1
|
Tang M, Song J, Zhang S, Shu X, Liu S, Ashrafizadeh M, Ertas YN, Zhou Y, Lei M. Innovative theranostic hydrogels for targeted gastrointestinal cancer treatment. J Transl Med 2024; 22:970. [PMID: 39465365 PMCID: PMC11514878 DOI: 10.1186/s12967-024-05749-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 10/08/2024] [Indexed: 10/29/2024] Open
Abstract
Gastrointestinal tumors are the main causes of death among the patients. These tumors are mainly diagnosed in the advanced stages and their response to therapy is unfavorable. In spite of the development of conventional therapeutics including surgery, chemotherapy, radiotherapy and immunotherapy, the treatment of these tumors is still challenging. As a result, the new therapeutics based on (nano)biotechnology have been introduced. Hydrogels are polymeric 3D networks capable of absorbing water to swell with favorable biocompatibility. In spite of application of hydrogels in the treatment of different human diseases, their wide application in cancer therapy has been improved because of their potential in drug and gene delivery, boosting chemotherapy and immunotherapy as well as development of vaccines. The current review focuses on the role of hydrogels in the treatment of gastrointestinal tumors. Hydrogels provide delivery of drugs (both natural or synthetic compounds and their co-delivery) along with gene delivery. Along with delivery, hydrogels stimulate phototherapy (photothermal and photodynamic therapy) in the suppression of these tumors. Besides, the ability of hydrogels for the induction of immune-related cells such as dendritic cells can boost cancer immunotherapy. For more specific cancer therapy, the stimuli-responsive types of hydrogels including thermo- and pH-sensitive hydrogels along with their self-healing ability have improved the site specific drug delivery. Moreover, hydrogels are promising for diagnosis, circulating tumor cell isolation and detection of biomarkers in the gastrointestinal tumors, highlighting their importance in clinic. Hence, hydrogels are diagnostic and therapeutic tools for the gastrointestimal tumors.
Collapse
Affiliation(s)
- Min Tang
- Department of Oncology, Chongqing General Hospital, Chongqing University, No.104 Pipa Mountain Main Street, Chongqing, 401120, China
| | - Junzhou Song
- Department of Oncology, BoAo Evergrande International Hospital, Qionghai, 571400, Hainan Province, China
| | - Shuyi Zhang
- Department of Health Management Center, Chongqing General Hospital, Chongqing University, Chongqing, 401120, China
| | - Xiaolei Shu
- Radiation Oncology Center, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Shuang Liu
- Department of Ultrasound, Chongqing Health Center for Women and Children, Women and Children's Hospital of Chongqing Medical University, No. 120, Longshan Road, Yubei, Chongqing, 401147, China
| | - Milad Ashrafizadeh
- Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, 250000, Shandong, China.
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, 38039, Kayseri, Türkiye
- Department of Technical Sciences, Western Caspian University, AZ1001, Baku, Azerbaijan
| | - Ya Zhou
- Department of Oncology, Chongqing General Hospital, Chongqing University, No.104 Pipa Mountain Main Street, Chongqing, 401120, China.
| | - Ming Lei
- Department of Nuclear Medicine, Chongqing University FuLing Hospital, Chongqing University, No. 2 Gaosuntang Road, Chongqing, China.
