1
|
Naing A, Mahipal A, Javle M, Wang J, Bauer TM, Bajor DL, Elias AD, Shields A, Davis E, Chawla S, Safran H, Powderly JD, D’Amato G, Meyer CF, Tang X, Yao S, Keegan P. Safety and Efficacy of Toripalimab in Patients with Cholangiocarcinoma: An Open-Label, Phase 1 Study. JOURNAL OF IMMUNOTHERAPY AND PRECISION ONCOLOGY 2025; 8:71-81. [PMID: 39816916 PMCID: PMC11728388 DOI: 10.36401/jipo-24-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 09/05/2024] [Accepted: 09/19/2024] [Indexed: 01/18/2025]
Abstract
Introduction This was the first phase 1 study conducted in the United States. It consisted of dose-escalation (part A) and multiple indication-specific cohort expansion (part B), investigating the safety and preliminary efficacy of toripalimab (anti-programmed cell death-1 inhibitor) in patients with advanced malignancies. Methods Patients with advanced malignancies that progressed after treatment with at least one prior line of standard systemic therapy, including the patients with advanced/recurrent cholangiocarcinoma (CCA), received toripalimab 240 mg every 3 weeks in part B. The primary endpoint was safety assessment. Efficacy endpoints included objective response rate (ORR), disease control rate (DCR), duration of response (DoR), progression-free survival (PFS) as assessed by the investigators according to Response Evaluation Criteria in Solid Tumors (version 1.1) and overall survival (OS). Results In part B, 166 patients, including the 42 patients with CCA, were enrolled and received toripalimab. Among the 166 patients, treatment-emergent adverse events (TEAEs) of any grade occurred in 158 (95.2%) patients, and 97 (58.4%) patients experienced TEAEs of Grade 3 or greater. The most common TEAE was fatigue (42.2%). Seven (4.2%) patients experienced TEAEs with a fatal outcome, none of which were identified by investigators as related to toripalimab. Investigator-assessed immune-related adverse events (irAE) of Grade 3 or higher occurred in 7 (4.2%) patients. In the CCA cohort, with the median follow-up of 4.4 months, the ORR and DCR were 4.8% (95% CI: 0.58, 16.16) and 40.5% (95% CI: 25.63, 56.72), respectively; median DoR was 7.8 (range 4.4+ to 7.8) months; median PFS was 2.1 (95% CI: 1.91, 3.88) months; median OS was not estimable. Conclusions Toripalimab had manageable side effects in patients with refractory cholangiocarcinoma and exhibited preliminary evidence of anti-tumor activity. However, further information regarding biomarkers is needed. ClinicalTrials.gov ID: NCT03474640.
Collapse
Affiliation(s)
- Aung Naing
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amit Mahipal
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
- Department of Medicine, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Milind Javle
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Judy Wang
- Drug Development Unit, Florida Cancer Specialists/Sarah Cannon Research Institute, Sarasota, FL, USA
| | | | - David L. Bajor
- Department of Medicine, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Anthony D. Elias
- Department of Medicine, University of Colorado Cancer Center, Aurora, CO, USA
| | - Anthony Shields
- Department of Hematology-Oncology, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Elizabeth Davis
- Department of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Sant Chawla
- Sarcoma Oncology Research Center, Santa Monica, CA, USA
| | - Howard Safran
- Department of Medicine, Division of Hematology/Oncology, Lifespan Cancer Institute, Providence, RI, USA
| | - John D. Powderly
- Cancer Therapy and Research Center, Carolina BioOncology Institute, Huntersville, NC, USA
| | - Gina D’Amato
- Department of Medicine, University of Miami Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Christian F. Meyer
- Department of Medical Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Sheng Yao
- TopAlliance Biosciences Inc. Rockville, MD, USA
| | | |
Collapse
|
2
|
Bai M, Wang R, Huang C, Zhong R, Jiang N, Fu W, Mi N, Gao L, Jin Y, Ma H, Cao J, Yu H, Jing Q, Zhang C, Yue P, Zhang Y, Lin Y, Zhang H, Meng W. Biological and genetic characterization of a newly established human primary multidrug-resistant distal cholangiocarcinoma cell line, CBC3T-6. Sci Rep 2024; 14:29661. [PMID: 39613883 DOI: 10.1038/s41598-024-81392-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024] Open
Abstract
Distal cholangiocarcinoma is a rare and highly aggressive malignant tumor. The inherent tumor characteristics and growth pattern of cancer cells pose a challenge for diagnosis and treatment. Chemotherapy resistance leads to limited treatment options for patients with advanced cholangiocarcinoma. However, drug resistance studies in cholangiocarcinoma are often limited by the use of preclinical models that do not accurately replicate the essential features of the disease. In this study, we established and characterized a primary multidrug-resistant distal cholangiocarcinoma cell line, CBC3T-6. STR profiling indicated no evidence of cross-contamination. This cell line remains stable during long-term in vitro culture and is characterized by short doubling times and rapid subcutaneous tumor formation in mice. In addition, among the first-line anticancer drugs for cholangiocarcinoma, CBC3T-6 cells showed varying degrees of resistance to gemcitabine, oxaliplatin, cisplatin, and 5-FU. Whole exome sequencing analysis revealed that CBC3T-6 cells contained a variety of potentially pathogenic somatic cell mutations, such as TP53 and KRAS mutations. ABCB1 mutation as a possible therapeutic target for multidrug resistance. In conclusion, CBC3T-6 cells can be used as a useful tool to study the mechanism of cholangiocarcinoma and develop new therapeutic strategies for multidrug resistance.
Collapse
Affiliation(s)
- Mingzhen Bai
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Ruoshui Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Chongfei Huang
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Ruyang Zhong
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Ningzu Jiang
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Wenkang Fu
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Ningning Mi
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Long Gao
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Yuyao Jin
- The Sixth Clinical Medical School of Guangzhou Medical University, Guangzhou, China
| | - Haidong Ma
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Jie Cao
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Haiying Yu
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730030, China
- Gansu Province Key Laboratory of Biological Therapy and Regenerative Medicine Transformation, Lanzhou, China
| | - Qiang Jing
- Department of Pathology, First Hospital of Lanzhou University, Donggang District, Lanzhou, China
| | - Chao Zhang
- Department of Orthopedics, The First Hospital of Lanzhou University, Lanzhou, China
| | - Ping Yue
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730030, China
| | - Yong Zhang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730030, China
| | - Yanyan Lin
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730030, China
| | - Hengwei Zhang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730030, China.
| | - Wenbo Meng
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730030, China.
- Gansu Province Key Laboratory of Biological Therapy and Regenerative Medicine Transformation, Lanzhou, China.
| |
Collapse
|
3
|
Stapleton P, Ha N, Saxon S, Thomson JE. Haemobilia as a primary presentation of cholangiocarcinoma. BMJ Case Rep 2024; 17:e260524. [PMID: 39209753 DOI: 10.1136/bcr-2024-260524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
We present a case of haemobilia as a primary presentation for underlying cholangiocarcinoma. A man in his 50s initially presented to emergency with Quincke's triad, RUQ pain, jaundice and UGI bleeding. The initial diagnosis of haemobilia was made on endoscopic retrograde cholangiopancreatography (ERCP) on primary presentation, but the presence of blood and the recurrent clot obstruction of the biliary tract made the underlying diagnosis extremely difficult, resulting in the patient having 4 ERCP, 1 spyglass and multiple CTs and magnetic resonance cholangiopancreatography. Eventually, the patient underwent a Whipple's procedure without tissue diagnosis, confirming cholangiocarcinoma on histopathology. This case emphasises the difficulty of diagnosis of underlying malignancy in the setting of haemobilia, the benefit of multidisciplinary meeting discussions to support significant interventions and the need to be cautious and curious when managing atypical presentations.
Collapse
Affiliation(s)
- Peter Stapleton
- The University of Sydney Discipline of Surgery, Sydney, New South Wales, Australia
- Urology, Grampians Health, Ballarat, Victoria, Australia
| | | | - Sarah Saxon
- Department of Pathology, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - John-Edwin Thomson
- Hepato-pancreato-biliary Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| |
Collapse
|
4
|
Verma S, Grindrod N, Breadner D, Lock M. The Current Role of Radiation in the Management of Cholangiocarcinoma-A Narrative Review. Cancers (Basel) 2024; 16:1776. [PMID: 38730728 PMCID: PMC11083065 DOI: 10.3390/cancers16091776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024] Open
Abstract
Cholangiocarcinoma (CCA) is a rare cancer of bile ducts. It is associated with a poor prognosis. The incidence of CCA is rising worldwide. Anatomical subgroups have been used to classify patients for treatment and prognosis. There is a growing understanding of clinically important distinctions based on underlying genetic differences that lead to different treatment options and outcomes. Its management is further complicated by a heterogeneous population and relative rarity, which limits the conduct of large trials to guide management. Surgery has been the primary method of therapy for localized disease; however, recurrence and death remain high with or without surgery. Therefore, there have been concerted efforts to investigate new treatment options, such as the use of neoadjuvant treatments to optimize surgical outcomes, targeted therapy, leveraging a new understanding of immunobiology and stereotactic radiation. In this narrative review, we address the evidence to improve suboptimal outcomes in unresectable CCA with radiation, as well as the role of radiation in neoadjuvant and postoperative treatment. We also briefly discuss the recent developments in systemic treatment with targeted therapies and immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Saurav Verma
- Division of Medical Oncology, Department of Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 3K7, Canada; (S.V.); (N.G.); (D.B.)
- London Regional Cancer Program, London Health Sciences Centre, London, ON N6A 5W9, Canada
| | - Natalie Grindrod
- Division of Medical Oncology, Department of Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 3K7, Canada; (S.V.); (N.G.); (D.B.)
- London Regional Cancer Program, London Health Sciences Centre, London, ON N6A 5W9, Canada
| | - Daniel Breadner
- Division of Medical Oncology, Department of Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 3K7, Canada; (S.V.); (N.G.); (D.B.)
- London Regional Cancer Program, London Health Sciences Centre, London, ON N6A 5W9, Canada
| | - Michael Lock
- Division of Medical Oncology, Department of Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 3K7, Canada; (S.V.); (N.G.); (D.B.)
- London Regional Cancer Program, London Health Sciences Centre, London, ON N6A 5W9, Canada
| |
Collapse
|
5
|
Zhang C, Wang Y, Wu G, Sun N, Bai H, Li X, Han S, Zhou H, Qi R, Zhang J. RPL35A promotes the progression of cholangiocarcinoma by mediating HSPA8 ubiquitination. Biol Direct 2024; 19:16. [PMID: 38395908 PMCID: PMC10885515 DOI: 10.1186/s13062-024-00453-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/09/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Cholangiocarcinoma (CCA) is a biliary epithelial malignant tumor with an increasing incidence worldwide. Therefore, further understanding of the molecular mechanisms of CCA progression is required to identify new therapeutic targets. METHODS The expression of RPL35A in CCA and para-carcinoma tissues was detected by immunohistochemical staining. IP-MS combined with Co-IP identified downstream proteins regulated by RPL35A. Western blot and Co-IP of CHX or MG-132 treated CCA cells were used to verify the regulation of HSPA8 protein by RPL35A. Cell experiments and subcutaneous tumorigenesis experiments in nude mice were performed to evaluate the effects of RPL35A and HSPA8 on the proliferation, apoptosis, cell cycle, migration of CCA cells and tumor growth in vivo. RESULTS RPL35A was significantly upregulated in CCA tissues and cells. RPL35A knockdown inhibited the proliferation and migration of HCCC-9810 and HUCCT1 cells, induced apoptosis, and arrested the cell cycle in G1 phase. HSPA8 was a downstream protein of RPL35A and overexpressed in CCA. RPL35A knockdown impaired HSPA8 protein stability and increased HSPA8 protein ubiquitination levels. RPL35A overexpression promoted CCA cell proliferation and migration. HSPA8 knockdown inhibited CCA cell proliferation and migration, and reversed the promoting effect of RPL35A. Furthermore, RPL35A promoted tumor growth in vivo. In contrast, HSPA8 knockdown suppressed tumor growth, while was able to restore the effects of RPL35A overexpression. CONCLUSION RPL35A was upregulated in CCA tissues and promoted the progression of CCA by mediating HSPA8 ubiquitination.
Collapse
Affiliation(s)
- Chengshuo Zhang
- Hepatobiliary Surgery Department, First Hospital of China Medical University, No.155, Nanjingbei street, 110001, Shenyang, Liaoning Province, P. R. China
| | - Yu Wang
- Department of General Surgery, Anshan Central Hospital, No.51, South Zhonghua Road, Tiedong District, 114008, Anshan, Liaoning Province, China
| | - Gang Wu
- Hepatobiliary Surgery Department, First Hospital of China Medical University, No.155, Nanjingbei street, 110001, Shenyang, Liaoning Province, P. R. China
| | - Ning Sun
- Hepatobiliary Surgery Department, First Hospital of China Medical University, No.155, Nanjingbei street, 110001, Shenyang, Liaoning Province, P. R. China
| | - Han Bai
- Hepatobiliary Surgery Department, First Hospital of China Medical University, No.155, Nanjingbei street, 110001, Shenyang, Liaoning Province, P. R. China
| | - Xuejian Li
- Hepatobiliary Surgery Department, First Hospital of China Medical University, No.155, Nanjingbei street, 110001, Shenyang, Liaoning Province, P. R. China
| | - Shuai Han
- Hepatobiliary Surgery Department, First Hospital of China Medical University, No.155, Nanjingbei street, 110001, Shenyang, Liaoning Province, P. R. China
| | - Haonan Zhou
- Hepatobiliary Surgery Department, First Hospital of China Medical University, No.155, Nanjingbei street, 110001, Shenyang, Liaoning Province, P. R. China
| | - Ruizhao Qi
- Senior Department of General Surgery, the First Medical Center of Chinese PLA General Hospital, No.28, Fuxing Road, Haidian District, 100039, Beijing, China.
| | - Jialin Zhang
- Hepatobiliary Surgery Department, First Hospital of China Medical University, No.155, Nanjingbei street, 110001, Shenyang, Liaoning Province, P. R. China.
| |
Collapse
|
6
|
Myint KZ, Balasubramanian B, Venkatraman S, Phimsen S, Sripramote S, Jantra J, Choeiphuk C, Mingphruedhi S, Muangkaew P, Rungsakulkij N, Tangtawee P, Suragul W, Farquharson WV, Wongprasert K, Chutipongtanate S, Sanvarinda P, Ponpuak M, Poungvarin N, Janvilisri T, Suthiphongchai T, Yacqub-Usman K, Grabowska AM, Bates DO, Tohtong R. Therapeutic Implications of Ceritinib in Cholangiocarcinoma beyond ALK Expression and Mutation. Pharmaceuticals (Basel) 2024; 17:197. [PMID: 38399413 PMCID: PMC10892566 DOI: 10.3390/ph17020197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Cholangiocarcinoma (CCA) is a difficult-to-treat cancer, with limited therapeutic options and surgery being the only curative treatment. Standard chemotherapy involves gemcitabine-based therapies combined with cisplatin, oxaliplatin, capecitabine, or 5-FU with a dismal prognosis for most patients. Receptor tyrosine kinases (RTKs) are aberrantly expressed in CCAs encompassing potential therapeutic opportunity. Hence, 112 RTK inhibitors were screened in KKU-M213 cells, and ceritinib, an approved targeted therapy for ALK-fusion gene driven cancers, was the most potent candidate. Ceritinib's cytotoxicity in CCA was assessed using MTT and clonogenic assays, along with immunofluorescence, western blot, and qRT-PCR techniques to analyze gene expression and signaling changes. Furthermore, the drug interaction relationship between ceritinib and cisplatin was determined using a ZIP synergy score. Additionally, spheroid and xenograft models were employed to investigate the efficacy of ceritinib in vivo. Our study revealed that ceritinib effectively killed CCA cells at clinically relevant plasma concentrations, irrespective of ALK expression or mutation status. Ceritinib modulated multiple signaling pathways leading to the inhibition of the PI3K/Akt/mTOR pathway and activated both apoptosis and autophagy. Additionally, ceritinib and cisplatin synergistically reduced CCA cell viability. Our data show ceritinib as an effective treatment of CCA, which could be potentially explored in the other cancer types without ALK mutations.
Collapse
Affiliation(s)
- Kyaw Zwar Myint
- Graduate Program in Molecular Medicine, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (K.Z.M.); (B.B.); (S.V.); (T.J.)
| | - Brinda Balasubramanian
- Graduate Program in Molecular Medicine, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (K.Z.M.); (B.B.); (S.V.); (T.J.)
- Translational Medical Sciences Unit, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK
| | - Simran Venkatraman
- Graduate Program in Molecular Medicine, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (K.Z.M.); (B.B.); (S.V.); (T.J.)
| | - Suchada Phimsen
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand; (S.P.); (C.C.)
| | - Supisara Sripramote
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (S.S.); (J.J.); (T.S.)
| | - Jeranan Jantra
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (S.S.); (J.J.); (T.S.)
| | - Chaiwat Choeiphuk
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand; (S.P.); (C.C.)
| | - Somkit Mingphruedhi
- Hepato-Pancreatic-Biliary Surgery Unit, Department of Surgery, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (S.M.); (P.M.); (N.R.); (P.T.); (W.S.); (W.V.F.)
| | - Paramin Muangkaew
- Hepato-Pancreatic-Biliary Surgery Unit, Department of Surgery, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (S.M.); (P.M.); (N.R.); (P.T.); (W.S.); (W.V.F.)
| | - Narongsak Rungsakulkij
- Hepato-Pancreatic-Biliary Surgery Unit, Department of Surgery, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (S.M.); (P.M.); (N.R.); (P.T.); (W.S.); (W.V.F.)
| | - Pongsatorn Tangtawee
- Hepato-Pancreatic-Biliary Surgery Unit, Department of Surgery, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (S.M.); (P.M.); (N.R.); (P.T.); (W.S.); (W.V.F.)
| | - Wikran Suragul
- Hepato-Pancreatic-Biliary Surgery Unit, Department of Surgery, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (S.M.); (P.M.); (N.R.); (P.T.); (W.S.); (W.V.F.)
| | - Watoo Vassanasiri Farquharson
- Hepato-Pancreatic-Biliary Surgery Unit, Department of Surgery, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (S.M.); (P.M.); (N.R.); (P.T.); (W.S.); (W.V.F.)
| | - Kanokpan Wongprasert
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
| | - Somchai Chutipongtanate
- Division of Epidemiology, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Pimtip Sanvarinda
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
| | - Marisa Ponpuak
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
| | - Naravat Poungvarin
- Department of Clinical Pathology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand;
| | - Tavan Janvilisri
- Graduate Program in Molecular Medicine, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (K.Z.M.); (B.B.); (S.V.); (T.J.)
