1
|
Çekiç D, Yılmaz ŞN, Bölgen N, Ünal S, Duce MN, Bayrak G, Demir D, Türkegün M, Sarı A, Demir Y, Ünal Ş. Impact of injectable chitosan cryogel microspherescaffolds on differentiation and proliferation of adiposederived mesenchymal stem cells into fat cells. J Biomater Appl 2021; 36:1335-1345. [PMID: 34965760 DOI: 10.1177/08853282211048284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Difficulty in the clinical practice of stem cell therapy is often experienced in achieving desired target tissue cell differentiation and migration of stem cells to other tissue compartments where they are destroyed or die. This study was performed to evaluate if mesenchymal stem cells (MSCs) may differentiate into desired cell types when injected after combined with an injectable cryogel scaffold and to investigate if this scaffold may help in preventing cells from passing into different tissue compartments. MSCs were obtained from fat tissue of the rabbits as autografts and nuclei and cytoplasms of these cells were labeled with BrdU and PKH26. In Group 1, only-scaffold; in Group 2, only-MSCs; and in Group 3, combined stem cell/scaffold were injected to the right malar area of the rabbits. At postoperative 3 weeks, volumes of the injected areas were calculated by computer-tomography scans and histopathological evaluation was performed. The increase in the volume of the right malar areas was more in Group 3. In histopathological evaluation, chitosan cryogel microspheres were observed microscopically within the tissue and the scaffold was only partially degraded. Normal tissue form was seen in Group 2. Cells differentiated morphologically into fat cells were detected in Groups 2 and 3. Injectable chitosan cryogel microspheres were used in vivo for the first time in this study. As it was demonstrated to be useful in carrying MSCs to the reconstructed area, help cell differentiation to desired cells and prevent migration to other tissue compartments, it may be used for reconstructive purposes in the future.
Collapse
Affiliation(s)
- Duran Çekiç
- Faculty of Medicine, Department of Plastic, Reconstructive and Aesthetic Surgery, Mersin University, Turkey
| | | | - Nimet Bölgen
- Faculty of Engineering, Department of Chemical Engineering, Mersin University, Turkey
| | - Selma Ünal
- Faculty of Engineering, Department of Chemical Engineering, Mersin University, Turkey
| | - Meltem Nass Duce
- Faculty of Medicine, Department of Radiology, Mersin University, Turkey
| | - Gülsen Bayrak
- Faculty of Medicine, Department of Histology, Mersin University, Turkey
| | - Didem Demir
- Faculty of Engineering, Department of Chemical Engineering, Mersin University, Turkey
| | - Merve Türkegün
- Faculty of Medicine, Department of Biostatistics and Medical Informatics, Mersin University, Turkey
| | - Alper Sarı
- Faculty of Medicine, Department of Plastic, Reconstructive and Aesthetic Surgery, Mersin University, Turkey
| | - Yavuz Demir
- Faculty of Medicine, Department of Plastic, Reconstructive and Aesthetic Surgery, Mersin University, Turkey
| | - Şakir Ünal
- Faculty of Medicine, Department of Plastic, Reconstructive and Aesthetic Surgery, Mersin University, Turkey
| |
Collapse
|
2
|
Najar M, Merimi M, Faour WH, Lombard CA, Moussa Agha D, Ouhaddi Y, Sokal EM, Lagneaux L, Fahmi H. In Vitro Cellular and Molecular Interplay between Human Foreskin-Derived Mesenchymal Stromal/Stem Cells and the Th17 Cell Pathway. Pharmaceutics 2021; 13:1736. [PMID: 34684029 PMCID: PMC8537928 DOI: 10.3390/pharmaceutics13101736] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 10/06/2021] [Accepted: 10/13/2021] [Indexed: 12/13/2022] Open
Abstract
Foreskin, considered a biological waste material, has been shown to be a reservoir of therapeutic cells. The immunomodulatory properties of mesenchymal stromal/stem cells (MSCs) from the foreskin (FSK-MSCs) are being evaluated in cell-based therapy for degenerative, inflammatory and autoimmune disorders. Within the injured/inflamed tissue, proinflammatory lymphocytes such as IL-17-producing T helper cells (Th17) may interact with the stromal microenvironment, including MSCs. In this context, MSCs may encounter different levels of T cells as well as specific inflammatory signals. Uncovering the cellular and molecular changes during this interplay is central for developing an efficient and safe immunotherapeutic tool. To this end, an in vitro human model of cocultures of FSK-MSCs and T cells was established. These cocultures were performed at different cell ratios in the presence of an inflammatory setting. After confirming that FSK-MSCs respond to ISCT criteria by showing a typical phenotype and multilineage potential, we evaluated by flow cytometry the expression of Th17 cell markers IL-17A, IL23 receptor and RORγt within the lymphocyte population. We also measured 15 human Th17 pathway-related cytokines. Regardless of the T cell/MSC ratio, we observed a significant increase in IL-17A expression associated with an increase in IL-23 receptor expression. Furthermore, we observed substantial modulation of IL-1β, IL-4, IL-6, IL-10, IL-17A, IL-17F, IL-21, IL-22, IL-23, IL-25, IL-31, IL-33, INF-γ, sCD40, and TNF-α secretion. These findings suggest that FSK-MSCs are receptive to their environment and modulate the T cell response accordingly. The changes within the secretome of the stromal and immune environment are likely relevant for the therapeutic effect of MSCs. FSK-MSCs represent a valuable cellular product for immunotherapeutic purposes that needs to be further clarified and developed.
