1
|
Miyauchi S, Kawada-Matsuo M, Furusho H, Nishi H, Nakajima A, Phat PT, Shiba F, Kitagawa M, Ouhara K, Oda N, Tokuyama T, Okubo Y, Okamura S, Takasaki T, Takahashi S, Hiyama T, Kawaguchi H, Komatsuzawa H, Miyauchi M, Nakano Y. Atrial Translocation of Porphyromonas gingivalis Exacerbates Atrial Fibrosis and Atrial Fibrillation. Circulation 2025. [PMID: 40099365 DOI: 10.1161/circulationaha.124.071310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 02/21/2025] [Indexed: 03/19/2025]
Abstract
BACKGROUND Recent studies have indicated an association between periodontitis and atrial fibrillation (AF), although the underlying mechanisms remain unclear. Porphyromonas gingivalis is a causative agent of periodontal disease and is highly pathogenic. This study focused on P gingivalis and aimed to investigate the relationship among periodontitis, atrial translocation of P gingivalis, and atrial fibrosis and AF. METHODS An experiment was conducted using P gingivalis-infected C57BL/6J mice, in which P gingivalis was inoculated into the pulp of the molars. Immunohistochemistry was used to visualize the localization of P gingivalis, and loop-mediated isothermal amplification was employed to detect P gingivalis DNA in the left atrium. AF inducibility was examined by intracardiac stimulation. Moreover, left atrial appendage specimens were obtained from 68 patients with AF. A periodontal examination was conducted before the surgery, and the periodontal epithelial surface area and periodontal inflamed surface area, which are quantitative indices used to determine the clinical severity of periodontitis, were measured. The bacterial number of P gingivalis in human atrial tissue was analyzed via quantitative polymerase chain reaction. Atrial fibrosis was assessed using Azan-Mallory staining. RESULTS The translocation path of P gingivalis from the dental granuloma to the left atrium via the circulatory system was demonstrated by immunohistochemistry and loop-mediated isothermal amplification in P gingivalis-infected mice, which showed a higher degree of atrial fibrosis (21.9% versus 16.3%; P=0.0003) and a higher AF inducibility (30.0% versus 5.0%; P=0.04) than the control mice. Upregulation of GAL3 (galectin 3) and transforming growth factor-beta 1 in the left atrium was observed in P gingivalis-infected mice. Moreover, immunohistochemistry revealed that P gingivalis was also present in human atrial tissue. The number of P gingivalis in the human atrial tissue was positively correlated with periodontal epithelial surface area (ρ=0.35; P=0.004), periodontal inflamed surface area (ρ=0.52, P<0.0001), and the degree of atrial fibrosis (ρ=0.38; P=0.002). CONCLUSIONS P gingivalis translocation to the left atrium correlates with the clinical severity of periodontitis, which may exacerbate atrial fibrosis and AF. Atrial translocation of P gingivalis is a potential pathway explaining the causal relationship between periodontitis and AF.
Collapse
Affiliation(s)
- Shunsuke Miyauchi
- Departments of Cardiovascular Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Japan. (S.M., N.O., T. Tokuyama, Y.O., S.O., Y.N.)
- Division of Medicine, Health Service Center, Hiroshima University, 1-7-1 Kagamiyama, Higashihiroshima, Japan (S.M., T.H.)
| | - Miki Kawada-Matsuo
- Bacteriology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Japan. (M.K.-M., H. Komatsuzawa)
| | - Hisako Furusho
- Oral and Maxillofacial Pathobiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Japan. (H.F., A.N., P.T.P., M.K., M.M.)
| | - Hiromi Nishi
- General Dentistry,Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Japan. (H.N., H. Kawaguchi))
| | - Ayako Nakajima
- Oral and Maxillofacial Pathobiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Japan. (H.F., A.N., P.T.P., M.K., M.M.)
| | - Pham Trong Phat
- Oral and Maxillofacial Pathobiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Japan. (H.F., A.N., P.T.P., M.K., M.M.)
| | - Fumie Shiba
- Collaborative Research Laboratory of Oral Inflammation Regulation (F.S., M.M.)
| | - Masae Kitagawa
- Oral and Maxillofacial Pathobiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Japan. (H.F., A.N., P.T.P., M.K., M.M.)
| | - Kazuhisa Ouhara
- Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Japan. (K.O.)
| | - Noboru Oda
- Departments of Cardiovascular Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Japan. (S.M., N.O., T. Tokuyama, Y.O., S.O., Y.N.)
| | - Takehito Tokuyama
- Departments of Cardiovascular Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Japan. (S.M., N.O., T. Tokuyama, Y.O., S.O., Y.N.)
