1
|
Kaorey N, Dickinson K, Agnihotram VR, Zeitouni A, Sadeghi N, Burnier JV. The role of ctDNA from liquid biopsy in predicting survival outcomes in HPV-negative head and neck cancer: A meta-analysis. Oral Oncol 2024; 161:107148. [PMID: 39742703 DOI: 10.1016/j.oraloncology.2024.107148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/17/2024] [Indexed: 01/04/2025]
Abstract
The incidence of head and neck cancer (HNC) is on the rise, making it a significant clinical challenge. Human papillomavirus (HPV)-related and HPV-negative HNC exhibit distinct etiopathogenesis and prognoses, requiring targeted approaches for effective management. Conventional tissue biopsies are essential for confirming the diagnosis and locating solid tumors. However, they have limitations in detecting microscopic disease, tracking treatment response, and capturing the dynamic heterogeneity of the mutational profile within the tumor. Liquid biopsy using circulating tumor DNA (ctDNA) analysis has emerged as a promising non-invasive tool to overcome the drawbacks of conventional biopsy for comprehensive molecular profiling. This meta-analysis aims to colligate available evidence on the clinical utility of ctDNA analysis in predicting survival outcomes, specifically in HPV-negative HNC. Our systematic search of six electronic databases identified eight publications (N = 886 patients) meeting the inclusion criteria. The included studies reported data from HPV-negative HNC patients, employing ctDNA analysis to report survival outcomes. Our findings reveal a significant association between mutation or methylation in ctDNA and worsened survival outcomes in HPV-negative HNC cases. The presence of ctDNA mutations in TP53 and methylation of SEPT9 and SHOX2 was linked to reduced overall survival, disease-free survival, and progression-free survival. Subgroup analyses demonstrated consistent associations across different survival outcomes, ctDNA detection methods, and blood collection tubes used. Our study underscores the need for future research endeavors prioritizing larger, well-designed prospective studies with standardized methodologies to further elucidate the role of ctDNA analysis in guiding personalized treatment approaches and optimizing patient care in this specific HNC cohort.
Collapse
Affiliation(s)
- Nivedita Kaorey
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, Canada; Department of Pathology, McGill University, Montreal, Canada.
| | - Kyle Dickinson
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, Canada.
| | | | - Anthony Zeitouni
- Department of Otolaryngology-Head and Neck Surgery, McGill University, Montreal, Canada.
| | - Nader Sadeghi
- Gerald Bronfman Department of Oncology, McGill University, Montreal, Canada; Department of Otolaryngology-Head and Neck Surgery, McGill University, Montreal, Canada.
| | - Julia V Burnier
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, Canada; Department of Pathology, McGill University, Montreal, Canada; Gerald Bronfman Department of Oncology, McGill University, Montreal, Canada.
| |
Collapse
|
2
|
Lai HY, Yu KH, Tsai KC, Lee CC, Wang HY, Hsieh YP, Chiang KY, Kuo PL, Huang TT, Hung HY. The first attempt in synthesis, identification, and evaluation of SEPT9 inhibitors on human oral squamous carcinomas. Bioorg Chem 2024; 154:108068. [PMID: 39705938 DOI: 10.1016/j.bioorg.2024.108068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/12/2024] [Accepted: 12/14/2024] [Indexed: 12/23/2024]
Abstract
Septin 9 (SEPT9), a GTPase, known as the fourth cytoskeleton, is widely expressed in various cells and tissues. The functions of SEPT9 are partly similar to other cytoskeletons as a structure protein. Further, SEPT9 can interact with other cytoskeletons, participating in actin dynamics and microtubule regulation. SEPT9 is associated with various diseases, such as cancers. Thus, it could be a potential drug target. However, there are no small molecule SEPT9 inhibitors and the only reported septin inhibitor, forchlorfenuron, has no effects on SEPT9 inhibition from our study results. Therefore, the derivatives of forchlorfenuron were synthesized, and their activities were evaluated by a direct SEPT9 inhibition screening platform, followed by localized surface plasmon resonance (LSPR) and cell-based assays. The screening results conveyed that 6b, 8a, and 8b are SEPT9 inhibitors with IC50 values of 91, 99, and 95 μM, respectively. Also, their binding affinities were 4, 18, and 22 μM, respectively, validated through LSPR. Eventually, the SAR concludes that at the para position, small substituents are tolerated, while at the ortho position, a bulky benzene ring substituent can be the best candidate. In cell-based assays, the IC50 of 6a, 8a, and 8b of human oral squamous carcinomas cytotoxicity were 122, 20, and 21 µM, respectively. Additionally, significant suppression of the cell migration and invasion ability was observed with the 8b treatment. The co-localization study revealed that 8b effectively disrupted the structural organization of SEPT9, microtubules, and actins. This is the first article to systematically study SEPT9 inhibitors and their biological properties, hoping to shed some light on septin research.
Collapse
Affiliation(s)
- Hsuan-Yu Lai
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Ko-Hua Yu
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Keng-Chang Tsai
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; Ministry of Health and Welfare, National Research Institute of Chinese Medicine, Taipei 112, Taiwan
| | - Chao-Chang Lee
- Ministry of Health and Welfare, National Research Institute of Chinese Medicine, Taipei 112, Taiwan
| | - Han-Yu Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Obstetrics and Gynecology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Ping Hsieh
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kuan-Yi Chiang
- Institute of Oral Medicine, School of Dentistry, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan
| | - Pao-Lin Kuo
- Department of Obstetrics and Gynecology, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
| | - Tze-Ta Huang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Oral Medicine, School of Dentistry, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan; Department of Stomatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan.
| | - Hsin-Yi Hung
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan.
| |
Collapse
|
3
|
Emelyanova MA, Ikonnikova AY. Utilization of molecular genetic approaches for colorectal cancer screening. World J Gastroenterol 2024; 30:4950-4957. [PMID: 39679308 PMCID: PMC11612711 DOI: 10.3748/wjg.v30.i46.4950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/14/2024] [Accepted: 11/01/2024] [Indexed: 11/21/2024] Open
Abstract
The feasibility of population screening for colorectal cancer has been demonstrated in several studies. Most of these studies have considered individual characteristics, diagnostic approaches, epidemiological data, and socioeconomic factors. In this article, we comment on an editorial by Metaxas et al published in the recent issue of the journal. The authors emphasized the need to raise public awareness through health education programs and the possibility of using easily accessible non-invasive screening methods. Here, we focus on non-invasive molecular genetic approaches that can aid in colorectal cancer screening. On the one hand, we highlighted the use of tumor DNA/RNA markers directly for screening and, on the other hand, underline the use of polygenic risk assessment and hereditary predisposition to select individuals for more thorough cancer screening.
Collapse
Affiliation(s)
- Marina A Emelyanova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Anna Y Ikonnikova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| |
Collapse
|
4
|
Cai TT, Desterke C, Peng J, Agnetti J, Song P, Ouazib D, Dos Santos A, Guettier C, Samuel D, Gassama‐Diagne A. Septin 9 expression regulates 'don't eat me' signals and identifies an immune-epithelial class of intrahepatic cholangiocarcinoma. Mol Oncol 2024; 18:2369-2392. [PMID: 39082897 PMCID: PMC11459040 DOI: 10.1002/1878-0261.13673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/12/2024] [Accepted: 05/22/2024] [Indexed: 10/09/2024] Open
Abstract
Intrahepatic cholangiocarcinoma (iCCA) is a highly heterogeneous and aggressive liver cancer with limited therapeutic options. Precise classification and immunotherapy are perspectives to improve the treatments. We reported the role of septin 9 in apico-basal polarity and epithelial-to-mesenchymal transition (EMT). Here, we aim to elucidate its role in iCCA. We analyzed single-cell transcriptomes from human iCCA tumor cells based on phenotype and cell state. Knockdown of the septin 9 gene (SEPT9) was done using small interfering RNA (siRNA); interferon-γ (IFN-γ) stimulation was performed using different CCA cells; gene expressions were analyzed by reverse transcription and real-time PCR analysis (RT-qPCR); and immunofluorescence, immunoblotting, and flow cytometry were performed to assess the expression of proteins. The differential distributions of SEPT9 and vimentin (VIM) gene expressions allowed us to define specific cellular trajectories of malignant cells and thus identified distinct clusters of iCCA cells. One cluster was enriched in VIM and extracellular-matrix (ECM) remodeling molecules, and another had high expression of SEPT9 and genes from the 'don't eat me' signal involved in immune escape. This antagonism between SEPT9 and VIM was confirmed by in vitro experiments. Notably, SEPT9 and 'don't eat me' gene expressions were inversely correlated to those of vimentin and the EMT markers. SEPT9 expression was upregulated by IFN-γ and SEPT9 knockdown decreased expression of 'don't eat me' signal genes and increased expression of mesenchymal markers. Cancer Cell Line Encyclopedia (CCLE) transcriptome database analyses confirmed that iCCA cells enriched in septin 9 exhibit epithelial-like features. This study revealed septin 9 as a cytoskeleton element of iCCA epithelial-like cells and a regulator of the immune system response. It also brings new insights into the enigmatic relationship between EMT and immune response. Notably, we decoded a potential mechanism that could sensitize patients to immunotherapies.
