1
|
Papier K, Bradbury KE, Balkwill A, Barnes I, Smith-Byrne K, Gunter MJ, Berndt SI, Le Marchand L, Wu AH, Peters U, Beral V, Key TJ, Reeves GK. Diet-wide analyses for risk of colorectal cancer: prospective study of 12,251 incident cases among 542,778 women in the UK. Nat Commun 2025; 16:375. [PMID: 39779669 DOI: 10.1038/s41467-024-55219-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
Uncertainty remains regarding the role of diet in colorectal cancer development. We examined associations of 97 dietary factors with colorectal cancer risk in 542,778 Million Women Study participants (12,251 incident cases over 16.6 years), and conducted a targeted genetic analysis in the ColoRectal Transdisciplinary Study, Colon Cancer Family Registry, and Genetics and Epidemiology of Colorectal Cancer Consortium (GECCO). Alcohol (relative risk per 20 g/day=1.15, 95% confidence interval 1.09-1.20) and calcium (per 300 mg/day=0.83, 0.77-0.89) intakes had the strongest associations, followed by six dairy-related factors associated with calcium. We showed a positive association with red and processed meat intake and weaker inverse associations with breakfast cereal, fruit, wholegrains, carbohydrates, fibre, total sugars, folate, and vitamin C. Genetically predicted milk consumption was inversely associated with risk of colorectal, colon, and rectal cancers. We conclude that dairy products help protect against colorectal cancer, and that this is driven largely or wholly by calcium.
Collapse
Affiliation(s)
- Keren Papier
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK.
| | - Kathryn E Bradbury
- Department of Epidemiology and Biostatistics, School of Population Health, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Angela Balkwill
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Isobel Barnes
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Karl Smith-Byrne
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Marc J Gunter
- Cancer Epidemiology and Prevention Research Unit, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Anna H Wu
- University of Southern California, Department of Population and Public Health Sciences, Los Angeles, CA, USA
| | - Ulrike Peters
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Valerie Beral
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Timothy J Key
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Gillian K Reeves
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| |
Collapse
|
2
|
Holmes C, Illingworth CH, Parry L. Recent advances on the impact of protumorigenic dietary‐derived bacterial metabolites on the intestinal stem cell. EFOOD 2024; 5. [DOI: 10.1002/efd2.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 10/27/2024] [Indexed: 01/03/2025] Open
Abstract
AbstractThe links between diet, microbiome, immunity, and colorectal cancer are well established. The metabolite output of the microbiome, which has a large influence over host health and disease, is related to the composition of the diet. These metabolites subsequently impact on immune and intestinal epithelial either directly or indirectly via production of secondary metabolites. Here we summarize the latest findings and briefly discuss their potential for managing disease risk.
Collapse
Affiliation(s)
- Carys Holmes
- School of Biosciences, European Cancer Stem Cell Research Institute Cardiff University Cardiff UK
- University of Exeter Newman Building, Stocker Road Exeter UK
| | - Charlotte H. Illingworth
- School of Biosciences, European Cancer Stem Cell Research Institute Cardiff University Cardiff UK
| | - Lee Parry
- School of Biosciences, European Cancer Stem Cell Research Institute Cardiff University Cardiff UK
| |
Collapse
|
3
|
Bernstein H, Bernstein C. Bile acids as carcinogens in the colon and at other sites in the gastrointestinal system. Exp Biol Med (Maywood) 2023; 248:79-89. [PMID: 36408538 PMCID: PMC9989147 DOI: 10.1177/15353702221131858] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Colon cancer incidence is associated with a high-fat diet. Such a diet is linked to elevated levels of bile acids in the gastrointestinal system and the circulation. Secondary bile acids are produced by microorganisms present at high concentrations in the colon. Recent prospective studies and a retrospective study in humans associate high circulating blood levels of secondary bile acids with increased risk of colon cancer. Feeding mice a diet containing a secondary bile acid, so their feces have the bile acid at a level comparable to that in the feces of humans on a high-fat diet, also causes colon cancer in the mice. Studies using human cells grown in culture illuminate some mechanisms by which bile acids cause cancer. In human cells, bile acids cause oxidative stress leading to oxidative DNA damage. Increased DNA damage increases the occurrence of mutations and epimutations, some of which provide a cellular growth advantage such as apoptosis resistance. Cells with such mutations/epimutations increase by natural selection. Apoptosis, or programmed cell death, is a beneficial process that eliminates cells with unrepaired DNA damage, whereas apoptosis-resistant cells are able to survive DNA damage using inaccurate repair processes. This results in apoptosis-resistant cells having more frequent mutations/epimutations, some of which are carcinogenic. The experiments on cultured human cells have provided a basis for understanding at the molecular level the human studies that recently reported an association of bile acids with colon cancer, and the mouse studies showing directly that bile acids cause colon cancer. Similar, but more limited, findings of an association of dietary bile acids with other cancers of the gastrointestinal system suggest that understanding the role of bile acids in colon carcinogenesis may contribute to understanding carcinogenesis in other organs.