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (S.S.); (J.J.); (T.S.)
| | - Tuangporn Suthiphongchai
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (S.S.); (J.J.); (T.S.)
| | - Kiren Yacqub-Usman
- Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK; (K.Y.-U.); (A.M.G.); (D.O.B.)
| | - Anna M. Grabowska
- Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK; (K.Y.-U.); (A.M.G.); (D.O.B.)
| | - David O. Bates
- Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK; (K.Y.-U.); (A.M.G.); (D.O.B.)
| | - Rutaiwan Tohtong
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (S.S.); (J.J.); (T.S.)
| |
Collapse
|
7
|
Mehrabi A, Golriz M, Ramouz A, Khajeh E, Hammad A, Hackert T, Müller-Stich B, Strobel O, Ali-Hasan-Al-Saegh S, Ghamarnejad O, Al-Saeedi M, Springfeld C, Rupp C, Mayer P, Mieth M, Goeppert B, Hoffmann K, Büchler MW. Promising Outcomes of Modified ALPPS for Staged Hepatectomy in Cholangiocarcinoma. Cancers (Basel) 2023; 15:5613. [PMID: 38067316 PMCID: PMC10705795 DOI: 10.3390/cancers15235613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/13/2023] [Accepted: 11/22/2023] [Indexed: 09/14/2024] Open
Abstract
Associating liver partition and portal vein ligation for staged hepatectomy (ALPPS) is a two-stage procedure that can potentially cure patients with large cholangiocarcinoma. The current study evaluates the impact of modifications on the outcomes of ALPPS in patients with cholangiocarcinoma. In this single-center study, a series of 30 consecutive patients with cholangiocarcinoma (22 extrahepatic and 8 intrahepatic) who underwent ALPPS between 2011 and 2021 was evaluated. The ALPPS procedure in our center was modified in 2016 by minimizing the first stage of the surgical procedure through biliary externalization after the first stage, antibiotic administration during the interstage phase, and performing biliary reconstructions during the second stage. The rate of postoperative major morbidity and 90-day mortality, as well as the one- and three-year disease-free and overall survival rates were calculated and compared between patients operated before and after 2016. The ALPPS risk score before the second stage of the procedure was lower in patients who were operated on after 2016 (before 2016: median 6.4; after 2016: median 4.4; p = 0.010). Major morbidity decreased from 42.9% before 2016 to 31.3% after 2016, and the 90-day mortality rate decreased from 35.7% before 2016 to 12.5% after 2016. The three-year survival rate increased from 40.8% before 2016 to 73.4% after 2016. Our modified ALPPS procedure improved perioperative and postoperative outcomes in patients with extrahepatic and intrahepatic cholangiocarcinoma. Minimizing the first step of the ALPPS procedure was key to these improvements.
Collapse
Affiliation(s)
- Arianeb Mehrabi
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, 69120 Heidelberg, Germany
- Liver Cancer Center Heidelberg (LCCH), Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Mohammad Golriz
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, 69120 Heidelberg, Germany
- Liver Cancer Center Heidelberg (LCCH), Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Ali Ramouz
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, 69120 Heidelberg, Germany
| | - Elias Khajeh
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, 69120 Heidelberg, Germany
| | - Ahmed Hammad
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, 69120 Heidelberg, Germany
| | - Thilo Hackert
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, 69120 Heidelberg, Germany
- Liver Cancer Center Heidelberg (LCCH), Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Beat Müller-Stich
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, 69120 Heidelberg, Germany
- Liver Cancer Center Heidelberg (LCCH), Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Oliver Strobel
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, 69120 Heidelberg, Germany
- Liver Cancer Center Heidelberg (LCCH), Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Sadeq Ali-Hasan-Al-Saegh
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, 69120 Heidelberg, Germany
| | - Omid Ghamarnejad
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, 69120 Heidelberg, Germany
| | - Mohammed Al-Saeedi
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, 69120 Heidelberg, Germany
| | - Christoph Springfeld
- Liver Cancer Center Heidelberg (LCCH), Heidelberg University Hospital, 69120 Heidelberg, Germany
- Department of Medical Oncology, National Center for Tumor Diseases, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Christian Rupp
- Department of Internal Medicine, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Philipp Mayer
- Department of Interventional Radiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Markus Mieth
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, 69120 Heidelberg, Germany
| | - Benjamin Goeppert
- Liver Cancer Center Heidelberg (LCCH), Heidelberg University Hospital, 69120 Heidelberg, Germany
- Institute of Pathology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Katrin Hoffmann
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, 69120 Heidelberg, Germany
- Liver Cancer Center Heidelberg (LCCH), Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Markus W. Büchler
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
8
|
Yang SM, Kim J, Lee JY, Lee JS, Lee JM. Regulation of glucose and glutamine metabolism to overcome cisplatin resistance in intrahepatic cholangiocarcinoma. BMB Rep 2023; 56:600-605. [PMID: 37401237 PMCID: PMC10689087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/06/2023] [Accepted: 07/03/2023] [Indexed: 07/05/2023] Open
Abstract
Intrahepatic cholangiocarcinoma (ICC) is a bile duct cancer and a rare malignant tumor with a poor prognosis owing to the lack of an early diagnosis and resistance to conventional chemotherapy. A combination of gemcitabine and cisplatin is the typically attempted first-line treatment approach. However, the underlying mechanism of resistance to chemotherapy is poorly understood. We addressed this by studying dynamics in the human ICC SCK cell line. Here, we report that the regulation of glucose and glutamine metabolism was a key factor in overcoming cisplatin resistance in SCK cells. RNA sequencing analysis revealed a high enrichment cell cycle-related gene set score in cisplatin-resistant SCK (SCK-R) cells compared to parental SCK (SCK WT) cells. Cell cycle progression correlates with increased nutrient requirement and cancer proliferation or metastasis. Commonly, cancer cells are dependent upon glucose and glutamine availability for survival and proliferation. Indeed, we observed the increased expression of GLUT (glucose transporter), ASCT2 (glutamine transporter), and cancer progression markers in SCK-R cells. Thus, we inhibited enhanced metabolic reprogramming in SCK-R cells through nutrient starvation. SCK-R cells were sensitized to cisplatin, especially under glucose starvation. Glutaminase-1 (GLS1), which is a mitochondrial enzyme involved in tumorigenesis and progression in cancer cells, was upregulated in SCK-R cells. Targeting GLS1 with the GLS1 inhibitor CB-839 (telaglenastat) effectively reduced the expression of cancer progression markers. Taken together, our study results suggest that a combination of GLUT inhibition, which mimics glucose starvation, and GLS1 inhibition could be a therapeutic strategy to increase the chemosensitivity of ICC. [BMB Reports 2023; 56(11): 600-605].
Collapse
Affiliation(s)
- So Mi Yang
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Korea
| | - Jueun Kim
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Korea
- Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon 24341, Korea
| | - Ji-Yeon Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Jung-Shin Lee
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Korea
| | - Ji Min Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| |
Collapse
|
9
|
White K, Anwar AI, Jin K, Bollich V, Kelkar RA, Talbot NC, Klapper RJ, Ahmadzadeh S, Viswanath O, Varrassi G, Shekoohi S, Kaye AD. Infigratinib for the Treatment of Metastatic or Locally Advanced Cholangiocarcinoma With Known FGFR2 Gene Fusions or Rearrangements. Cureus 2023; 15:e46792. [PMID: 37954763 PMCID: PMC10634393 DOI: 10.7759/cureus.46792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/10/2023] [Indexed: 11/14/2023] Open
Abstract
Cholangiocarcinoma (CCA) is an aggressive and diverse malignancy with a poor prognosis. Related to a typical indolent course of progression, most cases of CCA are metastatic or locally advanced at the time of presentation. For patients with nonresectable tumors or metastatic disease, the mainstay of treatment is comprehensive with combination chemotherapy. The first-line chemotherapeutic combination for the treatment of CCA are cisplatin and gemcitabine-based chemotherapies. However, many locally advanced and progressive CCA cases are refractory to first-line management. Within the past few years, the increase in the incidence of metastatic CCA and its poor prognosis has brought to light the need for novel therapeutic approaches to treatment. With advancements in next-generation genome sequencing, multiple molecular pathways have been identified in the pathogenesis of CCA and have shown great potential as alternative treatments in cases of CCA refractory to surgical resection. FGFR2 fusions or rearrangements have been identified in 10-16% of all intrahepatic CCA and are thought to serve as a pathway of resistance for a number of nonresectable and refractory cases of cholangiocarcinoma. A novel therapeutic agent that has been discussed is infigratinib, a selective, ATP-competitive inhibitor of fibroblast growth factor receptor 2 (FGFR2). In a phase 1 trial, infigratinib showed a safe profile and showed remarkable clinical efficacy in advanced CCA with FGFR2 fusions or rearrangements in phase II trials. As of May 2021, the Food and Drug Administration (FDA) approved infigratinib for CCA largely based on tumor response and duration of response. As of 2021, infigratinib, futibatinib, and pemigatinib, similar novel selective FGFR inhibitors, have been approved by the FDA for the treatment of locally advanced or metastatic CCA harboring FGFR2 gene mutations. The present investigation reviews the development of infigratinib in particular and its clinical efficacy compared to other available treatment options for cholangiocarcinoma. While the side effect profile of infigratinib is minimal, particularly GI side effects, when compared with futibatinib and pemigatinib, the overall response rate (ORR) and median overall survival (mOS) for infigratinib (ORR=23.1%, mOS=3.8 months) was significantly lower than futibatinib (ORR=35.8%, mOS=21.1 months) and pemigatinib (ORR=35.5%, mOS=21.1 months). While there is ample promise for the use of infigratinib as molecular-directed therapy in the treatment of CCA harboring FGFR2 mutations, there is an appropriate concern for patient-acquired resistance. The heterogeneous nature of FGFR mutations and the emergence of different resistance mechanisms emphasize a need for more agents to inhibit FGFR rearrangements effectively.
Collapse
Affiliation(s)
- Kathryn White
- School of Medicine, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Ahmed I Anwar
- Department of Psychology, Quinnipiac University, Hamden, USA
| | - Kevin Jin
- School of Medicine, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Victoria Bollich
- School of Medicine, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Rucha A Kelkar
- School of Medicine, Medical University of South Carolina, Charleston, USA
| | - Norris C Talbot
- School of Medicine, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Rachel J Klapper
- Radiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Shahab Ahmadzadeh
- Department of Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Omar Viswanath
- Pain Management, Valley Pain Consultants - Envision Physician Services, Phoenix, USA
| | | | - Sahar Shekoohi
- Department of Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Alan D Kaye
- Department of Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| |
Collapse
|
10
|
Borakati A, Froghi F, Bhogal RH, Mavroeidis VK. Liver transplantation in the management of cholangiocarcinoma: Evolution and contemporary advances. World J Gastroenterol 2023; 29:1969-1981. [PMID: 37155529 PMCID: PMC10122785 DOI: 10.3748/wjg.v29.i13.1969] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/10/2023] [Accepted: 03/21/2023] [Indexed: 04/06/2023] Open
Abstract
Cholangiocarcinoma (CCA) is an aggressive malignancy arising from the biliary epithelium. It may occur at any location along the biliary tree with the perihilar area being the most common. Prognosis is poor with 5-year overall survival at less than 10%, typically due to unresectable disease at presentation. Radical surgical resection with clear margins offers a chance of cure in patients with resectable tumours, but is frequently not possible due to locally advanced disease. On the other hand, orthotopic liver transplantation (LT) allows for a radical and potentially curative resection for these patients, but has been historically controversial due to the limited supply of donor grafts and previously poor outcomes. In patients with perihilar CCA, within specific criteria and following the implementation of a protocol combining neoadjuvant chemoradiation and LT, excellent results have been achieved in the last decades, resulting in its increasing acceptance as an indication for LT and the standard of care in several centres with significant experience. However, in intrahepatic CCA, the role of LT remains controversial and owing to dismal previous results it is not an accepted indication. Nevertheless, more recent studies have demonstrated favourable results with LT in early intrahepatic CCA, indicating that, under defined criteria, its role may increase in the future. This review highlights the history and contemporary advances of LT in CCA, with particular focus on the improving outcomes of LT in intrahepatic and perihilar CCA and future perspectives.
Collapse
Affiliation(s)
- Aditya Borakati
- Department of HPB and Liver Transplantation Surgery, Royal Free Hospital NHS Foundation Trust, London NW3 2QG, United Kingdom
| | - Farid Froghi
- Department of HPB and Liver Transplantation Surgery, Royal Free Hospital NHS Foundation Trust, London NW3 2QG, United Kingdom
| | - Ricky H Bhogal
- Department of Academic Surgery, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, United Kingdom
| | - Vasileios K Mavroeidis
- Department of Academic Surgery, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, United Kingdom
| |
Collapse
|
11
|
Fernández L, Gastaca M, Alonso E, Prieto M, Ruiz P, Ventoso A, Palomares I, Perfecto A, Valdivieso A. Surgical treatment for recurrent cholangiocarcinoma: a single-center series. Front Oncol 2023; 13:1169133. [PMID: 37143948 PMCID: PMC10152064 DOI: 10.3389/fonc.2023.1169133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 03/29/2023] [Indexed: 05/06/2023] Open
Abstract
Purpose The present study aims to assess the results obtained after surgical treatment of cholangiocarcinoma (CC) recurrences. Methods We carried out a single-center retrospective study, including all patients with recurrence of CC. The primary outcome was patient survival after surgical treatment compared with chemotherapy or best supportive care. A multivariate analysis of variables affecting mortality after CC recurrence was performed. Results Eighteen patients were indicated surgery to treat CC recurrence. Severe postoperative complication rate was 27.8% with a 30-day mortality rate of 16.7%. Median survival after surgery was 15 months (range 0-50) with 1- and 3-year patient survival rates of 55.6% and 16.6%, respectively. Patient survival after surgery or CHT alone, was significantly better than receiving supportive care (p< 0.001). We found no significant difference in survival when comparing CHT alone and surgical treatment (p=0.113). Time to recurrence of <1 year, adjuvant CHT after resection of the primary tumor and undergoing surgery or CHT alone versus best supportive care were independent factors affecting mortality after CC recurrence in the multivariate analysis. Conclusion Surgery or CHT alone improved patient survival after CC recurrence compared to best supportive care. Surgical treatment did not improve patient survival compared to CHT alone.
Collapse
Affiliation(s)
- Laura Fernández
- General Surgery Department, Hospital de Urduliz, Urduliz, Spain
| | - Mikel Gastaca
- Hepatobiliary Surgery and Liver Transplantation Unit, Biocruces Bizkaia Health Research Institute, Hospital Universitario Cruces, Bilbao, Spain
- Facultad de Medicina y Odontología, Universidad del País Vasco/ Euskal Herriko Unibertsitatea (UPV/EHU), Leioa, Spain
- *Correspondence: Mikel Gastaca, ;
| | - Eva Alonso
- General Surgery Department, Hospital Universitario Cruces, Bilbao, Spain
| | - Mikel Prieto
- Hepatobiliary Surgery and Liver Transplantation Unit, Biocruces Bizkaia Health Research Institute, Hospital Universitario Cruces, Bilbao, Spain
- Facultad de Medicina y Odontología, Universidad del País Vasco/ Euskal Herriko Unibertsitatea (UPV/EHU), Leioa, Spain
| | - Patricia Ruiz
- Hepatobiliary Surgery and Liver Transplantation Unit, Biocruces Bizkaia Health Research Institute, Hospital Universitario Cruces, Bilbao, Spain
| | - Alberto Ventoso
- Hepatobiliary Surgery and Liver Transplantation Unit, Biocruces Bizkaia Health Research Institute, Hospital Universitario Cruces, Bilbao, Spain
| | - Ibone Palomares
- Hepatobiliary Surgery and Liver Transplantation Unit, Biocruces Bizkaia Health Research Institute, Hospital Universitario Cruces, Bilbao, Spain
| | - Arkaitz Perfecto
- Hepatobiliary Surgery and Liver Transplantation Unit, Biocruces Bizkaia Health Research Institute, Hospital Universitario Cruces, Bilbao, Spain
| | - Andrés Valdivieso
- Hepatobiliary Surgery and Liver Transplantation Unit, Biocruces Bizkaia Health Research Institute, Hospital Universitario Cruces, Bilbao, Spain
- Facultad de Medicina y Odontología, Universidad del País Vasco/ Euskal Herriko Unibertsitatea (UPV/EHU), Leioa, Spain
| |
Collapse
|
12
|
Smith EN, Coleman A, J. Galgano S, Burgan CM, Porter KK. Cholangiocarcinoma. ONCOLOGIC IMAGING : A MULTIDISCIPLINARY APPROACH 2023:133-159. [DOI: 10.1016/b978-0-323-69538-1.00011-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
13
|
Anticancer Activity of (±)-Kusunokinin Derivatives towards Cholangiocarcinoma Cells. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238291. [PMID: 36500383 PMCID: PMC9735782 DOI: 10.3390/molecules27238291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022]
Abstract
This study aimed to investigate the cytotoxicity and anticancer activity of (±)-kusunokinin derivatives ((±)-TTPG-A and (±)-TTPG-B). The cytotoxicity effect was performed on human cancer cells, including breast cancer, cholangiocarcinoma, colon and ovarian cancer-cells, compared with normal cells, using the MTT assay. Cell-cycle arrest and apoptosis were detected using flow-cytometry analysis. We found that (±)-TTPG-B exhibited the strongest cytotoxicity on aggressive breast-cancer (MDA-MB-468 and MDA-MB-231) and cholangiocarcinoma (KKU-M213), with an IC50 value of 0.43 ± 0.01, 1.83 ± 0.04 and 0.01 ± 0.001 µM, respectively. Interestingly, (±)-TTPG-A and (±)-TTPG-B exhibited less toxicity than (±)-kusunokinin (9.75 ± 0.39 µM) on L-929 cells (normal fibroblasts). Moreover, (±)-TTPG-A predominated the ell-cycle arrest at the S phase, while (±)-TTPG-B caused cell arrest at the G0/G1 phase, in the same way as (±)-kusunokinin in KKU-M213 cells. Both (±)-TTPG-A and (±)-TTPG-B induced apoptosis and multi-caspase activity more than (±)-kusunokinin. Taken together, we conclude that (±)-TTPG-A and (±)-TTPG-B have a strong anticancer effect on cholangiocarcinoma. Moreover, (±)-TTPG-B could be a potential candidate compound for breast cancer and cholangiocarcinoma in the future.
