1
|
Park B, Kim D, Zhao H, Kim S, Park BC, Lee S, Lee Y, Park HD, Lim D, Ryu S, Hwang JS. Glycogen Phosphorylase Inhibitor Promotes Hair Growth via Protecting from Oxidative-Stress and Regulating Glycogen Breakdown in Human Hair follicles. Biomol Ther (Seoul) 2024; 32:640-646. [PMID: 39103246 PMCID: PMC11392663 DOI: 10.4062/biomolther.2024.098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/05/2024] [Accepted: 07/17/2024] [Indexed: 08/07/2024] Open
Abstract
Hair growth cycles are mainly regulated by human dermal papilla cells (hDPCs) and human outer root sheath cells (hORSCs). Protecting hDPCs from excessive oxidative stress and hORSCs from glycogen phosphorylase (PYGL) is crucial to maintaining the hair growth phase, anagen. In this study, we developed a new PYGL inhibitor, Hydroxytrimethylpyridinyl Methylindolecarboxamide (HTPI) and assessed its potential to prevent hair loss. HTPI reduced oxidative damage, preventing cell death and restored decreased level of anagen marker ALP and its related genes induced by hydrogen peroxide in hDPCs. Moreover, HTPI inhibited glycogen degradation and induced cell survival under glucose starvation in hORSCs. In ex-vivo culture, HTPI significantly enhanced hair growth compared to the control with minoxidil showing comparable results. Overall, these findings suggest that HTPI has significant potential as a therapeutic agent for the prevention and treatment of hair loss.
Collapse
Affiliation(s)
- Bomi Park
- Department of Genetics & Biotechnology, Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Youngin 17104, Republic of Korea
| | - Daeun Kim
- Department of Genetics & Biotechnology, Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Youngin 17104, Republic of Korea
| | - Hairu Zhao
- Department of Genetics & Biotechnology, Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Youngin 17104, Republic of Korea
| | - SoonRe Kim
- Basic and clinical Hair institute, Dankook University, Cheonan 31116, Republic of Korea
| | - Byung Cheol Park
- Basic and clinical Hair institute, Dankook University, Cheonan 31116, Republic of Korea
- Department of Dermatology, Dankook University Hospital, Cheonan 31116, Republic of Korea
| | - Sanghwa Lee
- Innovo Therapeutics Inc., Seoul 04174, Republic of Korea
| | - Yurim Lee
- Innovo Therapeutics Inc., Seoul 04174, Republic of Korea
| | - Hee Dong Park
- Innovo Therapeutics Inc., Seoul 04174, Republic of Korea
| | - Dongchul Lim
- Innovo Therapeutics Inc., Seoul 04174, Republic of Korea
| | - Sunyoung Ryu
- Department of Genetics & Biotechnology, Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Youngin 17104, Republic of Korea
| | - Jae Sung Hwang
- Department of Genetics & Biotechnology, Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Youngin 17104, Republic of Korea
| |
Collapse
|
2
|
Cheng M, Ma C, Chen HD, Wu Y, Xu XG. The Roles of Exosomes in Regulating Hair Follicle Growth. Clin Cosmet Investig Dermatol 2024; 17:1603-1612. [PMID: 38984321 PMCID: PMC11232880 DOI: 10.2147/ccid.s465963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/08/2024] [Indexed: 07/11/2024]
Abstract
Alopecia is considered a widespread yet troubling health issue, with limited treatment options. As membranous structures derived from cells carrying proteins, nucleic acids and lipids, exosomes functionally medicate intercellular communication and alter the responses of recipient cells, resulting in disease restraint or promotion. Exosomes have broad prospects in diagnosis and treatment of diseases. Studies using animal models and at the cellular level have clearly shown that exosomes from several types of cells, including dermal papilla cells and mesenchymal stem cells, have a notable capacity to promote hair growth, suggesting that exosomes may provide a new option to treat alopecia. Here, we present a thorough review of the most recent progress in the application of exosomes to hair growth.