Collapse
Affiliation(s)
- Harris Bernstein
- Department of Cellular and Molecular Medicine, College of Medicine, University of Arizona, Tucson, AZ 85724-5044, USA
| | - Carol Bernstein
- Department of Cellular and Molecular Medicine, College of Medicine, University of Arizona, Tucson, AZ 85724-5044, USA
| |
Collapse
|
4
|
Gunasekara DB, Speer J, Wang Y, Nguyen DL, Reed MI, Smiddy NM, Parker JS, Fallon JK, Smith PC, Sims CE, Magness ST, Allbritton NL. A Monolayer of Primary Colonic Epithelium Generated on a Scaffold with a Gradient of Stiffness for Drug Transport Studies. Anal Chem 2018; 90:13331-13340. [PMID: 30350627 PMCID: PMC6339567 DOI: 10.1021/acs.analchem.8b02845] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Animal models are frequently used for in vitro physiologic and drug transport studies of the colon, but there exists significant pressure to improve assay throughput as well as to achieve tighter control of experimental variables than can be achieved with animals. Thus, development of a primary in vitro colonic epithelium cultured as high resistance with transport protein expression and functional behavior similar to that of a native colonic would be of enormous value for pharmaceutical research. A collagen scaffold, in which the degree of collagen cross-linking was present as a gradient, was developed to support the proliferation of primary colonic cells. The gradient of cross-linking created a gradient in stiffness across the scaffold, enabling the scaffold to resist deformation by cells. mRNA expression and quantitative proteomic mass spectrometry of cells growing on these surfaces as a monolayer suggested that the transporters present were similar to those in vivo. Confluent monolayers acted as a barrier to small molecules so that drug transport studies were readily performed. Transport function was evaluated using atenolol (a substrate for passive paracellular transport), propranolol (a substrate for passive transcellular transport), rhodamine 123 (Rh123, a substrate for P-glycoprotein), and riboflavin (a substrate for solute carrier transporters). Atenolol was poorly transported with an apparent permeability ( Papp) of <5 × 10-7 cm s-1, while propranolol demonstrated a Papp of 9.69 × 10-6 cm s-1. Rh123 was transported in a luminal direction ( Papp,efflux/ Papp,influx = 7) and was blocked by verapamil, a known inhibitor of P-glycoprotein. Riboflavin was transported in a basal direction, and saturation of the transporter was observed at high riboflavin concentrations as occurs in vivo. It is anticipated that this platform of primary colonic epithelium will find utility in drug development and physiological studies, since the tissue possesses high integrity and active transporters and metabolism similar to that in vivo.