| |
Collapse
|
2
|
Sun Z, Cai S, Liu X, Jiang WG, Ye L. Putative Dual Roles of Bone Morphogenetic Protein 8B (BMP8B) in Disease Progression of Gastric Cancer. CANCER DIAGNOSIS & PROGNOSIS 2024; 4:567-578. [PMID: 39238632 PMCID: PMC11372696 DOI: 10.21873/cdp.10365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 09/07/2024]
Abstract
Background/Aim Increased expression of bone morphogenetic protein 8B (BMP8B) in bone marrow and primary tumors of patients with gastric cancer (GC) is associated with disease progression and poor prognosis. However, a reduced expression has also been seen in GCs due to histone acetylation. This study aimed to evaluate BMP8B transcript levels in a large GC cohort and its impact on cellular functions. Materials and Methods BMP8B transcripts were determined in 319 gastric tumors and compared with 182 adjacent normal tissues using real time PCR, with a further analysis conducted in the TCGA database. Kaplan-Meier plotter analysis was performed to evaluate the correlation between BMP8B and prognosis of the disease. BMP8B knockdown model was employed to determine the effect of BMP8B on the function of GC cells (HGC27). Results BMP8B mRNA levels were significantly up-regulated in the GC tissues compared with adjacent normal tissues in both TCGA database and our own database from Beijing Cancer Hospital, and high BMP8B expression was associated with poor prognosis. BMP8B is most likely to be involved in the differentiation of GC. Poorly differentiated GC samples presented a significantly reduced BMP8B expression in relation to well-differentiated and moderately differentiated GC. BMP8B knockdown inhibited proliferation of GC cells, while promoted invasion and migration of cancer cells. Conclusion BMP8B was reduced in GCs, whereas higher BMP8B expression was associated with poor prognosis. BMP8B knockdown inhibited proliferation of GC cells, and promoted invasion and migration. Our results suggest that BMP8B plays dual roles in GC.
Collapse
Affiliation(s)
- Zhiwei Sun
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, U.K
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), The VIP-II Gastrointestinal Cancer Division of Medical Department, Peking University Cancer Hospital & Institute, Beijing, P.R. China
| | - Shuo Cai
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, U.K
- Department of Endoscopy Centre, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, P.R. China
| | - Xiangyi Liu
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, U.K
| | - Wen G Jiang
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, U.K
| | - Lin Ye
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, U.K
| |
Collapse
|
3
|
Song H, Yao X, Zheng Y, Zhou L. Helicobacter pylori infection induces POU5F1 upregulation and SPP1 activation to promote chemoresistance and T cell inactivation in gastric cancer cells. Biochem Pharmacol 2024; 225:116253. [PMID: 38701869 DOI: 10.1016/j.bcp.2024.116253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/16/2024] [Accepted: 04/30/2024] [Indexed: 05/05/2024]
Abstract
Infection with Helicobacter pylori (H. pylori or Hp) is associated with an increased susceptibility to gastric diseases, notably gastric cancer (GC). This study investigates the impact of Hp infection on chemoresistance and immune activity in GC cells. Hp infection in AGS and MKN-74 cells promoted proliferation, migration and invasion, apoptosis resistance, and tumorigenic activity of cells under cisplatin (DDP) plus gemcitabine (GEM) treatment. Additionally, it dampened activity of the co-cultured CD8+ T cells. Hp infection increased POU class 5 homeobox 1 (POU5F1) level, which further activated secreted phosphoprotein 1 (SPP1) transcription to increase its expression. Silencing of either SPP1 or POU5F1 enhanced the GEM sensitivity in GC cells, and it increased the populations of CD8+ T cells and the secretion of immune-active cytokines both in vitro and in xenograft tumors in immunocompetent mice. However, the effects of POU5F1 silencing were counteracted by SPP1 overexpression. Furthermore, the POU5F1/SPP1 axis activated the PI3K/AKT signaling pathway. This study demonstrates that Hp infection induces POU5F1 upregulation and SPP1 activation, leading to increased DDP/GEM resistance and T cell inactivation in GC cells.
Collapse
Affiliation(s)
- Hanyi Song
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, PR China
| | - Xinjie Yao
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, PR China
| | - Yuqi Zheng
- Department of Gastroenterology, Panjin Central Hospital, Panjin 124010, Liaoning, PR China
| | - Long Zhou
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, PR China.