Collapse
Affiliation(s)
- Ming Cheng
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, 110000, People’s Republic of China
- Key Laboratory of Immunodermatology, Ministry of Education and NHC; National Joint Engineering Research Center for Theranostics of Immunological Skin Diseases, Shenyang, 110000, People’s Republic of China
| | - Cong Ma
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, 110000, People’s Republic of China
- Key Laboratory of Immunodermatology, Ministry of Education and NHC; National Joint Engineering Research Center for Theranostics of Immunological Skin Diseases, Shenyang, 110000, People’s Republic of China
- Department of Dermatology and Sexually Transmitted Diseases, The First Hospital of Inner Mongolia University for Nationalities, Tongliao, 028000, People’s Republic of China
| | - Hong-Duo Chen
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, 110000, People’s Republic of China
- Key Laboratory of Immunodermatology, Ministry of Education and NHC; National Joint Engineering Research Center for Theranostics of Immunological Skin Diseases, Shenyang, 110000, People’s Republic of China
| | - Yan Wu
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, 110000, People’s Republic of China
- Key Laboratory of Immunodermatology, Ministry of Education and NHC; National Joint Engineering Research Center for Theranostics of Immunological Skin Diseases, Shenyang, 110000, People’s Republic of China
| | - Xue-Gang Xu
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, 110000, People’s Republic of China
- Key Laboratory of Immunodermatology, Ministry of Education and NHC; National Joint Engineering Research Center for Theranostics of Immunological Skin Diseases, Shenyang, 110000, People’s Republic of China
| |
Collapse
|
3
|
Chen Z, Zhao F, He Z, Sun H, Xi Q, Yu X, Ding Y, An Z, Wang J, Liu X, Li M, Hao Z, Li S. Expression Localization of the KRT32 Gene and Its Association of Genetic Variation with Wool Traits. Curr Issues Mol Biol 2024; 46:2961-2974. [PMID: 38666915 PMCID: PMC11049001 DOI: 10.3390/cimb46040185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/02/2024] [Accepted: 03/05/2024] [Indexed: 04/28/2024] Open
Abstract
Changes in keratin gene expression and spatiotemporal regulation determine the compositional content and cellular localization of wool keratin, thereby affecting wool traits. Therefore, keratin gene family member 32 (KRT32) was selected for a study using RT-qPCR, immunofluorescence, and penta-primer amplification refractory mutation system (PARMS) techniques. The results showed that KRT32 mRNA was highly expressed in the skin and localized to the inner root sheath (IRS), outer root sheath (ORS) and dermal papilla (DP). Sequencing results identified eight SNPs in KRT32, and association analyses revealed that the variations were significantly associated with multiple traits in wool (p < 0.05), including MFD, CF and MFC. The constructed haplotype combination H2H3 has higher CF and smaller MFD than other haplotype combination (p < 0.05). In conclusion, KRT32 can be used as a candidate gene for molecular genetic improvement of wool in Gansu Alpine Fine-wool sheep.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Shaobin Li
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Z.C.); (F.Z.); (Z.H.); (H.S.); (Q.X.); (X.Y.); (Y.D.); (Z.A.); (J.W.); (X.L.); (M.L.); (Z.H.)