Collapse
Affiliation(s)
- Dulan B. Gunasekara
- Department of Chemistry, University of North Carolina at Chapel Hill, NC 27599, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, NC 27599, USA and North Carolina State University, Raleigh, NC 27607, USA
| | - Jennifer Speer
- Department of Chemistry, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Yuli Wang
- Department of Chemistry, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Daniel L. Nguyen
- Department of Chemistry, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Mark I. Reed
- Department of Chemistry, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Nicole M. Smiddy
- Department of Chemistry, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Joel S. Parker
- Department of Genetics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, NC 27514, USA
| | - John K. Fallon
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Philip C. Smith
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Christopher E. Sims
- Department of Chemistry, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Scott T. Magness
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, NC 27599, USA and North Carolina State University, Raleigh, NC 27607, USA
| | - Nancy L. Allbritton
- Department of Chemistry, University of North Carolina at Chapel Hill, NC 27599, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, NC 27599, USA and North Carolina State University, Raleigh, NC 27607, USA
| |
Collapse
|
5
|
Pietrzyk Ł. Food properties and dietary habits in colorectal cancer prevention and development. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2017. [DOI: 10.1080/10942912.2016.1236813] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Łukasz Pietrzyk
- Department of Didactics and Medical Simulation, Chair of Human Anatomy, Medical University of Lublin, Lublin, Poland
- Department of General, Oncological and Minimally Invasive Surgery, 1st Military Clinical Hospital in Lublin, Lublin, Poland
| |
Collapse
|
6
|
Magiera K, Tomala M, Kubica K, De Cesare V, Trost M, Zieba BJ, Kachamakova-Trojanowska N, Les M, Dubin G, Holak TA, Skalniak L. Lithocholic Acid Hydroxyamide Destabilizes Cyclin D1 and Induces G 0/G 1 Arrest by Inhibiting Deubiquitinase USP2a. Cell Chem Biol 2017; 24:458-470.e18. [PMID: 28343940 PMCID: PMC5404848 DOI: 10.1016/j.chembiol.2017.03.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 09/26/2016] [Accepted: 03/01/2017] [Indexed: 12/29/2022]
Abstract
USP2a is a deubiquitinase responsible for stabilization of cyclin D1, a crucial regulator of cell-cycle progression and a proto-oncoprotein overexpressed in numerous cancer types. Here we report that lithocholic acid (LCA) derivatives are inhibitors of USP proteins, including USP2a. The most potent LCA derivative, LCA hydroxyamide (LCAHA), inhibits USP2a, leading to a significant Akt/GSK3β-independent destabilization of cyclin D1, but does not change the expression of p27. This leads to the defects in cell-cycle progression. As a result, LCAHA inhibits the growth of cyclin D1-expressing, but not cyclin D1-negative cells, independently of the p53 status. We show that LCA derivatives may be considered as future therapeutics for the treatment of cyclin D1-addicted p53-expressing and p53-defective cancer types.
Collapse
Affiliation(s)
- Katarzyna Magiera
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, ul. Ingardena 3, 30-060 Krakow, Poland; Malopolska Centre of Biotechnology, Jagiellonian University, ul. Gronostajowa 7a, 30-387 Krakow, Poland
| | - Marcin Tomala
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, ul. Ingardena 3, 30-060 Krakow, Poland
| | - Katarzyna Kubica
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, ul. Ingardena 3, 30-060 Krakow, Poland
| | - Virginia De Cesare
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Matthias Trost
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Bartosz J Zieba
- Malopolska Centre of Biotechnology, Jagiellonian University, ul. Gronostajowa 7a, 30-387 Krakow, Poland
| | - Neli Kachamakova-Trojanowska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Krakow, Poland
| | - Marcin Les
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, ul. Ingardena 3, 30-060 Krakow, Poland
| | - Grzegorz Dubin
- Malopolska Centre of Biotechnology, Jagiellonian University, ul. Gronostajowa 7a, 30-387 Krakow, Poland; Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Krakow, Poland
| | - Tad A Holak
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, ul. Ingardena 3, 30-060 Krakow, Poland; Malopolska Centre of Biotechnology, Jagiellonian University, ul. Gronostajowa 7a, 30-387 Krakow, Poland
| | - Lukasz Skalniak
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, ul. Ingardena 3, 30-060 Krakow, Poland; Malopolska Centre of Biotechnology, Jagiellonian University, ul. Gronostajowa 7a, 30-387 Krakow, Poland.
| |
Collapse
|
7
|
Cao H, Xu M, Dong W, Deng B, Wang S, Zhang Y, Wang S, Luo S, Wang W, Qi Y, Gao J, Cao X, Yan F, Wang B. Secondary bile acid-induced dysbiosis promotes intestinal carcinogenesis. Int J Cancer 2017; 140:2545-2556. [PMID: 28187526 DOI: 10.1002/ijc.30643] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 01/08/2017] [Accepted: 01/30/2017] [Indexed: 12/13/2022]
Abstract
The gut microbiota plays an important role in maintaining intestinal homeostasis. Dysbiosis is associated with intestinal tumorigenesis. Deoxycholic acid (DCA), a secondary bile acid increased by a western diet, correlates with intestinal carcinogenesis. However, evidence relating bile acids, intestinal microbiota and tumorigenesis are limited. In our study, we investigated the effect of DCA on induction of intestinal dysbiosis and its roles in intestinal carcinogenesis. Alteration of the composition of the intestinal microbiota was induced in DCA-treated APCmin/+ mice, which was accompanied by impaired intestinal barrier, gut low grade inflammation and tumor progression. The transfer of fecal microbiota from DCA-treated mice to another group of Apcmin/+ mice increased tumor multiplicity, induced inflammation and recruited M2 phenotype tumor-associated macrophages. Importantly, the fecal microbiota transplantation activated the tumor-associated Wnt/β-catenin signaling pathway. Moreover, microbiota depletion by a cocktail of antibiotics was sufficient to block DCA-induced intestinal carcinogenesis, further suggesting the role of dysbiosis in tumor development. Our study demonstrated that alteration of the microbial community induced by DCA promoted intestinal carcinogenesis.