| | - Yousaku Okubo
- Departments of Cardiovascular Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Japan. (S.M., N.O., T. Tokuyama, Y.O., S.O., Y.N.)
| | - Sho Okamura
- Departments of Cardiovascular Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Japan. (S.M., N.O., T. Tokuyama, Y.O., S.O., Y.N.)
| | - Taiichi Takasaki
- Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Japan. (T. Takasaki, S.T.)
| | - Shinya Takahashi
- Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Japan. (T. Takasaki, S.T.)
| | - Toru Hiyama
- Division of Medicine, Health Service Center, Hiroshima University, 1-7-1 Kagamiyama, Higashihiroshima, Japan (S.M., T.H.)
| | - Hiroyuki Kawaguchi
- General Dentistry,Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Japan. (H.N., H. Kawaguchi))
| | - Hitoshi Komatsuzawa
- Bacteriology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Japan. (M.K.-M., H. Komatsuzawa)
| | - Mutsumi Miyauchi
- Oral and Maxillofacial Pathobiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Japan. (H.F., A.N., P.T.P., M.K., M.M.)
- Collaborative Research Laboratory of Oral Inflammation Regulation (F.S., M.M.)
| | - Yukiko Nakano
- Departments of Cardiovascular Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Japan. (S.M., N.O., T. Tokuyama, Y.O., S.O., Y.N.)
| |
Collapse
|
2
|
Ates E, My Ong HT, Yu SM, Kim JH, Kang MJ. Comparative Analysis of the Total Proteome in Nonalcoholic Steatohepatitis: Identification of Potential Biomarkers. Mol Cell Proteomics 2025; 24:100921. [PMID: 39894410 PMCID: PMC11910689 DOI: 10.1016/j.mcpro.2025.100921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/06/2024] [Accepted: 11/08/2024] [Indexed: 02/04/2025] Open
Abstract
Nonalcoholic fatty liver disease is a hepatic condition characterized by excessive fat accumulation in the liver with advanced stage nonalcoholic steatohepatitis (NASH), potentially leading to liver fibrosis, cirrhosis, and cancer. Currently, the identification and classification of NASH require invasive liver biopsy, which has certain limitations. Mass spectrometry-based proteomics can detect crucial proteins and pathways implicated in NASH development and progression. We collected the liver and serum samples from choline-deficient, L-amino acid-defined high-fat diet fed NASH C57BL/6J mice and human serum samples to examine proteomic alterations and identify early biomarkers for NASH diagnosis. In-depth targeted multiple reaction monitoring scanning and immunoblotting assays were used to verify the biomarker candidates from mouse liver and serum samples, and enzyme-linked immunosorbent assay (ELISA) was employed to analyze human serum samples. The multiple reaction monitoring analysis of NASH liver revealed 50 proteins with altered expression (21 upregulated and 29 downregulated) that are involved in biological processes such as detoxification, fibrosis, inflammation, and fatty acid metabolism. Ingenuity pathway analysis identified impaired protein synthesis, cellular stress and defense, cellular processes and communication, and metabolism in NASH mouse liver. Immunoblotting analysis confirmed that the expression of proteins associated with fatty acid metabolism (Aldo B and Fasn) and urea cycle (Arg1, Cps1, and Otc) was altered in the mouse liver and serum. Further analysis on human serum samples using ELISA confirmed the increased expression of multiple proteins, including Aldo B, Asl, and Lgals3, demonstrating values of 0.917, 0.979, and 0.965 of area under the curve in NASH diagnosis. These findings offer valuable insights into the molecular mechanisms of NASH and possible diagnostic biomarkers for early detection.