Collapse
Affiliation(s)
- Ting ting Cai
- INSERM, Unité 1193VillejuifFrance
- Université Paris‐Sud, Université Paris‐Saclay, UMR‐S 1193Université Paris‐Sud, Université Paris Saclay, UMR‐S 1193VillejuifFrance
| | | | - Juan Peng
- INSERM, Unité 1193VillejuifFrance
- Université Paris‐Sud, Université Paris‐Saclay, UMR‐S 1193Université Paris‐Sud, Université Paris Saclay, UMR‐S 1193VillejuifFrance
| | - Jean Agnetti
- INSERM, Unité 1193VillejuifFrance
- Université Paris‐Sud, Université Paris‐Saclay, UMR‐S 1193Université Paris‐Sud, Université Paris Saclay, UMR‐S 1193VillejuifFrance
| | - Peixuan Song
- INSERM, Unité 1193VillejuifFrance
- Université Paris‐Sud, Université Paris‐Saclay, UMR‐S 1193Université Paris‐Sud, Université Paris Saclay, UMR‐S 1193VillejuifFrance
| | - Dalila Ouazib
- INSERM, Unité 1193VillejuifFrance
- Université Paris‐Sud, Université Paris‐Saclay, UMR‐S 1193Université Paris‐Sud, Université Paris Saclay, UMR‐S 1193VillejuifFrance
| | - Alexandre Dos Santos
- INSERM, Unité 1193VillejuifFrance
- Université Paris‐Sud, Université Paris‐Saclay, UMR‐S 1193Université Paris‐Sud, Université Paris Saclay, UMR‐S 1193VillejuifFrance
| | - Catherine Guettier
- INSERM, Unité 1193VillejuifFrance
- Université Paris‐Sud, Université Paris‐Saclay, UMR‐S 1193Université Paris‐Sud, Université Paris Saclay, UMR‐S 1193VillejuifFrance
| | - Didier Samuel
- INSERM, Unité 1193VillejuifFrance
- Université Paris‐Sud, Université Paris‐Saclay, UMR‐S 1193Université Paris‐Sud, Université Paris Saclay, UMR‐S 1193VillejuifFrance
- AP‐HP Hôpital Paul Brousse, Centre Hépato‐BiliaireAP‐HP Hôpital Paul‐Brousse, Centre Hépato‐BiliaireVillejuifFrance
| | - Ama Gassama‐Diagne
- INSERM, Unité 1193VillejuifFrance
- Université Paris‐Sud, Université Paris‐Saclay, UMR‐S 1193Université Paris‐Sud, Université Paris Saclay, UMR‐S 1193VillejuifFrance
| |
Collapse
|
5
|
Jędrzejczak P, Saramowicz K, Kuś J, Barczuk J, Rozpędek-Kamińska W, Siwecka N, Galita G, Wiese W, Majsterek I. SEPT9_i1 and Septin Dynamics in Oncogenesis and Cancer Treatment. Biomolecules 2024; 14:1194. [PMID: 39334960 PMCID: PMC11430720 DOI: 10.3390/biom14091194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/12/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Despite significant advancements in the field of oncology, cancers still pose one of the greatest challenges of modern healthcare. Given the cytoskeleton's pivotal role in regulating mechanisms critical to cancer development, further studies of the cytoskeletal elements could yield new practical applications. Septins represent a group of relatively well-conserved GTP-binding proteins that constitute the fourth component of the cytoskeleton. Septin 9 (SEPT9) has been linked to a diverse spectrum of malignancies and appears to be the most notable septin member in that category. SEPT9 constitutes a biomarker of colorectal cancer (CRC) and has been positively correlated with a high clinical stage in breast cancer, cervical cancer, and head and neck squamous cell carcinoma. SEPT9_i1 represents the most extensively studied isoform of SEPT9, which substantially contributes to carcinogenesis, metastasis, and treatment resistance. Nevertheless, the mechanistic basis of SEPT9_i1 oncogenicity remains to be fully elucidated. In this review, we highlight SEPT9's and SEPT9_i1's structures and interactions with Hypoxia Inducible Factor α (HIF-1 α) and C-Jun N-Terminal Kinase (JNK), as well as discuss SEPT9_i1's contribution to aneuploidy, cell invasiveness, and taxane resistance-key phenomena in the progression of malignancies. Finally, we emphasize forchlorfenuron and other septin inhibitors as potential chemotherapeutics and migrastatics.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 90-419 Lodz, Poland; (P.J.); (K.S.); (J.K.); (J.B.); (W.R.-K.); (N.S.); (G.G.); (W.W.)
| |
Collapse
|
6
|
Wang W, Zhang X, Gui P, Zou Q, Nie Y, Ma S, Zhang S. SEPT9: From pan-cancer to lung squamous cell carcinoma. BMC Cancer 2024; 24:1105. [PMID: 39237897 PMCID: PMC11375884 DOI: 10.1186/s12885-024-12877-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND SEPT9 is a pivotal cytoskeletal GTPase that regulates diverse biological processes encompassing mitosis and cytokinesis. While previous studies have implicated SEPT9 in tumorigenesis and development; comprehensive pan-cancer analyses have not been performed. This study aims to systematically explore its role in cancer screening, prognosis, and treatment, addressing this critical gap. METHODS Gene and protein expression data containing clinical information were obtained from public databases for pan-cancer analyses. Additionally, clinical samples from 90 patients with lung squamous cell carcinoma (LUSC) were used to further experimentally validate the clinical significance of SEPT9. In addition, the molecular docking tool was used to analyze the affinities between SEPT9 protein and drugs. RESULTS SEPT9 is highly expressed in various cancers, and its aberrant expression correlates with genetic alternations and epigenetic modifications, leading to adverse clinical outcomes. Take LUSC as an example, additional dataset analyses and immunohistochemical experiments further confirm the diagnostic and prognostic values as well as the clinical relevance of the SEPT9 gene and protein. Functional enrichment, single-cell expression, and immune infiltration analyses revealed that SEPT9 promotes malignant tumor progression and modulates the immune microenvironments, enabling patients to benefit from immunotherapy. Moreover, drug sensitivity and molecular docking analyses showed that SEPT9 is associated with the sensitivity and resistance of multiple drugs and has stable binding activity with them, including Vorinostat and OTS-964. To harness its prognostic and therapeutic potential in LUSC, a mitotic spindle-associated prognostic model including SEPT9, HSF1, ARAP3, KIF20B, FAM83D, TUBB8, and several clinical characteristics, was developed. This model not only improves clinical outcome predictions but also reshapes the immune microenvironment, making immunotherapy more effective for LUSC patients. CONCLUSION This is the first study to systematically analyze the role of SEPT9 in cancers and innovatively apply the mitotic spindle-associated model to LUSC, fully demonstrating its potential as a valuable biomarker for cancer screening and prognosis, and highlighting its application value in promoting immunotherapy and chemotherapy, particularly for LUSC.