| |
Collapse
|
4
|
Deng Y, Sun Y, Wu S, Zhang T, Yang J, Liu K. Differential genetic mutations and immune cell infiltration in high- and low-risk STAD: Implications for prognosis and immunotherapy efficacy. J Cell Mol Med 2024; 28:e18174. [PMID: 38494839 PMCID: PMC10945082 DOI: 10.1111/jcmm.18174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/16/2024] [Accepted: 01/31/2024] [Indexed: 03/19/2024] Open
Abstract
This study investigates genetic mutations and immune cell dynamics in stomach adenocarcinoma (STAD), focusing on identifying prognostic markers and therapeutic targets. Analysis of TCGA-STAD samples revealed C > A as the most common single nucleotide variant (SNV) in both high and low-risk groups. Key mutated driver genes included TTN, TP53 and MUC16, with frame-shift mutations more prevalent in the low-risk group and missense mutations in the high-risk group. Interaction analysis of hub genes such as C1QA and CD68 showed significant correlations, impacting immune cell infiltration patterns. Using ssGSEA, we found higher immune cell infiltration (B cells, CD4+ T cells, CD8+ T cells, DC cells, NK cells) in the high-risk group, correlated with increased risk scores. xCell algorithm results indicated distinct immune infiltration levels between the groups. The study's risk scoring model proved effective in prognosis prediction and immunotherapy efficacy assessment. Key molecules like CD28, CD27 and SLAMF7 correlated significantly with risk scores, suggesting potential targets for high-risk STAD patients. Drug sensitivity analysis showed a negative correlation between risk scores and sensitivity to certain treatments, indicating potential therapeutic options for high-risk STAD patients. We also validated the carcinogenic role of RPL14 in gastric cancer through phenotypic experiments, demonstrating its influence on cancer cell proliferation, invasion and migration. Overall, this research provides crucial insights into the genetic and immune aspects of STAD, highlighting the importance of a risk scoring model for personalized treatment strategies and clinical decision-making in gastric cancer management.
Collapse
Affiliation(s)
- Yin‐yong Deng
- Department of General Surgery, West China HospitalSichuan UniversityChengduChina
- Colorectal Cancer Center, West China HospitalSichuan UniversityChengduChina
| | - Yan Sun
- Department of West China School of MedicineSichuan UniversityChengduChina
| | - Si‐jia Wu
- Department of West China School of MedicineSichuan UniversityChengduChina
| | - Tian‐ying Zhang
- Department of West China School of MedicineSichuan UniversityChengduChina
| | - Jie Yang
- Department of General Surgery, West China HospitalSichuan UniversityChengduChina
- Colorectal Cancer Center, West China HospitalSichuan UniversityChengduChina
| | - Kai Liu
- Department of General Surgery, West China HospitalSichuan UniversityChengduChina
- Department of General Surgery and Gastric Cancer Center, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
5
|
Guo G, Zhou Z, Chen S, Cheng J, Wang Y, Lan T, Ye Y. Characterization of the Prognosis and Tumor Microenvironment of Cellular Senescence-related Genes through scRNA-seq and Bulk RNA-seq Analysis in GC. Recent Pat Anticancer Drug Discov 2024; 19:530-542. [PMID: 37807645 DOI: 10.2174/0115748928255417230924191157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/09/2023] [Accepted: 08/29/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND Cellular senescence (CS) is thought to be the primary cause of cancer development and progression. This study aimed to investigate the prognostic role and molecular subtypes of CS-associated genes in gastric cancer (GC). MATERIALS AND METHODS The CellAge database was utilized to acquire CS-related genes. Expression data and clinical information of GC patients were obtained from The Cancer Genome Atlas (TCGA) database. Patients were then grouped into distinct subtypes using the "Consesus- ClusterPlus" R package based on CS-related genes. An in-depth analysis was conducted to assess the gene expression, molecular function, prognosis, gene mutation, immune infiltration, and drug resistance of each subtype. In addition, a CS-associated risk model was developed based on Cox regression analysis. The nomogram, constructed on the basis of the risk score and clinical factors, was formulated to improve the clinical application of GC patients. Finally, several candidate drugs were screened based on the Cancer Therapeutics Response Portal (CTRP) and PRISM Repurposing dataset. RESULTS According to the cluster result, patients were categorized into two molecular subtypes (C1 and C2). The two subtypes revealed distinct expression levels, overall survival (OS) and clinical presentations, mutation profiles, tumor microenvironment (TME), and drug resistance. A risk model was developed by selecting eight genes from the differential expression genes (DEGs) between two molecular subtypes. Patients with GC were categorized into two risk groups, with the high-risk group exhibiting a poor prognosis, a higher TME level, and increased expression of immune checkpoints. Function enrichment results suggested that genes were enriched in DNA repaired pathway in the low-risk group. Moreover, the Tumor Immune Dysfunction and Exclusion (TIDE) analysis indicated that immunotherapy is likely to be more beneficial for patients in the low-risk group. Drug analysis results revealed that several drugs, including ML210, ML162, dasatinib, idronoxil, and temsirolimus, may contribute to the treatment of GC patients in the high-risk group. Moreover, the risk model genes presented a distinct expression in single-cell levels in the GSE150290 dataset. CONCLUSION The two molecular subtypes, with their own individual OS rate, expression patterns, and immune infiltration, lay the foundation for further exploration into the GC molecular mechanism. The eight gene signatures could effectively predict the GC prognosis and can serve as reliable markers for GC patients.