Collapse
Affiliation(s)
- Eda Ates
- Center for Advanced Biomolecular Recognition, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul, Republic of Korea
| | - Hien Thi My Ong
- Center for Advanced Biomolecular Recognition, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul, Republic of Korea
| | - Seung-Min Yu
- Center for Advanced Biomolecular Recognition, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea; College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Ji-Hoon Kim
- Center for Advanced Biomolecular Recognition, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Min-Jung Kang
- Center for Advanced Biomolecular Recognition, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Sakuma I, Gaspar RC, Nasiri AR, Dufour S, Kahn M, Zheng J, LaMoia TE, Guerra MT, Taki Y, Kawashima Y, Yimlamai D, Perelis M, Vatner DF, Petersen KF, Huttasch M, Knebel B, Kahl S, Roden M, Samuel VT, Tanaka T, Shulman GI. Liver lipid droplet cholesterol content is a key determinant of metabolic dysfunction-associated steatohepatitis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.25.640203. [PMID: 40060523 PMCID: PMC11888431 DOI: 10.1101/2025.02.25.640203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) represents a progressive form of steatotic liver disease which increases the risk for fibrosis and advanced liver disease. The accumulation of discrete species of bioactive lipids has been postulated to activate signaling pathways that promote inflammation and fibrosis. However, the key pathogenic lipid species is a matter of debate. We explored candidates using various dietary, molecular, and genetic models. Mice fed a choline-deficient L-amino acid-defined high-fat diet (CDAHFD) developed steatohepatitis and manifested early markers of liver fibrosis associated with increased cholesterol content in liver lipid droplets within 5 days without any changes in total liver cholesterol content. Treating mice with antisense oligonucleotides (ASOs) against Coenzyme A synthase (Cosay) or treatment with bempedoic acid or atorvastatin decreased liver lipid droplet cholesterol content and prevented CDAHFD-induced MASH and the fibrotic response. All these salutary effects were abrogated with dietary cholesterol supplementation. Analysis of human liver samples demonstrated that cholesterol in liver lipid droplets was increased in humans with MASH and liver fibrosis and was higher in PNPLA3 I148M (variants rs738409) than in HSD17B13 variants (rs72613567). Together, these data identify cholesterol in liver lipid droplets as a critical mediator of MASH and demonstrate that COASY knockdown and bempedoic acid are novel therapeutic approaches to reduce liver lipid droplet cholesterol content and thereby prevent the development of MASH and liver fibrosis. Significance Statement Metabolic dysfunction-associated steatohepatitis (MASH) is a progressive liver disease linked to fibrosis. The role of specific lipid species in its pathogenesis remains debated. Using dietary, molecular, and genetic models, we found that mice on a choline-deficient, high-fat diet (CDAHFD) developed steatohepatitis and early fibrosis, marked by increased cholesterol in liver lipid droplets within five days. Targeting COASY with antisense oligonucleotides or treating with bempedoic acid or atorvastatin reduced lipid droplet cholesterol and prevented MASH. However, dietary cholesterol supplementation negated these effects. Human liver samples confirmed elevated lipid droplet cholesterol in MASH and fibrosis, especially in PNPLA3 I148M carriers. These findings highlight cholesterol reduction as a potential MASH therapy.
Collapse
|
4
|
Devasia AG, Ramasamy A, Leo CH. Current Therapeutic Landscape for Metabolic Dysfunction-Associated Steatohepatitis. Int J Mol Sci 2025; 26:1778. [PMID: 40004240 PMCID: PMC11855529 DOI: 10.3390/ijms26041778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/31/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
In recent years, "metabolic dysfunction-associated steatotic liver disease" (MASLD) has been proposed to better connect liver disease to metabolic dysfunction, which is the most common chronic liver disease worldwide. MASLD affects more than 30% of individuals globally, and it is diagnosed by the combination of hepatic steatosis and obesity, type 2 diabetes, or two metabolic risk factors. MASLD begins with the buildup of extra fat, often greater than 5%, within the liver, causing liver hepatocytes to become stressed. This can proceed to a more severe form, metabolic dysfunction-associated steatohepatitis (MASH), in 20-30% of people, where inflammation in the liver causes tissue fibrosis, which limits blood flow over time. As fibrosis worsens, MASH may lead to cirrhosis, liver failure, or even liver cancer. While the pathophysiology of MASLD is not fully known, the current "multiple-hits" concept proposes that dietary and lifestyle factors, metabolic factors, and genetic or epigenetic factors contribute to elevated oxidative stress and inflammation, causing liver fibrosis. This review article provides an overview of the pathogenesis of MASLD and evaluates existing therapies as well as pharmacological drugs that are currently being studied in clinical trials for MASLD or MASH.