Collapse
|
14
|
Sonsomnuek P, Tarasuk M, Plengsuriyakarn T, Boonprasert K, Na-Bangchang K. Apoptotic and Anti-metastatic Effects of Atractylodes lancea (Thunb.) DC. in a Hamster Model of Cholangiocarcinoma. Asian Pac J Cancer Prev 2022; 23:3093-3101. [PMID: 36172672 PMCID: PMC9810284 DOI: 10.31557/apjcp.2022.23.9.3093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVES Cholangiocarcinoma (CCA) is a highly aggressive tumor with a greater risk of distant metastasis. The promising anti-CCA activity and safety profile of Atractylodes lancea (AL) have previously been reported in a series of in vitro, in vivo and clinical studies. The present study investigated the effect of AL extract on apoptosis and metastasis signaling pathways in the Opisthorchis viverrini/dimethylnitrosamine (OV/DMN)-induced CCA hamster model. MATERIALS AND METHODS Hamster liver tissues were obtained from the four groups (n = 5 per group), i.e., (i) 5-FU treated CCA (40 µg/mL); (ii) CCA; (iii) AL-treated CCA (5,000 mg/kg), and (iv) normal hamsters. Total RNA was isolated, and the expression levels of apoptosis-related and metastasis-related genes were determined by qRT-PCR analysis. RESULTS The expression levels of p16, caspase-3, caspase-8, caspase-9, Apaf-1, p53 and Eef1a1 were downregulated, while that of the remaining genes were upregulated in CCA hamsters compared with normal hamsters. AL treatment increased the expression of p16, caspase-9, caspase-3, Apaf-1, p53 and E-cadherin and decreased the expression of cyclin D1, cdk4, Bax, Akt/PKB, Bcl-2, Mfge-8, Lass4, S100A6, TGF-β, Smad-2, Smad-3, Smad-4, MMP-9, and N-cadherin. The expression of Eef1a1 was unchanged. CONCLUSION The anti-CCA activity of AL in OV/DMN-induced CCA hamsters could be due to the induction of cell cycle arrest at the G1 phase and activation of the apoptosis pathway, resulting in cancer cell death. The activation of the apoptosis pathway mainly involved the intrinsic pathway (activation of caspase-3 and caspase-9 through p53 and Mfge-8 modulation and downregulation of anti-apoptotic genes Akt and Bcl-2). In addition, AL could also inhibit the canonical TGF-β signaling pathway, MMP-9 and N-cadherin to suppress tumor metastasis.
Collapse
Affiliation(s)
- Paradon Sonsomnuek
- Chulabhorn International College of Medicine, Thammasat University, Rangsit Center, Klong Luang, Pathum Thani, Thailand., Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Thammasat University, Rangsit Center, Klong Luang, Pathum Thani, Thailand.
| | - Mayuri Tarasuk
- Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Thammasat University, Rangsit Center, Klong Luang, Pathum Thani, Thailand.
| | - Tullayakorn Plengsuriyakarn
- Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Thammasat University, Rangsit Center, Klong Luang, Pathum Thani, Thailand.
| | - Kanyarat Boonprasert
- Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Thammasat University, Rangsit Center, Klong Luang, Pathum Thani, Thailand.
| | - Kesara Na-Bangchang
- Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Thammasat University, Rangsit Center, Klong Luang, Pathum Thani, Thailand.,Director, Drug discovery, and Development Center, Thammasat University, Rangsit Center, Klong Luang, Pathum Thani, Thailand. ,For Correspondence:
| |
Collapse
|
15
|
Li C, Jin B, Sun H, Wang Y, Zhao H, Sang X, Yang H, Mao Y. Exploring the function of stromal cells in cholangiocarcinoma by three-dimensional bioprinting immune microenvironment model. Front Immunol 2022; 13:941289. [PMID: 35983036 PMCID: PMC9378822 DOI: 10.3389/fimmu.2022.941289] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
The tumor immune microenvironment significantly affects tumor progression, metastasis, and clinical therapy. Its basic cell components include tumor-associated endothelial cells, fibroblasts, and macrophages, all of which constitute the tumor stroma and microvascular network. However, the functions of tumor stromal cells have not yet been fully elucidated. The three-dimensional (3D) model created by 3D bioprinting is an efficient way to illustrate cellular interactions in vitro. However, 3D bioprinted model has not been used to explore the effects of stromal cells on cholangiocarcinoma cells. In this study, we fabricated 3D bioprinted models with tumor cells and stromal cells. Compared with cells cultured in two-dimensional (2D) environment, cells in 3D bioprinted models exhibited better proliferation, higher expression of tumor-related genes, and drug resistance. The existence of stromal cells promoted tumor cell activity in 3D models. Our study shows that 3D bioprinting of an immune microenvironment is an effective way to study the effects of stromal cells on cholangiocarcinoma cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Huayu Yang
- *Correspondence: Huayu Yang, ; Yilei Mao,
| | - Yilei Mao
- *Correspondence: Huayu Yang, ; Yilei Mao,
| |
Collapse
|
16
|
Gao H, He Z, Gao C, Liu N, Zhang Z, Niu W, Niu J, Peng C. Exosome-transmitted miR-3124-5p promotes cholangiocarcinoma development via targeting GDF11. Front Oncol 2022; 12:936507. [PMID: 35978818 PMCID: PMC9376483 DOI: 10.3389/fonc.2022.936507] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/08/2022] [Indexed: 11/30/2022] Open
Abstract
Objective Cholangiocarcinoma (CHOL) is a deadly cancer worldwide with limited available therapies. The aim of this study was to investigate key exosomal miRNAs and their functions in CHOL development. Methods Serum exosomes were isolated from patients with CHOL and healthy controls, followed by miRNA sequencing for identifying differentially expressed miRNAs (DEMs) and their functions. Then, the expression of key DEMs was experimentally validated in exosomes from clinical CHOL patients and CHOL cells. The effects of overexpression of key DEMs on CHOL cell migration and proliferation were investigated. A key exosomal DEM miR-3124-5p was identified. The effects of overexpression or knockdown of exosomal miR-3124-5p on the proliferation, migration, and angiogenesis of human umbilical vein endothelial cells (HUVECs) were investigated. Moreover, the function of exosomal miR-3124-5p on tumor growth in vivo was explored. Results A total of 632 exosomal DEMs were identified between CHOL and control samples. Target genes of DEMs were significantly enriched in pathways, such as the p53 signaling pathway. miR-3124-5p was upregulated in serum exosomes from CHOL patients and exosomes from CHOL cells, and overexpression of miR-3124-5p promoted RBE cell migration and viability. Moreover, overexpression of exosomal miR-3124-5p promoted the proliferation, migration, and angiogenesis of HUVECs, while knockdown of miR-3124-5p had the opposite effect. miR-3124-5p could target growth differentiation factor 11 (GDF11) and downregulate GDF11 expression. Furthermore, exosomal miR-3124-5p promoted tumor growth in vivo. Conclusions Our findings revealed that exosome-encapsulated miR-3124-5p promoted the malignant progression of CHOL by targeting GDF11. Exosomal miR-3124-5p and GDF11 could be promising biomarkers or therapeutic targets for CHOL.
Collapse
Affiliation(s)
- Huijie Gao
- Department of Hepatobiliary Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- The Institute of Laparoscopic Minimally Invasive Surgery of Shandong University, Jinan, China
| | - Zhaobin He
- Department of Hepatobiliary Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- The Institute of Laparoscopic Minimally Invasive Surgery of Shandong University, Jinan, China
| | - Chao Gao
- Department of Hepatobiliary Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- The Institute of Laparoscopic Minimally Invasive Surgery of Shandong University, Jinan, China
| | - Naiqing Liu
- Department of General Surgery, Linyi Central Hospital, Linyi, China
| | - Zhaoyang Zhang
- The Institute of Laparoscopic Minimally Invasive Surgery of Shandong University, Jinan, China
- Department of Emergency Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Weibo Niu
- Department of Hepatobiliary Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- The Institute of Laparoscopic Minimally Invasive Surgery of Shandong University, Jinan, China
| | - Jun Niu
- Department of Hepatobiliary Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- The Institute of Laparoscopic Minimally Invasive Surgery of Shandong University, Jinan, China
| | - Cheng Peng
- Department of Hepatobiliary Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- The Institute of Laparoscopic Minimally Invasive Surgery of Shandong University, Jinan, China
- *Correspondence: Cheng Peng,
| |
Collapse
|
17
|
In Silico Target Identification of Galangin, as an Herbal Flavonoid against Cholangiocarcinoma. Molecules 2022; 27:molecules27144664. [PMID: 35889537 PMCID: PMC9351686 DOI: 10.3390/molecules27144664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/16/2022] [Accepted: 07/18/2022] [Indexed: 02/05/2023] Open
Abstract
Cholangiocarcinoma (CCA) is a heterogenous group of malignancies in the bile duct, which proliferates aggressively. CCA is highly prevalent in Northeastern Thailand wherein it is associated with liver fluke infection, or Opisthorchis viverrini (OV). Most patients are diagnosed in advanced stages, when the cancer has metastasized or severely progressed, thereby limiting treatment options. Several studies investigate the effect of traditional Thai medicinal plants that may be potential therapeutic options in combating CCA. Galangin is one such herbal flavonoid that has medicinal properties and exhibits anti-tumor properties in various cancers. In this study, we investigate the role of Galangin in inhibiting cell proliferation, invasion, and migration in OV-infected CCA cell lines. We discovered that Galangin reduced cell viability and colony formation by inducing apoptosis in CCA cell lines in a dose-dependent manner. Further, Galangin also effectively inhibited invasion and migration in OV-infected CCA cells by reduction of MMP2 and MMP9 enzymatic activity. Additionally, using proteomics, we identified proteins affected post-treatment with Galangin. Enrichment analysis revealed that several kinase pathways were affected by Galangin, and the signature corroborated with that of small molecule kinase inhibitors. Hence, we identified putative targets of Galangin using an in silico approach which highlighted c-Met as candidate target. Galangin effectively inhibited c-Met phosphorylation and subsequent signaling in in vitro CCA cells. In addition, Galangin was able to inhibit HGF, a mediator of c-Met signaling, by suppressing HGF-stimulated invasion, as well as migration and MMP9 activity. This shows that Galangin can be a useful anti-metastatic therapeutic strategy in a subtype of CCA patients.
Collapse
|
18
|
Wang K, Chen YF, Yang YCSH, Huang HM, Lee SY, Shih YJ, Li ZL, Whang-Peng J, Lin HY, Davis PJ. The power of heteronemin in cancers. J Biomed Sci 2022; 29:41. [PMID: 35705962 PMCID: PMC9202199 DOI: 10.1186/s12929-022-00816-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/24/2022] [Indexed: 12/14/2022] Open
Abstract
Heteronemin (Haimian jing) is a sesterterpenoid-type natural marine product that is isolated from sponges and has anticancer properties. It inhibits cancer cell proliferation via different mechanisms, such as reactive oxygen species (ROS) production, cell cycle arrest, apoptosis as well as proliferative gene changes in various types of cancers. Recently, the novel structure and bioactivity evaluation of heteronemin has received extensive attention. Hormones control physiological activities regularly, however, they may also affect several abnormalities such as cancer. L-Thyroxine (T4), steroid hormones, and epidermal growth factor (EGF) up-regulate the accumulation of checkpoint programmed death-ligand 1 (PD-L1) and promote inflammation in cancer cells. Heteronemin suppresses PD-L1 expression and reduces the PD-L1-induced proliferative effect. In the current review, we evaluated research and evidence regarding the antitumor effects of heteronemin and the antagonizing effects of non-peptide hormones and growth factors on heteronemin-induced anti-cancer properties and utilized computational molecular modeling to explain how these ligands interacted with the integrin αvβ3 receptors. On the other hand, thyroid hormone deaminated analogue, tetraiodothyroacetic acid (tetrac), modulates signal pathways and inhibits cancer growth and metastasis. The combination of heteronemin and tetrac derivatives has been demonstrated to compensate for anti-proliferation in cancer cells under different circumstances. Overall, this review outlines the potential of heteronemin in managing different types of cancers that may lead to its clinical development as an anticancer agent.
Collapse
Affiliation(s)
- Kuan Wang
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, 250 Wuxing Street, Taipei 110, Taipei, 11031, Taiwan
| | - Yi-Fong Chen
- Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
| | - Yu-Chen S H Yang
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei, 11031, Taiwan
| | - Haw-Ming Huang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Sheng-Yang Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, 11031, Taiwan.,Dentistry, Wan-Fang Medical Center, Taipei Medical University, Taipei, 11031, Taiwan
| | - Ya-Jung Shih
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, 250 Wuxing Street, Taipei 110, Taipei, 11031, Taiwan.,Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
| | - Zi-Lin Li
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, 250 Wuxing Street, Taipei 110, Taipei, 11031, Taiwan.,Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
| | - Jacqueline Whang-Peng
- Cancer Center, Wan Fang Hospital, Taipei Medical University, No. 111, Section 3, Xinglong Road, Wenshan District, Taipei City, 116, Taipei, 11031, Taiwan.
| | - Hung-Yun Lin
- Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan. .,Cancer Center, Wan Fang Hospital, Taipei Medical University, No. 111, Section 3, Xinglong Road, Wenshan District, Taipei City, 116, Taipei, 11031, Taiwan. .,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, 11031, Taiwan. .,Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei Medical University, Taipei, 11031, Taiwan. .,Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, 12144, USA.
| | - Paul J Davis
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, 12144, USA.,Department of Medicine, Albany Medical College, Albany, NY12144, USA
| |
Collapse
|
19
|
Sarker K, Ghosh A, Saha A, Mishra S, Sen S. Pharmacophore Based Design of Probable FGFR-1 Inhibitors from the 3D
Crystal Structure of Infigratinib - A Drug Used in the Treatment of
Cholangiocarcinomas. LETT DRUG DES DISCOV 2022. [DOI: 10.2174/1570180818666211007113720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Pemigatinib (INCB054828) and Infigratinib (BGJ398) are the few selective
drugs that are approved by the FDA to treat cholangiocarcinoma, a rare form of bile duct cancer. Infigratinib
is a pan FGFR inhibitor and has been found promising in Phase-3, first-line PROOF clinical trial. So,
screening drug-like compounds having similar pharmacophoric features like infigratinib is the inspiration
of the present work.
Objective:
The objective was to identify drug-like compounds with similar pharmacophoric features as in
infigratinib. The compounds screened through the 3D query pharmacophore of infigratinib were also
predicted for ADMET properties so that the compounds may have good bioavailability.
Method:
A pharmacophore was generated from the crystal structure of infigratinib with several pharmacophoric
features such as hydrogen bond donor, hydrophobic, positive ionizable, and ring aromatic.
MayBridge database containing 65,263 compounds was used for virtual screening (VS) using LibDock.
The initial Hit compounds were subjected to ADMET predictions. Finally, two Hit compounds were selected
and docked with the FGFR-1 receptor to predict the interaction of the ligand atoms with the amino
acid residues of the receptor's active site.
Result:
The fit score for infigratinib, N-(4-fluorophenyl)-2-(5-((2-(4-methoxy-2,5-dimethylphenyl)-2-
oxoethyl)thio)-4-methyl-4H-1,2,4-triazol-3-yl)acetamide (Hit-1) and 4-(4-((2-(5,6-dimethyl-1H-benzo[d]
imidazol-2-yl)ethyl)carbamoyl)pyridin-2-yl)-1-methylpiperazin-1-ium (Hit-4) is 4.58901, 4.36649, and
3.71732, respectively. The LibDock score of infigratinib, Hit-1, and Hit-4 is 122.474, 123.289, and
123.353, respectively. The binding affinity score (-PLP1) of infigratinib, Hit-1, and Hit-4 is -143.19, -
102.72, and -91.71.