Collapse
Affiliation(s)
- Wenwen Wang
- Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, Zhejiang, China
| | - Xiaochen Zhang
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Ping Gui
- Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, Jiangsu, China
| | - Qizhen Zou
- Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, Zhejiang, China
| | - Yuzhou Nie
- Department of the Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310006, Zhejiang, China
| | - Shenglin Ma
- Department of Oncology, Hangzhou Cancer Hospital, Hangzhou, 310006, Zhejiang, China
| | - Shirong Zhang
- Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, Zhejiang, China.
| |
Collapse
|
7
|
Gu X, Wei S, Lv X. Circulating tumor cells: from new biological insights to clinical practice. Signal Transduct Target Ther 2024; 9:226. [PMID: 39218931 PMCID: PMC11366768 DOI: 10.1038/s41392-024-01938-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 05/31/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
The primary reason for high mortality rates among cancer patients is metastasis, where tumor cells migrate through the bloodstream from the original site to other parts of the body. Recent advancements in technology have significantly enhanced our comprehension of the mechanisms behind the bloodborne spread of circulating tumor cells (CTCs). One critical process, DNA methylation, regulates gene expression and chromosome stability, thus maintaining dynamic equilibrium in the body. Global hypomethylation and locus-specific hypermethylation are examples of changes in DNA methylation patterns that are pivotal to carcinogenesis. This comprehensive review first provides an overview of the various processes that contribute to the formation of CTCs, including epithelial-mesenchymal transition (EMT), immune surveillance, and colonization. We then conduct an in-depth analysis of how modifications in DNA methylation within CTCs impact each of these critical stages during CTC dissemination. Furthermore, we explored potential clinical implications of changes in DNA methylation in CTCs for patients with cancer. By understanding these epigenetic modifications, we can gain insights into the metastatic process and identify new biomarkers for early detection, prognosis, and targeted therapies. This review aims to bridge the gap between basic research and clinical application, highlighting the significance of DNA methylation in the context of cancer metastasis and offering new avenues for improving patient outcomes.
Collapse
Affiliation(s)
- Xuyu Gu
- Department of Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shiyou Wei
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xin Lv
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
8
|
Najafi S, Hashemi-Gorji F, Roudgari H, Goudarzi M, Jafarzadegan AM, Sheykhbahaei N. Genetic change investigation in DOCK1 gene in an Iranian family with sign and symptoms of temporomandibular joint disorder (TMD). Clin Oral Investig 2024; 28:432. [PMID: 39020145 DOI: 10.1007/s00784-024-05819-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 07/01/2024] [Indexed: 07/19/2024]
Abstract
OBJECTIVES Temporomandibular joint disorder (TMD) is a complex condition with pain and dysfunction in the temporomandibular joint and related muscles. Scientific evidence indicates both genetic and environmental factors play a crucial role in TMD. In this study, we aimed to discover the genetic changes in individuals from 4 generations of an Iranian family with signs and symptoms of TMD and malocclusion Class III. MATERIALS AND METHODS Whole Exome Sequencing (WES) was performed in 4 patients (IV-8, IV-9, V-4, and V-6) with TMD according to (DC/TMD), along with skeletal Class III malocclusion. Then, PCR sequencing was performed on 23 family members to confirm the WES. RESULTS In the present study, WES results analysis detected 6 heterozygous non-synonymous Single Nucleotide Variants (SNVs) in 5 genes, including CRLF3, DNAH17, DOCK1, SEPT9, and VWDE. A heterozygous variant, c.2012T > A (p.F671Y), in Exon 20 of the DOCK1 (NM_001290223.2) gene was identified. Then, this variant was investigated in 19 other members of the same family. PCR-Sequencing results showed that 7/19 had heterozygous TA genotype, all of whom were accompanied by malocclusion and TMD symptoms and 12/19 individuals had homozygous TT genotype, 9 of whom had no temporomandibular joint problems or malocclusion. The remaining 3 showed mild TMD clinical symptoms. The 5 other non-synonymous SNVs of CRLF3, DNAH17, SEPT9, and VWDE were not considered plausible candidates for TMD. CONCLUSIONS The present study identified a heterozygous nonsynonymous c.2012T > A (p.F671Y) variant of the DOCK1 gene is significantly associated with skeletal class III malocclusion, TMD, and its severity in affected individuals in the Iranian pedigree. CLINICAL RELEVANCE The role of genetic factors in the development of TMD has been described. The present study identified a nonsynonymous variant of the DOCK1 gene as a candidate for TMD and skeletal class III malocclusion in affected individuals in the Iranian pedigree.
Collapse
Affiliation(s)
- Shamsoulmolouk Najafi
- Dental Research Center, Tehran University of Medical Science, Tehran, Iran
- Oral & Maxillofacial Medicine Department, School of Dentistry, Tehran University of Medical Science, Tehran, Iran
- Oral and maxillofacial pain fellowship, Department of Oral and Maxillofacial Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzad Hashemi-Gorji
- Genomic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Roudgari
- Genomic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mina Goudarzi
- Oral & Maxillofacial Medicine Department, School of Dentistry, Tehran University of Medical Science, Tehran, Iran
| | - Amir Mohammad Jafarzadegan
- Oral & Maxillofacial Medicine Department, School of Dentistry, Tehran University of Medical Science, Tehran, Iran
| | - Nafiseh Sheykhbahaei
- Oral & Maxillofacial Medicine Department, School of Dentistry, Tehran University of Medical Science, Tehran, Iran.
- Laser Research Center of Dentistry, Dentistry Research Institute, Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|
9
|
Newsham I, Sendera M, Jammula SG, Samarajiwa SA. Early detection and diagnosis of cancer with interpretable machine learning to uncover cancer-specific DNA methylation patterns. Biol Methods Protoc 2024; 9:bpae028. [PMID: 38903861 PMCID: PMC11186673 DOI: 10.1093/biomethods/bpae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/30/2024] [Accepted: 04/29/2024] [Indexed: 06/22/2024] Open
Abstract
Cancer, a collection of more than two hundred different diseases, remains a leading cause of morbidity and mortality worldwide. Usually detected at the advanced stages of disease, metastatic cancer accounts for 90% of cancer-associated deaths. Therefore, the early detection of cancer, combined with current therapies, would have a significant impact on survival and treatment of various cancer types. Epigenetic changes such as DNA methylation are some of the early events underlying carcinogenesis. Here, we report on an interpretable machine learning model that can classify 13 cancer types as well as non-cancer tissue samples using only DNA methylome data, with 98.2% accuracy. We utilize the features identified by this model to develop EMethylNET, a robust model consisting of an XGBoost model that provides information to a deep neural network that can generalize to independent data sets. We also demonstrate that the methylation-associated genomic loci detected by the classifier are associated with genes, pathways and networks involved in cancer, providing insights into the epigenomic regulation of carcinogenesis.
Collapse
Affiliation(s)
- Izzy Newsham
- MRC Cancer Unit, University of Cambridge, Cambridge, CB2 0XZ, United Kingdom
- MRC Biostatistics Unit, University of Cambridge, Cambridge, CB2 0SR, United Kingdom
| | - Marcin Sendera
- MRC Cancer Unit, University of Cambridge, Cambridge, CB2 0XZ, United Kingdom
- Jagiellonian University, Faculty of Mathematics and Computer Science, 30-348 Kraków, Poland
| | - Sri Ganesh Jammula
- CRUK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE, United Kingdom
- MedGenome labs, Bengaluru, 560099, India
| | - Shamith A Samarajiwa
- MRC Cancer Unit, University of Cambridge, Cambridge, CB2 0XZ, United Kingdom
- Imperial College London, Hammersmith Campus, London, W12 0NN, United Kingdom
| |
Collapse
|
10
|
Shavali M, Moradi A, Tahmaseb M, Mohammadian K, Ganji SM. Circulating-tumour DNA methylation of HAND1 gene: a promising biomarker in early detection of colorectal cancer. BMC Med Genomics 2024; 17:117. [PMID: 38689296 PMCID: PMC11061902 DOI: 10.1186/s12920-024-01893-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the significant global health concerns with an increase in cases. Regular screening tests are crucial for early detection as it is often asymptomatic in the initial stages. Liquid biopsies, a non-invasive approach that examines biomarkers in biofluids, offer a promising future in diagnosing and screening cancer. Circulating-tumour DNA (ctDNA) is the genetic material in biofluids released into the circulatory system by cells. ctDNA is a promising marker for monitoring patients since cancer cells display distinct DNA methylation patterns compared to normal cells. The potential of our research to contribute to early detection and improved patient outcomes is significant. AIMS The primary objective of this research project was to explore the HAND1 methylation levels in plasma ctDNA as a potential biomarker for diagnosing CRC and evaluate the methylation level of the well-established gene SPET9 to compare it with the methylation level of HAND1. MATERIALS AND METHODS Plasma samples were collected from 30 CRC patients and 15 healthy individuals, with CRC samples obtained pre-treatment. ctDNA was extracted and treated with bisulfite for methylation status assessment. Quantitative methylation-specific PCR (qMS-PCR) was performed for HAND1 and SEPT9, using β-actin (ACTB gene) as a reference. The study aims to evaluate the potential of these genes as diagnostic biomarkers for CRC, contributing to early detection and improved patient outcomes. RESULTS Our study yielded significant results: 90% of CRC patients (27 out of 30) had hypermethylation in the SEPT9 gene, and 83% (25 out of 30) exhibited hypermethylation in the HAND1 gene. The methylation levels of both genes were significantly higher in CRC patients than in healthy donors. These findings underscore the potential of SEPT9 and HAND1 methylation as promising biomarkers for diagnosing CRC, potentially leading to early detection and improved patient outcomes. CONCLUSION These findings highlight the potential of SEPT9 and HAND1 methylation as promising biomarkers for diagnosing CRC. However, further research and validation studies are needed to confirm these findings and to explore their clinical utility in CRC diagnosis and management.