Collapse
Affiliation(s)
- Arun George Devasia
- Science, Math & Technology, Singapore University of Technology & Design, Singapore 487372, Singapore;
- Genome Institute of Singapore (GIS), Agency for Science Technology and Research (A*STAR), 60 Biopolis Street, Singapore 138672, Singapore;
| | - Adaikalavan Ramasamy
- Genome Institute of Singapore (GIS), Agency for Science Technology and Research (A*STAR), 60 Biopolis Street, Singapore 138672, Singapore;
| | - Chen Huei Leo
- Department of Biomedical Engineering, College of Design & Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore
| |
Collapse
|
5
|
Mimura S, Morishita A, Oura K, Takuma K, Nakahara M, Tadokoro T, Fujita K, Tani J, Kobara H. Galectins and Liver Diseases. Int J Mol Sci 2025; 26:790. [PMID: 39859504 PMCID: PMC11766161 DOI: 10.3390/ijms26020790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/13/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Galectins are widely distributed throughout the animal kingdom, from marine sponges to mammals. Galectins are a family of soluble lectins that specifically recognize β-galactoside-containing glycans and are categorized into three subgroups based on the number and function of their carbohydrate recognition domains (CRDs). The interaction of galectins with specific ligands mediates a wide range of biological activities, depending on the cell type, tissue context, expression levels of individual galectin, and receptor involvement. Galectins affect various immune cell processes through both intracellular and extracellular mechanisms and play roles in processes, such as apoptosis, angiogenesis, and fibrosis. Their importance has increased in recent years because they are recognized as biomarkers, therapeutic agents, and drug targets, with many other applications in conditions such as cardiovascular diseases and cancer. However, little is known about the involvement of galectins in liver diseases. Here, we review the functions of various galectins and evaluate their roles in liver diseases.
Collapse
Affiliation(s)
- Shima Mimura
- Departments of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kita-gun, Takamatsu 761-0793, Kagawa Prefecture, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Jiang Q, Zhao Q, Li P. Galectin-3 in metabolic disorders: mechanisms and therapeutic potential. Trends Mol Med 2024:S1471-4914(24)00307-1. [PMID: 39690058 DOI: 10.1016/j.molmed.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 12/19/2024]
Abstract
Galectin-3 (Gal3), a β-galactoside-binding lectin, is expressed predominantly in immunological and inflammatory cells. Gal3 expression is elevated in metabolic diseases, including obesity, diabetes, and metabolic dysfunction-associated steatotic liver disease (MASLD), and plays an important role in the progression of these diseases. In this review, we summarize the structure and post-translational modifications of Gal3 and the cellular functions of Gal3 according to its subcellular localization. We focused on the pathological functions and molecular mechanisms of Gal3 in various cell types. In particular, extracellular Gal3 and intracellular Gal3 may have different physiological and pathological functions. We also discuss promising Gal3 inhibitors or antibodies that are currently in clinical trials and outstanding questions and challenges for future pursuit.
Collapse
Affiliation(s)
- Qian Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing 100050, China; CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Beijing 100050, China
| | - Qijin Zhao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing 100050, China; CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Beijing 100050, China
| | - Pingping Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing 100050, China; CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Beijing 100050, China.
| |
Collapse
|
7
|
Katsarou A, Tsioulos G, Kassi E, Chatzigeorgiou A. Current and experimental pharmacotherapy for the management of non-alcoholic fatty liver disease. Hormones (Athens) 2024; 23:621-636. [PMID: 39112786 DOI: 10.1007/s42000-024-00588-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/17/2024] [Indexed: 10/29/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a chronic liver disease, with its incidence increasing in parallel with the global prevalence of obesity and type 2 diabetes mellitus. Despite our steadily increasing knowledge of its pathogenesis, there is as yet no available pharmacotherapy specifically tailored for NAFLD. To define the appropriate management, it is important to clarify the context in which the disease appears. In the case of concurrent metabolic comorbidities, NAFLD patients are treated by targeting these comorbidities, such as diabetes and obesity. Thus, GLP-1 analogs, PPAR, and SGLT2 inhibitors have recently become central to the treatment of NAFLD. In parallel, randomized trials are being conducted to explore new agents targeting known pathways involved in NAFLD progression. However, there is an imperative need to intensify the effort to design new, safe drugs with biopsy-proven efficacy. Of note, the main target of the pharmacotherapy should be directed to the regression of fibrotic NASH, as this histologic stage has been correlated with increased overall as well as liver-related morbidity and mortality. Herein we discuss the drugs currently at the forefront of NAFLD treatment.
Collapse
Affiliation(s)
- Angeliki Katsarou
- 251 Hellenic Airforce General Hospital, 1 P.Kanellopoulou Str, Athens, 11525, Greece.
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str, Athens, 11527, Greece.