Collapse
Affiliation(s)
- Guoxiang Guo
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian province, China
| | - Zhifeng Zhou
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian province, China
- Laboratory of Immuno- oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian province, China
| | - Shuping Chen
- Laboratory of Immuno- Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian province, China
| | - Jiaqing Cheng
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Yang Wang
- Laboratory of Immuno- oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian province, China
| | - Tianshu Lan
- Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen Medical College, Fujian Province, China
| | - Yunbin Ye
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, China
- Laboratory of Immuno- oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian province, China
| |
Collapse
|
6
|
Jung YJ, Woo JS, Hwang SH, Yang S, Kim SJ, Jhun J, Lee SY, Lee KH, Cho ML, Song KY. Effect of IL-10-producing B cells in peripheral blood and tumor tissue on gastric cancer. Cell Commun Signal 2023; 21:320. [PMID: 37946227 PMCID: PMC10634038 DOI: 10.1186/s12964-023-01174-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/25/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Interleukin (IL)-10-producing B (B10) cells are generated in response to signals from the tumor microenvironment and promote tumor growth by interacting with B10 cells. We investigated the distributions of immune cells in peripheral blood and tumor tissue samples from patients with gastric cancer (GC). METHODS Patients with GC who underwent radical gastrectomy in Seoul St. Mary's Hospital between August 2020 and May 2021 were enrolled in this study. Forty-two samples of peripheral blood were collected, and a pair of gastric mucosal samples (normal and cancerous mucosa; did not influence tumor diagnosis or staging) was collected from each patient after surgery. B10 cells in peripheral blood and cancer mucosa samples were investigated by flow cytometry and immunofluorescence. AGS cells, gastric cancer cell line, were cultured with IL-10 and measured cell death and cytokine secretion. Also, AGS cells were co-cultured with CD19 + B cells and measured cytokine secretion. RESULTS The population of B10 cells was significantly larger in the blood of patients with GC compared with controls. In confocal images of gastric mucosal tissues, cancerous mucosa contained more B10 cells than normal mucosa. The population of B10 cells in cancerous mucosa increased with cancer stage. When AGS cells were cultured under cell-death conditions, cellular necrosis was significantly decreased, and proliferation was increased, for 1 day after IL-10 stimulation. Tumor necrosis factor (TNF)-α, IL-8, IL-1β, and vascular endothelial growth factor secretion by cancer cells was significantly increased by coculture of AGS cells with GC-derived CD19+ B cells. CONCLUSIONS B cells may be one of the populations that promote carcinogenesis by inducing the production of inflammatory mediators, such as IL-10, in GC. Targeting B10 cells activity could improve the outcomes of antitumor immunotherapy. Video Abstract.
Collapse
Affiliation(s)
- Yoon Ju Jung
- Division of Gastrointestinal Surgery, Department of Surgery, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 07345, Korea
| | - Jin Seok Woo
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
| | - Sun-Hee Hwang
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
| | - SeungCheon Yang
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
| | - So Jung Kim
- Division of Gastrointestinal Surgery, Department of Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
| | - JooYeon Jhun
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
| | - Seung Yoon Lee
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
| | - Kun Hee Lee
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
| | - Mi-La Cho
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea.
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea.
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea.
