1
|
Bartsch S, Scholz KJ, Al-Ahmad A, Cieplik F. Effects of Antimicrobial Agents Used for Dental Treatments: Impacts on the Human Oral Ecosystem and the Resistome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1472:261-275. [PMID: 40111697 DOI: 10.1007/978-3-031-79146-8_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Antimicrobial resistance (AMR) is a major public health concern, especially with regard to bacterial resistance to antibiotics. Dentists are responsible for approximately 10% of all antibiotic prescriptions. In addition, there seems to be a lack of awareness of potential resistance toward antiseptics and biocides such as chlorhexidine digluconate (CHX) or cetylpyridinium chloride (CPC), which are commonly used in dental practice but also included in over-the-counter products. In comparison to the gut microbiome, only a small number of studies have investigated the impact of antibiotics on the oral microbiome. Amoxicillin is a commonly prescribed antibiotic in dentistry, often used in combination with metronidazole. Several studies have addressed its impact on the oral microbiome. Similarly, the effects of ciprofloxacin, clindamycin, cephazolin, and benzylpenicillin have also been examined in various studies. However, due to variations in study designs, it is difficult to compare the effects of antibiotics on the oral microbiota, and conclusions can only be drawn at the phyla level. In contrast, studies on CPC and CHX have also focused on the genus level. The oral resistome mainly contains genes involved in resistance to macrolides, MLSB (macrolide, lincosamide, and streptogramin B), lincosamide and streptogramin A, fluoroquinolone, tetracycline, or penicillin. The oral cavity therefore serves as a reservoir for antibiotic resistance genes (ARGs), which are of crucial importance both for inflammations in the oral cavity and for the treatment of the entire human organism. Therefore, dentists must weigh up the benefits and risks of using antibiotics very carefully.
Collapse
Affiliation(s)
- Sibylle Bartsch
- Center for Dental Medicine, Department of Operative Dentistry and Periodontology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Konstantin J Scholz
- Center for Dental Medicine, Department of Operative Dentistry and Periodontology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Ali Al-Ahmad
- Center for Dental Medicine, Department of Operative Dentistry and Periodontology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Fabian Cieplik
- Center for Dental Medicine, Department of Operative Dentistry and Periodontology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
2
|
Abo-Kamar AM, Mustafa AERA, Al-Madboly LA. Purified α-Amylase from Bacillus cereus exhibits antibiofilm and antiquorum sensing activities against uropathogenic Escherichia coli, Downregulating fimH, and papC virulence genes: implications for urinary tract infections. BMC Microbiol 2024; 24:502. [PMID: 39604852 PMCID: PMC11600819 DOI: 10.1186/s12866-024-03542-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/23/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND AND AIM Pathogenic Escherichia coli is a known harmful microorganism that takes advantage of favorable conditions to cause various infections in healthcare settings, such as bloodstream infections related to catheters, as well as infections in the urinary and respiratory tracts. E. coli utilizes biofilm development as a means to enhance its virulence and pathogenicity. This work aims to investigate the antibiofilm activity of α-amylase enzyme against uropathogenic E. coli (UPEC) and its effect on biofilm-regulatory genes. METHODOLOGY In this study, we evaluated the antibiofilm activity of α-amylase enzyme by spectrophotometric microtiter plate analysis and confocal laser scanning microscopy. Also, the antibacterial activity of the test enzyme was evaluated by measuring the MIC and MBC levels against UPEC. The quorum-quenching activity of α-amylase enzyme was assessed using a qRT-PCR to evaluate the impact on biofilm-regulatory genes. RESULTS Based on our results, purified α-amylase showed MIC and MBC levels ranged between 128 and 512 µg /ml against UPEC isolates using broth microdilution assay. Crystal violet assay revealed MBIC of 128 µg/ml and MBEC of 256 µg/ml for the purified α-amylase. When the biofilm was analyzed by confocal laser scanning microscope, our results showed inhibition of biofilm thickness (56%) and live/dead cell percentages (43/55%). Furthermore, analysis of the effect on the expression of biofilm-encoding genes showed downregulation of both fimH and papC genes by 57 and 25%, respectively, upon treatment of UPEC with ½ of the MIC (64 µg/ml). CONCLUSIONS The results demonstrate that our purified α-amylase from B. cereus exhibits promising antibiofilm activities against UPEC at both phenotypic as well as genotypic levels. These findings suggest that this enzyme may serve as a natural effective tool for removing bacterial biofilms, potentially offering new therapeutic avenues for treating infections caused by UPEC.