Collapse
Affiliation(s)
- Mehrdad Shavali
- Department of Cell and Molecular Biology, Faculty of Biological Science, Kharazmi University, Tehran, Iran
| | - Arash Moradi
- Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Shahrak-e Pajoohesh, km 15, P.O. Box 14965/161, Tehran, Tehran - Karaj Highway, Iran
| | - Mohammad Tahmaseb
- Department of Cell and Molecular Biology, Faculty of Biological Science, Kharazmi University, Tehran, Iran
| | - Kamal Mohammadian
- Department of Radiation Oncology, Hamadan University of Medical Sciences, Hamadan, Iran
- Cancer Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shahla Mohammad Ganji
- Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Shahrak-e Pajoohesh, km 15, P.O. Box 14965/161, Tehran, Tehran - Karaj Highway, Iran.
| |
Collapse
|
11
|
Gao J, Shi W, Wang J, Guan C, Dong Q, Sheng J, Zou X, Xu Z, Ge Y, Yang C, Li J, Bao H, Zhong X, Cui Y. Research progress and applications of epigenetic biomarkers in cancer. Front Pharmacol 2024; 15:1308309. [PMID: 38681199 PMCID: PMC11048075 DOI: 10.3389/fphar.2024.1308309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/25/2024] [Indexed: 05/01/2024] Open
Abstract
Epigenetic changes are heritable changes in gene expression without changes in the nucleotide sequence of genes. Epigenetic changes play an important role in the development of cancer and in the process of malignancy metastasis. Previous studies have shown that abnormal epigenetic changes can be used as biomarkers for disease status and disease prediction. The reversibility and controllability of epigenetic modification changes also provide new strategies for early disease prevention and treatment. In addition, corresponding drug development has also reached the clinical stage. In this paper, we will discuss the recent progress and application status of tumor epigenetic biomarkers from three perspectives: DNA methylation, non-coding RNA, and histone modification, in order to provide new opportunities for additional tumor research and applications.
Collapse
Affiliation(s)
- Jianjun Gao
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wujiang Shi
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiangang Wang
- Department of General Surgery, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Canghai Guan
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qingfu Dong
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jialin Sheng
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinlei Zou
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhaoqiang Xu
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yifei Ge
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chengru Yang
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiehan Li
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Haolin Bao
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiangyu Zhong
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yunfu Cui
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
12
|
Grossi I, Assoni C, Lorini L, Smussi D, Gurizzan C, Grisanti S, Paderno A, Mattavelli D, Piazza C, Pelisenco IA, De Petro G, Salvi A, Bossi P. Evaluation of DNA methylation levels of SEPT9 and SHOX2 in plasma of patients with head and neck squamous cell carcinoma using droplet digital PCR. Oncol Rep 2024; 51:52. [PMID: 38299234 PMCID: PMC10865173 DOI: 10.3892/or.2024.8711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/12/2023] [Indexed: 02/02/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the seventh most commonly diagnosed cancer globally. HNSCC develops from the mucosa of the oral cavity, pharynx and larynx. Methylation levels of septin 9 (SEPT9) and short stature homeobox 2 (SHOX2) genes in circulating cell‑free DNA (ccfDNA) are considered epigenetic biomarkers and have shown predictive value in preliminary reports in HNSCC. Liquid biopsy is a non‑invasive procedure that collects tumor‑derived molecules, including ccfDNA. In the present study, a droplet digital PCR (ddPCR)‑based assay was developed to detect DNA methylation levels of circulating SEPT9 and SHOX2 in the plasma of patients with HNSCC. The assay was first set up using commercial methylated and unmethylated DNA. The dynamic changes in the methylation levels of SEPT9 and SHOX2 were then quantified in 20 patients with HNSCC during follow‑up. The results highlighted: i) The ability of the ddPCR‑based assay to detect very low copies of methylated molecules; ii) the significant decrease in SEPT9 and SHOX2 methylation levels in the plasma of patients with HNSCC at the first time points of follow‑up with respect to T0; iii) a different trend of longitudinally DNA methylation variations in small groups of stratified patients. The absolute and precise quantification of SEPT9 and SHOX2 methylation levels in HNSCC may be useful for studies with translational potential.
Collapse
Affiliation(s)
- Ilaria Grossi
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, I-25123 Brescia, Italy
| | - Claudia Assoni
- Unit of Medical Oncology, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, ASST Spedali Civili of Brescia, University of Brescia, I-25123 Brescia, Italy
| | - Luigi Lorini
- Unit of Medical Oncology, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, ASST Spedali Civili of Brescia, University of Brescia, I-25123 Brescia, Italy
| | - Davide Smussi
- Unit of Medical Oncology, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, ASST Spedali Civili of Brescia, University of Brescia, I-25123 Brescia, Italy
| | - Cristina Gurizzan
- Unit of Medical Oncology, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, ASST Spedali Civili of Brescia, University of Brescia, I-25123 Brescia, Italy
| | - Salvatore Grisanti
- Unit of Medical Oncology, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, ASST Spedali Civili of Brescia, University of Brescia, I-25123 Brescia, Italy
| | - Alberto Paderno
- Unit of Otorhinolaryngology-Head and Neck Surgery, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, ASST Spedali Civili of Brescia, University of Brescia, I-25123 Brescia, Italy
| | - Davide Mattavelli
- Unit of Otorhinolaryngology-Head and Neck Surgery, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, ASST Spedali Civili of Brescia, University of Brescia, I-25123 Brescia, Italy
| | - Cesare Piazza
- Unit of Otorhinolaryngology-Head and Neck Surgery, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, ASST Spedali Civili of Brescia, University of Brescia, I-25123 Brescia, Italy
| | - Iulia Andreea Pelisenco
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, I-25123 Brescia, Italy
| | - Giuseppina De Petro
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, I-25123 Brescia, Italy
| | - Alessandro Salvi
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, I-25123 Brescia, Italy
| | - Paolo Bossi
- Unit of Medical Oncology, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, ASST Spedali Civili of Brescia, University of Brescia, I-25123 Brescia, Italy
| |
Collapse
|
13
|
Song X, Wang X, Chen X, Yu Z, Zhou Y. SRSF1 inhibits ferroptosis and reduces cisplatin chemosensitivity of triple-negative breast cancer cells through the circSEPT9/GCH1 axis. J Proteomics 2024; 292:105055. [PMID: 38040194 DOI: 10.1016/j.jprot.2023.105055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/30/2023] [Accepted: 11/21/2023] [Indexed: 12/03/2023]
Abstract
Cisplatin (DDP) is a commonly used chemotherapeutic agent for triple negative breast cancer (TNBC), but its efficacy can be limited by chemoresistance. This study aimed to explore the functional mechanism of SR-rich splicing factor 1 (SRSF1) in DDP chemosensitivity of TNBC cells. Levels of SRSF1, circular RNA septin 9 (circSEPT9), and GTP cyclohydrolase-1 (GCH1) in TNBC cells, DDP-resistant cells, and normal cells were determined. Cell viability, half-maximal inhibitory concentration (IC50) value, and proliferation were evaluated. Ferroptosis was determined by assay kits (ferric ion/ROS/MDA/GSH) and Western blot assay (SLC7A11/ACSL4). The genetic binding was analyzed by RNA immunoprecipitation and RNA pull-down assays. SRSF1, circSEPT9, and GCH1 were upregulated in TNBC cells. SRSF1 downregulation reduced IC50 to DDP of parent and drug-resistant TNBC cells and inhibited cell viability and proliferation, meanwhile, the downregulation reduced GSH/SLC7A11 levels while elevated ferric ion/ROS/MDA/ACSL4 levels, promoting ferroptosis. SRSF1 bound to and upregulated circSEPT9 and circSEPT9 blocked the ubiquitination of GCH1, thereby increasing GCH1 protein level. Overexpression of circSEPT9 and GCH1 attenuated the DDP chemosensitivity of TNBC cells by inhibiting ferroptosis. This study is the first to report the role of SRSF1 inhibitors combined with chemotherapy in TNBC, which provides a promising strategy for the treatment of TNBC. SIGNIFICANCE: Cisplatin (DDP) is a commonly used chemotherapeutic agent for triple negative breast cancer (TNBC), but its efficacy can be limited by chemoresistance. This study aimed to unravel the molecular mechanism of SR-rich splicing factor 1 (SRSF1) in DDP chemosensitivity of TNBC cells.