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea.
| | - Kyo Young Song
- Division of Gastrointestinal Surgery, Department of Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea.
| |
Collapse
|
7
|
Liu Y, Wei D, Deguchi Y, Xu W, Tian R, Liu F, Xu M, Mao F, Li D, Chen W, Valentin LA, Deguchi E, Yao JC, Shureiqi I, Zuo X. PPARδ dysregulation of CCL20/CCR6 axis promotes gastric adenocarcinoma carcinogenesis by remodeling gastric tumor microenvironment. Gastric Cancer 2023; 26:904-917. [PMID: 37572185 PMCID: PMC10640489 DOI: 10.1007/s10120-023-01418-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/27/2023] [Indexed: 08/14/2023]
Abstract
BACKGROUND Peroxisome proliferator-activated receptor delta (PPARδ) promotes inflammation and carcinogenesis in many organs, but the underlying mechanisms remains elusive. In stomachs, PPARδ significantly increases chemokine Ccl20 expression in gastric epithelial cells while inducing gastric adenocarcinoma (GAC). CCR6 is the sole receptor of CCL20. Here, we examine the role of PPARδ-mediated Ccl20/Ccr6 signaling in GAC carcinogenesis and investigate the underlying mechanisms. METHODS The effects of PPARδ inhibition by its specific antagonist GSK3787 on GAC were examined in the mice with villin-promoter-driven PPARδ overexpression (PpardTG). RNAscope Duplex Assays were used to measure Ccl20 and Ccr6 levels in stomachs and spleens. Subsets of stomach-infiltrating immune cells were measured via flow cytometry or immunostaining in PpardTG mice fed GSK3787 or control diet. A panel of 13 optimized proinflammatory chemokines in mouse sera were quantified by an enzyme-linked immunosorbent assay. RESULTS GSK3787 significantly suppressed GAC carcinogenesis in PpardTG mice. PPARδ increased Ccl20 level to chemoattract Ccr6+ immunosuppressive cells, including tumor-associated macrophages, myeloid-derived suppressor cells and T regulatory cells, but decreased CD8+ T cells in gastric tissues. GSK3787 suppressed PPARδ-induced gastric immunosuppression by inhibiting Ccl20/Ccr6 axis. Furthermore, Ccl20 protein levels increased in sera of PpardTG mice starting at the age preceding gastric tumor development and further increased with GAC progression as the mice aged. GSK3787 decreased the PPARδ-upregulated Ccl20 levels in sera of the mice. CONCLUSIONS PPARδ dysregulation of Ccl20/Ccr6 axis promotes GAC carcinogenesis by remodeling gastric tumor microenvironment. CCL20 might be a potential biomarker for the early detection and progression of GAC.
Collapse
Affiliation(s)
- Yi Liu
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Daoyan Wei
- Department of Gastroenterology, Hepatology, and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yasunori Deguchi
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Weiguo Xu
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Rui Tian
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Fuyao Liu
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Min Xu
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Fei Mao
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Donghui Li
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Weidong Chen
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Lovie Ann Valentin
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Eriko Deguchi
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - James C Yao
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Imad Shureiqi
- Rogel Cancer Center and Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Xiangsheng Zuo
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
8
|
Chen G, Luo D, Qi X, Li D, Zheng J, Luo Y, Zhang C, Ren Q, Lu Y, Chan YT, Chen B, Wu J, Wang N, Feng Y. Characterization of cuproptosis in gastric cancer and relationship with clinical and drug reactions. Front Cell Dev Biol 2023; 11:1172895. [PMID: 37351275 PMCID: PMC10283039 DOI: 10.3389/fcell.2023.1172895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/09/2023] [Indexed: 06/24/2023] Open
Abstract
