | - George D Giannoglou
- First Department of Cardiology, AHEPA University Hospital, Aristotle University Medical School, Thessaloniki, Greece
| |
Collapse
|
44
|
Kotsia AP, Papafaklis MI, Michael TT, Rangan BV, Peltz M, Roesle M, Jessen M, Willis B, Christopoulos G, Nakas G, Giannitsi S, Michalis LK, Fotiadis DI, Banerjee S, Brilakis ES. Serial Multimodality Evaluation of Aortocoronary Bypass Grafts During the First Year After CABG Surgery. JACC Cardiovasc Imaging 2015; 8:1341-3. [PMID: 25797131 DOI: 10.1016/j.jcmg.2014.12.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 12/04/2014] [Accepted: 12/09/2014] [Indexed: 11/17/2022]
|
45
|
Athanasiou L, Sakellarios AI, Bourantas CV, Tsirka G, Siogkas P, Exarchos TP, Naka KK, Michalis LK, Fotiadis DI. Currently available methodologies for the processing of intravascular ultrasound and optical coherence tomography images. Expert Rev Cardiovasc Ther 2015; 12:885-900. [PMID: 24949801 DOI: 10.1586/14779072.2014.922413] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Optical coherence tomography and intravascular ultrasound are the most widely used methodologies in clinical practice as they provide high resolution cross-sectional images that allow comprehensive visualization of the lumen and plaque morphology. Several methods have been developed in recent years to process the output of these imaging modalities, which allow fast, reliable and reproducible detection of the luminal borders and characterization of plaque composition. These methods have proven useful in the study of the atherosclerotic process as they have facilitated analysis of a vast amount of data. This review presents currently available intravascular ultrasound and optical coherence tomography processing methodologies for segmenting and characterizing the plaque area, highlighting their advantages and disadvantages, and discusses the future trends in intravascular imaging.
Collapse
Affiliation(s)
- Lambros Athanasiou
- Unit of Medical Technology and Intelligent Information Systems, Department of Materials Science and Engineering, University of Ioannina, GR 45110 Ioannina, Greece
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Patient-specific simulation of coronary artery pressure measurements: an in vivo three-dimensional validation study in humans. BIOMED RESEARCH INTERNATIONAL 2015; 2015:628416. [PMID: 25815328 PMCID: PMC4359837 DOI: 10.1155/2015/628416] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 09/10/2014] [Indexed: 02/04/2023]
Abstract
Pressure measurements using finite element computations without the need of a wire could be valuable in clinical practice. Our aim was to compare the computed distal coronary pressure values with the measured values using a pressure wire, while testing the effect of different boundary conditions for the simulation. Eight coronary arteries (lumen and outer vessel wall) from six patients were reconstructed in three-dimensional (3D) space using intravascular ultrasound and biplane angiographic images. Pressure values at the distal and proximal end of the vessel and flow velocity values at the distal end were acquired with the use of a combo pressure-flow wire. The 3D lumen and wall models were discretized into finite elements; fluid structure interaction (FSI) and rigid wall simulations were performed for one cardiac cycle both with pulsatile and steady flow in separate simulations. The results showed a high correlation between the measured and the computed coronary pressure values (coefficient of determination [r2] ranging between 0.8902 and 0.9961), while the less demanding simulations using steady flow and rigid walls resulted in very small relative error. Our study demonstrates that computational assessment of coronary pressure is feasible and seems to be accurate compared to the wire-based measurements.
Collapse
|
47
|
Siogkas PK, Sakellarios AI, Papafaklis MI, Stefanou KA, Athanasiou LM, Exarchos TP, Naka KK, Michalis LK, Fotiadis DI. Assessing the hemodynamic influence between multiple lesions in a realistic right coronary artery segment: A computational study. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2014:5643-6. [PMID: 25571275 DOI: 10.1109/embc.2014.6944907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Coronary artery disease is the primary cause of morbidity and mortality worldwide. Therefore, detailed assessment of lesions in the coronary vasculature is critical in current clinical practice. Fractional flow reserve (FFR) has been proven as an efficient method for assessing the hemodynamic severity of a coronary stenosis. However, functional assessment of a coronary segment with multiple stenoses (≥ 2) remains complex for guiding the strategy of percutaneous coronary intervention due to the hemodynamic interplay between adjacent stenoses. In this work, we created four 3-dimensional (3D) arterial models that derive from a healthy patient-specific right coronary artery segment. The initial healthy model was reconstructed using fusion of intravascular ultrasound (IVUS) and biplane angiographic patient data. The healthy 3D model presented a measured FFR value of 0.96 (pressure-wire) and a simulated FFR value of 0.98. We then created diseased models with two artificial sequential stenoses of 90% lumen area reduction or with the proximal and distal stenosis separately. We calculated the FFR value for each case: 0.65 for the case with the two stenoses, 0.73 for the case with the distal stenosis and 0.90 for the case with the proximal stenosis. This leads to the conclusion that although both stenoses had the same degree of lumen area stenosis, there was a large difference in hemodynamic severity, thereby indicating that angiographic lumen assessment by itself is often not adequate for accurate assessment of coronary lesions.
Collapse
|
48
|
Carrizo S, Xie X, Peinado-Peinado R, Sánchez-Recalde A, Jiménez-Valero S, Galeote-Garcia G, Moreno R. Functional assessment of coronary artery disease by intravascular ultrasound and computational fluid dynamics simulation. Rev Port Cardiol 2014; 33:645.e1-4. [DOI: 10.1016/j.repc.2014.03.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 03/28/2014] [Indexed: 11/17/2022] Open
|
49
|
Carrizo S, Xie X, Peinado-Peinado R, Sánchez-Recalde A, Jiménez-Valero S, Galeote-Garcia G, Moreno R. Functional assessment of coronary artery disease by intravascular ultrasound and computational fluid dynamics simulation. REVISTA PORTUGUESA DE CARDIOLOGIA (ENGLISH EDITION) 2014. [DOI: 10.1016/j.repce.2014.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
50
|
Celi S, Berti S. In-vivo segmentation and quantification of coronary lesions by optical coherence tomography images for a lesion type definition and stenosis grading. Med Image Anal 2014; 18:1157-68. [DOI: 10.1016/j.media.2014.06.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 06/23/2014] [Accepted: 06/28/2014] [Indexed: 10/25/2022]
|