Collapse
Affiliation(s)
- Hailong Cao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, People's Republic of China.,Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| | - Mengque Xu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, People's Republic of China.,Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Wenxiao Dong
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, People's Republic of China
| | - Baoru Deng
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, People's Republic of China
| | - Sinan Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, People's Republic of China
| | - Yujie Zhang
- Department of Pathology, General Hospital, Tianjin Medical University, Tianjin, People's Republic of China
| | - Shan Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, People's Republic of China
| | - Shenhui Luo
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, People's Republic of China
| | - Weiqiang Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, People's Republic of China
| | - Yanrong Qi
- Department of Gastroenterology and Hepatology, Tianjin Haibin People's Hospital, Tianjin, People's Republic of China
| | - Jianxin Gao
- Department of Gastroenterology and Hepatology, Tianjin Haibin People's Hospital, Tianjin, People's Republic of China
| | - Xiaocang Cao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, People's Republic of China
| | - Fang Yan
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, People's Republic of China.,Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, People's Republic of China
| |
Collapse
|
8
|
Farhana L, Nangia-Makker P, Arbit E, Shango K, Sarkar S, Mahmud H, Hadden T, Yu Y, Majumdar APN. Bile acid: a potential inducer of colon cancer stem cells. Stem Cell Res Ther 2016; 7:181. [PMID: 27908290 PMCID: PMC5134122 DOI: 10.1186/s13287-016-0439-4] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/26/2016] [Accepted: 11/10/2016] [Indexed: 12/22/2022] Open
Abstract
Background Although the unconjugated secondary bile acids, specifically deoxycholic acid (DCA) and lithocholic acid (LCA), are considered to be risk factors for colorectal cancer, the precise mechanism(s) by which they regulate carcinogenesis is poorly understood. We hypothesize that the cytotoxic bile acids may promote stemness in colonic epithelial cells leading to generation of cancer stem cells (CSCs) that play a role in the development and progression of colon cancer. Methods Normal human colonic epithelial cells (HCoEpiC) were used to study bile acid DCA/LCA-mediated induction of CSCs. The expression of CSC markers was measured by real-time qPCR. Flow cytometry was used to isolate CSCs. T-cell factor/lymphoid-enhancing factor (TCF/LEF) luciferase assay was employed to examine the transcriptional activity of β-catenin. Downregulation of muscarinic 3 receptor (M3R) was achieved through transfection of corresponding siRNA. Results We found DCA/LCA to induce CSCs in normal human colonic epithelial cells, as evidenced by the increased proportion of CSCs, elevated levels of several CSC markers, as well as a number of epithelial–mesenchymal transition markers together with increased colonosphere formation, drug exclusion, ABCB1 and ABCG2 expression, and induction of M3R, p-EGFR, matrix metallopeptidases, and c-Myc. Inhibition of M3R signaling greatly suppressed DCA/LCA induction of the CSC marker ALDHA1 and also c-Myc mRNA expression as well as transcriptional activation of TCF/LEF. Conclusions Our results suggest that bile acids, specifically DCA and LCA, induce cancer stemness in colonic epithelial cells by modulating M3R and Wnt/β-catenin signaling and thus could be considered promoters of colon cancer.