| | - Georgios Tsioulos
- 4th Department of Internal Medicine, Medical School, University General Hospital Attikon, National and Kapodistrian University of Athens, 1 Rimini Str, Athens, 12462, Greece
| | - Eva Kassi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 115 27, Athens, Greece
| | - Antonios Chatzigeorgiou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str, Athens, 11527, Greece
| |
Collapse
|
8
|
Tang S, Borlak J. Genomics of human NAFLD: Lack of data reproducibility and high interpatient variability in drug target expression as major causes of drug failures. Hepatology 2024; 80:901-915. [PMID: 38358517 PMCID: PMC11407777 DOI: 10.1097/hep.0000000000000780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/19/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND AND AIMS NAFLD is a major disease burden and a foremost cause of chronic liver disease. Presently, nearly 300 trials evaluate the therapeutic efficacy of > 20 drugs. Remarkably, the majority of drugs fail. To better comprehend drug failures, we investigated the reproducibility of fatty liver genomic data across 418 liver biopsies and evaluated the interpatient variability of 18 drug targets. APPROACH AND RESULTS Apart from our own data, we retrieved NAFLD biopsy genomic data sets from public repositories and considered patient demographics. We divided the data into test and validation sets, assessed the reproducibility of differentially expressed genes and performed gene enrichment analysis. Patients were stratified by disease activity score, fibrosis grades and sex, and we investigated the regulation of 18 drug targets across 418 NAFLD biopsies of which 278 are NASH cases. We observed poor reproducibility of differentially expressed genes across 9 independent studies. On average, only 4% of differentially expressed genes are commonly regulated based on identical sex and 2% based on identical NAS disease score and fibrosis grade. Furthermore, we observed sex-specific gene regulations, and for females, we noticed induced expression of genes coding for inflammatory response, Ag presentation, and processing. Conversely, extracellular matrix receptor interactions are upregulated in males, and the data agree with clinical findings. Strikingly, and with the exception of stearoyl-CoA desaturase, most drug targets are not regulated in > 80% of patients. CONCLUSIONS Lack of data reproducibility, high interpatient variability, and the absence of disease-dependent drug target regulations are likely causes of NASH drug failures in clinical trials.
Collapse
|
9
|
Comeglio P, Guarnieri G, Filippi S, Cellai I, Acciai G, Holyer I, Zetterberg F, Leffler H, Kahl-Knutson B, Sarchielli E, Morelli A, Maggi M, Slack RJ, Vignozzi L. The galectin-3 inhibitor selvigaltin reduces liver inflammation and fibrosis in a high fat diet rabbit model of metabolic-associated steatohepatitis. Front Pharmacol 2024; 15:1430109. [PMID: 39144627 PMCID: PMC11322497 DOI: 10.3389/fphar.2024.1430109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/22/2024] [Indexed: 08/16/2024] Open
Abstract
Introduction Galectin-3 is a pro-fibrotic β-galactoside binding lectin highly expressed in fibrotic liver and implicated in hepatic fibrosis. Selvigaltin (previously known as GB1211) is a novel orally active galectin-3 small molecule inhibitor that has high affinity for galectin-3 (human KD = 25 nM; rabbit KD = 12 nM) and high oral bioavailability in rabbits and man. In this study the efficacy of selvigaltin was investigated in a high fat diet (HFD) rabbit model of metabolic-associated steatohepatitis (MASH). Methods Male New Zealand White rabbits were individually caged under standard conditions in a temperature and humidity-controlled room on a 12 h light/darkness cycle. After 1 week of regular diet (RD), rabbits were randomly assigned for 8 or 12 weeks to different groups: RD/vehicle, RD/selvigaltin, HFD (8 weeks), HFD/vehicle and HFD/selvigaltin (0.3, 1.0, 5.0 or 30 mg/kg selvigaltin with vehicle/selvigaltin p.o. dosed therapeutically q.d. 5 days per week from week 9 or 12). Liver inflammation, steatosis, ballooning, and fibrosis was measured via blood metabolic markers, histomorphological evaluation [Oil Red O, Giemsa, Masson's trichome, picrosirius red (PSR) and second harmonic generation (SHG)], and mRNA and protein expression. Results Steatosis, inflammation, ballooning, and fibrosis were all increased from RD to HFD/vehicle groups. Selvigaltin demonstrated target engagement by significantly decreasing galectin-3 levels in the liver as measured via immunohistochemistry and mRNA analysis. Selvigaltin dose-dependently reduced biomarkers of liver function (AST, ALT, bilirubin), inflammation (cells foci), and fibrosis (PSR, SHG), as well as decreasing the mRNA and protein expression of several key inflammation and fibrosis biomarkers (e.g., IL6, TGFβ3, SNAI2, collagen). Doses of 1.0 or 5.0 mg/kg demonstrated consistent efficacy across most biological endpoints supporting the current clinical doses of selvigaltin being investigated in liver disease. Discussion Selvigaltin significantly reduced hepatic inflammation and fibrosis in an HFD rabbit model of MASH following therapeutic dosing for 4 weeks in a dose-dependent manner. These data support the human selvigaltin dose of 100 mg b.i.d. that has been shown to reduce key liver biomarkers during a clinical study in liver cirrhosis.