Conclusion:
The present study concluded that the two compounds designated as Hit-1 and Hit-4 have
been identified as binders of FGFR-1, and Hit-4 occupies the whole pharmacophoric space of infigratinib,
and both the compounds LibDock scores are better than the infigratinib. The two compounds Hit-1 and
Hit-4 may be synthesized and studied for their enzyme inhibition assay on FGFR-1 and biologically evaluated
on different cell lines for Cholangiocarcinoma.
Collapse
Affiliation(s)
- Koushik Sarker
- A.P.C. Ray Memorial Cancer Chemotherapeutic Research Unit, College of Pharmaceutical Sciences, Mohuda, Berhampur,
Odisha 760002, India
| | - Avijit Ghosh
- A.P.C. Ray Memorial Cancer Chemotherapeutic Research Unit, College of Pharmaceutical Sciences, Mohuda, Berhampur,
Odisha 760002, India
| | - Abhijit Saha
- A.P.C. Ray Memorial Cancer Chemotherapeutic Research Unit, College of Pharmaceutical Sciences, Mohuda, Berhampur,
Odisha 760002, India
| | - Suvasish Mishra
- A.P.C. Ray Memorial Cancer Chemotherapeutic Research Unit, College of Pharmaceutical Sciences, Mohuda, Berhampur,
Odisha 760002, India
| | - Subrata Sen
- A.P.C. Ray Memorial Cancer Chemotherapeutic Research Unit, College of Pharmaceutical Sciences, Mohuda, Berhampur,
Odisha 760002, India
| |
Collapse
|
20
|
Chantree P, Chumkiew S, Jamklang M, Martviset P. Cytotoxic activities of ethanolic crude extracts from fruiting bodies of bamboo mushrooms (Dictyophora spp.) against cholangiocarcinoma cells. RESEARCH RESULTS IN PHARMACOLOGY 2022. [DOI: 10.3897/rrpharmacology.8.72098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Introduction: Cholangiocarcinoma (CCA) is a highly progressive tumor. The standard chemotherapy varies in its effectiveness, with generally low efficacy. So, the discovery of novel chemotherapy is still required. The objective of this preliminary study was to determine the cytotoxic effects induced by three kinds of bamboo mushrooms (Dictyophora indusiata or Chinese bamboo mushroom; Ch-DTP, Short skirt bamboo mushroom (Thai isolate); Th-DTP, and orange skirt bamboo mushroom; Or-DTP) on CCA cells.
Materials and methods: CCA cell lines, including CL-6, HuCCT1, HuH28, and OUMS normal fibroblast cells, were treated with various concentrations of DTP extracts. The MTT assay was used to determine cytotoxicity, and cell morphology was observed by using phase-contrast microscopy.
Results and discussion: The results suggested that Ch-DTP effectively killed all three CCA cell lines in both low (0.3 mg/mL) and high (0.6 mg/mL) doses, but Th-DTP and Or-DTP had significantly reduced cell viability only at high doses (p<0.001). Ch-DTP had the best effect by showing a response of more than 50% at a concentration of 0.3 mg/mL. Th-DTP had moderate effects at a concentration of lower than 0.6 mg/mL but worthwhile at higher concentrations, whereas Or-DTP had limited effects at concentrations of 0.4 mg/mL and downward, although the effects were significantly increased in the higher concentration range. Morphology of the Ch-DTP treated cells was greatly transformed both at low and high doses, but Th-DTP and Or-DTP showed definite alteration only at high doses. The morphological changes revealed apoptotic induction. In OUMS cells, no effects were recognized with any of the three DTPs.
Conclusion: This study indicated that DTP extracts could induce cytotoxicity in cholangiocarcinoma, with a high potential of being an effective therapeutic agent.
Graphical abstract:
Collapse
|
21
|
Tumor-associated macrophages promote cholangiocarcinoma progression via exosomal Circ_0020256. Cell Death Dis 2022; 13:94. [PMID: 35091535 PMCID: PMC8799724 DOI: 10.1038/s41419-022-04534-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 12/14/2021] [Accepted: 01/13/2022] [Indexed: 12/18/2022]
Abstract
This study investigated the exosomal circular RNAs (CircRNAs) produced by tumor-associated macrophages and delivered into the microenvironment of cholangiocarcinoma cells in order to use them as molecular targets for clinical therapy. Tumor-associated M2 macrophages (TAMs) were induced from THP-1 cells and identified by flow cytometry. The TAM-secreted exosomes were isolated from conditioned medium and a CircRNA microarray assay was performed to identify CircRNAs that were uniquely expressed in the isolated exosomes. Circ_0020256 was especially identified based on having the highest differential expression level among all of the CircRNA candidates. In vitro and in vivo experiments were performed to assess the effects of TAMs, exosomes, and Circ_0020256 on the growth and migration of cholangiocarcinoma (CCA) cells. The induced TAMs promoted the proliferation, migration, and invasion of CCA cells and those effects were mediated by exosomes secreted by the TAMs. In CCA cells (RBE and HCCC-9810), Circ_0020256 significantly promoted cellular activity by interacting with its intra-cellular microRNA target, miR-432-5p. In contrast, overexpression of transcription factor E2F3 in CCA cells restored the CCA cellular activities that were inhibited by miR-432-5p. On the other hand, treatment with small interference RNA (siRNA) for Circ_0020256 inhibited CCA cell proliferation, migration, and invasion both in vitro and in vivo. In conclusion, Circ_0020256 in TAM-secreted exosomes promoted the proliferation, migration, and invasion of CCA cells, and that promotional activity was regulated via a Circ_0020256/miR-432-5p/E2F3 axis.
Collapse
|
22
|
Deng J, Liu L, Li L, Sun J, Yan F. Hesperidin delays cell cycle progression into the G0/G1 phase via suspension of MAPK signaling pathway in intrahepatic cholangiocarcinoma. J Biochem Mol Toxicol 2022; 36:e22981. [PMID: 34984768 DOI: 10.1002/jbt.22981] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 10/20/2021] [Accepted: 12/16/2021] [Indexed: 12/18/2022]
Abstract
Intrahepatic cholangiocarcinoma (iCCA) derived from epithelial cells of bile ducts is highly aggressive tumor. Hesperidin extracted from citrus fruits is a promising antitumor compound. The purpose of this study is to explore molecular mechanism by which hesperidin affects cholangiocarcinoma progression. Cellular functional experiments were performed and subcutaneous transplant xenograft model was established. Our findings indicated that hesperidin suppressed iCCA cell proliferation in time- and concentration-dependent manners. Hesperidin treatment induced cell cycle arrest at G0/G1 phase, whereas it has no effect on cell apoptosis. Further, data revealed that hesperidin attenuated MEK5 and ERK5 phosphorylation and inhibited ERK5 nuclear localization by reducing MEKK2 activity in MAPK signaling pathway. It could cause alterations in expression of the downstream genes, including CDK4, CDK6 (cell cycle protein kinases), Cyclin D1 (a G1/S checkpoint), P21, and P27 (two G1-checkpoint CDK inhibitors), thereby arresting cell cycle distribution of iCCA cells in the G0/G1 phase. BIX02189 treatment, a specific inhibitor of MEK5, in combination with hesperidin displayed synergistic inhibitory effects on cell cycle arrest and gene expressions. Furthermore, hesperidin administration alone or in combination with MEK5 inhibitor BIX02189 restrained iCCA tumor growth in vivo. Taken together, these results confirmed that hesperidin regulated the expression of cell cycle-related genes by inhibiting the activation of MEKK2/MEK5/ERK5 signaling pathway, inducing iCCA cell cycle arrest at the G0/G1 phase. Our study provides a theoretical foundation and experimental basis for further development of hesperidin as a therapeutic agent for iCCA treatment.
Collapse
Affiliation(s)
- Jie Deng
- Department of Oncology, Hubei NO. 3 People's Hospital of Jianghan University, Wuhan, Hubei, China
| | - Li Liu
- Department of Oncology, Hubei NO. 3 People's Hospital of Jianghan University, Wuhan, Hubei, China
| | - Li Li
- Department of Oncology, Hubei NO. 3 People's Hospital of Jianghan University, Wuhan, Hubei, China
| | - Jianhai Sun
- Department of Oncology, Hubei NO. 3 People's Hospital of Jianghan University, Wuhan, Hubei, China
| | - Fei Yan
- Department of Oncology, Hubei NO. 3 People's Hospital of Jianghan University, Wuhan, Hubei, China
| |
Collapse
|
23
|
Klinhom-On N, Seubwai W, Sawanyawisuth K, Obchoei S, Mahalapbutr P, Wongkham S. FOXM1 inhibitor, Siomycin A, synergizes and restores 5-FU cytotoxicity in human cholangiocarcinoma cell lines via targeting thymidylate synthase. Life Sci 2021; 286:120072. [PMID: 34688691 DOI: 10.1016/j.lfs.2021.120072] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 10/06/2021] [Accepted: 10/18/2021] [Indexed: 12/26/2022]
Abstract
AIMS 5-Fluorouracil (5-FU), a thymidylate synthase (TS) inhibitor, has been used as the first-line chemotherapeutic drug for cholangiocarcinoma (CCA). The side effects and drug resistance have developed the limits of the clinical application of 5-FU in CCA treatment. Upregulation of Forkhead box M1 (FOXM1) and TS were shown to play a significant role in 5-FU resistance. In this study, the effect of Siomycin A (SioA), a FOXM1 inhibitor, on enhancing 5-FU cytotoxicity and reversing 5-FU resistance in CCA cell lines were demonstrated. MAIN METHODS Human CCA cell lines, KKU-100 and KKU-213A were used. Cell viability was determined using MTT assay. Expression of FOXM1 and TS proteins were determined using Western blotting. FOXM1 mRNA expression was quantitated using real-time PCR. The combination and dose reduction (DRI) were analyzed according to the Chou and Talalay method. KEY FINDING Single drug treatment of 5-FU and SioA effectively inhibited CCA cell growth in dose and time dependent fashions. The two CCA cell lines had different responses to 5-FU but exhibited similar sensitivity to SioA. FOXM1 and TS expression were increased in the 5-FU treated cells but were suppressed in the SioA treated cells. A direct binding of SioA, to TS and 5,10-methylene-tetrahydrofolate as an inactive ternary complex was simulated. The combined treatment of 5-FU with SioA showed a synergistic effect with a high DRI and restored 5-FU sensitivity in the 5-FU resistant cells. SIGNIFICANCE Targeting FOXM1 using SioA in combination with 5-FU might be a strategy to overcome the 5-FU resistance in CCA.
Collapse
Affiliation(s)
- Nathakan Klinhom-On
- Department of Biochemistry, Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, 40002, Thailand
| | - Wunchana Seubwai
- Department of Forensic Medicine, Faculty of Medicine, Khon Kaen University, 40002, Thailand; Cholangiocarcinoma Research Institute, Khon Kaen University, 40002, Thailand
| | - Kanlayanee Sawanyawisuth
- Department of Biochemistry, Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, 40002, Thailand; Cholangiocarcinoma Research Institute, Khon Kaen University, 40002, Thailand
| | - Sumalee Obchoei
- Department of Biochemistry, Faculty of Science, Prince of Songkla University, 90110, Thailand
| | - Panupong Mahalapbutr
- Department of Biochemistry, Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, 40002, Thailand
| | - Sopit Wongkham
- Department of Biochemistry, Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, 40002, Thailand; Cholangiocarcinoma Research Institute, Khon Kaen University, 40002, Thailand.
| |
Collapse
|
24
|
Zhu AX, Macarulla T, Javle MM, Kelley RK, Lubner SJ, Adeva J, Cleary JM, Catenacci DVT, Borad MJ, Bridgewater JA, Harris WP, Murphy AG, Oh DY, Whisenant JR, Lowery MA, Goyal L, Shroff RT, El-Khoueiry AB, Chamberlain CX, Aguado-Fraile E, Choe S, Wu B, Liu H, Gliser C, Pandya SS, Valle JW, Abou-Alfa GK. Final Overall Survival Efficacy Results of Ivosidenib for Patients With Advanced Cholangiocarcinoma With IDH1 Mutation: The Phase 3 Randomized Clinical ClarIDHy Trial. JAMA Oncol 2021; 7:1669-1677. [PMID: 34554208 PMCID: PMC8461552 DOI: 10.1001/jamaoncol.2021.3836] [Citation(s) in RCA: 263] [Impact Index Per Article: 65.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Question Does ivosidenib treatment improve overall survival outcomes vs placebo among patients with chemotherapy-refractory cholangiocarcinoma with IDH1 mutation? Findings In this phase 3 randomized clinical trial including 187 previously treated patients with advanced cholangiocarcinoma with IDH1 mutation, ivosidenib treatment resulted in numerically improved overall survival benefits vs placebo, despite a high rate of crossover. Ivosidenib preserved certain quality of life subscales and was well tolerated. Meaning The combined efficacy data and tolerable safety profile, as well as corroborating quality of life data, support the clinical benefit of ivosidenib relative to placebo in cholangiocarcinoma with IDH1 mutation, which has an unmet need for new treatments. Importance Isocitrate dehydrogenase 1 (IDH1) variations occur in up to approximately 20% of patients with intrahepatic cholangiocarcinoma. In the ClarIDHy trial, progression-free survival as determined by central review was significantly improved with ivosidenib vs placebo. Objective To report the final overall survival (OS) results from the ClarIDHy trial, which aimed to demonstrate the efficacy of ivosidenib (AG-120)—a first-in-class, oral, small-molecule inhibitor of mutant IDH1—vs placebo for patients with unresectable or metastatic cholangiocarcinoma with IDH1 mutation. Design, Setting, and Participants This multicenter, randomized, double-blind, placebo-controlled, clinical phase 3 trial was conducted from February 20, 2017, to May 31, 2020, at 49 hospitals across 6 countries among patients aged 18 years or older with cholangiocarcinoma with IDH1 mutation whose disease progressed with prior therapy. Interventions Patients were randomized 2:1 to receive ivosidenib, 500 mg, once daily or matched placebo. Crossover from placebo to ivosidenib was permitted if patients had disease progression as determined by radiographic findings. Main Outcomes and Measures The primary end point was progression-free survival as determined by blinded independent radiology center (reported previously). Overall survival was a key secondary end point. The primary analysis of OS followed the intent-to-treat principle. Other secondary end points included objective response rate, safety and tolerability, and quality of life. Results Overall, 187 patients (median age, 62 years [range, 33-83 years]) were randomly assigned to receive ivosidenib (n = 126; 82 women [65%]; median age, 61 years [range, 33-80 years]) or placebo (n = 61; 37 women [61%]; median age, 63 years [range, 40-83 years]); 43 patients crossed over from placebo to ivosidenib. The primary end point of progression-free survival was reported elsewhere. Median OS was 10.3 months (95% CI, 7.8-12.4 months) with ivosidenib vs 7.5 months (95% CI, 4.8-11.1 months) with placebo (hazard ratio, 0.79 [95% CI, 0.56-1.12]; 1-sided P = .09). When adjusted for crossover, median OS with placebo was 5.1 months (95% CI, 3.8-7.6 months; hazard ratio, 0.49 [95% CI, 0.34-0.70]; 1-sided P < .001). The most common grade 3 or higher treatment-emergent adverse event (≥5%) reported in both groups was ascites (11 patients [9%] receiving ivosidenib and 4 patients [7%] receiving placebo). Serious treatment-emergent adverse events considered ivosidenib related were reported in 3 patients (2%). There were no treatment-related deaths. Patients receiving ivosidenib reported no apparent decline in quality of life compared with placebo. Conclusions and Relevance This randomized clinical trial found that ivosidenib was well tolerated and resulted in a favorable OS benefit vs placebo, despite a high rate of crossover. These data, coupled with supportive quality of life data and a tolerable safety profile, demonstrate the clinical benefit of ivosidenib for patients with advanced cholangiocarcinoma with IDH1 mutation. Trial Registration ClinicalTrials.gov Identifier: NCT02989857
Collapse
Affiliation(s)
- Andrew X Zhu
- Department of Medicine, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston.,Jiahui International Cancer Center, Jiahui Health, Shanghai, China
| | | | - Milind M Javle
- Department of Gastrointestinal Medical Oncology, MD Anderson Cancer Center, Houston, Texas
| | - R Kate Kelley
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco
| | - Sam J Lubner
- Department of Medicine, University of Wisconsin Carbone Cancer Center, Madison
| | - Jorge Adeva
- Department of Medical Oncology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - James M Cleary
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | - Mitesh J Borad
- Department of Hematology-Oncology, Mayo Clinic, Scottsdale, Arizona
| | - John A Bridgewater
- Department of Medical Oncology, University College London Cancer Institute, London, United Kingdom
| | | | - Adrian G Murphy
- Department of Oncology-Gastrointestinal Cancer, Johns Hopkins University, Baltimore, Maryland
| | - Do-Youn Oh
- Department of Internal Medicine, Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul, South Korea
| | | | - Maeve A Lowery
- Department of Medicine, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston.,Trinity St James Cancer Institute, Trinity College Dublin, Dublin, Ireland
| | - Lipika Goyal
- Department of Medicine, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston
| | - Rachna T Shroff
- Department of Medicine, University of Arizona Cancer Center, Tucson
| | - Anthony B El-Khoueiry
- Department of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles
| | - Christina X Chamberlain
- Agios Pharmaceuticals Inc, Cambridge, Massachusetts.,Now with Servier Pharmaceuticals, LLC, Boston, Massachusetts
| | - Elia Aguado-Fraile
- Agios Pharmaceuticals Inc, Cambridge, Massachusetts.,Repare Therapeutics, Cambridge, Massachusetts
| | - Sung Choe
- Agios Pharmaceuticals Inc, Cambridge, Massachusetts.,Now with Servier Pharmaceuticals, LLC, Boston, Massachusetts
| | - Bin Wu
- Agios Pharmaceuticals Inc, Cambridge, Massachusetts.,Bristol Myers Squibb, Cambridge, Massachusetts
| | - Hua Liu
- Agios Pharmaceuticals Inc, Cambridge, Massachusetts.,Now with Servier Pharmaceuticals, LLC, Boston, Massachusetts
| | - Camelia Gliser
- Agios Pharmaceuticals Inc, Cambridge, Massachusetts.,Now with Servier Pharmaceuticals, LLC, Boston, Massachusetts
| | - Shuchi S Pandya
- Agios Pharmaceuticals Inc, Cambridge, Massachusetts.,Now with Servier Pharmaceuticals, LLC, Boston, Massachusetts
| | - Juan W Valle
- Division of Cancer Sciences, University of Manchester, Department of Medical Oncology, The Christie National Health Service Foundation Trust, Manchester, United Kingdom
| | - Ghassan K Abou-Alfa
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Medicine, Weill Medical College at Cornell University, New York, New York
| |
Collapse
|
25
|
Deng X, Zuo M, Pei Z, Xie Y, Yang Z, Zhang Z, Jiang M, Kuang D. MicroRNA-455-5p Contributes to Cholangiocarcinoma Growth and Mediates Galangin's Anti-Tumor Effects. J Cancer 2021; 12:4710-4721. [PMID: 34149934 PMCID: PMC8210562 DOI: 10.7150/jca.58873] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/22/2021] [Indexed: 01/06/2023] Open
Abstract
Fully understanding the mechanism of how Cholangiocarcinoma (CCA) development and discovering promising therapeutic drugs are important to improve patients' survival time. This study identifies that microRNA-455-5p (miR-455-5p) targets protein phosphatase 1 regulatory subunit 12A (PPP1R12A), an effect that represses mitogen-activated protein kinase (MAPK) and PI3K/AKT pathway activation, thereby controlling CCA cells survival and metastasis. Moreover, miR-455-5p expression is reduced in CCA tissues and negative correlation with PPP1R12A and PPP1R12A knockdown phenotypic mimics miR-455-5p' effects on CCA cells. Furthermore, we demonstrate that galangin inhibits CCA growth both in vitro and in vivo, which is associated with increased miR-455-5p and repressed PPP1R12A expression. In support, overexpression of miR-455-5p abrogates those galangin-mediated anti-CCA effects. These findings establish an essential role of miR-455-5p in CCA development and galangin may provide a potential therapeutic adjuvant agent for anti-CCA treatment.