Collapse
Affiliation(s)
- Amal M Abo-Kamar
- Department of Microbiology and Immunology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Abd-El-Rahman A Mustafa
- Department of Microbiology and Immunology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Lamiaa A Al-Madboly
- Department of Microbiology and Immunology, Faculty of Pharmacy, Tanta University, Tanta, Egypt.
| |
Collapse
|
3
|
Aftab R, Dodhia VH, Jeanes C, Wade RG. Bacterial sensitivity to chlorhexidine and povidone-iodine antiseptics over time: a systematic review and meta-analysis of human-derived data. Sci Rep 2023; 13:347. [PMID: 36611032 PMCID: PMC9825506 DOI: 10.1038/s41598-022-26658-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 12/19/2022] [Indexed: 01/09/2023] Open
Abstract
Surgical site infection (SSI) is the most common complication of surgery, increasing healthcare costs and hospital stay. Chlorhexidine (CHX) and povidone-iodine (PVI) are used for skin antisepsis, minimising SSIs. There is concern that resistance to topical biocides may be emergeing, although the potential clinical implications remain unclear. The objective of this systematic review was to determine whether the minimum bactericidal concentration (MBC) of topical preparations of CHX or PVI have changed over time, in microbes relevant to SSI. We included studies reporting the MBC of laboratory and clinical isolates of common microbes to CHX and PVI. We excluded studies using non-human samples and antimicrobial solvents or mixtures with other active substances. MBC was pooled in random effects meta-analyses and the change in MBC over time was explored using meta-regression. Seventy-nine studies were included, analysing 6218 microbes over 45 years. Most studies investigated CHX (93%), with insufficient data for meta-analysis of PVI. There was no change in the MBC of CHX to Staphylococci or Streptococci over time. Overall, we find no evidence of reduced susceptibility of common SSI-causing microbes to CHX over time. This provides reassurance and confidence in the worldwide guidance that CHX should remain the first-choice agent for surgical skin antisepsis.
Collapse
Affiliation(s)
- Raiyyan Aftab
- Department of Plastic Surgery, Portsmouth Hospitals NHS Trust, Portsmouth, UK
| | - Vikash H Dodhia
- Royal Hampshire County Hospital, Hampshire Hospitals Foundation Trust, Winchester, UK
| | - Christopher Jeanes
- Department of Microbiology, Norfolk and Norwich University Hospital, Norfolk, UK
| | - Ryckie G Wade
- Department of Plastic and Reconstructive Surgery, Leeds Teaching Hospitals Trust, Leeds, UK.
- Faculty of Medicine and Health Sciences, University of Leeds, Leeds, UK.