Collapse
Affiliation(s)
- Xiang Song
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China; Breast Cancer Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Xinzhao Wang
- Breast Cancer Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China; REMEGEN, LTD, Yantai Economic & Technological Development Area, Yantai, Shandong 264006, China
| | - Xiqi Chen
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China; Department of General Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, China
| | - Zhiyong Yu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China; Breast Cancer Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Yongkun Zhou
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China; Department of General Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, China.
| |
Collapse
|
14
|
Zhang SL, Yu HJ, Lian ZQ, Wan J, Xie SM, Lei W, Chen QP, Zhang L, Wang Q. Septin9 DNA methylation is associated with breast cancer recurrence or metastasis. J Int Med Res 2024; 52:3000605231220827. [PMID: 38180895 PMCID: PMC10771060 DOI: 10.1177/03000605231220827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/23/2023] [Indexed: 01/07/2024] Open
Abstract
OBJECTIVE We aimed to explore the prognostic value of Septin9 DNA methylation in breast cancer. METHODS Breast cancer patients with and without recurrence or metastasis and matched non-breast cancer patients were screened retrospectively from 2014 to 2016. Bisulfite conversion and fluorescence quantitative methylation-specific polymerase chain reaction were used to detect the Septin9 methylation status and distribution levels in patient breast tissues. RESULTS Septin9 DNA methylation was more frequent in breast cancer tissues than in non-breast cancer tissues, but was not significantly correlated with any relevant breast cancer patient clinicopathological characteristic. Septin9 methylation rates were higher in patients with recurrence or metastasis. Septin9 methylation, tumor size, lymph node status, and progesterone receptor (PR) expression could influence prognosis. Septin9 methylation was significantly associated with worse disease-free survival in breast cancer patients, with receiver operating characteristic curve analysis indicating that it had good prognostic ability, with an area under the curve (AUC) value of 0.719. The AUC values increased when Septin9 methylation was combined with tumor size, lymph node status, and PR to predict prognosis. CONCLUSIONS Septin9 DNA methylation was an independent predictors of breast cancer prognostic risk. This could possibly help improve comprehensive prognosis prediction methods when combined with other risk factors.
Collapse
Affiliation(s)
- Shao-Ling Zhang
- Department of Breast Diseases, Guangdong Women and Children Hospital, Guangzhou, China
| | - Hai-Jing Yu
- Department of Breast Diseases, Guangdong Women and Children Hospital, Guangzhou, China
| | - Zhen-Qiang Lian
- Department of Breast Diseases, Guangdong Women and Children Hospital, Guangzhou, China
| | - Jian Wan
- Department of Breast Diseases, Guangdong Women and Children Hospital, Guangzhou, China
| | - Si-Mei Xie
- Department of Breast Diseases, Guangdong Women and Children Hospital, Guangzhou, China
| | - Wen Lei
- Department of Breast Diseases, Guangdong Women and Children Hospital, Guangzhou, China
| | - Qiu-Ping Chen
- Translational Medicine Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Liang Zhang
- Translational Medicine Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Qi Wang
- Department of Breast Diseases, Guangdong Women and Children Hospital, Guangzhou, China
| |
Collapse
|
15
|
Okletey J, Angelis D, Jones TM, Montagna C, Spiliotis ET. An oncogenic isoform of septin 9 promotes the formation of juxtanuclear invadopodia by reducing nuclear deformability. Cell Rep 2023; 42:112893. [PMID: 37516960 PMCID: PMC10530659 DOI: 10.1016/j.celrep.2023.112893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/17/2023] [Accepted: 07/13/2023] [Indexed: 08/01/2023] Open
Abstract
Invadopodia are extracellular matrix (ECM) degrading structures, which promote cancer cell invasion. The nucleus is increasingly viewed as a mechanosensory organelle that determines migratory strategies. However, how the nucleus crosstalks with invadopodia is little known. Here, we report that the oncogenic septin 9 isoform 1 (SEPT9_i1) is a component of breast cancer invadopodia. SEPT9_i1 depletion diminishes invadopodium formation and the clustering of the invadopodium precursor components TKS5 and cortactin. This phenotype is characterized by deformed nuclei and nuclear envelopes with folds and grooves. We show that SEPT9_i1 localizes to the nuclear envelope and juxtanuclear invadopodia. Moreover, exogenous lamin A rescues nuclear morphology and juxtanuclear TKS5 clusters. Importantly, SEPT9_i1 is required for the amplification of juxtanuclear invadopodia, which is induced by the epidermal growth factor. We posit that nuclei of low deformability favor the formation of juxtanuclear invadopodia in a SEPT9_i1-dependent manner, which functions as a tunable mechanism for overcoming ECM impenetrability.
Collapse
Affiliation(s)
- Joshua Okletey
- Department of Biology, Drexel University, 3245 Chestnut Street, Philadelphia, PA 19104, USA
| | - Dimitrios Angelis
- Department of Biology, Drexel University, 3245 Chestnut Street, Philadelphia, PA 19104, USA
| | - Tia M Jones
- Department of Biology, Drexel University, 3245 Chestnut Street, Philadelphia, PA 19104, USA
| | - Cristina Montagna
- Department of Radiology and Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
| | - Elias T Spiliotis
- Department of Biology, Drexel University, 3245 Chestnut Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
16
|
Okletey J, Angelis D, Jones TM, Montagna C, Spiliotis ET. An oncogenic isoform of septin 9 promotes the formation of juxtanuclear invadopodia by reducing nuclear deformability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.18.545473. [PMID: 37398172 PMCID: PMC10312791 DOI: 10.1101/2023.06.18.545473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Invadopodia are extracellular matrix (ECM) degrading structures, which promote cancer cell invasion. The nucleus is increasingly viewed as a mechanosensory organelle that determines migratory strategies. However, how the nucleus crosstalks with invadopodia is little known. Here, we report that the oncogenic septin 9 isoform 1 (SEPT9_i1) is a component of breast cancer invadopodia. SEPT9_i1 depletion diminishes invadopodia formation and the clustering of invadopodia precursor components TKS5 and cortactin. This phenotype is characterized by deformed nuclei, and nuclear envelopes with folds and grooves. We show that SEPT9_i1 localizes to the nuclear envelope and juxtanuclear invadopodia. Moreover, exogenous lamin A rescues nuclear morphology and juxtanuclear TKS5 clusters. Importantly, SEPT9_i1 is required for the amplification of juxtanuclear invadopodia, which is induced by the epidermal growth factor. We posit that nuclei of low deformability favor the formation of juxtanuclear invadopodia in a SEPT9_i1-dependent manner, which functions as a tunable mechanism for overcoming ECM impenetrability. Highlights The oncogenic SEPT9_i1 is enriched in breast cancer invadopodia in 2D and 3D ECMSEPT9_i1 promotes invadopodia precursor clustering and invadopodia elongationSEPT9_i1 localizes to the nuclear envelope and reduces nuclear deformabilitySEPT9_i1 is required for EGF-induced amplification of juxtanuclear invadopodia. eTOC Blurb Invadopodia promote the invasion of metastatic cancers. The nucleus is a mechanosensory organelle that determines migratory strategies, but how it crosstalks with invadopodia is unknown. Okletey et al show that the oncogenic isoform SEPT9_i1 promotes nuclear envelope stability and the formation of invadopodia at juxtanuclear areas of the plasma membrane.