Collapse
Affiliation(s)
- Xu Deng
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Meiling Zuo
- Department of Pharmacy, The Affiliated Changsha Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Zhifang Pei
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuanlin Xie
- Department of Pharmacy, The Affiliated Changsha Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Zhongbao Yang
- Department of Pharmacy, The Affiliated Changsha Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Zhihui Zhang
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Minna Jiang
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Dabin Kuang
- Department of Pharmacy, The Affiliated Changsha Hospital of Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
26
|
Nguyen MLT, Bui KC, Scholta T, Xing J, Bhuria V, Sipos B, Wilkens L, Nguyen Linh T, Velavan TP, Bozko P, Plentz RR. Targeting interleukin 6 signaling by monoclonal antibody siltuximab on cholangiocarcinoma. J Gastroenterol Hepatol 2021; 36:1334-1345. [PMID: 33091158 DOI: 10.1111/jgh.15307] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 09/10/2020] [Accepted: 10/11/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIM Cholangiocarcinoma has an unimproved prognosis. Interleukin 6 (IL-6) has an oncogenic potential in some cancer diseases. However, the role of IL-6 in cholangiocarcinoma carcinogenesis is not well understood. The current study investigated the role of IL-6 signaling in cholangiocarcinoma carcinogenesis and efficacy of siltuximab treatment on cholangiocarcinoma in vitro and in vivo. METHODS The expression of IL-6 was analyzed on human cholangiocarcinoma cell lines and murine and human cholangiocarcinoma tissues, using reverse transcription real-time polymerase chain reaction and immunohistochemistry. In addition, the effect of anti-IL-6 chimeric monoclonal antibody, siltuximab, was investigated in vitro by proliferation, migration, and two-dimensional and three-dimensional invasion assays and in vivo by xenograft mouse model. Western blot was applied to study the molecular alteration. RESULTS Our result shows high expression of IL-6 in human cholangiocarcinoma cells, and IL-6 stimulants enhance cholangiocarcinoma cell proliferation. In addition, murine and human cholangiocarcinoma tissues express significantly higher levels of IL-6, compared with adjacent non-tumor tissues. On the cholangiocarcinoma engineered mouse model, IL-6 level is associated with tumor volume. Taken together, our data indicate an oncogenic potential of IL-6 in cholangiocarcinoma carcinogenesis. Siltuximab sufficiently abrogates IL-6 signaling and inhibits cholangiocarcinoma progression in vitro and in vivo. The results additionally indicate a relative alteration of IL-6 signaling and its molecular targets, such as STAT3, Wnt/β-catenin, and mesenchymal markers. CONCLUSIONS Interleukin 6 plays an essential role in cholangiocarcinoma carcinogenesis, and siltuximab has the potential to be considered as a new treatment option for cholangiocarcinoma patients.
Collapse
Affiliation(s)
- Mai Ly Thi Nguyen
- Department of Internal Medicine I, Universitätsklinikum Tübingen, Tübingen, Germany.,Department of Biochemistry, Military Hospital 103, Vietnam Military Medical University, Hanoi, Vietnam.,Vietnamese-German Centre for Medical Research (VG-CARE), Hanoi, Vietnam
| | - Khac Cuong Bui
- Department of Internal Medicine I, Universitätsklinikum Tübingen, Tübingen, Germany.,Vietnamese-German Centre for Medical Research (VG-CARE), Hanoi, Vietnam.,Department of Pathophysiology, Vietnam Military Medical University, Hanoi, Vietnam.,Laboratory Animal Research Center, Vietnam Military Medical University, Hanoi, Vietnam
| | - Tim Scholta
- Department of Internal Medicine I, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Jun Xing
- Department of Internal Medicine I, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Vikas Bhuria
- Department of Internal Medicine I, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Bence Sipos
- Department of Internal Medicine VIII, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Ludwig Wilkens
- Institute of Pathology, Nordstadt Krankenhaus, Hannover, Germany
| | - Toan Nguyen Linh
- Department of Pathophysiology, Vietnam Military Medical University, Hanoi, Vietnam
| | - Thirumalaisamy P Velavan
- Vietnamese-German Centre for Medical Research (VG-CARE), Hanoi, Vietnam.,Institute of Tropical Medicine, Universitätsklinikum Tübingen, Tübingen, Germany.,Duy Tan University, Da Nang, Vietnam
| | - Przemyslaw Bozko
- Department of Internal Medicine I, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Ruben R Plentz
- Department of Internal Medicine I, Universitätsklinikum Tübingen, Tübingen, Germany.,Department of Internal Medicine II, Klinikum Bremen Nord, Bremen, Germany
| |
Collapse
|
27
|
Promraksa B, Katrun P, Phetcharaburanin J, Kittirat Y, Namwat N, Techasen A, Li JV, Loilome W. Metabolic Changes of Cholangiocarcinoma Cells in Response to Coniferyl Alcohol Treatment. Biomolecules 2021; 11:biom11030476. [PMID: 33810184 PMCID: PMC8004792 DOI: 10.3390/biom11030476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/21/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a major cause of mortality in Northeast Thailand with about 14,000 deaths each year. There is an urgent necessity for novel drug discovery to increase effective treatment possibilities. A recent study reported that lignin derived from Scoparia dulcis can cause CCA cell inhibition. However, there is no evidence on the inhibitory effect of coniferyl alcohol (CA), which is recognized as a major monolignol-monomer forming a very complex structure of lignin. Therefore, we aimed to investigate the effect of CA on CCA cell apoptosis. We demonstrated that a half-inhibitory concentration of CA on KKU-100 cells at 48 h and 72 h was 361.87 ± 30.58 and 268.27 ± 18.61 μg/mL, respectively, and on KKU-213 cells 184.37 ± 11.15 and 151.03 ± 24.99 μg/mL, respectively. Furthermore, CA induced CCA cell apoptosis as demonstrated by annexin V/PI staining in correspondence with an increase in the BAX/Bcl-2 ratio. A metabonomic study indicated that CA significantly decreased the intracellular concentrations of glutathione and succinate in KKU-213 cells and increased dihydrogen acetone phosphate levels in KKU-100 cells treated with 200 µg/mL of CA compared to the control group. In conclusion, CA induced cellular metabolic changes which are involved in the antioxidant defense mechanism, glycerophospholipid metabolism and the tricarboxylic acid cycle. CA may serve as a potent anticancer agent for CCA treatment by inducing CCA cellular apoptosis.
Collapse
Affiliation(s)
- Bundit Promraksa
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (B.P.); (J.P.); (Y.K.); (N.N.)
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Praewpan Katrun
- Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand;
- Department of Chemistry, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Jutarop Phetcharaburanin
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (B.P.); (J.P.); (Y.K.); (N.N.)
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;
- Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand;
- International Phenome Laboratory, Northeastern Science Park, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Yingpinyapat Kittirat
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (B.P.); (J.P.); (Y.K.); (N.N.)
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Nisana Namwat
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (B.P.); (J.P.); (Y.K.); (N.N.)
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Anchalee Techasen
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;
- Faculty of Associated Medical Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Jia V. Li
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK;
| | - Watcharin Loilome
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (B.P.); (J.P.); (Y.K.); (N.N.)
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;
- Correspondence:
| |
Collapse
|
28
|
Sungwan P, Lert-itthiporn W, Silsirivanit A, Klinhom-on N, Okada S, Wongkham S, Seubwai W. Bioinformatics analysis identified CDC20 as a potential drug target for cholangiocarcinoma. PeerJ 2021; 9:e11067. [PMID: 33777535 PMCID: PMC7980698 DOI: 10.7717/peerj.11067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/15/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Cholangiocarcinoma (CCA) is a malignancy that originates from bile duct cells. The incidence and mortality of CCA are very high especially in Southeast Asian countries. Moreover, most CCA patients have a very poor outcome. Presently, there are still no effective treatment regimens for CCA. The resistance to several standard chemotherapy drugs occurs frequently; thus, searching for a novel effective treatment for CCA is urgently needed. METHODS In this study, comprehensive bioinformatics analyses for identification of novel target genes for CCA therapy based on three microarray gene expression profiles (GSE26566, GSE32225 and GSE76297) from the Gene Expression Omnibus (GEO) database were performed. Based on differentially expressed genes (DEGs), gene ontology and pathway enrichment analyses were performed. Protein-protein interactions (PPI) and hub gene identifications were analyzed using STRING and Cytoscape software. Then, the expression of candidate genes from bioinformatics analysis was measured in CCA cell lines using real time PCR. Finally, the anti-tumor activity of specific inhibitor against candidate genes were investigated in CCA cell lines cultured under 2-dimensional and 3-dimensional cell culture models. RESULTS The three microarray datasets exhibited an intersection consisting of 226 DEGs (124 up-regulated and 102 down-regulated genes) in CCA. DEGs were significantly enriched in cell cycle, hemostasis and metabolism pathways according to Reactome pathway analysis. In addition, 20 potential hub genes in CCA were identified using the protein-protein interaction (PPI) network and sub-PPI network analysis. Subsequently, CDC20 was identified as a potential novel targeted drug for CCA based on a drug prioritizing program. In addition, the anti-tumor activity of a potential CDC20 inhibitor, namely dinaciclib, was investigated in CCA cell lines. Dinaciclib demonstrated huge anti-tumor activity better than gemcitabine, the standard chemotherapeutic drug for CCA. CONCLUSION Using integrated bioinformatics analysis, CDC20 was identified as a novel candidate therapeutic target for CCA.
Collapse
Affiliation(s)
- Prin Sungwan
- Biomedical Science Program, Graduate School, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | | | - Atit Silsirivanit
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Nathakan Klinhom-on
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Seiji Okada
- Division of Hematopoeisis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Sopit Wongkham
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Wunchana Seubwai
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Department of Forensic Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
29
|
Prajumwongs P, Waenphimai O, Vaeteewoottacharn K, Wongkham S, Sawanyawisuth K. Reversine, a selective MPS1 inhibitor, induced autophagic cell death via diminished glucose uptake and ATP production in cholangiocarcinoma cells. PeerJ 2021; 9:e10637. [PMID: 33505802 PMCID: PMC7797171 DOI: 10.7717/peerj.10637] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 12/02/2020] [Indexed: 12/18/2022] Open
Abstract
Reversine is a selective inhibitor of mitotic kinase monopolar spindle 1 (MPS1) and has been reported as an anticancer agent in various cancers. The effects of reversine on bile duct cancer, cholangiocarcinoma (CCA), a lethal cancer in Northeastern Thailand, were investigated. This study reports that reversine inhibited cell proliferation of CCA cell lines in dose- and time-dependent manners but had less inhibitory effect on an immortalized cholangiocyte cell line. Reversine also triggered apoptotic cell death by decreasing anti-apoptotic proteins, Bcl-XL and Mcl-1, increasing Bax pro-apoptotic protein and activating caspase-3 activity. Moreover, reversine induced autophagic cell death by increasing LC3-II and Beclin 1 while decreasing p62. Reversine activated autophagy via the AKT signaling pathway. Additionally, this study demonstrated for the first time that reversine could diminish the expression of Hypoxia-Inducible Factor 1- alpha (HIF-1α) and glucose transporter 1 (GLUT1), resulting in a reduction of glucose uptake and energy production in CCA cell lines. These findings suggest that reversine could be a good candidate as an alternative or supplementary drug for CCA treatment.
Collapse
Affiliation(s)
- Piya Prajumwongs
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Orawan Waenphimai
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Kulthida Vaeteewoottacharn
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Sopit Wongkham
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Kanlayanee Sawanyawisuth
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
30
|
Fabris L, Sato K, Alpini G, Strazzabosco M. The Tumor Microenvironment in Cholangiocarcinoma Progression. Hepatology 2021; 73 Suppl 1:75-85. [PMID: 32500550 PMCID: PMC7714713 DOI: 10.1002/hep.31410] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/07/2020] [Accepted: 05/16/2020] [Indexed: 12/15/2022]
Abstract
Cholangiocarcinoma (CCA) is an aggressive and heterogeneous malignancy of the biliary tree. A typical hallmark of CCA is that cancer cells are embedded into a dense stroma containing fibrogenic cells, lymphatics and a variety of immune cells. Functional roles of the reactive tumor stroma are not fully elucidated; however, recent studies suggest that the tumor microenvironment plays a key role in the progression and invasiveness of CCA. CCA cells exchange autocrine/paracrine signals with other cancer cells and the infiltrating cell types that populate the microenvironment. This crosstalk is under the control of signals mediated by various cytokines, chemokines, and growth factors. In addition, extracellular vesicles (EVs), exosomes and microvesicles, containing cargo mediators, such as proteins and RNAs, play a key role in cell-to-cell communication, and particularly in epigenetic regulation thanks to their content in miRNAs. Both cytokine- and EV-mediated communications between CCA cells and other liver cells provide a potential novel target for the management of CCA. This review summarizes current understandings of the tumor microenvironment and intercellular communications in CCA and their role in tumor progression.
Collapse
Affiliation(s)
- Luca Fabris
- Department of Molecular Medicine, University of Padua, Padua, Italy,Liver Center and Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
| | - Keisaku Sato
- Hepatology and Gastroenterology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Gianfranco Alpini
- Hepatology and Gastroenterology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN,Richard L. Roudebush VA Medical Center, Indianapolis, IN
| | - Mario Strazzabosco
- Liver Center and Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT,Correspondence: Mario Strazzabosco MD, PhD, Liver Center and Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA,
| |
Collapse
|
31
|
Chantree P, Na-Bangchang K, Martviset P. Anticancer Activity of Fucoidan via Apoptosis and Cell Cycle Arrest on Cholangiocarcinoma Cell. Asian Pac J Cancer Prev 2021; 22:209-217. [PMID: 33507701 PMCID: PMC8184191 DOI: 10.31557/apjcp.2021.22.1.209] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/15/2021] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE Many previous studies reported that fucoidan has antitumor activities. The objective of the present study was to determine the cytotoxic effects and related mechanisms of cell death induced by fucoidan extracted from Fucus vesiculosus on CL-6 cholangiocarcinoma cell. METHODS CL-6 and OUMS cells were treated with 0, 100, 200, and 300 μg/mL of fucoidan. MTT assay was used to determine cytotoxicity. Flow cytometry-based assay was used to examine the distribution of apoptosis and cell cycle. The changes in nuclear morphology were determined using Hoechst 33,342 staining. Mitochondrial membrane potential (ΔΨm) was evaluated using the JC-1 kit. The apoptotic, anti-apoptotic, and cell cycle-related proteins study were examined by Western blot analysis. RESULTS The relative viable cell number of treated CL-6 cells was decreased but no effect was observed in OUMS normal cells. Furthermore, treated cells were arrested in the G0/G1 phase with down-regulation of cyclin D1 and CDK4. Annexin V/PI staining with flow cytometry analysis suggested that fucoidan could induce apoptosis in CL-6 cells. Western blot study revealed the up-regulation of apoptotic markers including Bax, cleaved PARP, cleaved caspase-3, but down-regulation of anti-apoptotic markers, cl-2. Moreover, fucoidan could induce nuclear fragmentation and chromatin condensation with alteration of ΔΨm. Conclusion: Fucoidan exerts antitumor properties against CL-6 cholangiocarcinoma cells illustrated by the induction of apoptosis and cell cycle arrest. .