Gastric cancer (GC) is the fifth most common cancer worldwide. Cuproptosis is associated with cell growth and death as well as tumorigenesis. Aiming to lucubrate the potential influence of CRGs in gastric cancer, we acquired datasets of gastric cancer patients from TCGA and GEO. The identification of molecular subtypes with CRGs expression was achieved through unsupervised learning-cluster analysis. To evaluate the application value of subtypes, the K-M survival analysis was conducted to evaluate the clinical prognostic characteristics. Subsequently, we performed Gene Set Variation Analysis (GSVA) and utilized ssGSEA to quantify the extent of immune infiltration. Further, the K-M survival analysis was used to identify the prognosis-related CRGs. Next, signature genes of diagnostic predictive value were screened using the least absolute shrinkage and selection operator (LASSO) algorithm from the expression matrix for TCGA, as well as the signature gene-related subtype was clustered by the "ConsensusClusterPlus" package. Finally, the immunological and drug sensitivity assessments of the signature gene-related subtypes were conducted. A total of 173 CRGs were identified, most of the CRGs undergo copy number variation in gastric cancer. Under different patient subtypes, immune cell levels differed significantly, and the subtype exhibiting high expression of the CRGs had a better prognosis. Furthermore, we selected 34 CRGs that were highly correlated with the prognosis of gastric cancer. By constructing a multivariate Cox proportional-hazards model and a hazard scoring system, we were able to categorize patients into high- and low-risk groups based on their hazard score. K-M analysis demonstrated a significant survival disadvantage in the high-risk group. Based on Lasso regression analysis, we screened 16 signature genes, a multivariate logistic regression model [cutoff: 0.149 (0.000, 0.974), AUC:0.987] and a prognosis network diagram was constructed and their prediction efficiency for gastric cancer prognostic diagnosis was well validated. According to the signature genes, the patients were separated to two signature subtypes. We found that patients with higher CRGs expression and better prognosis had lower levels of immune infiltration. Finally, according to the results of drug susceptibility analysis, docetaxel, 5-Fluorouracil, gemcitabin, and paclitaxel were found to be more sensitive to gastric cancer.
Collapse
Affiliation(s)
- Guoming Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Dongqiang Luo
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiangjun Qi
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Danyun Li
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiyuan Zheng
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yang Luo
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Cheng Zhang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Qing Ren
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Yuanjun Lu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Yau-Tuen Chan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Bonan Chen
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Junyu Wu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Ning Wang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
9
|
Yang WJ, Zhao HP, Yu Y, Wang JH, Guo L, Liu JY, Pu J, Lv J. Updates on global epidemiology, risk and prognostic factors of gastric cancer. World J Gastroenterol 2023; 29:2452-2468. [PMID: 37179585 PMCID: PMC10167900 DOI: 10.3748/wjg.v29.i16.2452] [Citation(s) in RCA: 73] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/19/2023] [Accepted: 04/07/2023] [Indexed: 04/24/2023] Open
Abstract
Gastric cancer (GC) is defined as the primary epithelial malignancy derived from the stomach, and it is a complicated and heterogeneous disease with multiple risk factors. Despite its overall declining trend of incidence and mortality in various countries over the past few decades, GC remains the fifth most common malignancy and the fourth leading cause of cancer-related death globally. Although the global burden of GC has shown a significant downward trend, it remains severe in certain areas, such as Asia. GC ranks third in incidence and mortality among all cancer types in China, and it accounts for nearly 44.0% and 48.6% of new GC cases and GC-related deaths in the world, respectively. The regional differences in GC incidence and mortality are obvious, and annual new cases and deaths are increasing rapidly in some developing regions. Therefore, early preventive and screening strategies for GC are urgently needed. The clinical efficacies of conventional treatments for GC are limited, and the developing understanding of GC pathogenesis has increased the demand for new therapeutic regimens, including immune checkpoint inhibitors, cell immunotherapy and cancer vaccines. The present review describes the epidemiology of GC worldwide, especially in China, summarizes its risk and prognostic factors, and focuses on novel immunotherapies to develop therapeutic strategies for the management of GC patients.