Collapse
|
17
|
Kmeid M, Park YN, Chung T, Pacheco RR, Arslan ME, Lee H. SEPT9 Expression in Hepatic Nodules: An Immunohistochemical Study of Hepatocellular Neoplasm and Metastasis. Appl Immunohistochem Mol Morphol 2023; 31:278-287. [PMID: 36867734 DOI: 10.1097/pai.0000000000001112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 01/24/2023] [Indexed: 03/05/2023]
Abstract
The methylated SEPT9 DNA ( mSEPT9 ) in plasma is a US Food and Drug Administration (FDA)-approved screening biomarker in colorectal cancer and is emerging as a promising diagnostic and prognostic biomarker in hepatocellular carcinoma (HCC). We evaluated the SEPT9 protein expression by immunohistochemistry (IHC) in various hepatic tumors from 164 hepatectomies and explants. Cases diagnosed as HCC (n=68), hepatocellular adenoma (n=31), dysplastic nodule (n=24), and metastasis (n=41) were retrieved. SEPT9 stain was performed on representative tissue blocks showing tumor/liver interface. For HCC, archived IHC (SATB2, CK19, CDX2, CK20, and CDH17) slides were also reviewed. The findings were correlated with demographics, risk factors, tumor size, alpha fetoprotein levels at diagnosis, T stage and oncologic outcomes, with significance defined as P <0.05. Percentage of SEPT9 positivity differed significantly among hepatocellular adenoma (3%), dysplastic nodule (0%), HCC (32%), and metastasis (83%, P <0.001). Compared with patients with SEPT9- HCC, those with SEPT9+ HCC were older (70 vs. 63 y, P =0.01). The extent of SEPT9 staining correlated with age ( rs =0.31, P =0.01), tumor grade ( rs =0.30, P =0.01), and extent of SATB2 staining ( rs =0.28, P =0.02). No associations were found between SEPT9 staining and tumor size, T stage, risk factors, CK19, CDX2, CK20, or CDH17 expression, alpha fetoprotein levels at diagnosis, METAVIR fibrosis stage, and oncologic outcome in the HCC cohort. SEPT9 is likely implicated in liver carcinogenesis in a HCC subset. Similar to mSEPT9 DNA measurement in liquid biopsies, SEPT9 staining by IHC may prove helpful as an adjunct diagnostic biomarker with potential prognostic ramifications.
Collapse
Affiliation(s)
- Michel Kmeid
- Department of Pathology, Albany Medical Center, Albany, NY
| | | | - Taek Chung
- Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | | | | | - Hwajeong Lee
- Department of Pathology, Albany Medical Center, Albany, NY
| |
Collapse
|
18
|
Mokhtari K, Peymani M, Rashidi M, Hushmandi K, Ghaedi K, Taheriazam A, Hashemi M. Colon cancer transcriptome. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 180-181:49-82. [PMID: 37059270 DOI: 10.1016/j.pbiomolbio.2023.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 04/16/2023]
Abstract
Over the last four decades, methodological innovations have continuously changed transcriptome profiling. It is now feasible to sequence and quantify the transcriptional outputs of individual cells or thousands of samples using RNA sequencing (RNA-seq). These transcriptomes serve as a connection between cellular behaviors and their underlying molecular mechanisms, such as mutations. This relationship, in the context of cancer, provides a chance to unravel tumor complexity and heterogeneity and uncover novel biomarkers or treatment options. Since colon cancer is one of the most frequent malignancies, its prognosis and diagnosis seem to be critical. The transcriptome technology is developing for an earlier and more accurate diagnosis of cancer which can provide better protectivity and prognostic utility to medical teams and patients. A transcriptome is a whole set of expressed coding and non-coding RNAs in an individual or cell population. The cancer transcriptome includes RNA-based changes. The combined genome and transcriptome of a patient may provide a comprehensive picture of their cancer, and this information is beginning to affect treatment decision-making in real-time. A full assessment of the transcriptome of colon (colorectal) cancer has been assessed in this review paper based on risk factors such as age, obesity, gender, alcohol use, race, and also different stages of cancer, as well as non-coding RNAs like circRNAs, miRNAs, lncRNAs, and siRNAs. Similarly, they have been examined independently in the transcriptome study of colon cancer.
Collapse
Affiliation(s)
- Khatere Mokhtari
- Department of Modern Biology, ACECR Institute of Higher Education (Isfahan Branch), Isfahan, Iran
| | - Maryam Peymani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Kamran Ghaedi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
19
|
Wang T, Zhang Y, Wang J, Li Y. Diagnostic value of plasma RNF180 gene methylation for gastric cancer: A systematic review and meta-analysis. Front Oncol 2023; 12:1095101. [PMID: 36703788 PMCID: PMC9872154 DOI: 10.3389/fonc.2022.1095101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/21/2022] [Indexed: 01/12/2023] Open
Abstract
Objective A systematic evaluation of the diagnostic value of Ring finger protein 180 (RNF180) gene methylation as a novel tumor marker for gastric cancer (GC) is required to improve the early diagnosis of gastric cancer patients. Methods Computer searches of PubMed, Web of Science, Embase, The Cochrane Library, CNKI, CBM, WanFang Data, National Research Register, Cclinical Controlled Trials, Opengrey and VIP databases were conducted from the database's inception to September 1, 2022. Two researchers independently screened the literature, extracted information, and assessed the risk of bias in studies that were included. The meta-analysis was carried out using RevMan 5.3 and Stata 16.0 software. Results A total of 9 studies with a total of 1531 subjects were included. A random-effects meta-analysis revealed that the combined sensitivity (SEN), specificity (SPE), positive likelihood ratio (PLR), negative likelihood ratio (NLR), and diagnostic odds ratio (DOR) of plasma RNF180 gene methylation for the diagnosis of GC were: 0.54 [95% CI (0.45, 0.62)], 0.80 [95% CI (0.72, 0.87)], 2.73 [95% CI (2.09, 3.57)], 0.58 [95% CI (0.51, 0.65)], 4.74 [95% CI (3.59, 6.62)], respectively. Conclusion The detection of RNF180 gene methylation in plasma has a high diagnostic value for GC and is expected to be a potential biomarker for the diagnosis of gastric cancer, according to current evidence. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=370903, identifier CRD42022370903.
Collapse
Affiliation(s)
- Tongxin Wang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Gansu Provincial Key Laboratory of Gastrointestinal Tumor, Lanzhou University, Lanzhou, China
| | - Yating Zhang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Gansu Provincial Key Laboratory of Gastrointestinal Tumor, Lanzhou University, Lanzhou, China
| | - Jianrong Wang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Gansu Provincial Key Laboratory of Gastrointestinal Tumor, Lanzhou University, Lanzhou, China
| | - Yumin Li
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Gansu Provincial Key Laboratory of Gastrointestinal Tumor, Lanzhou University, Lanzhou, China
| |
Collapse
|
20
|
Mola S, Beauchamp C, Boucher G, Lesage S, Karaky M, Goyette P, Foisy S, Rioux JD. Identifying transcript-level differential expression in primary human immune cells. Mol Immunol 2023; 153:181-193. [PMID: 36527757 DOI: 10.1016/j.molimm.2022.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 11/17/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Multipotential hematopoietic stem cells differentiate into a wide variety of immune cells with a diversity of functions, including the ability to respond to a variety of stimuli. Importantly, numerous studies have demonstrated the importance of gene transcription in defining cell identity and functions. While these studies have primarily been performed at the level of the gene, it is known that key immune genes such as CD44 and CD45 generate multiple different transcripts that are differentially expressed across different immune cells, and that encode proteins with different sequences and functions. Prior genomic surveys have shown that the mechanisms for generating diversity in expressed transcripts (alternate splicing, alternate transcription start sites, etc.) are very active in immune cells, but have been lacking in terms of identifying genes with multiple transcripts, that are differentially expressed, and likely to affect cell functions. METHODS We first identified the set of genes that had at least two transcripts expressed in our RNA sequencing dataset generated from purified populations of neutrophils, monocytes and five lymphocyte populations (B, NK, γδ T, CD4 + T and CD8 + T) from twelve healthy donors. Next, we developed a heuristic approach to identify genes where two or more transcripts have distinct expression patterns across lymphoid and/or myeloid populations. We then focused our annotation and interpretation on differentially expressed transcripts that affect the coding sequence. This process was repeated to identify transcripts that were differentially expressed between monocytes and populations of macrophages and LPS-stimulated macrophages derived from these monocytes in vitro. RESULTS We found that over 55 % of genes had two or more expressed transcripts, with an average ∼3 transcripts per gene, and that 70 % of these had at least two of the transcripts that encoded proteins with different sequences. As expected, we identified a complex pattern of differential expression for multiple transcripts encoding the CD45 transmembrane protein, but we also found similar evidence for ten other genes (CD300A, FYB1, GPI, LITAF, PSMA1, PTMA, RPL32, SEPTIN9, SH3BP2, SH3KBP1) when comparing the expression patterns of transcripts within myeloid and lymphoid cells. We also identified five genes with differentially expressed transcripts associated with the transition from monocytes to macrophages (FNBP1, KLF6, and SEPTIN9) or between macrophages and LPS-stimulated macrophages (CD44, OAZ2, and SEPTIN9). For the most part, we found that the different transcripts of these genes are expected to impact specific biological functions, for example the different transcripts of SEPTIN9 likely regulate the cytoskeleton in immune cells via their interactions with actins filaments and microtubules. CONCLUSIONS This analytic approach successfully identified multi-transcript genes that are differentially expressed across immune cells and could be applied to other transcriptomic data. DATA AVAILABILITY STATEMENT Researchers can request access to the individual-level data from the current study by contacting the Montreal Heart Institute ethics committee at the following institutional email address: cer.icm@icm-mhi.org.