Collapse
Affiliation(s)
- Lulu Farhana
- Department of Veterans' Affairs Medical Center, 4646 John R, Detroit, MI, 48201, USA.,Department of Internal Medicine, Wayne State University, Detroit, MI, 48201, USA
| | - Pratima Nangia-Makker
- Department of Veterans' Affairs Medical Center, 4646 John R, Detroit, MI, 48201, USA.,Karmanos Cancer Institute, Detroit, MI, 48201, USA.,Department of Internal Medicine, Wayne State University, Detroit, MI, 48201, USA
| | - Evan Arbit
- Department of Veterans' Affairs Medical Center, 4646 John R, Detroit, MI, 48201, USA
| | - Kathren Shango
- Department of Veterans' Affairs Medical Center, 4646 John R, Detroit, MI, 48201, USA
| | - Sarah Sarkar
- Department of Veterans' Affairs Medical Center, 4646 John R, Detroit, MI, 48201, USA
| | - Hamidah Mahmud
- Department of Veterans' Affairs Medical Center, 4646 John R, Detroit, MI, 48201, USA
| | - Timothy Hadden
- Department of Veterans' Affairs Medical Center, 4646 John R, Detroit, MI, 48201, USA.,Department of Internal Medicine, Wayne State University, Detroit, MI, 48201, USA
| | - Yingjie Yu
- Department of Veterans' Affairs Medical Center, 4646 John R, Detroit, MI, 48201, USA.,Department of Internal Medicine, Wayne State University, Detroit, MI, 48201, USA
| | - Adhip P N Majumdar
- Department of Veterans' Affairs Medical Center, 4646 John R, Detroit, MI, 48201, USA. .,Karmanos Cancer Institute, Detroit, MI, 48201, USA. .,Department of Internal Medicine, Wayne State University, Detroit, MI, 48201, USA.
| |
Collapse
|
9
|
Saracut C, Molnar C, Russu C, Todoran N, Vlase L, Turdean S, Voidazan S, Copotoiu C. Secondary bile acids effects in colon pathology. Experimental mice study. Acta Cir Bras 2015; 30:624-31. [DOI: 10.1590/s0102-865020150090000007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 08/25/2015] [Indexed: 12/12/2022] Open
Affiliation(s)
| | - Calin Molnar
- University of Medicine and Pharmacy Tg-Mures, Romania
| | | | | | - Laurian Vlase
- University of Medicine and Pharmacy Cluj Napoca, Romania
| | - Sabin Turdean
- University of Medicine and Pharmacy Cluj Napoca, Romania
| | | | | |
Collapse
|
10
|
Bernstein C, Bernstein H. Epigenetic reduction of DNA repair in progression to gastrointestinal cancer. World J Gastrointest Oncol 2015; 7:30-46. [PMID: 25987950 PMCID: PMC4434036 DOI: 10.4251/wjgo.v7.i5.30] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 03/18/2015] [Accepted: 04/20/2015] [Indexed: 02/05/2023] Open
Abstract
Deficiencies in DNA repair due to inherited germ-line mutations in DNA repair genes cause increased risk of gastrointestinal (GI) cancer. In sporadic GI cancers, mutations in DNA repair genes are relatively rare. However, epigenetic alterations that reduce expression of DNA repair genes are frequent in sporadic GI cancers. These epigenetic reductions are also found in field defects that give rise to cancers. Reduced DNA repair likely allows excessive DNA damages to accumulate in somatic cells. Then either inaccurate translesion synthesis past the un-repaired DNA damages or error-prone DNA repair can cause mutations. Erroneous DNA repair can also cause epigenetic alterations (i.e., epimutations, transmitted through multiple replication cycles). Some of these mutations and epimutations may cause progression to cancer. Thus, deficient or absent DNA repair is likely an important underlying cause of cancer. Whole genome sequencing of GI cancers show that between thousands to hundreds of thousands of mutations occur in these cancers. Epimutations that reduce DNA repair gene expression and occur early in progression to GI cancers are a likely source of this high genomic instability. Cancer cells deficient in DNA repair are more vulnerable than normal cells to inactivation by DNA damaging agents. Thus, some of the most clinically effective chemotherapeutic agents in cancer treatment are DNA damaging agents, and their effectiveness often depends on deficient DNA repair in cancer cells. Recently, at least 18 DNA repair proteins, each active in one of six DNA repair pathways, were found to be subject to epigenetic reduction of expression in GI cancers. Different DNA repair pathways repair different types of DNA damage. Evaluation of which DNA repair pathway(s) are deficient in particular types of GI cancer and/or particular patients may prove useful in guiding choice of therapeutic agents in cancer therapy.
Collapse
|