Collapse
Affiliation(s)
- Mehdi Najar
- Laboratory of Clinical Cell Therapy, Jules Bordet Institute, Université Libre de Bruxelles, 1070 Brussels, Belgium; (M.N.); (L.L.)
- Osteoarthritis Research Unit, Department of Medicine, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC H2X 0A9, Canada
| | - Makram Merimi
- Laboratory of Experimental Hematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium; (M.M.); (D.M.A.)
- LBBES Laboratory, Genetics and Immune Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco
| | - Wissam H. Faour
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, P.O. Box 36, Byblos 5053, Lebanon;
| | - Catherine A. Lombard
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, 1200 Brussels, Belgium; (C.A.L.); (E.M.S.)
| | - Douâa Moussa Agha
- Laboratory of Experimental Hematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium; (M.M.); (D.M.A.)
| | - Yassine Ouhaddi
- Orthopaedics Division, Department of Surgery, Faculty of Medicine, McGill University, Montreal General Hospital (MGH), The Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, QC H3G 1A4, Canada;
| | - Etienne M. Sokal
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, 1200 Brussels, Belgium; (C.A.L.); (E.M.S.)
| | - Laurence Lagneaux
- Laboratory of Clinical Cell Therapy, Jules Bordet Institute, Université Libre de Bruxelles, 1070 Brussels, Belgium; (M.N.); (L.L.)
| | - Hassan Fahmi
- Osteoarthritis Research Unit, Department of Medicine, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC H2X 0A9, Canada
| |
Collapse
|
3
|
da Silva KN, Gobatto ALN, Costa-Ferro ZSM, Cavalcante BRR, Caria ACI, de Aragão França LS, Nonaka CKV, de Macêdo Lima F, Lopes-Pacheco M, Rocco PRM, de Freitas Souza BS. Is there a place for mesenchymal stromal cell-based therapies in the therapeutic armamentarium against COVID-19? Stem Cell Res Ther 2021; 12:425. [PMID: 34315546 PMCID: PMC8314259 DOI: 10.1186/s13287-021-02502-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 07/04/2021] [Indexed: 02/07/2023] Open
Abstract
The COVID-19 pandemic, caused by the rapid global spread of the novel coronavirus (SARS-CoV-2), has caused healthcare systems to collapse and led to hundreds of thousands of deaths. The clinical spectrum of COVID-19 is not only limited to local pneumonia but also represents multiple organ involvement, with potential for systemic complications. One year after the pandemic, pathophysiological knowledge has evolved, and many therapeutic advances have occurred, but mortality rates are still elevated in severe/critical COVID-19 cases. Mesenchymal stromal cells (MSCs) can exert immunomodulatory, antiviral, and pro-regenerative paracrine/endocrine actions and are therefore promising candidates for MSC-based therapies. In this review, we discuss the rationale for MSC-based therapies based on currently available preclinical and clinical evidence of safety, potential efficacy, and mechanisms of action. Finally, we present a critical analysis of the risks, limitations, challenges, and opportunities that place MSC-based products as a therapeutic strategy that may complement the current arsenal against COVID-19 and reduce the pandemic's unmet medical needs.