| |
Collapse
|
4
|
Tharmalingam J, Gangadaran P, Rajendran RL, Ahn BC. Impact of Alcohol on Inflammation, Immunity, Infections, and Extracellular Vesicles in Pathogenesis. Cureus 2024; 16:e56923. [PMID: 38665743 PMCID: PMC11043057 DOI: 10.7759/cureus.56923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Alcohol consumption is a widespread social activity with a complex and multifaceted impact on human health. Although moderate alcohol consumption has been associated with certain potential health benefits, excessive or chronic alcohol use can disrupt the body's immune balance, promote inflammation, and increase susceptibility to infections. The deleterious effects associated with alcohol toxicity include the loss of cell integrity. When cells lose their integrity, they also lose the capacity to communicate with other systems. One of the systems disturbed by alcohol toxicity is extracellular vesicle (EV)-mediated communication. EVs are critical mediators of cell-to-cell communication. They play a significant role in alcohol-induced pathogenesis, facilitating communication and molecular exchange between cells, thereby potentially contributing to alcohol-related health issues. Investigating their involvement in this context is fundamental to resolving the intricate mechanisms behind the health consequences of alcohol use and may pave the way for innovative approaches for mitigating the adverse effects of alcohol on immune health. Understanding the role of EVs in the context of alcohol-induced pathogenesis is essential for comprehending the mechanisms behind alcohol-related health issues.
Collapse
Affiliation(s)
| | - Prakash Gangadaran
- Department of Nuclear Medicine, Kyungpook National University, Daegu, KOR
- Department of Biomedical Science, BK (Brain Korea) 21 FOUR (Fostering Outstanding Universities for Research) Program, Kyungpook National University, Daegu, KOR
| | | | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, Kyungpook National University, Daegu, KOR
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, KOR
- Department of Biomedical Science, BK (Brain Korea) 21 FOUR (Fostering Outstanding Universities for Research) Program, Kyungpook National University, Daegu, KOR
| |
Collapse
|
5
|
Zhou L, Hu R, Sheng Y, Wang X, Qi S, Zhao J, Miao Y, Zhao Y, Xu F, Wu W, Lu Z, Yang Q. IGFBP-rP1 is a potential therapeutic target in androgenic alopecia. Exp Dermatol 2024; 33:e15024. [PMID: 38414091 DOI: 10.1111/exd.15024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 01/09/2024] [Accepted: 01/18/2024] [Indexed: 02/29/2024]
Abstract
The available interventions for androgenic alopecia (AGA), the most common type of hair loss worldwide, remain limited. The insulin growth factor (IGF) system may play an important role in the pathogenesis of AGA. However, the exact role of IGF binding protein-related protein 1 (IGFBP-rP1) in hair growth and AGA has not been reported. In this study, we first found periodic variation in IGFBP-rP1 during the hair cycle transition in murine hair follicles (HFs). We further demonstrated that IGFBP-rP1 levels were lower in the serum and scalp HFs of individuals with AGA than in those of healthy controls. Subsequently, we verified that IGFBP-rP1 had no cytotoxicity to human outer root sheath cells (HORSCs) and that IGFBP-rP1 reversed the inhibitory effects of DHT on the migration of HORSCs in vitro. Finally, a DHT-induced AGA mouse model was created. The results revealed that the expression of IGFBP-rP1 in murine HFs was downregulated after DHT treatment and that subcutaneous injection of IGFBP-rP1 delayed catagen occurrence and prolonged the anagen phase of HFs in mice with DHT-induced AGA. The present work shows that IGFBP-rP1 is involved in hair cycle transition and exhibits great therapeutic potential for AGA.
Collapse
Affiliation(s)
- Lijuan Zhou
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Ruiming Hu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Youyu Sheng
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xuchao Wang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Sisi Qi
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jun Zhao
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Ying Miao
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Ying Zhao
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Feng Xu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Wenyu Wu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
- Department of Dermatology, Jing'an District Central Hospital, Shanghai, China
- Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Zhongfa Lu
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qinping Yang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Ma C, Cheng M, Wu Y, Xu X. The Role of Mesenchymal Stem Cells in Hair Regeneration and Hair Cycle. Stem Cells Dev 2024; 33:1-10. [PMID: 37847179 DOI: 10.1089/scd.2023.0156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023] Open
Abstract
The health of hair is directly related to people's health and appearance. Hair has key physiological functions, including skin protection and temperature regulation. Hair follicle (HF) is a vital mini-organ that directly impacts hair growth. Besides, various signaling pathways and molecules regulate the growth cycle transition of HFs. Hair and its regeneration studies have attracted much interest in recent years with the increasing rate of alopecia. Mesenchymal stem cells (MSCs), as pluripotent stem cells, can differentiate into fat, bone, and cartilage and stimulate regeneration and immunological regulation. MSCs have been widely employed to treat various clinical diseases, such as bone and cartilage injury, nerve injury, and lung injury. Besides, MSCs can be used for treatment of hair diseases due to their regenerative and immunomodulatory abilities. This review aimed to assess MSCs' treatment for alopecia, pertinent signaling pathways, and new material for hair regeneration in the last 5 years.