| |
Collapse
|
4
|
Li X, Wang Y, Jiang X, Zeng Y, Zhao X, Washio J, Takahashi N, Zhang L. Investigation of drug resistance of caries-related streptococci to antimicrobial peptide GH12. Front Cell Infect Microbiol 2022; 12:991938. [PMID: 36159653 PMCID: PMC9492880 DOI: 10.3389/fcimb.2022.991938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Dental caries is associated with caries-related streptococci and antimicrobial agents have been widely used for caries control, but troubled by antibiotic resistance. This study aimed to investigate the intrinsic and acquired resistance of caries-related streptococci to antimicrobial peptide GH12, which was proven promising for caries control, and preliminarily explore the phenotypic changes and whole genome of stable acquired resistant strains. In this study, susceptibility assays and resistance assays were performed, followed by stability assays of resistance, to evaluate the intrinsic resistance and the potential resistance of caries-related streptococci. Then, the phenotypic changes of the stable acquired resistant strain were explored. The whole genome of the resistant strain was sequenced and analyzed by second-generation and third-generation high-throughput sequencing technologies. Streptococcus gordonii and Streptococcus sanguinis were intrinsically resistant to GH12 compared to cariogenic Streptococcus mutans. Acquired GH12 resistance in one S. sanguinis and four S. mutans clinical strains was transient but stable in one S. mutans strain (COCC33-14). However, acquired resistance to daptomycin (DAP) and chlorhexidine in all strains was stable. Furthermore, the COCC33-14 showed cross-resistance to DAP and delayed growth rates and a lower population. However, no drug-resistant gene mutation was detected in this strain, but 6 new and 5 missing genes were found. Among them, annotation of one new gene (gene 1782|COCC33-14R) is related to the integral component of the membrane, and one missing gene rpsN is associated with the metabolism and growth of bacteria. The results indicate that stable resistant mutants of caries-related streptococci could hardly be selected by exposure to consecutive sublethal GH12, but the risk still existed. Resistance in COCC33-14R is mainly related to changes in the cell envelope.
Collapse
Affiliation(s)
- Xinwei Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Stomatology, Chengdu Second People’s Hospital, Chengdu, China
| | - Yufei Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuelian Jiang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuhao Zeng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xinran Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jumpei Washio
- Division of Oral Ecology and Biochemistry, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - Nobuhiro Takahashi
- Division of Oral Ecology and Biochemistry, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - Linglin Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Mao X, Hiergeist A, Auer DL, Scholz KJ, Muehler D, Hiller KA, Maisch T, Buchalla W, Hellwig E, Gessner A, Al-Ahmad A, Cieplik F. Ecological Effects of Daily Antiseptic Treatment on Microbial Composition of Saliva-Grown Microcosm Biofilms and Selection of Resistant Phenotypes. Front Microbiol 2022; 13:934525. [PMID: 35847089 PMCID: PMC9280182 DOI: 10.3389/fmicb.2022.934525] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 05/25/2022] [Indexed: 01/17/2023] Open
Abstract
Antiseptics are widely used in dental practice and included in numerous over-the-counter oral care products. However, the effects of routine antiseptic use on microbial composition of oral biofilms and on the emergence of resistant phenotypes remain unclear. Microcosm biofilms were inoculated from saliva samples of four donors and cultured in the Amsterdam Active Attachment biofilm model for 3 days. Then, they were treated two times daily with chlorhexidine digluconate (CHX) or cetylpyridinium chloride (CPC) for a period of 7 days. Ecological changes upon these multiple antiseptic treatments were evaluated by semiconductor-based sequencing of bacterial 16S rRNA genes and identification of amplicon sequence variants (ASVs). Furthermore, culture-based approaches were used for colony-forming units (CFU) assay, identification of antiseptic-resistant phenotypes using an agar dilution method, and evaluation of their antibiotic susceptibilities. Both CHX and CPC showed only slight effects on CFU and could not inhibit biofilm growth despite the two times daily treatment for 7 days. Both antiseptics showed significant ecological effects on the microbial compositions of the surviving microbiota, whereby CHX led to enrichment of rather caries-associated saccharolytic taxa and CPC led to enrichment of rather gingivitis-associated proteolytic taxa. Antiseptic-resistant phenotypes were isolated on antiseptic-containing agar plates, which also exhibited phenotypic resistance to various antibiotics. Our results highlight the need for further research into potential detrimental effects of antiseptics on the microbial composition of oral biofilms and on the spread of antimicrobial resistance in the context of their frequent use in oral healthcare.