Collapse
Affiliation(s)
- Kátia Nunes da Silva
- Goncalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rua Waldemar Falcão, 121, Candeal, Salvador, Bahia, 40296-710, Brazil
- D'Or Institute for Research and Education (IDOR), Salvador, Brazil
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, Brazil
| | | | - Zaquer Suzana Munhoz Costa-Ferro
- D'Or Institute for Research and Education (IDOR), Salvador, Brazil
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, Brazil
| | - Bruno Raphael Ribeiro Cavalcante
- Goncalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rua Waldemar Falcão, 121, Candeal, Salvador, Bahia, 40296-710, Brazil
| | - Alex Cleber Improta Caria
- Graduate Program in Medicine and Health, Faculty of Medicine, Federal University of Bahia, Salvador, Brazil
| | - Luciana Souza de Aragão França
- D'Or Institute for Research and Education (IDOR), Salvador, Brazil
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, Brazil
| | - Carolina Kymie Vasques Nonaka
- D'Or Institute for Research and Education (IDOR), Salvador, Brazil
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, Brazil
| | | | - Miquéias Lopes-Pacheco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patricia Rieken Macêdo Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Rio de Janeiro, Brazil
- COVID-19 Virus Network, Ministry of Science and Technology, and Innovation, Rio de Janeiro, Brazil
| | - Bruno Solano de Freitas Souza
- Goncalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rua Waldemar Falcão, 121, Candeal, Salvador, Bahia, 40296-710, Brazil.
- D'Or Institute for Research and Education (IDOR), Salvador, Brazil.
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, Brazil.
| |
Collapse
|
4
|
Venugopal B, Shenoy SJ, Mohan S, Anil Kumar PR, Kumary TV. Bioengineered corneal epithelial cell sheet from mesenchymal stem cells-A functional alternative to limbal stem cells for ocular surface reconstruction. J Biomed Mater Res B Appl Biomater 2019; 108:1033-1045. [PMID: 31400069 DOI: 10.1002/jbm.b.34455] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 05/25/2019] [Accepted: 07/17/2019] [Indexed: 12/13/2022]
Abstract
Limbal stem cell deficiency (LSCD) is the loss of limbal stem cells that reside in the corneoscleral junction resulting in vision loss or blindness. Bilateral LSCD is usually treated by allogeneic corneal transplantation, with instances of tissue rejection or failure in long-term follow-up. This study aims to use adipose mesenchymal stem cells (ASC) as an alternative autologous cell source for treating bilateral limbal deficiency conditions. ASCs derived from rabbit fat tissue were differentiated into corneal epithelial lineage using limbal explant condition media. Apart from transdifferentiation, ASC sheets were developed to facilitate effective delivery of these cells to the damage site. A thermoresponsive polymer N-isopropylacrylamide-co-glycidylmethacrylate (NGMA) was synthesized and characterized to demonstrate ASC sheet formation. Transdifferentiated ASCs showed positive expression of corneal epithelial marker CK3/12 on immunostaining, supported by gene expression studies. in vivo studies by transplanting cell sheet in rabbit models of corneal injury showed clear and smooth cornea in comparison to the sham models. Histology revealed a sheet of cells aligned and integrated on to the injured corneal surface, 1 month posttransplantation. Identifying ASCs as an alternative cell source along with cell sheet technology will be a novel step in the field of corneal surface therapies.
Collapse
Affiliation(s)
- Balu Venugopal
- Division of Tissue Culture, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India
| | - Sachin J Shenoy
- Division of in vivo Modes and Testing, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India
| | - Sumitha Mohan
- Division of Tissue Culture, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India
| | - P R Anil Kumar
- Division of Tissue Culture, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India
| | - T V Kumary
- Division of Tissue Culture, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India
| |
Collapse
|
5
|