Collapse
Affiliation(s)
- Saraï Mola
- Centre de recherche, Institut de cardiologie de Montréal, 5000 Rue Bélanger, Montréal, Québec H1T 1C8, Canada; Département de biochimie et médecine moléculaire, Université de Montréal, Pavillon Roger-Gaudry, C.P. 6128, Succ. Centre-ville, Montréal, Québec H3C 3J7, Canada.
| | - Claudine Beauchamp
- Centre de recherche, Institut de cardiologie de Montréal, 5000 Rue Bélanger, Montréal, Québec H1T 1C8, Canada.
| | - Gabrielle Boucher
- Centre de recherche, Institut de cardiologie de Montréal, 5000 Rue Bélanger, Montréal, Québec H1T 1C8, Canada.
| | - Sylvie Lesage
- Maisonneuve-Rosemont Hospital Research Center, 5415 boul. De l'Assomption, Montréal, Québec H1T 2M4, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, C.P. 6128, Succ. Centre-ville, Montréal, Québec H3C 3J7, Canada.
| | - Mohamad Karaky
- Centre de recherche, Institut de cardiologie de Montréal, 5000 Rue Bélanger, Montréal, Québec H1T 1C8, Canada.
| | - Philippe Goyette
- Centre de recherche, Institut de cardiologie de Montréal, 5000 Rue Bélanger, Montréal, Québec H1T 1C8, Canada.
| | - Sylvain Foisy
- Centre de recherche, Institut de cardiologie de Montréal, 5000 Rue Bélanger, Montréal, Québec H1T 1C8, Canada.
| | - John D Rioux
- Centre de recherche, Institut de cardiologie de Montréal, 5000 Rue Bélanger, Montréal, Québec H1T 1C8, Canada; Département de biochimie et médecine moléculaire, Université de Montréal, Pavillon Roger-Gaudry, C.P. 6128, Succ. Centre-ville, Montréal, Québec H3C 3J7, Canada; Département de médecine, Université de Montréal, Pavillon Roger-Gaudry, C.P. 6128, Succ. Centre-ville, Montréal, Québec H3C 3J7, Canada.
| |
Collapse
|
21
|
Blood-based DNA methylation signatures in cancer: A systematic review. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166583. [PMID: 36270476 DOI: 10.1016/j.bbadis.2022.166583] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/30/2022] [Accepted: 10/11/2022] [Indexed: 11/07/2022]
Abstract
DNA methylation profiles are in dynamic equilibrium via the initiation of methylation, maintenance of methylation and demethylation, which control gene expression and chromosome stability. Changes in DNA methylation patterns play important roles in carcinogenesis and primarily manifests as hypomethylation of the entire genome and the hypermethylation of individual loci. These changes may be reflected in blood-based DNA, which provides a non-invasive means for cancer monitoring. Previous blood-based DNA detection objects primarily included circulating tumor DNA/cell-free DNA (ctDNA/cfDNA), circulating tumor cells (CTCs) and exosomes. Researchers gradually found that methylation changes in peripheral blood mononuclear cells (PBMCs) also reflected the presence of tumors. Blood-based DNA methylation is widely used in early diagnosis, prognosis prediction, dynamic monitoring after treatment and other fields of clinical research on cancer. The reversible methylation of genes also makes them important therapeutic targets. The present paper summarizes the changes in DNA methylation in cancer based on existing research and focuses on the characteristics of the detection objects of blood-based DNA, including ctDNA/cfDNA, CTCs, exosomes and PBMCs, and their application in clinical research.
Collapse
|
22
|
Zhao L, Liu Y, Zhang S, Li M. Plasma Methylated RNF180 for Noninvasive Diagnosis of Gastric Cancer. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6548945. [PMID: 36246966 PMCID: PMC9556199 DOI: 10.1155/2022/6548945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 08/28/2022] [Accepted: 09/07/2022] [Indexed: 12/24/2022]
Abstract
Background RNF180 is a tumor suppressor gene involved in cell development, proliferation, and apoptosis. Methylation of RNF180 (mRNF180) leads to low expression of RNF180, which is closely related to the occurrence and development of gastric cancer (GC). This study was designed to evaluate the potential performance of plasma mRNF180 as noninvasive biomarker for the diagnosis of GC. Methods A total of 156 participants, including 60 patients with GC, 39 with chronic superficial gastritis (CSG), 27 with chronic atrophic gastritis (CAG), and 30 with gastric ulcer (GU) were recruited for this study. Plasma mRNF180 level was measured using real-time polymerase chain reaction. Results As a diagnostic target, mRNF180 had a sensitivity of 71.67% (95% CI: 58.36%-82.18%) and specificity of 59.38% (95% CI: 48.85%-69.14%). The area under the ROC curve value of mRNF180 was 0.731 (95% CI: 0.648%-0.813%) for differentiation of GC from benign gastric diseases (BGD). The effectiveness of mRNF180 was superior to that of CEA, CA199, and CA724. mRNF180 was positively correlated with age, tumor size, T stage, N stage, M stage, and clinical stage of patients with GC. Conclusions Plasma mRNF180 might serve as a useful and noninvasive biomarker for the diagnosis of GC and can be used to evaluate its prognosis.
Collapse
Affiliation(s)
- Luyao Zhao
- Nankai University School of Medicine, Nankai University, 300071 Tianjin, China
- Department of Gastroenterology, Tianjin Union Medical Center, 300121 Tianjin, China
| | - Yandi Liu
- Department of Gastroenterology, Tianjin Union Medical Center, 300121 Tianjin, China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, 300121 Tianjin, China
| | - Muran Li
- Department of Gastroenterology, Tianjin Union Medical Center, 300121 Tianjin, China
| |
Collapse
|
23
|
Gleason AC, Ghadge G, Sonobe Y, Roos RP. Kozak Similarity Score Algorithm Identifies Alternative Translation Initiation Codons Implicated in Cancers. Int J Mol Sci 2022; 23:ijms231810564. [PMID: 36142475 PMCID: PMC9506484 DOI: 10.3390/ijms231810564] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Ribosome profiling and mass spectroscopy have identified canonical and noncanonical translation initiation codons (TICs) that are upstream of the main translation initiation site and used to translate oncogenic proteins. There have previously been conflicting reports about the patterns of nucleotides that surround noncanonical TICs. Here, we use a Kozak Similarity Score algorithm to find that nearly all of these TICs have flanking nucleotides closely matching the Kozak sequence. Remarkably, the nucleotides flanking alternative noncanonical TICs are frequently closer to the Kozak sequence than the nucleotides flanking TICs used to translate the gene’s main protein. Of note, the 5′ untranslated region (5‘UTR) of cancer-associated genes with an upstream TIC tend to be significantly longer than the same region in genes not associated with cancer. The presence of a longer-than-typical 5′UTR increases the likelihood of ribosome binding to upstream noncanonical TICs, and may be a distinguishing feature of a number of genes overexpressed in cancer. Noncanonical TICs that are located in the 5′UTR, although thought by some to be disadvantageous and suppressed by evolution, may translate oncogenic proteins because of their flanking nucleotides.
Collapse
|
24
|
Kim OV, Litvinov RI, Mordakhanova ER, Bi E, Vagin O, Weisel JW. Contribution of septins to human platelet structure and function. iScience 2022; 25:104654. [PMID: 35832887 PMCID: PMC9272382 DOI: 10.1016/j.isci.2022.104654] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 04/23/2022] [Accepted: 06/17/2022] [Indexed: 11/29/2022] Open
Abstract
Although septins have been well-studied in nucleated cells, their role in anucleate blood platelets remains obscure. Here, we elucidate the contribution of septins to human platelet structure and functionality. We show that Septin-2 and Septin-9 are predominantly distributed at the periphery of resting platelets and co-localize strongly with microtubules. Activation of platelets by thrombin causes clustering of septins and impairs their association with microtubules. Inhibition of septin dynamics with forchlorfenuron (FCF) reduces thrombin-induced densification of septins and lessens their colocalization with microtubules in resting and activated platelets. Exposure to FCF alters platelet shape, suggesting that septins stabilize platelet cytoskeleton. FCF suppresses platelet integrin αIIbβ3 activation, promotes phosphatidylserine exposure on activated platelets, and induces P-selectin expression on resting platelets, suggesting septin involvement in these processes. Inhibition of septin dynamics substantially reduces platelet contractility and abrogates their spreading on fibrinogen-coated surfaces. Overall, septins strongly contribute to platelet structure, activation and biomechanics.