Collapse
Affiliation(s)
- Pathanin Chantree
- Division of Anatomy, Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathumthani, 12120, Thailand.
- Research Unit in Nutraceuticals and Food Safety, Faculty of Medicine, Thammasat University, Pathumthani, 12120, Thailand.
| | - Kesara Na-Bangchang
- Graduate Program in Bioclinical Sciences, Chulabhorn International College of Medicine, Thammasat University, Pathumthani, 12120, Thailand.
- Center of Excellence in Molecular Biology and Pharmacology of Malaria and Cholangiocarcinoma, Thammasat University, Pathumthani, 12120, Thailand.
| | - Pongsakorn Martviset
- Center of Excellence in Molecular Biology and Pharmacology of Malaria and Cholangiocarcinoma, Thammasat University, Pathumthani, 12120, Thailand.
- Division of Parasitology, Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathumthani, 12120, Thailand.
| |
Collapse
|
32
|
Chahal D, Shamatutu C, Salh B, Davies J. The impact of primary sclerosing cholangitis or inflammatory bowel disease on cholangiocarcinoma phenotype, therapy, and survival. JGH Open 2020; 4:1128-1134. [PMID: 33319047 PMCID: PMC7731823 DOI: 10.1002/jgh3.12405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 12/12/2022]
Abstract
Background and Aim Primary sclerosing cholangitis (PSC), with or without inflammatory bowel disease (IBD), confers the risk of cholangiocarcinoma. Isolated IBD may be an independent risk factor for cholangiocarcinoma. We sought to compare cholangiocarcinoma phenotype and outcomes between patients with PSC, IBD, and neither. Methods Patients with malignancy were separated into cohorts by the presence of PSC and IBD. Data regarding demographics, clinical presentation, therapeutic regimens, and survival were collected. Statistical analysis was carried out using GraphPad and R‐Studio. Results Of 946 patients, 22 had PSC, and 18 had isolated IBD. PSC and IBD patients were younger than controls (P < 0.001, P = 0.01). Cholangiocarcinoma prevalence was estimated at 0.01% for IBD patients, 0.6% for PSC patients, and 0.002% for all other patients. All cohorts most often presented at stage 4. PSC patients presented more often at stage 3 (P = 0.04) and with perihilar disease (P = 0.001). Patients with PSC or IBD received less chemotherapy (P = 0.004, 0.01). Median overall survivals were 15 months (PSC), 11 months (IBD), and 10 months (controls) (P = 0.79). Patients with intrahepatic tumors had longer survival (P < 0.001). Curative intent resection improved survival in all cohorts (P < 0.001). Multivariate regression identified resection as a predictor of improved survival. Extrahepatic, perihilar, gallbladder, and unspecified biliary tumors were predictors of death. Conclusions Cholangiocarcinoma presents at a late stage and portends dismal survival regardless of PSC or IBD status. Survival was dependent on tumor location and surgical resection. These data suggest that efforts should focus on developing protocols that are able to detect and treat cholangiocarcinoma in high‐risk populations (PSC) at an early stage.
Collapse
Affiliation(s)
- Daljeet Chahal
- Division of Gastroenterology University of British Columbia Vancouver British Columbia Canada.,Department of Medicine University of British Columbia Vancouver British Columbia Canada
| | - Chris Shamatutu
- Department of Medicine University of British Columbia Vancouver British Columbia Canada
| | - Bill Salh
- Division of Gastroenterology University of British Columbia Vancouver British Columbia Canada.,Department of Medicine University of British Columbia Vancouver British Columbia Canada
| | - Janine Davies
- Department of Medicine University of British Columbia Vancouver British Columbia Canada.,Division of Medical Oncology BC Cancer Vancouver British Columbia Canada
| |
Collapse
|
33
|
Shen T, Zheng S, Geng L, Liu Z, Xu J, Lin B, Qian J, Zheng S. Experience With Anti-PD-1 Antibody, Camrelizumab, Monotherapy for Biliary Tract Cancer Patients and Literature Review. Technol Cancer Res Treat 2020; 19:1533033820979703. [PMID: 33308041 PMCID: PMC7739105 DOI: 10.1177/1533033820979703] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Novel immunotherapy is one of the options for advanced biliary tract cancer (BTC) patients who are traditionally intolerant to chemotherapy. However, clinical evidence for single immunotherapy with pembrolizumab or nivolumab is limited. The present study assessed the safety and efficiency of the anti-PD-1 antibody, camrelizumab, as monotherapy in patients with unresectable or recurrent BTC. METHODS A retrospective evaluation was conducted among 4 patients with BTC, including 2 with intrahepatic cholangiocellular carcinoma (ICC), one with extrahepatic bile duct cancer, and one with gallbladder cancer. The patients with unresectable or recurrent BTC were refractory or intolerant to gemcitabine plus cisplatin treatment regimens and received at least one intravenous dose (3 mg/kg) of camrelizumab monotherapy every 3 weeks. Gene sequencing analysis was also performed for biomarker screening. Patient reaction was evaluated according to modified response evaluation criteria in solid tumor (RECIST) version 1.1, progression-free survival (PFS), and toxicity. RESULTS In this cohort, 1 patient with recurrent ICC had a positive response to treatment, with a substantial tumor size reduction in liver and lung metastases verified using a radiological test after receiving 3 cycles of camrelizumab. The PFS was 4.9 months. The remaining 3 patients showed no response to treatment and experienced disease progression. RNA sequence analysis didn't found high expression on genes that related to PD-L1, microsatellite instability, tumor mutation burden, and DNA mismatch repair in these patients. Grade 3 treatment-related adverse event was observed in 1 patient. CONCLUSIONS Anti-PD-1 antibody camrelizumab had a manageable safety profile in patients with advanced BTC. This initial assessment of camrelizumab monotherapy provides effective evidence for patients with refractory BTC in biomarker-unselected patients.
Collapse
Affiliation(s)
- Tian Shen
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shanhua Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lei Geng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhengtao Liu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Xu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bingyi Lin
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Junjie Qian
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
34
|
Permpoon U, Khan F, Vadevoo SMP, Gurung S, Gunassekaran GR, Kim MJ, Kim SH, Thuwajit P, Lee B. Inhibition of Tumor Growth against Chemoresistant Cholangiocarcinoma by a Proapoptotic Peptide Targeting Interleukin-4 Receptor. Mol Pharm 2020; 17:4077-4088. [PMID: 32881535 DOI: 10.1021/acs.molpharmaceut.0c00529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cholangiocarcinoma (CCA) has a poor prognosis and high chemoresistance. Interleukin-4 receptor (IL-4R) is overexpressed in several cancer cells and plays a crucial role in tumor progression and drug resistance. IL4RPep-1, an IL-4R-binding peptide, has been identified by phage display and used for tumor targeting. In this study, we exploited IL4RPep-1 to guide the tumor-specific delivery of a proapoptotic peptide to chemoresistant CCA, thereby inhibiting tumor growth. Immunohistochemistry of human primary CCA tissues showed that IL-4R levels were upregulated in moderately to poorly differentiated types, and higher levels of IL-4R are correlated with lower survival rates in patients with CCA. IL4RPep-1 was observed to preferentially bind with high IL-4R-expressing KKU-213 human CCA cells, whereas it barely bound with low IL-4R-expressing KKU-055 cells. A hybrid of IL4RPep-1 and a proapoptotic peptide (KLAKLAK)2 (named as IL4RPep-1-KLA) induced cytotoxicity and apoptosis in KKU-213 cells and increased those levels induced by 5-fluorouracil (5-FU). IL4RPep-1-KLA was internalized in the cells and colocalized with mitochondria. Whole-body fluorescence imaging and immunohistochemical analysis of tumor tissues showed the homing of IL4RPep-1-KLA as well as IL4RPep-1 to KKU-213 tumor in mice. Systemic administration of IL4RPep-1-KLA efficiently inhibited KKU-213 tumor growth, whereas treatment with 5-FU alone did not significantly inhibit tumor growth in mice. No significant systemic side effects including liver toxicity and immunotoxicity were observed in mice during peptide treatments. These findings suggest that IL4RPep-1-KLA holds potential as a targeted therapeutic agent against chemoresistant CCA.
Collapse
Affiliation(s)
- Uttapol Permpoon
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, 680 Gukchaebosangro, Junggu, Daegu 41944, Republic of Korea.,Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, 680 Gukchaebosangro, Junggu, Daegu 41944, Republic of Korea.,Division of Biomedical Sciences, School of Medicine, Kyungpook National University, 680 Gukchaebosangro, Junggu, Daegu 41944, Republic of Korea.,Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Fatima Khan
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, 680 Gukchaebosangro, Junggu, Daegu 41944, Republic of Korea.,Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, 680 Gukchaebosangro, Junggu, Daegu 41944, Republic of Korea.,Division of Biomedical Sciences, School of Medicine, Kyungpook National University, 680 Gukchaebosangro, Junggu, Daegu 41944, Republic of Korea
| | - Sri Murugan Poonkavithai Vadevoo
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, 680 Gukchaebosangro, Junggu, Daegu 41944, Republic of Korea.,Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, 680 Gukchaebosangro, Junggu, Daegu 41944, Republic of Korea.,Division of Biomedical Sciences, School of Medicine, Kyungpook National University, 680 Gukchaebosangro, Junggu, Daegu 41944, Republic of Korea
| | - Smriti Gurung
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, 680 Gukchaebosangro, Junggu, Daegu 41944, Republic of Korea.,Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, 680 Gukchaebosangro, Junggu, Daegu 41944, Republic of Korea.,Division of Biomedical Sciences, School of Medicine, Kyungpook National University, 680 Gukchaebosangro, Junggu, Daegu 41944, Republic of Korea
| | - Gowri Rangaswamy Gunassekaran
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, 680 Gukchaebosangro, Junggu, Daegu 41944, Republic of Korea.,Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, 680 Gukchaebosangro, Junggu, Daegu 41944, Republic of Korea
| | - Min-Jong Kim
- Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, 680 Gukchaebosangro, Junggu, Daegu 41944, Republic of Korea.,Division of Biomedical Sciences, School of Medicine, Kyungpook National University, 680 Gukchaebosangro, Junggu, Daegu 41944, Republic of Korea.,Department of Pharmacology, School of Medicine, Kyungpook National University, 680 Gukchaebosangro, Junggu, Daegu 41944, Republic of Korea
| | - Sang-Hyun Kim
- Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, 680 Gukchaebosangro, Junggu, Daegu 41944, Republic of Korea.,Division of Biomedical Sciences, School of Medicine, Kyungpook National University, 680 Gukchaebosangro, Junggu, Daegu 41944, Republic of Korea.,Department of Pharmacology, School of Medicine, Kyungpook National University, 680 Gukchaebosangro, Junggu, Daegu 41944, Republic of Korea
| | - Peti Thuwajit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Byungheon Lee
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, 680 Gukchaebosangro, Junggu, Daegu 41944, Republic of Korea.,Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, 680 Gukchaebosangro, Junggu, Daegu 41944, Republic of Korea.,Division of Biomedical Sciences, School of Medicine, Kyungpook National University, 680 Gukchaebosangro, Junggu, Daegu 41944, Republic of Korea
| |
Collapse
|
35
|
Cholangiocarcinoma Metastasis to the Spine and Cranium. Ochsner J 2020; 20:197-203. [PMID: 32612476 PMCID: PMC7310165 DOI: 10.31486/toj.18.0142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background: Cholangiocarcinoma (CCC), a rare tumor arising from the viscera, has a poor prognosis. Although CCC is prone to metastasis, spread to the cranium and spine is exceedingly rare. Treatment for metastatic disease is palliative, with total resection of the primary lesion the only cure. We describe a case of metastatic CCC to the spine and cranium treated with surgical resection. Case Report: A 61-year-old male with a history of hepatitis C with liver transplant and incidental discovery of CCC presented with gradually increasing back pain. Physical examination revealed a palpable nontender mass in the parieto-occipital area. Computed tomography survey of the spine and head revealed mixed sclerotic and lytic lesions of the T9, T11, L2, and L5 vertebral bodies, a lytic lesion on the T6 vertebral body, and a 1.4-cm lesion in the right occipital calvarium. The patient underwent right occipital craniotomy for excisional biopsy of the calvarial mass with gross total resection and immunohistochemical confirmation of CCC. The patient was started on gemcitabine chemotherapy and radiation therapy for spinal metastases. Three months later, the patient died from metastatic disease complications. Conclusion: To our knowledge, only 6 cases of cranial CCC have been reported, and only 2 reported mixed cranial/spinal involvement. We report a rare case of CCC metastasis to the spine and cranium that was treated with surgery, chemotherapy, and radiotherapy. CCC should be considered an exceedingly rare etiology with treatment options aimed solely at palliation. This case supplements the existing literature to inform medical and surgical decision-making.
Collapse
|
36
|
Galangin Inhibits Cholangiocarcinoma Cell Growth and Metastasis through Downregulation of MicroRNA-21 Expression. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5846938. [PMID: 32626749 PMCID: PMC7306077 DOI: 10.1155/2020/5846938] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 04/25/2020] [Indexed: 02/06/2023]
Abstract
Galangin, a natural flavonoid product derived from the root of galangal, is emerging as a promising anticancer agent against multiple cancers. Yet, whether it also has antitumor effects on cholangiocarcinoma (CCA) and the underlying mechanism is still unknown. Herein, we demonstrate that galangin exhibits multiple antitumor effects on CCA cells including decreases cell viability; inhibits proliferation, migration, and invasion; and induces apoptosis. Moreover, those phenotypic changes are associated with downregulated microRNA-21 (miR-21) expression. To support, overexpression of miR-21 blocks galangin-mediated antisurvival and metastasis effects on CCA cells. Mechanically, galangin increases the expression of phosphatase and tensin homolog (PTEN), a direct target of miR-21, resulting in decreased phosphorylation of AKT, a protein kinase which plays a critical role in controlling survival and apoptosis. In contrast, overexpression of miR-21 abrogates galangin-regulated PTEN expression and AKT phosphorylation. Taken together, these findings indicate that galangin inhibits CCA cell proliferation and metastasis and induces cell apoptosis through a miR-21-dependent manner, and galangin may provide a novel potential therapeutic adjuvant to treat CCA.
Collapse
|
37
|
Arora M, Bogenberger JM, Abdelrahman A, Leiting JL, Chen X, Egan JB, Kasimsetty A, Lenkiewicz E, Malasi S, Uson PLS, Nagalo BM, Zhou Y, Salomao MA, Kosiorek HE, Braggio E, Barrett MT, Truty MJ, Borad MJ. Evaluation of NUC-1031: a first-in-class ProTide in biliary tract cancer. Cancer Chemother Pharmacol 2020; 85:1063-1078. [PMID: 32440762 DOI: 10.1007/s00280-020-04079-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/07/2020] [Indexed: 12/16/2022]
Abstract
PURPOSE NUC1031 is a first-in-class ProTide, that is a gemcitabine pro-drug designed to overcome putative mechanisms of resistance, including decreased expression of hENT/hCNT transporters, absence of activating enzymes such as deoxycytidine kinase (dCK) and presence of degrading enzymes such as cytidine deaminase (CDA). We undertook comprehensive pre-clinical evaluation of NUC1031 in biliary tract cancer (BTC) models, given that gemcitabine/cisplatin is a standard first-line therapy in advanced BTC. METHODS Here, we compared the in vitro activity of NUC1031 in comparison to gemcitabine, validate putative mechanism(s) of action, assessed potential biomarkers of sensitivity or resistance, and performed combination studies with cisplatin. We also evaluated the in vivo efficacy of NUC1031 and gemcitabine using a CDA-high cholangiocarcinoma patient-derived xenograft (PDX) model. RESULTS In a panel of BTC cell lines (N = 10), NUC1031 had less potency than gemcitabine in multiple cellular assays. NUC1031 did not demonstrate evidence of greater synergy over gemcitabine in combination with cisplatin. Surprisingly, efficacy of both gemcitabine and NUC1031 was not found to be correlated with hENT/hCTN, dCK or CDA transcript levels. Gemcitabine and NUC1031 showed equivalent efficacy in a CDA-high PDX model in vivo contradicting the primary rationale of NUC1031 design. CONCLUSION NUC1031 did not exhibit evidence of superior activity over gemcitabine, as a single-agent, or in combination with cisplatin, in either our in vivo or in vitro BTC models. Given that the largest Phase 3 study (ClinicalTrials.gov: NCT0314666) to date in BTC is underway (N = 828) comparing NUC1031/cisplatin to gemcitabine/cisplatin, our results suggest that a more conservative clinical evaluation path would be more appropriate.