Al-Bagdadi FA, Barona HM, Martinez-Ceballos E, Yao S. Ultrastructure Morphological Characterization of Different Passages of Rat Dental Follicle Stem Cells at In vitro Culture. J Microsc Ultrastruct 2019; 7:57-64. [PMID: 31293886 PMCID: PMC6585478 DOI: 10.4103/jmau.jmau_44_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Introduction: Stem cells play important roles in tissue renewal and repair. Tissue-derived stem cells have been demonstrated for their applications in tissue engineering and regenerative medicine. Expansion of primary stem cells isolated from tissues to a large quantity through in vitro culture is needed for application of the stem cells. However, it is known that tissue stem cells commonly reduce or lose their stemness properties during in vitro culture. In this study, we assessed ultrastructural changes of rat dental follicle stem cells (DFSCs) during in vitro culture. It is our attempt to explain the loss of stemness properties in cultured tissue-stem cells at the ultrastructural level. Method: DFSCs was isolated from first molars of Sprague Dawley rat pups and cultured in medium consisting of alpha-MEM plus 20% FBS. Cells were passaged at 1 to 3 ratio at 90% confluence, and collected at passages 3, 6, 7 and 9 for assessment of ultrastructure morphology by transmission electron microscopy. Results: Of the four passages (3, 6, 7, and 9) examined, dilated rough endoplasmic reticulum (RER) was abundant in Passage 3 but less so in Passages 6, 7, and 9. The dilated RER contained lipid in Passages 3, 7, and 9. The mono- and polyribosomes in Passages 3 and 6 were located between the mitochondria and the RER. Mono- and polyribosomes were abundant in Passage 7, although mainly monoribosomes were present in Passage 9. Membrane-bound glycogen granules were in vacuoles bulging off the cells in Passage 3. Some glycogen granules were grouped in the periphery of a stem cell in Passage 9. Nuclei shapes were irregular and mainly euchromatic in Passages 6, 7, and 9. The mitochondria were dark and scarce in Passage 9; irregular, small, and dark in Passage 7; and small and rounded in Passage 6, and they were spread in the cytoplasm away from the nucleus in Passage 3. Cell contacts were seen in Passages 6, 7, and 9. The ultrastructure morphology of the examined DFScs was not very different from the morphology criteria of the undifferentiated cells. Large vacuoles in Passage 3 were mainly at the periphery of the cell, with the small vacuoles in the cell center. Small vacuoles were scattered in the cell center of Passage 6 and the larger ones were observed at the cell's periphery. Conclusions: We observed the following ultrastructural changes: decreases of fine cell cytoplasmic processes, dilated cytoplasmic vacuoles, cytoplasmic pinocytotic vesicles, and nuclear heterochromatin with increasing cell passage number. Conversely, mean ratios of lipid globules, nuclear euchromatin, irregular nuclear shape, and cell contact between cells were increased with passage number. The observations may suggest an increase in committed cells among the population after long-term culture of DFSCs.
Collapse
Affiliation(s)
- Fakhri A Al-Bagdadi
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Humberto M Barona
- Department of Mathematics, Southern University and A and M College, Baton Rouge, LA, USA
| | | | - Shaomian Yao
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| |
Collapse
|
6
|
Venugopal B, Fernandez FB, Harikrishnan VS, John A. Post implantation fate of adipogenic induced mesenchymal stem cells on Type I collagen scaffold in a rat model. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2017; 28:28. [PMID: 28108956 DOI: 10.1007/s10856-016-5838-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 12/24/2016] [Indexed: 06/06/2023]
Abstract
Regenerative medicine via its application in soft tissue reconstruction through novel methods in adipose tissue engineering (ATE) has gained remarkable attention and investment despite simultaneous reports on clinical incidence of graft resorption and impaired vascularization. The underlying malaise here once identified may play a critical role in optimizing implant function. Our work attempts to determine the fate of donor cells and the implant in recipient micro environment using adipose-derived mesenchymal stem cells (ASCs) on a type I collagen sponge, an established scaffold for ATE. Cell components within the construct were identified 21 days post implantation to delineate cell survival, proliferation & terminal roles in vivo. ASC's are multipotent, while collagen type I is a natural extra cellular matrix component. Commercially available bovine type I collagen was characterized for its physiochemical properties and cyto-compatibility. Nile red staining of induced ASCs identified red globular structures in cell cytoplasm indicating oil droplet accumulation. Similarly, in vivo implantation of the cell seeded collagen construct in rat model for 21 days in the dorsal muscle, showed genesis of chicken wire network of fat-like cells, which was demonstrated histologically using a variety of staining techniques. Furthermore, fluorescent in situ hybridization (FISH) technique established the efficiency of transplantation wherein the male donor cells with labeled Y chromosome was identified 21 days post implantation from female rat model. Retrieved samples at 21 days indicated adipogenesis in situ, with donor cells highlighted via FISH. The study provides an insight to stem cells in ATE from genesis to functionalization.