Collapse
Affiliation(s)
- Paolo Comeglio
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Giulia Guarnieri
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Sandra Filippi
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Ilaria Cellai
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Gabriele Acciai
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | | | | | | | | | - Erica Sarchielli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Annamaria Morelli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Mario Maggi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
- Interuniversity Consortium “Istituto Nazionale Biostrutture e Biosistemi” (INBB), Rome, Italy
| | | | - Linda Vignozzi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
- Interuniversity Consortium “Istituto Nazionale Biostrutture e Biosistemi” (INBB), Rome, Italy
| |
Collapse
|
10
|
Kokkorakis M, Muzurović E, Volčanšek Š, Chakhtoura M, Hill MA, Mikhailidis DP, Mantzoros CS. Steatotic Liver Disease: Pathophysiology and Emerging Pharmacotherapies. Pharmacol Rev 2024; 76:454-499. [PMID: 38697855 DOI: 10.1124/pharmrev.123.001087] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/22/2023] [Accepted: 01/25/2024] [Indexed: 05/05/2024] Open
Abstract
Steatotic liver disease (SLD) displays a dynamic and complex disease phenotype. Consequently, the metabolic dysfunction-associated steatotic liver disease (MASLD)/metabolic dysfunction-associated steatohepatitis (MASH) therapeutic pipeline is expanding rapidly and in multiple directions. In parallel, noninvasive tools for diagnosing and monitoring responses to therapeutic interventions are being studied, and clinically feasible findings are being explored as primary outcomes in interventional trials. The realization that distinct subgroups exist under the umbrella of SLD should guide more precise and personalized treatment recommendations and facilitate advancements in pharmacotherapeutics. This review summarizes recent updates of pathophysiology-based nomenclature and outlines both effective pharmacotherapeutics and those in the pipeline for MASLD/MASH, detailing their mode of action and the current status of phase 2 and 3 clinical trials. Of the extensive arsenal of pharmacotherapeutics in the MASLD/MASH pipeline, several have been rejected, whereas other, mainly monotherapy options, have shown only marginal benefits and are now being tested as part of combination therapies, yet others are still in development as monotherapies. Although the Food and Drug Administration (FDA) has recently approved resmetirom, additional therapeutic approaches in development will ideally target MASH and fibrosis while improving cardiometabolic risk factors. Due to the urgent need for the development of novel therapeutic strategies and the potential availability of safety and tolerability data, repurposing existing and approved drugs is an appealing option. Finally, it is essential to highlight that SLD and, by extension, MASLD should be recognized and approached as a systemic disease affecting multiple organs, with the vigorous implementation of interdisciplinary and coordinated action plans. SIGNIFICANCE STATEMENT: Steatotic liver disease (SLD), including metabolic dysfunction-associated steatotic liver disease and metabolic dysfunction-associated steatohepatitis, is the most prevalent chronic liver condition, affecting more than one-fourth of the global population. This review aims to provide the most recent information regarding SLD pathophysiology, diagnosis, and management according to the latest advancements in the guidelines and clinical trials. Collectively, it is hoped that the information provided furthers the understanding of the current state of SLD with direct clinical implications and stimulates research initiatives.
Collapse
Affiliation(s)
- Michail Kokkorakis
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Emir Muzurović
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Špela Volčanšek
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Marlene Chakhtoura
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Michael A Hill
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Dimitri P Mikhailidis
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| |
Collapse
|
11
|
Arnold J, Idalsoaga F, Díaz LA, Cabrera D, Barrera F, Arab JP, Arrese M. Emerging Drug Therapies for Metabolic Dysfunction-Associated Steatotic Liver Disease: A Glimpse into the Horizon. CURRENT HEPATOLOGY REPORTS 2024; 23:204-219. [DOI: 10.1007/s11901-023-00629-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/18/2023] [Indexed: 01/03/2025]
|
12
|
Sotoudeheian M. Galectin-3 and Severity of Liver Fibrosis in Metabolic Dysfunction-Associated Fatty Liver Disease. Protein Pept Lett 2024; 31:290-304. [PMID: 38715329 DOI: 10.2174/0109298665301698240404061300] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/02/2024] [Accepted: 03/21/2024] [Indexed: 08/13/2024]
Abstract
Metabolic dysfunction-associated Fatty Liver Disease (MAFLD) is a chronic liver disease characterized by the accumulation of fat in the liver and hepatic steatosis, which can progress to critical conditions, including Metabolic dysfunction-associated Steatohepatitis (MASH), liver fibrosis, hepatic cirrhosis, and hepatocellular carcinoma. Galectin-3, a member of the galectin family of proteins, has been involved in cascades that are responsible for the pathogenesis and progression of liver fibrosis in MAFLD. This review summarizes the present understanding of the role of galectin-3 in the severity of MAFLD and its associated liver fibrosis. The article assesses the underlying role of galectin-3-mediated fibrogenesis, including the triggering of hepatic stellate cells, the regulation of extracellular degradation, and the modulation of immune reactions and responses. It also highlights the assessments of the potential diagnostic and therapeutic implications of galectin-3 in liver fibrosis during MAFLD. Overall, this review provides insights into the multifaceted interaction between galectin-3 and liver fibrosis in MAFLD, which could lead to the development of novel strategies for diagnosis and treatment of this prevalent liver disease.