Collapse
Affiliation(s)
- Mansi Arora
- Division of Hematology/Oncology, Department of Internal Medicine, Mayo Clinic, Scottsdale, AZ, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
- Cancer Cell, Gene and Virus Therapy Lab, Mayo Clinic Cancer Center, Mayo Clinic, 5777 E Mayo Blvd, Phoenix, AZ, 85254, USA
| | - James M Bogenberger
- Division of Hematology/Oncology, Department of Internal Medicine, Mayo Clinic, Scottsdale, AZ, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
- Cancer Cell, Gene and Virus Therapy Lab, Mayo Clinic Cancer Center, Mayo Clinic, 5777 E Mayo Blvd, Phoenix, AZ, 85254, USA
| | | | | | - Xianfeng Chen
- Department of Informatics, Mayo Clinic, Scottsdale, AZ, USA
| | - Jan B Egan
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Aradhana Kasimsetty
- Division of Hematology/Oncology, Department of Internal Medicine, Mayo Clinic, Scottsdale, AZ, USA
| | - Elzbieta Lenkiewicz
- Division of Hematology/Oncology, Department of Internal Medicine, Mayo Clinic, Scottsdale, AZ, USA
| | - Smriti Malasi
- Division of Hematology/Oncology, Department of Internal Medicine, Mayo Clinic, Scottsdale, AZ, USA
| | - Pedro Luiz Serrano Uson
- Division of Hematology/Oncology, Department of Internal Medicine, Mayo Clinic, Scottsdale, AZ, USA
| | - Bolni Marius Nagalo
- Division of Hematology/Oncology, Department of Internal Medicine, Mayo Clinic, Scottsdale, AZ, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
- Cancer Cell, Gene and Virus Therapy Lab, Mayo Clinic Cancer Center, Mayo Clinic, 5777 E Mayo Blvd, Phoenix, AZ, 85254, USA
| | - Yumei Zhou
- Division of Hematology/Oncology, Department of Internal Medicine, Mayo Clinic, Scottsdale, AZ, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
- Cancer Cell, Gene and Virus Therapy Lab, Mayo Clinic Cancer Center, Mayo Clinic, 5777 E Mayo Blvd, Phoenix, AZ, 85254, USA
| | - Marcela A Salomao
- Department of Lab Medicine and Pathology, Mayo Clinic, Scottsdale, AZ, USA
| | - Heidi E Kosiorek
- Department of Health Sciences Research, Mayo Clinic, Scottsdale, AZ, USA
| | - Esteban Braggio
- Division of Hematology/Oncology, Department of Internal Medicine, Mayo Clinic, Scottsdale, AZ, USA
- Department of Cancer Biology, Mayo Clinic, Rochester, MN, USA
- Cancer Cell, Gene and Virus Therapy Lab, Mayo Clinic Cancer Center, Mayo Clinic, 5777 E Mayo Blvd, Phoenix, AZ, 85254, USA
| | - Michael T Barrett
- Division of Hematology/Oncology, Department of Internal Medicine, Mayo Clinic, Scottsdale, AZ, USA
| | - Mark J Truty
- Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Mitesh J Borad
- Division of Hematology/Oncology, Department of Internal Medicine, Mayo Clinic, Scottsdale, AZ, USA.
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA.
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA.
- Cancer Cell, Gene and Virus Therapy Lab, Mayo Clinic Cancer Center, Mayo Clinic, 5777 E Mayo Blvd, Phoenix, AZ, 85254, USA.
| |
Collapse
|
38
|
Guo Y, Deng P, Chen W, Li Z. Modeling Pharmacokinetic Profiles for Assessment of Anti-Cancer Drug on a Microfluidic System. MICROMACHINES 2020; 11:E551. [PMID: 32486116 PMCID: PMC7344513 DOI: 10.3390/mi11060551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 12/17/2022]
Abstract
The pharmacokinetic (PK) properties of drug, which include drug absorption and excretion, play an important role in determining the in vivo pharmaceutical activity. However, current in vitro systems that model PK profiles are often limited by the in vivo-like concentration profile of a drug. Herein, we present a perfused and multi-layered microfluidic chip system to model the PK profile of anti-cancer drug 5-FU in vitro. The chip device contains two layers of culture channels sandwiched by a porous membrane, which allows for drug exposure and diffusion between the two channels. The integration of upper intestine cells (Caco-2) and bottom targeted cells within the device enables the generation of loading and clearance portions of a PK curve under peristaltic flow. Fluorescein as a test molecule was initially used to generate a concentration-time curve, investigating the effects of parameters of flow rate, administration time, and initial concentration on dynamic drug concentration profiles. Furthermore, anti-cancer drug 5-FU was performed to assess its pharmaceutical activity on target cells (human lung adenocarcinoma cells or human pulmonary alveolar epithelial cells) using different drug administration regimens. A dynamic, in vivo-like 5-FU exposure refers to PK profile regimen, led to generate a lower drug concentration (dynamically fluctuate from 0 to 1 μg/mL affected by absorption) compared to the constant exposure. Moreover, the PK profile regimen alleviates the drug-induced cytotoxicity on target cells. These results demonstrate the feasibility of determining the PK profiles using this microfluidic system with in vivo-like drug administration regimens. This established system may provide a powerful platform for the prediction of drug safety and effectiveness in the pharmaceutical research.
Collapse
Affiliation(s)
- Yaqiong Guo
- Division of Biotechnology, CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (Y.G.); (P.D.); (W.C.)
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Pengwei Deng
- Division of Biotechnology, CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (Y.G.); (P.D.); (W.C.)
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Wenwen Chen
- Division of Biotechnology, CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (Y.G.); (P.D.); (W.C.)
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Zhongyu Li
- Division of Biotechnology, CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (Y.G.); (P.D.); (W.C.)
- College of Life Science, Dalian Minzu University, Dalian 116600, China
| |
Collapse
|
39
|
Miyahara Y, Takashi S, Shimizu Y, Ohtsuka M. The prognostic impact of neutrophil-to-lymphocyte ratio (NLR) and lymphocyte-to-monocyte ratio (LMR) in patients with distal bile duct cancer. World J Surg Oncol 2020; 18:78. [PMID: 32321522 PMCID: PMC7178599 DOI: 10.1186/s12957-020-01847-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 03/30/2020] [Indexed: 02/07/2023] Open
Abstract
Background A growing body of evidence suggests that inflammatory response markers such as the neutrophil-to-lymphocyte ratio (NLR) and lymphocyte-to-monocyte ratio (LMR) are associated with outcomes of various malignancies. However, no study has reported the prognostic value of NLR and LMR in patients with distal bile duct cancer (DBDC) to date. We investigated the prognostic significance of these inflammatory markers in patients with DBDC who underwent radical resection. Methods The study included 40 patients diagnosed with DBDC who underwent pancreaticoduodenectomy at Narita Red Cross Hospital between January 2000 and December 2017. The cutoff values for these markers were determined by receiver operating characteristic curve analysis. Survival curves are estimated for each group in the study considered separately using the Kaplan-Meier method. The association between overall survival (OS) and the NLR, LMR, and other prognostic factors was investigated using log-rank test and multivariate Cox proportional hazards regression analysis. Results Corresponding to the point with the maximum combined sensitivity and specificity on the ROC curve, the best cutoff value for NLR and LMR was determined to be 3.14 and 4.55, respectively. Most clinicopathological factors were not associated with the NLR and LMR based on these cutoff values. However, serum albumin levels were associated with both the NLR and LMR (P = 0.011 and P = 0.023, respectively), and serum carbohydrate antigen 19-9 (CA 19-9) levels were also associated with the LMR (P = 0.030). Univariate analysis showed that a high NLR (P < 0.001), low LMR (P = 0.002), hypoalbuminemia (P = 0.004), high serum CA 19-9 levels (P = 0.008), and lymph node metastasis (P = 0.033) were significantly associated with poor survival rates. Multivariate analysis showed that a high NLR (hazard ratio 5.799, 95% confidence interval 1.188–28.32, P = 0.030) and a low LMR (hazard ratio 4.837, 95% confidence interval 1.826–2.331, P = 0.025) were independent prognostic factors for OS. Conclusion Both NLR and LMR may serve as significant independent preoperative prognostic indicators of disease in patients with DBDC who undergo radical resection.
Collapse
Affiliation(s)
- Yoji Miyahara
- Department of Surgery, Japanese Red Cross Narita Hospital, 90-1 Iida-cho, Narita-shi, Chiba Prefecture, 286-0041, Japan. .,Department of General Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba Prefecture, 260-8677, Japan.
| | - Shida Takashi
- Shida Clinic, 1970-1-2 Ne, Shiroi-shi, Chiba Prefecture, 270-1431, Japan
| | - Yoshiaki Shimizu
- Department of Surgery, Japanese Red Cross Narita Hospital, 90-1 Iida-cho, Narita-shi, Chiba Prefecture, 286-0041, Japan
| | - Masayuki Ohtsuka
- Department of General Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba Prefecture, 260-8677, Japan
| |
Collapse
|
40
|
Sato K, Glaser S, Alvaro D, Meng F, Francis H, Alpini G. Cholangiocarcinoma: novel therapeutic targets. Expert Opin Ther Targets 2020; 24:345-357. [PMID: 32077341 PMCID: PMC7129482 DOI: 10.1080/14728222.2020.1733528] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/19/2020] [Indexed: 02/06/2023]
Abstract
Introduction: Cholangiocarcinoma (CCA) is a liver cancer derived from the biliary tree with a less than 30% five-year survival rate. Early diagnosis of CCA is challenging and treatment options are limited. Some CCA patients have genetic mutations and several therapeutic drugs or antibodies have been introduced to target abnormally expressed proteins. However, CCA is heterogeneous and patients often present with drug resistance which is attributed to multiple mutations or other factors. Novel approaches and methodologies for CCA treatments are in demand.Area covered: This review summarizes current approaches for CCA treatments leading to the development of novel therapeutic drugs or tools for human CCA patients. A literature search was conducted in PubMed utilizing the combination of the searched term 'cholangiocarcinoma' with other keywords such as 'miRNA', 'FGFR', 'immunotherapy' or 'microenvironment'. Papers published within 2015-2019 were obtained for reading.Expert opinion: Preclinical studies have demonstrated promising therapeutic approaches that target various cells or pathways. Recent studies have revealed that hepatic cells coordinate to promote CCA tumor progression in the tumor microenvironment, which may be a new therapeutic target. Although further studies are required, novel therapeutic tools such as extracellular vesicles could be utilized to manage CCA and its microenvironment.
Collapse
Affiliation(s)
- Keisaku Sato
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Shannon Glaser
- Department of Medical Physiology, Texas A&M University, College of Medicine, Bryan, Texas
| | - Domenico Alvaro
- Gastroenterology, Medicine, Università Sapienza, Rome, Italy
| | - Fanyin Meng
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| | - Heather Francis
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| | - Gianfranco Alpini
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| |
Collapse
|
41
|
Muhamad N, Plengsuriyakarn T, Chittasupho C, Na-Bangchang K. The Potential of Atractylodin-Loaded PLGA Nanoparticles as Chemotherapeutic for Cholangiocarcinoma. Asian Pac J Cancer Prev 2020; 21:935-941. [PMID: 32334453 PMCID: PMC7445967 DOI: 10.31557/apjcp.2020.21.4.935] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 04/03/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUNDS The anti-cholangiocarcinoma (CCA) activity of atractylodin isolated from Atractylodes lacea (Thunb.) DC. has previously been demonstrated both in vitro and in vivo. However, the compound is insoluble in water and must be dissolved in organic solvent which might be harmful to human body. The aim of the study was to develop atractylodin-loaded poly (lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) (ALNPs) and to investigate its cytotoxic activity against CCA. METHODS The ALNPs were prepared using PLGA MW 12,000 and 48,000 by solvent displacement methods. Particle size, polydispersity index (PDI), zeta potential, encapsulation efficiency (%EE) and loading efficiency (%LE) as well as drug releasing profile of ALNPs were characterized. The selected ALNPs formulation was then investigated cytotoxic activity against CCA cell lines, CL-6 and HuCC-T1. RESULTS The ALNPs preparation was achieved using PLGA MW 12,000 (ALNPs-1) with mean (±SD) values of particle diameter, PDI and zeta potential of 158.13±0.21 nm, 0.076±0.003, and (-) 23.80± (-) 0.75 mV, respectively. The transmission electron microscopy (TEM) showed spherical morphology of NPs. The %EE and %LE were 50.16±1.77% and 2.22±0.08%, respectively. The release of atractylodin from ALNPs-1 in PBS was up to 88% in 72 h. The potency of ALNPs-1 cytotoxic activity including selectivity against CCA cell line, CL-6, were about twice of the unformulated atractylodin after 24 h of exposure (IC50: 29.28 vs 56.36 µg/mL, selectivity index 2.99 vs 1.50). CONCLUSION ALNPs were successfully prepared by solvent displacement method using PLGA MW 12,000 (ALNPs-1) with suitable pharmaceutical properties and cytotoxic activity against CCA. However, nano-formulation with improved pharmaceutical properties (higher %EE and %LE) and cytotoxic activity (improved selectivity to CCA) should be further developed for potential used as drug delivery systems for the treatment of CCA. .
Collapse
Affiliation(s)
| | - Tullayakorn Plengsuriyakarn
- Chulabhorn International College of Medicine,
- Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Thammasat University, Pathum Thani,
| | - Chuda Chittasupho
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand.
| | - Kesara Na-Bangchang
- Chulabhorn International College of Medicine,
- Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Thammasat University, Pathum Thani,
| |
Collapse
|
42
|
Passeri MJ, Baimas-George MR, Sulzer JK, Iannitti DA, Martinie JB, Baker EH, Ocuin LM, Vrochides D. Prognostic impact of the Bismuth-Corlette classification: Higher rates of local unresectability in stage IIIb hilar cholangiocarcinoma. Hepatobiliary Pancreat Dis Int 2020; 19:157-162. [PMID: 32088126 DOI: 10.1016/j.hbpd.2020.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 02/01/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND The Bismuth-Corlette (BC) classification is used to categorize hilar cholangiocarcinoma by proximal extension along the biliary tree. As the right hepatic artery crosses just behind the left bile duct, we hypothesized that BC IIIb tumors would have a higher likelihood of local unresectability due to involvement of the contralateral artery. METHODS A retrospective review of a prospectively maintained database identified patients with hilar cholangiocarcinoma taken to the operating room for intended curative resection between April 2008 and September 2016. Cases were assigned BC stages based on preoperative imaging. RESULTS Sixty-eight patients were included in the study. All underwent staging laparoscopy after which 16 cases were aborted for metastatic disease. Of the remaining 52 cases, 14 cases were explored and aborted for locally advanced disease. Thirty-eight underwent attempt at curative resection. After excluding cases aborted for metastatic disease, the chance of proceeding with resection was 55.6% for BC IIIb staged lesions compared to 80.0% of BC IIIa lesions and to 82.4% for BC I-IIIa staged lesions (P < 0.05). About 44.4% of BC IIIb lesions were aborted for locally advanced disease versus 17.6% of remaining BC stages. CONCLUSIONS When hilar cholangiocarcinoma is preoperatively staged as BC IIIb, surgeons should anticipate higher rates of locally unresectable disease, likely involving the right hepatic artery.
Collapse
Affiliation(s)
- Michael J Passeri
- Division of HPB Surgery, Department of Surgery, Carolinas Medical Center, 1025 Morehead Medical Dr., Suite 600, Charlotte, NC 28204, USA
| | - Maria R Baimas-George
- Division of HPB Surgery, Department of Surgery, Carolinas Medical Center, 1025 Morehead Medical Dr., Suite 600, Charlotte, NC 28204, USA
| | - Jesse K Sulzer
- Division of HPB Surgery, Department of Surgery, Carolinas Medical Center, 1025 Morehead Medical Dr., Suite 600, Charlotte, NC 28204, USA
| | - David A Iannitti
- Division of HPB Surgery, Department of Surgery, Carolinas Medical Center, 1025 Morehead Medical Dr., Suite 600, Charlotte, NC 28204, USA
| | - John B Martinie
- Division of HPB Surgery, Department of Surgery, Carolinas Medical Center, 1025 Morehead Medical Dr., Suite 600, Charlotte, NC 28204, USA
| | - Erin H Baker
- Division of HPB Surgery, Department of Surgery, Carolinas Medical Center, 1025 Morehead Medical Dr., Suite 600, Charlotte, NC 28204, USA
| | - Lee M Ocuin
- Division of HPB Surgery, Department of Surgery, Carolinas Medical Center, 1025 Morehead Medical Dr., Suite 600, Charlotte, NC 28204, USA
| | - Dionisios Vrochides
- Division of HPB Surgery, Department of Surgery, Carolinas Medical Center, 1025 Morehead Medical Dr., Suite 600, Charlotte, NC 28204, USA.
| |
Collapse
|
43
|
Caparica R, Bruzzone M, Hachem GE, Ceppi M, Lambertini M, Glasberg J, de Azambuja E, Van Laethem JL, Hendlisz A. Adjuvant chemotherapy in biliary tract cancer patients: A systematic review and meta-analysis of randomized controlled trials. Crit Rev Oncol Hematol 2020; 149:102940. [PMID: 32252001 DOI: 10.1016/j.critrevonc.2020.102940] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 01/29/2020] [Accepted: 03/16/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The role of adjuvant chemotherapy in biliary tract cancer is controversial. We performed a systematic review and meta-analysis to assess the effect of adjuvant chemotherapy in biliary tract cancer patients. METHODS A literature search was performed to identify randomized controlled trials (RCTs) comparing adjuvant chemotherapy versus observation, and a pooled analysis was conducted using the random-effect model. RESULTS Three RCTs (N = 866) were included. No difference was observed between chemotherapy and observation in terms of OS (HR 0.91; 95 %CI, 0.75-1.09; p = 0.295), whereas a significant improvement in RFS was shown (HR 0.83; 95 %CI, 0.69-0.99; p = 0.040). No subgroup that benefited most from adjuvant chemotherapy was identified, although a trend was observed in N+ patients (HR 0.83; 95 %CI, 0.65-1.08; p = 0.165). DISCUSSION Adjuvant chemotherapy yields a significant RFS benefit in biliary tract cancer patients and should be considered for those who are able to tolerate additional treatment after surgery.