Collapse
Affiliation(s)
- Cong Ma
- Department of Dermatology, The First Hospital of Inner Mongolia University for Nationalities, Tongliao, China
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Immunodermatology, Ministry of Education and NHC, National Joint Engineering Research Center for Theranostics of Immunological Skin Diseases, Shenyang, Liaoning, China
| | - Ming Cheng
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Immunodermatology, Ministry of Education and NHC, National Joint Engineering Research Center for Theranostics of Immunological Skin Diseases, Shenyang, Liaoning, China
| | - Yan Wu
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Immunodermatology, Ministry of Education and NHC, National Joint Engineering Research Center for Theranostics of Immunological Skin Diseases, Shenyang, Liaoning, China
| | - Xuegang Xu
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Immunodermatology, Ministry of Education and NHC, National Joint Engineering Research Center for Theranostics of Immunological Skin Diseases, Shenyang, Liaoning, China
| |
Collapse
|
7
|
Wei Q, Liu X, Su JL, Wang YX, Chu ZQ, Ma K, Huang QL, Li HH, Fu XB, Zhang CP. Small extracellular vesicles from mesenchymal stem cells: A potential Weapon for chronic non-healing wound treatment. Front Bioeng Biotechnol 2023; 10:1083459. [PMID: 36704302 PMCID: PMC9872203 DOI: 10.3389/fbioe.2022.1083459] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023] Open
Abstract
Chronic non-healing wounds have posed a severe threat to patients mentally and physically. Behavior dysregulation of remaining cells at wound sites is recognized as the chief culprit to destroy healing process and hinders wound healing. Therefore, regulating and restoring normal cellular behavior is the core of chronic non-healing wound treatment. In recent years, the therapy with mesenchymal stem cells (MSCs) has become a promising option for chronic wound healing and the efficacy has increasingly been attributed to their exocrine functions. Small extracellular vesicles derived from MSCs (MSC-sEVs) are reported to benefit almost all stages of wound healing by regulating the cellular behavior to participate in the process of inflammatory response, angiogenesis, re-epithelization, and scarless healing. Here, we describe the characteristics of MSC-sEVs and discuss their therapeutic potential in chronic wound treatment. Additionally, we also provide an overview of the application avenues of MSC-sEVs in wound treatment. Finally, we summarize strategies for large-scale production and engineering of MSC-sEVs. This review may possibly provide meaningful guidance for chronic wound treatment with MSC-sEVs.
Collapse
Affiliation(s)
- Qian Wei
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Xi Liu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Jian-Long Su
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Ya-Xi Wang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Zi-Qiang Chu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Kui Ma
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese, PLA General Hospital, Beijing, China
- Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, Research Unit of Trauma Care, Beijing, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, China
| | - Qi-Lin Huang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Hai-Hong Li
- Department of Wound Repair, Institute of Wound Repair and Regeneration Medicine, Southern University of Science and Technology Hospital, Southern University of Science and Technology School of Medicine, Shenzhen, China
| | - Xiao-Bing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese, PLA General Hospital, Beijing, China
- Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, Research Unit of Trauma Care, Beijing, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, China
| | - Cui-Ping Zhang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese, PLA General Hospital, Beijing, China
- Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, Research Unit of Trauma Care, Beijing, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, China
| |
Collapse
|