Collapse
|
13
|
Mohtasham Kia Y, Cannavo A, Bahiraie P, Alilou S, Saeedian B, Babajani N, Ghondaghsaz E, Khalaji A, Behnoush AH. Insights into the Role of Galectin-3 as a Diagnostic and Prognostic Biomarker of Atrial Fibrillation. DISEASE MARKERS 2023; 2023:2097012. [PMID: 37849915 PMCID: PMC10578984 DOI: 10.1155/2023/2097012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 09/02/2023] [Accepted: 09/20/2023] [Indexed: 10/19/2023]
Abstract
Atrial fibrillation (AF) is an irregular atrial activity and the most prevalent type of arrhythmia. Although AF is easily diagnosed with an electrocardiogram, there is a keen interest in identifying an easy-to-dose biomarker that can predict the prognosis of AF and its recurrence. Galectin-3 (Gal-3) is a beta-galactoside binding protein from the lectin family with pro-fibrotic and -inflammatory effects and a pivotal role in a variety of biological processes, cell proliferation, and differentiation; therefore, it is implicated in the pathogenesis of many cardiovascular (e.g., heart failure (HF)) and noncardiovascular diseases. However, its specificity and sensitivity as a potential marker in AF patients remain debated and controversial. This article comprehensively reviewed the evidence regarding the interplay between Gal-3 and patients with AF. Clinical implications of measuring Gal-3 in AF patients for diagnosis and prognosis are mentioned. Moreover, the role of Gal-3 as a potential biomarker for the management of AF recurrence is investigated. The association of Gal-3 and AF in special populations (coronary artery disease, HF, metabolic syndrome, chronic kidney disease, and diabetes mellitus) has been explored in this review. Overall, although further studies are needed to enlighten the role of Gal-3 in the diagnosis and treatment of AF, our study demonstrated the high potential of this molecule to be used and focused on by researchers and clinicians.
Collapse
Affiliation(s)
| | - Alessandro Cannavo
- Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy
| | - Pegah Bahiraie
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sanam Alilou
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Behrad Saeedian
- School of Medicine, Tehran University of Medical Sciences, Poursina St., Keshavarz Blvd., Tehran 1417613151, Iran
| | - Nastaran Babajani
- School of Medicine, Tehran University of Medical Sciences, Poursina St., Keshavarz Blvd., Tehran 1417613151, Iran
| | - Elina Ghondaghsaz
- Undergraduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada
| | - Amirmohammad Khalaji
- School of Medicine, Tehran University of Medical Sciences, Poursina St., Keshavarz Blvd., Tehran 1417613151, Iran
| | - Amir Hossein Behnoush
- School of Medicine, Tehran University of Medical Sciences, Poursina St., Keshavarz Blvd., Tehran 1417613151, Iran
| |
Collapse
|
14
|
Cammarota AL, Falco A, Basile A, Molino C, Chetta M, D’Angelo G, Marzullo L, De Marco M, Turco MC, Rosati A. Pancreatic Cancer-Secreted Proteins: Targeting Their Functions in Tumor Microenvironment. Cancers (Basel) 2023; 15:4825. [PMID: 37835519 PMCID: PMC10571538 DOI: 10.3390/cancers15194825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) is a ravaging disease with a poor prognosis, requiring a more detailed understanding of its biology to foster the development of effective therapies. The unsatisfactory results of treatments targeting cell proliferation and its related mechanisms suggest a shift in focus towards the inflammatory tumor microenvironment (TME). Here, we discuss the role of cancer-secreted proteins in the complex TME tumor-stroma crosstalk, shedding lights on druggable molecular targets for the development of innovative, safer and more efficient therapeutic strategies.