Collapse
Affiliation(s)
- Wen-Juan Yang
- Department of Clinical Laboratory, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, Shaanxi Province, China
| | - He-Ping Zhao
- Department of Clinical Laboratory, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, Shaanxi Province, China
| | - Yan Yu
- Department of Clinical Laboratory, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, Shaanxi Province, China
| | - Ji-Han Wang
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, Shaanxi Province, China
| | - Lei Guo
- Department of Spinal Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, Shaanxi Province, China
| | - Jun-Ye Liu
- Department of Clinical Laboratory, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, Shaanxi Province, China
| | - Jie Pu
- Department of Cardiology, Shaanxi Provincial People’s Hospital, Xi'an 710068, Shaanxi Province, China
| | - Jing Lv
- Department of Clinical Laboratory, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, Shaanxi Province, China
| |
Collapse
|
10
|
Gastric adenocarcinoma following CD19-directed chimeric antigen receptor T cell therapy. Ann Hematol 2023; 102:461-462. [PMID: 36385650 DOI: 10.1007/s00277-022-05045-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 11/08/2022] [Indexed: 11/17/2022]
|
11
|
Schiefer S, Wirsik NM, Kalkum E, Seide SE, Nienhüser H, Müller B, Billeter A, Büchler MW, Schmidt T, Probst P. Systematic Review of Prognostic Role of Blood Cell Ratios in Patients with Gastric Cancer Undergoing Surgery. Diagnostics (Basel) 2022; 12:diagnostics12030593. [PMID: 35328146 PMCID: PMC8947199 DOI: 10.3390/diagnostics12030593] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/17/2022] [Accepted: 02/23/2022] [Indexed: 01/19/2023] Open
Abstract
Various blood cell ratios exist which seem to have an impact on prognosis for resected gastric cancer patients. The aim of this systematic review was to investigate the prognostic role of blood cell ratios in patients with gastric cancer undergoing surgery in a curative attempt. A systematic literature search in MEDLINE (via PubMed), CENTRAL, and Web of Science was performed. Information on survival and cut-off values from all studies investigating any blood cell ratio in resected gastric cancer patients were extracted. Prognostic significance and optimal cut-off values were calculated by meta-analyses and a summary of the receiver operating characteristic. From 2831 articles, 65 studies investigated six different blood cell ratios (prognostic nutritional index (PNI), lymphocyte to monocyte ratio (LMR), systemic immune-inflammation index (SII), monocyte to lymphocyte ratio (MLR), neutrophil to lymphocyte ratio (NLR), and platelet to lymphocyte ratio (PLR)). There was a significant association for the PNI and NLR with overall survival and disease-free survival and for LMR and NLR with 5-year survival. The used cut-off values had high heterogeneity. The available literature is flawed by the use of different cut-off values hampering evidence-based patient treatment and counselling. This article provides optimal cut-off values recommendations for future research.
Collapse
Affiliation(s)
- Sabine Schiefer
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany; (S.S.); (H.N.); (B.M.); (A.B.); (M.W.B.); (P.P.)
| | - Naita Maren Wirsik
- Department of General, Visceral, Cancer and Transplant Surgery, University Hospital Cologne, Kerpener Str. 62, 50937 Köln, Germany;
| | - Eva Kalkum
- The Study Center of the German Society of Surgery (SDGC), University of Heidelberg, Im Neuenheimer Feld 130/3, 69120 Heidelberg, Germany;
| | - Svenja Elisabeth Seide
- Institute of Medical Biometry (IMBI), University of Heidelberg, Im Neuenheimer Feld 130/3, 69120 Heidelberg, Germany;
| | - Henrik Nienhüser
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany; (S.S.); (H.N.); (B.M.); (A.B.); (M.W.B.); (P.P.)
| | - Beat Müller
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany; (S.S.); (H.N.); (B.M.); (A.B.); (M.W.B.); (P.P.)
| | - Adrian Billeter
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany; (S.S.); (H.N.); (B.M.); (A.B.); (M.W.B.); (P.P.)
| | - Markus W. Büchler
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany; (S.S.); (H.N.); (B.M.); (A.B.); (M.W.B.); (P.P.)
| | - Thomas Schmidt
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany; (S.S.); (H.N.); (B.M.); (A.B.); (M.W.B.); (P.P.)
- Department of General, Visceral, Cancer and Transplant Surgery, University Hospital Cologne, Kerpener Str. 62, 50937 Köln, Germany;
- Correspondence: ; Tel.: +49-221-478-4804
| | - Pascal Probst
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany; (S.S.); (H.N.); (B.M.); (A.B.); (M.W.B.); (P.P.)
- The Study Center of the German Society of Surgery (SDGC), University of Heidelberg, Im Neuenheimer Feld 130/3, 69120 Heidelberg, Germany;
- Department of Surgery, Cantonal Hospital Thurgau, Pfaffenholzstrasse 4, 8501 Frauenfeld, Switzerland
| |
Collapse
|