Collapse
Affiliation(s)
- Balu Venugopal
- Division of Tissue Culture, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India
| | - Francis B Fernandez
- Transmission Electron Microscopy Lab, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India
| | - V S Harikrishnan
- Division of Laboratory Animal Science, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India
| | - Annie John
- Transmission Electron Microscopy Lab, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India.
| |
Collapse
|
7
|
Shahrokhi S, Daneshmandi S, Menaa F. Tumor necrosis factor-α/CD40 ligand-engineered mesenchymal stem cells greatly enhanced the antitumor immune response and lifespan in mice. Hum Gene Ther 2014; 25:240-53. [PMID: 24372569 DOI: 10.1089/hum.2013.193] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The interaction between mesenchymal stem cells (MSCs) and dendritic cells (DCs) affects T cell development and function. Further, the chemotactic capacity of MSCs, their interaction with the tumor microenvironment, and the intervention of immune-stimulatory molecules suggest possible exploitation of tumor necrosis factor-α (TNF-α) and CD40 ligand (CD40L) to genetically modify MSCs for enhanced cancer therapy. Both DCs and MSCs were isolated from BALB/c mice. DCs were then cocultured with MSCs transduced with TNF-α and/or CD40L [(TNF-α/CD40L)-MSCs]. Major DCs' maturation markers, DC and T cell cytokines such as interleukin-4, -6, -10, -12, TNF-α, tumor growth factor-β, as well as T cell proliferation, were assessed. Meantime, a BALB/c mouse breast tumor model was inducted by injecting 4T1 cells subcutaneously. Mice (n = 10) in each well-defined test groups (n = 13) were cotreated with DCs and/or (TNF-α/CD40L)-MSCs. The controls included untreated, empty vector-MSC, DC-lipopolysaccharide, and immature DC mouse groups. Eventually, cytokine levels from murine splenocytes, as well as tumor volume and survival of mice, were assessed. Compared with the corresponding controls, both in vitro and in vivo analyses showed induction of T helper 1 (Th1) as well as suppression of Th2 and Treg responses in test groups, which led to a valuable antitumor immune response. Further, the longest mouse survival was observed in mouse groups that were administered with DCs plus (TNF-α/CD40L)-MSCs. In our experimental setting, the present pioneered study demonstrates that concomitant genetic modification of MSCs with TNF-α and CD40L optimized the antitumor immunity response in the presence of DCs, meantime increasing the mouse lifespan.
Collapse
Affiliation(s)
- Somayeh Shahrokhi
- 1 Department of Immunology, School of Medicine, Lorestan University of Medical Sciences , Khorramabad, Iran 381351698
| | | | | |
Collapse
|
8
|
Buccini S, Haider KH, Ahmed RPH, Jiang S, Ashraf M. Cardiac progenitors derived from reprogrammed mesenchymal stem cells contribute to angiomyogenic repair of the infarcted heart. Basic Res Cardiol 2012; 107:301. [PMID: 23076626 PMCID: PMC3505546 DOI: 10.1007/s00395-012-0301-5] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 06/21/2012] [Accepted: 09/06/2012] [Indexed: 01/07/2023]
Abstract
The strategy to reprogram somatic stem cells to pluripotency status has provided an alternative source of surrogate ES cells (ESC). We report efficient reprogramming of multipotent bone marrow (BM) mesenchymal stem cells (MSC) to pluripotent status and the resultant MSC derived iPS cells (MiPS) and their derived progenitors effectively repaired the infarcted heart. MSC from young, male, Oct4-GFP transgenic mice were reprogrammed by retroviral transduction with Oct4, Sox2, Klf4, and c-Myc stemness factors. MiPS thus generated displayed characteristics of mouse ESC including morphology, surface antigens, gene and miR expression profiles. MiPS also formed spontaneously beating cardiac progenitors which expressed cardiac specific transcription factors and protein markers including Gata4, Mef2c, Nkx2.5, myosin heavy chain, troponin-I, and troponin-T, and showed ultra structural characteristics typical of cardiomyocytes. Intramyocardial delivery of MiPS (group-2) and their derivative cardiac-like cells (MiPS-CP; group-3) in a mouse model of acute myocardial infarction showed extensive survival and engraftment at 4 weeks with resultant attenuation of infarct size (p < 0.001 vs. DMEM injected control; n = 4). Engraftment of MiPS-CP was without cardiac tumorigenesis as compared to 21 % in MiPS transplanted animals. Furthermore, angiogenesis was improved in groups-2 and 3 (p < 0.001 vs. control). Transthoracic echocardiography revealed significantly preserved indices of cardiac contractility (ejection fraction p < 0.001 and fractional shortening p < 0.001 vs. control; n = 7). MSC were successfully reprogrammed into MiPS that displayed ESC-like characteristics and differentiated into spontaneously beating cardiomyocytes. Cardiac progenitors derived from MiPS repopulated the infarcted heart without tumorigenesis and improved global cardiac function.
Collapse
Affiliation(s)
- Stephanie Buccini
- Department of Pathology and Laboratory Medicine, University of Cincinnati, OH, 45267-0529, USA
| | | | | | | | | |
Collapse
|