Collapse
Affiliation(s)
- Anna Lisa Cammarota
- Department of Medicine, Surgery and Dentistry “Schola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (A.L.C.); (A.F.); (A.B.); (L.M.); (M.C.T.)
| | - Antonia Falco
- Department of Medicine, Surgery and Dentistry “Schola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (A.L.C.); (A.F.); (A.B.); (L.M.); (M.C.T.)
| | - Anna Basile
- Department of Medicine, Surgery and Dentistry “Schola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (A.L.C.); (A.F.); (A.B.); (L.M.); (M.C.T.)
| | - Carlo Molino
- General Surgery Unit, A.O.R.N. Cardarelli, 80131 Naples, Italy;
| | - Massimiliano Chetta
- Medical and Laboratory Genetics Unit, A.O.R.N., Cardarelli, 80131 Naples, Italy;
| | - Gianni D’Angelo
- Department of Computer Science, University of Salerno, 84084 Fisciano, Italy;
| | - Liberato Marzullo
- Department of Medicine, Surgery and Dentistry “Schola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (A.L.C.); (A.F.); (A.B.); (L.M.); (M.C.T.)
- FIBROSYS s.r.l., University of Salerno, 84081 Baronissi, Italy
| | - Margot De Marco
- Department of Medicine, Surgery and Dentistry “Schola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (A.L.C.); (A.F.); (A.B.); (L.M.); (M.C.T.)
- FIBROSYS s.r.l., University of Salerno, 84081 Baronissi, Italy
| | - Maria Caterina Turco
- Department of Medicine, Surgery and Dentistry “Schola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (A.L.C.); (A.F.); (A.B.); (L.M.); (M.C.T.)
- FIBROSYS s.r.l., University of Salerno, 84081 Baronissi, Italy
| | - Alessandra Rosati
- Department of Medicine, Surgery and Dentistry “Schola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (A.L.C.); (A.F.); (A.B.); (L.M.); (M.C.T.)
- FIBROSYS s.r.l., University of Salerno, 84081 Baronissi, Italy
| |
Collapse
|
15
|
Kim D, Horimatsu T, Ogbi M, Goo B, Shi H, Veerapaneni P, Chouhaita R, Moses M, Prasad R, Benson TW, Harb R, Aboud G, Seller H, Haigh S, Fulton DJ, Csányi G, Huo Y, Long X, Coffey P, Lee R, Guha A, Zeldin D, Hwang SH, Hammock BD, Weintraub NL, Kim HW. Hepatocyte-specific disruption of soluble epoxide hydrolase attenuates abdominal aortic aneurysm formation: novel role of the liver in aneurysm pathogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.10.548127. [PMID: 37503031 PMCID: PMC10369876 DOI: 10.1101/2023.07.10.548127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Introduction Inflammation is a key pathogenic feature of abdominal aortic aneurysm (AAA). Soluble epoxide hydrolase (sEH) is a pro-inflammatory enzyme that converts cytochrome P450-derived epoxides of fatty acids to the corresponding diols, and pharmacological inhibition of sEH prevented AAA formation. Both cytochrome P450 enzymes and sEH are highly expressed in the liver. Here, we investigated the role of hepatic sEH in AAA using a selective pharmacological inhibitor of sEH and hepatocyte-specific Ephx2 (which encodes sEH gene) knockout (KO) mice in two models of AAA [angiotensin II (AngII) infusion and calcium chloride (CaCl 2 ) application]. Methods and results sEH expression and activity were strikingly higher in mouse liver compared with aorta and further increased the context of AAA, in conjunction with elevated expression of the transcription factor Sp1 and the epigenetic regulator Jarid1b, which have been reported to positively regulate sEH expression. Pharmacological sEH inhibition, or liver-specific sEH disruption, achieved by crossing sEH floxed mice with albumin-cre mice, prevented AAA formation in both models, concomitant with reduced expression of hepatic sEH as well as complement factor 3 (C3) and serum amyloid A (SAA), liver-derived factors linked to AAA formation. Moreover, sEH antagonism markedly reduced C3 and SAA protein accumulation in the aortic wall. Co-incubation of liver ex vivo with aneurysm-prone aorta resulted in induction of sEH in the liver, concomitant with upregulation of Sp1, Jarid1b, C3 and SAA gene expression, suggesting that the aneurysm-prone aorta secretes factors that activate sEH and downstream inflammatory signaling in the liver. Using an unbiased proteomic approach, we identified a number of dysregulated proteins [ e.g., plastin-2, galectin-3 (gal-3), cathepsin S] released by aneurysm-prone aorta as potential candidate mediators of hepatic sEH induction. Conclusion We provide the first direct evidence of the liver's role in orchestrating AAA via the enzyme sEH. These findings not only provide novel insight into AAA pathogenesis, but they have potentially important implications with regard to developing effective medical therapies for AAA.
Collapse
|