Collapse
Affiliation(s)
- Oleg V. Kim
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rustem I. Litvinov
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elmira R. Mordakhanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation
| | - Erfei Bi
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Olga Vagin
- Department of Pediatrics, Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Veterans Affairs Greater Los Angeles Health Care System, Los Angeles, CA, USA
| | - John W. Weisel
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
25
|
Chandrapalan S, Bannaga A, Weidner A, Hitchins MP, Arasaradnam RP. A systematic review and meta-analysis: the diagnostic accuracy of methylated SEPTIN9 for the detection of hepatocellular carcinoma and the clinical evaluation of its use in combination with other surveillance modalities. Scand J Gastroenterol 2022; 57:473-480. [PMID: 34957898 DOI: 10.1080/00365521.2021.2020331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) lacks a suitable biomarker for minimally-invasive disease detection. Methylated SEPTIN9 (mSEPT9) is an emerging liquid biopsy test. We aimed to investigate recent studies that applied mSEPT9 for HCC diagnosis. Furthermore, we evaluated the combinations of other surveillance modalities for the detection of HCC. METHODS A systematic review was performed on the diagnostic accuracy of mSEPT9 for the detection of HCC. Using a bivariate model, the pooled sensitivity and specificity were calculated. Additionally, Fagan's nomograms were used to calculate the pre-test and post-test probabilities of HCC for various combinations of surveillance modalities. RESULTS Six full texts were included in the meta-analysis. The pooled sensitivity and specificity of mSEPT9 for the detection of HCC, were 0.80 (95% CI, 0.67-0.89) and 0.90 (95% CI, 0.84-0.94). The area under the receiver operating curve was 0.92. The probability of having HCC for the combinations of mSEPT9+ ultrasound scan (USS) and mSEPT9+ Alpha fetoprotein (AFP) were 0.7% and 1.2% respectively if both tests were negative (in a population with 10% HCC prevalence). The combination of USS and AFP would miss relatively fewer cancers for 1000 patients in comparison to other combinations of two surveillance modalities. CONCLUSION Test combinations have superior performance for the detection of HCC than any individual test. mSEPT9 has shown promise in the detection of HCC with higher estimates of performance accuracy. mSEPT9 has potential for use as an HCC surveillance modality in adjunct with other tests to improve detection rates. However, cost effectiveness of this approach needs further evaluation.
Collapse
Affiliation(s)
- Subashini Chandrapalan
- University Hospital of Coventry and Warwickshire, Coventry, UK.,University of Warwick, Warwick, UK
| | - Ayman Bannaga
- University Hospital of Coventry and Warwickshire, Coventry, UK.,University of Warwick, Warwick, UK
| | | | - Megan P Hitchins
- Department of Biomedical Sciences, Cedars Sinai Medical Centre, Los Angeles, CA, USA
| | - Ramesh P Arasaradnam
- University Hospital of Coventry and Warwickshire, Coventry, UK.,Warwick Medical School, University of Warwick, Coventry, UK.,Health, Biological & Experimental Sciences, University of Coventry, Coventry, UK.,School of Health Sciences, University of Leicester, UK
| |
Collapse
|
26
|
Anghel SA, Ioniță-Mîndrican CB, Luca I, Pop AL. Promising Epigenetic Biomarkers for the Early Detection of Colorectal Cancer: A Systematic Review. Cancers (Basel) 2021; 13:4965. [PMID: 34638449 PMCID: PMC8508438 DOI: 10.3390/cancers13194965] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/22/2021] [Accepted: 09/29/2021] [Indexed: 12/12/2022] Open
Abstract
In CRC, screening compliance is decreased due to the experienced discomfort associated with colonoscopy, although this method is the gold standard in terms of sensitivity and specificity. Promoter DNA methylation (hypomethylation or hypermethylation) has been linked to all CRC stages. Study objectives: to systematically review the current knowledge on approved biomarkers, reveal new potential ones, and inspect tactics that can improve performance. This research was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines; the risk of bias was evaluated using the revised Quality Assessment of Diagnostic Accuracy Studies criteria (QUADAS-2). The Web of Science® Core Collection, MEDLINE® and Scopus® databases were searched for original articles published in peer-reviewed journals with the specific keywords "colorectal cancer", "early detection", "early-stage colorectal cancer", "epigenetics", "biomarkers", "DNA methylation biomarkers", "stool or blood or tissue or biopsy", "NDRG4", "BMP3", "SEPT9", and "SDC2". Based on eligibility criteria, 74 articles were accepted for analysis. mSDC2 and mSEPT9 were frequently assessed in studies, alone or together as part of the ColoDefense panel test-the latter with the greatest performance. mBMP3 may not be an appropriate marker for detecting CRC. A panel of five methylated binding sites of the CTCF gene holds the promise for early-stage specific detection of CRC. CRC screening compliance and accuracy can be enhanced by employing a stool mt-DNA methylation test.
Collapse
Affiliation(s)
- Sorina Andreea Anghel
- Department of Clinical Laboratory, Food Safety, "Carol Davila" University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania
- Department of Molecular Cell Biology, Institute of Biochemistry, Splaiul Independentei 296, 060031 Bucharest, Romania
| | - Corina-Bianca Ioniță-Mîndrican
- Department of Clinical Laboratory, Food Safety, "Carol Davila" University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania
- Department of Toxicology, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, 020945 Bucharest, Romania
| | - Ioana Luca
- Department of Clinical Laboratory, Food Safety, "Carol Davila" University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania
| | - Anca Lucia Pop
- Department of Clinical Laboratory, Food Safety, "Carol Davila" University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania
| |
Collapse
|
27
|
Kassid AA, Abdul-Rasheed OF, AlKhalidy NM. The Evaluation of Methylated Septin 9 in Blood Plasma and Tissue Biopsies for the Early Detection for Asymptomatic Colon Cancer. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.7156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The purpose of this study was to assess the utility of the SEPT9 genetic marker in the early detection of colon cancer patients. A case-control study was conducted on forty newly diagnosed colon cancer patients. The study was done between March 2019 and January 2020, patients from the Gastroenterology and Liver Education Hospital, Al-imamain Al-Kadhimain Medical City, and Baghdad Teaching Hospital were recruited. Colon cancer patients' mean age ± standard deviation was 54.4 ± 10.79 years while the age ± standard deviation of the mean of the control group was 55.1±8.54 years. For septin9 tissue methylation of the controls was done on the non-malignant tissues of the same patients.
This study concluded that the percentage of Septin 9 (SEPT9) in the tissue of patients with colon cancer (CC) was the highest value, which is more significant than that of the serum of CC patients. Both of these groups were significantly higher than the percentage of SEPT9 methylation of control tissue and serum.
Non-significant differences were obtained in the levels of CEA and CA19-9 between CC patients and controls.
Collapse
|
28
|
Kong C, Fu T. Value of methylation markers in colorectal cancer (Review). Oncol Rep 2021; 46:177. [PMID: 34212989 DOI: 10.3892/or.2021.8128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/18/2021] [Indexed: 11/05/2022] Open
Abstract
Colorectal cancer (CRC) is a multifactorial and multistage process that occurs due to both genetic and epigenetic variations in normal epithelial cells. Analysis of the CRC epigenome has revealed that almost all CRC types have a large number of abnormally methylated genes. Hypermethylation of cell‑free DNA from CRC in the blood or stool is considered as a potential non‑invasive cancer biomarker, and various methylation markers have shown high sensitivity and specificity. The aim of the present review was to examine potential methylation markers in CRC that have been used or are expected to be used in the clinical setting, focusing on their screening, predictive, prognostic and therapeutic roles in CRC.
Collapse
Affiliation(s)
- Can Kong
- Department of Gastrointestinal Surgery II, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Tao Fu
- Department of Gastrointestinal Surgery II, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|