Collapse
Affiliation(s)
- Rafael Caparica
- Department of Medical Oncology, Institut Jules Bordet and Université Libre de Bruxelles (ULB), Brussels, Belgium.
| | - Marco Bruzzone
- Clinical Epidemiology Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Georges El Hachem
- Department of Hematology and Medical Oncology, Saint George Hospital University Medical Center, Beirut, Lebanon
| | - Marcello Ceppi
- Clinical Epidemiology Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Matteo Lambertini
- Department of Medical Oncology, U.O.C. Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Genova, Italy; Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, Genova, Italy
| | - João Glasberg
- Department of Medical Oncology, Instituto do Câncer do Estado de São Paulo, Universidade de São Paulo, Brazil
| | - Evandro de Azambuja
- Department of Medical Oncology, Institut Jules Bordet and Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Jean-Luc Van Laethem
- Department of Gastroenterology, Hepatology and Digestive Oncology, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Alain Hendlisz
- Department of Medical Oncology, Institut Jules Bordet and Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
44
|
Sato K, Francis H, Zhou T, Meng F, Kennedy L, Ekser B, Baiocchi L, Onori P, Mancinelli R, Gaudio E, Franchitto A, Glaser S, Alpini G. Neuroendocrine Changes in Cholangiocarcinoma Growth. Cells 2020; 9:E436. [PMID: 32069926 PMCID: PMC7072848 DOI: 10.3390/cells9020436] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/09/2020] [Accepted: 02/11/2020] [Indexed: 02/06/2023] Open
Abstract
Cholangiocarcinoma (CCA) is a highly aggressive malignancy that emerges from the biliary tree. There are three major classes of CCA-intrahepatic, hilar (perihilar), or distal (extrahepatic)-according to the location of tumor development. Although CCA tumors are mainly derived from biliary epithelia (i.e., cholangiocytes), CCA can be originated from other cells, such as hepatic progenitor cells and hepatocytes. This heterogeneity of CCA may be responsible for poor survival rates of patients, limited effects of chemotherapy and radiotherapy, and the lack of treatment options and novel therapies. Previous studies have identified a number of neuroendocrine mediators, such as hormones, neuropeptides, and neurotransmitters, as well as corresponding receptors. The mediator/receptor signaling pathways play a vital role in cholangiocyte proliferation, as well as CCA progression and metastases. Agonists or antagonists for candidate pathways may lead to the development of novel therapies for CCA patients. However, effects of mediators may differ between healthy or cancerous cholangiocytes, or between different subtypes of receptors. This review summarizes current understandings of neuroendocrine mediators and their functional roles in CCA.
Collapse
Affiliation(s)
- Keisaku Sato
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Heather Francis
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| | - Tianhao Zhou
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX 77807, USA
| | - Fanyin Meng
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| | - Lindsey Kennedy
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Burcin Ekser
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Leonardo Baiocchi
- Liver Unit, Department of Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Romina Mancinelli
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | | | - Shannon Glaser
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX 77807, USA
| | - Gianfranco Alpini
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| |
Collapse
|
45
|
Long-term Proton Pump Inhibitor Administration Caused Physiological and Microbiota Changes in Rats. Sci Rep 2020; 10:866. [PMID: 31964941 PMCID: PMC6972906 DOI: 10.1038/s41598-020-57612-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/06/2020] [Indexed: 12/15/2022] Open
Abstract
Proton pump inhibitors (PPIs) are used for the long-term treatment of gastroesophageal disorders and the non-prescription medicines for acid reflux. However, there is growing concerns about PPI misuse, overuse and abuse. This study aimed to develop an animal model to examine the effects of long-term use of PPI in vivo. Twenty one Wistar rats were given omeprazole orally or intravenously for 30 days, and caerulein as a positive control. After euthanization, the serum and stool were collected to perform MS-based quantitative analysis of metabolites. We carried out 16S-based profiling of fecal microbiota, assessed the expression of bile acid metabolism regulators and examined the immunopathological characteristics of bile ducts. After long-term PPI exposure, the fecal microbial profile was altered and showed similarity to those observed in high-fat diet studies. The concentrations of several metabolites were also changed in various specimens. Surprisingly, morphological changes were observed in the bile duct, including ductal epithelial proliferation, micropapillary growth of biliary epithelium, focal bile duct stricture formation and bile duct obstruction. These are characteristics of precancerous lesions of bile duct. FXR and RXRα expressions were significantly reduced, which were similar to that observed in cholangiocarcinoma in TCGA and Oncomine databases. We established a novel animal model to examine the effects of long-term use of omeprazole. The gut microbes and metabolic change are consequences of long-term PPI exposure. And the results showed the environment in vivo tends to a high-fat diet. More importantly, we observed biliary epithelial hyperplasia, which is an indicator of a high-fat diet.
Collapse
|
46
|
Jung P, Cho EH, Kim SB, Kim RG. Comparison of the clinical results of surgical resection for extrahepatic cholangiocarcinomas: Hilar cholangiocarcinoma and mid-to-distal cholangiocarcinoma. Ann Hepatobiliary Pancreat Surg 2019; 23:319-326. [PMID: 31824996 PMCID: PMC6893051 DOI: 10.14701/ahbps.2019.23.4.319] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/17/2019] [Accepted: 07/25/2019] [Indexed: 11/30/2022] Open
Abstract
Backgrounds/Aims Hilar cholangiocarcinomas (HLC) are known to have worse prognoses than mid-to-distal cholangiocarcinomas (CBDC). We analyzed the clinical results of surgical resections for extrahepatic cholangiocarcinomas to validate the differences in the prognoses of HLC and CBDC. Methods Two hundred and eighty-one patients underwent curative surgical resections for extrahepatic cholangiocarcinomas at the Department of Surgery in the Korea Cancer Center Hospital. Among them, we analyzed the T2 and T3 patients and compared the clinical results between those with HLC (n=74) and those with CBDC (n=65). Results The rate of R1 resections was significantly higher in the HLC patients compared to the CBDC patients (31.1% vs 12.3%, p=0.006). The overall survival rate of the T2/T3 patients was lower in the HLC group than in the CBDC group (24.5% vs 51.7, p=0.039). The recurrence-free survival rate was 23.3% in the HCL patients and 50.9% in the CBDC patients (p=0.06). In the subgroup analysis, the survival rates were not different in patients who had lymph node metastases or in patients who underwent R1 resections between the HLC and CBDC patients. Poor independent prognostic factors for the overall and recurrence-free survival rates in the T2/T3 extrahepatic cholangiocarcinoma patients were the presence of lymph node metastases and the hilar locations of tumor. Conclusions HLC patients had poorer prognoses than CBDC patients. However, in patients with lymph node metastases, the prognosis was poor and was not different between the HLC and CBDC patients. Other adjuvant treatment methods are needed for extrahepatic cholangiocarcinoma patients with lymph node metastases to improve their prognoses.
Collapse
Affiliation(s)
- Pyung Jung
- Department of Surgery, Korean Cancer Center Hospital, Seoul, Korea
| | - Eung-Ho Cho
- Department of Surgery, Korean Cancer Center Hospital, Seoul, Korea
| | - Sang-Bum Kim
- Department of Surgery, Korean Cancer Center Hospital, Seoul, Korea
| | - Ryoung-Go Kim
- Department of Surgery, Dongnam Institution of Radiological and Medical Science, Busan, Korea
| |
Collapse
|
47
|
Zhao YY, Chen SH, Wan QS. A prognostic nomogram for distal bile duct cancer from Surveillance, Epidemiology, and End Results (SEER) database based on the STROBE compliant. Medicine (Baltimore) 2019; 98:e17903. [PMID: 31725638 PMCID: PMC6867718 DOI: 10.1097/md.0000000000017903] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In this study, we aimed to develop a reliable nomogram to estimate individualized prognosis for patients with distal bile duct cancer (DBDC) and compare the predictive value with the American Joint Committee on Cancer staging system.Data of 1110 patients diagnosed with DBDC were recruited from the Surveillance, Epidemiology, and End Results database between 1973 and 2015. All patients were randomly divided into the training (n = 777) and validation (n = 333) cohorts, respectively. Multivariate Cox regression was performed to identify the independent risk factors. The Akaike information criterion was used to select covariates for constructing a nomogram. The predictive ability of the nomogram was assessed by concordance index (C-index) and area under receiver operating characteristic curve (AUROC) compared to tumor-node-metastasis (TNM) staging system.A nomogram integrating 8 risk factors was developed with a higher C-index than that of the TNM staging system (training data set, 0.70 vs 0.61; validation data set, 0.71 vs 0.57). The AUROCs of the nomogram for 1-year and 3-year overall survival (OS) predication were 0.76 and 0.78 in the training cohort, 0.78 and 0.77 in the validation cohort. However, AUROCs of the TNM stage for predicting 1-year and 3-year OS were all below 0.60. Calibration curves showed the optimal agreement in predicating OS between nomogram and actual observation. In addition, this nomogram can effectively distinguish the OS between low and high-risk groups divided by the median score (P < .01).Present study was the first one to construct a prognostic nomogram of DBDC patients, which has the potential to provide individual prediction of OS.
Collapse
|
48
|
Fehling SC, Miller AL, Garcia PL, Vance RB, Yoon KJ. The combination of BET and PARP inhibitors is synergistic in models of cholangiocarcinoma. Cancer Lett 2019; 468:48-58. [PMID: 31605774 DOI: 10.1016/j.canlet.2019.10.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/02/2019] [Accepted: 10/04/2019] [Indexed: 12/12/2022]
Abstract
Our previous finding that the BET inhibitor (BETi) JQ1 increases levels of the DNA damage marker γH2AX suggested that JQ1 might enhance the sensitivity of tumor cells to PARP inhibitors (PARPi), which are selectively toxic to cells that harbor relatively high levels of DNA damage. To address this hypothesis, we evaluated the effect of a BETi (JQ1 or I-BET762) combined with a PARPi (olaparib or veliparib) in KKU-055 and KKU-100 cholangiocarcinoma (CCA) cell lines and of JQ1 with olaparib in a xenograft model of CCA. Each combination was more effective than any of the four drugs as single agents. Combination indices ranged from 0.1 to 0.8 at the ED50 for all combinations, indicating synergy and demonstrating that synergy was not limited to a specific combination. Mechanistically, downregulation of BETi molecular targets BRD2 or BRD4 by shRNA sensitized CCA cells to BETi as single agents as well as to the combination of a BETi + a PARPi. Our data indicate that combinations of a BETi with a PARPi merit further evaluation as a promising strategy for CCA.
Collapse
Affiliation(s)
- Samuel C Fehling
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Aubrey L Miller
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Patrick L Garcia
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rebecca B Vance
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Karina J Yoon
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
49
|
Song IH, Jeong MS, Hong HJ, Shin JI, Park YS, Woo SK, Moon BS, Kim KI, Lee YJ, Kang JH, Lee TS. Development of a Theranostic Convergence Bioradiopharmaceutical for Immuno-PET Based Radioimmunotherapy of L1CAM in Cholangiocarcinoma Model. Clin Cancer Res 2019; 25:6148-6159. [PMID: 31337646 DOI: 10.1158/1078-0432.ccr-19-1157] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 05/31/2019] [Accepted: 07/18/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Cholangiocarcinoma is a malignancy of bile duct with a poor prognosis. Conventional chemotherapy and radiotherapy are generally ineffective, and surgical resection is the only curative treatment for cholangiocarcinoma. L1-cell adhesion molecule (L1CAM) has been known as a novel prognostic marker and therapeutic target for cholangiocarcinoma. This study aimed to evaluate the feasibility of immuno-PET imaging-based radioimmunotherapy using radiolabeled anti-L1CAM antibody in cholangiocarcinoma xenograft model. EXPERIMENTAL DESIGN We prepared a theranostic convergence bioradiopharmaceutical using chimeric anti-L1CAM antibody (cA10-A3) conjugated with 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA) chelator and labeled with 64Cu or 177Lu and evaluated the immuno-PET or SPECT/CT imaging and biodistribution with 64Cu-/177Lu-cA10-A3 in various cholangiocarcinoma xenograft models. Therapeutic efficacy and response monitoring were performed by 177Lu-cA10-A3 and 18F-FDG-PET, respectively, and immunohistochemistry was done by TUNEL and Ki-67. RESULTS Radiolabeled cA10-A3 antibodies specifically recognized L1CAM in vitro, clearly visualized cholangiocarcinoma tumors in immuno-PET and SPECT/CT imaging, and differentiated the L1CAM expression level in cholangiocarcinoma xenograft models. 177Lu-cA10-A3 (12.95 MBq/100 μg) showed statistically significant reduction in tumor volumes (P < 0.05) and decreased glucose metabolism (P < 0.01). IHC analysis revealed 177Lu-cA10-A3 treatment increased TUNEL-positive and decreased Ki-67-positive cells, compared with saline, cA10-A3, or 177Lu-isotype. CONCLUSIONS Anti-L1CAM immuno-PET imaging using 64Cu-cA10-A3 could be translated into the clinic for characterizing the pharmacokinetics and selecting appropriate patients for radioimmunotherapy. Radioimmunotherapy using 177Lu-cA10-A3 may provide survival benefit in L1CAM-expressing cholangiocarcinoma tumor. Theranostic convergence bioradiopharmaceutical strategy would be applied as imaging biomarker-based personalized medicine in L1CAM-expressing patients with cholangiocarcinoma.
Collapse
Affiliation(s)
- In Ho Song
- Division of RI Application, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea.,Department of Biomedical Laboratory Science, Yonsei University, Wonju, South Korea
| | - Mun Sik Jeong
- Department of Systems Immunology, Kangwon National University, Chuncheon, South Korea
| | - Hyo Jeong Hong
- Department of Systems Immunology, Kangwon National University, Chuncheon, South Korea.,Scripps Korea Antibody Institute, Chuncheon, South Korea
| | - Jong Il Shin
- Division of RI Application, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Yong Serk Park
- Department of Biomedical Laboratory Science, Yonsei University, Wonju, South Korea
| | - Sang-Keun Woo
- Division of RI Application, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Byung Seok Moon
- Department of Nuclear Medicine, Ewha Womans University Seoul Hospital, Ewha Womans University School of Medicine, Seoul, South Korea
| | - Kwang Il Kim
- Division of RI Application, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Yong Jin Lee
- Division of RI Application, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Joo Hyun Kang
- Division of RI Application, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Tae Sup Lee
- Division of RI Application, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea.
| |
Collapse
|
50
|
Safety and activity of ivosidenib in patients with IDH1-mutant advanced cholangiocarcinoma: a phase 1 study. Lancet Gastroenterol Hepatol 2019; 4:711-720. [PMID: 31300360 DOI: 10.1016/s2468-1253(19)30189-x] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/12/2019] [Accepted: 05/17/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Isocitrate dehydrogenase-1 (IDH1) is mutated in up to 25% of cholangiocarcinomas, especially intrahepatic cholangiocarcinoma. Ivosidenib is an oral, targeted inhibitor of mutant IDH1 (mIDH1) approved in the USA for the treatment of mIDH1 acute myeloid leukaemia in newly diagnosed patients ineligible for intensive chemotherapy and patients with relapsed or refractory disease. Ivosidenib is under clinical evaluation in a phase 1 study that aims to assess its safety and tolerability in patients with mIDH1 solid tumours. Here we report data for the mIDH1-cholangiocarcinoma cohort. METHODS We did a phase 1 dose-escalation and expansion study of ivosidenib monotherapy in mIDH1 solid tumours at 12 clinical sites in the USA and one in France. The primary outcomes were safety, tolerability, maximum tolerated dose, and recommended phase 2 dose. Eligible patients had a documented mIDH1 tumour based on local testing, an Eastern Cooperative Oncology Group performance status of 0 or 1, one or more previous lines of therapy, and evaluable disease by Response Evaluation Criteria in Solid Tumors version 1.1. During dose escalation, ivosidenib was administered orally at 200-1200 mg daily in 28-day cycles in a standard 3 + 3 design; during expansion, patients received the selected dose on the basis of pharmacodynamic, pharmacokinetic, safety, and activity data from dose escalation. Safety and clinical activity analyses were reported for all patients with mIDH1-cholangiocarcinoma who were enrolled and received at least one dose of study treatment. Enrolment is complete, and the study is ongoing. This trial is registered at ClinicalTrials.gov, number NCT02073994. FINDINGS Between March 14, 2014 and May 12, 2017, 73 patients with mIDH1-cholangiocarcinoma were enrolled and received ivosidenib. No dose-limiting toxicities were reported and maximum tolerated dose was not reached; 500 mg daily was selected for expansion. Common (≥20%) adverse events, regardless of cause, were fatigue (31 [42%]; two [3%] grade ≥3), nausea (25 [34%]; one [1%] grade ≥3), diarrhoea (23 [32%]), abdominal pain (20 [27%]; two [3%] grade ≥3), decreased appetite (20 [27%]; one [1%] grade ≥3), and vomiting (17 [23%]). Common grade 3 or worse adverse events were ascites (four [5%]) and anaemia (three [4%]); the only treatment-related grade 3 or worse adverse event in more than one patient was fatigue (two [3%]). Two (3%) patients had serious adverse events leading to on-treatment death (Clostridioides difficile infection and procedural haemorrhage); neither was assessed by the investigator as related to treatment. 46 (63%) patients had adverse events deemed related to ivosidenib, of which four (5%) were grade 3 or higher (two [3%] for fatigue; one [1%] each for decreased blood phosphorus and increased blood alkaline phosphatase). One serious adverse event was considered possibly related to treatment (grade 2 supraventricular extrasystoles). Four (5%; 95% CI 1·5-13·4) patients had a partial response. Median progression-free survival was 3·8 months (95% CI 3·6-7·3), 6-month progression-free survival was 40·1% (28·4-51·6), and 12-month progression-free survival was 21·8% (12·3-33·0). Median overall survival was 13·8 months (95% CI 11·1-29·3); however, data were censored for 48 patients (66%). INTERPRETATION Ivosidenib might offer a well tolerated option for patients with mIDH1-cholangiocarcinoma. An ongoing, global phase 3 study is evaluating ivosidenib versus placebo in patients with previously treated nonresectable or metastatic mIDH1-cholangiocarcinoma. FUNDING Agios Pharmaceuticals, Inc.
Collapse
|