Collapse
Affiliation(s)
- Xiaojun Mao
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - Andreas Hiergeist
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - David L. Auer
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - Konstantin J. Scholz
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - Denise Muehler
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - Karl-Anton Hiller
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - Tim Maisch
- Department of Dermatology, University Hospital Regensburg, Regensburg, Germany
| | - Wolfgang Buchalla
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - Elmar Hellwig
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - André Gessner
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Ali Al-Ahmad
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Fabian Cieplik
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
- *Correspondence: Fabian Cieplik,
| |
Collapse
|
6
|
Phenotypic Adaptation to Antiseptics and Effects on Biofilm Formation Capacity and Antibiotic Resistance in Clinical Isolates of Early Colonizers in Dental Plaque. Antibiotics (Basel) 2022; 11:antibiotics11050688. [PMID: 35625332 PMCID: PMC9137571 DOI: 10.3390/antibiotics11050688] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 12/19/2022] Open
Abstract
Despite the wide-spread use of antiseptics in dental practice and oral care products, there is little public awareness of potential risks associated with antiseptic resistance and potentially concomitant cross-resistance. Therefore, the aim of this study was to investigate potential phenotypic adaptation in 177 clinical isolates of early colonizers of dental plaque (Streptococcus, Actinomyces, Rothia and Veillonella spp.) upon repeated exposure to subinhibitory concentrations of chlorhexidine digluconate (CHX) or cetylpyridinium chloride (CPC) over 10 passages using a modified microdilution method. Stability of phenotypic adaptation was re-evaluated after culture in antiseptic-free nutrient broth for 24 or 72 h. Strains showing 8-fold minimal inhibitory concentration (MIC)-increase were further examined regarding their biofilm formation capacity, phenotypic antibiotic resistance and presence of antibiotic resistance genes (ARGs). Eight-fold MIC-increases to CHX were detected in four Streptococcus isolates. These strains mostly exhibited significantly increased biofilm formation capacity compared to their respective wild-type strains. Phenotypic antibiotic resistance was detected to tetracycline and erythromycin, consistent with the detected ARGs. In conclusion, this study shows that clinical isolates of early colonizers of dental plaque can phenotypically adapt toward antiseptics such as CHX upon repeated exposure. The underlying mechanisms at genomic and transcriptomic levels need to be investigated in future studies.
Collapse
|
7
|
Baena-Santillán ES, Piloni-Martini J, Rangel-Vargas E, Gómez-Aldapa CA, Sánchez-Gutiérrez M, Madrigal-Santillán EO, Castro-Rosas J. Comparison of the Antibacterial Activity and Effect on Membrane Permeability of Hibiscus Acid and a Commercial Chlorhexidine Mouthrinse Against Pathogenic Oral Bacteria and Determination of Hibiscus Acid Toxicity. J Med Food 2021; 25:324-328. [PMID: 34941430 DOI: 10.1089/jmf.2020.0207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The main aim of this study was to determine and compare the antimicrobial effect of hibiscus acid and a commercial 0.12% (w/v) chlorhexidine mouthrinse against Streptococcus mutans, Streptococcus sanguinis, Capnocytophaga gingivalis, and Staphylococcus aureus, and to determine the effect on bacterial cell membrane permeability and the toxicity of hibiscus acid in a mouse model. Hibiscus acid was obtained from acetone extract of Hibiscus sabdariffa calyces. Chlorhexidine (0.12% w/v) mouthrinse was purchased from a local pharmacy. The antimicrobial activity of hibiscus acid and mouthrinse were determined using the gel diffusion technique. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the solutions were determined using the broth dilution method. The effect on bacterial cell membrane permeability of hibiscus acid and mouthrinse was determined by crystal violet assay. The toxicity of hibiscus acid was investigated in a mouse model (registration number: UAEH2019-A1-S-8288). Hibiscus acid and mouthrinse showed antibacterial activity against all oral pathogenic bacteria. However, hibiscus acid showed a lower antibacterial effect compared with chlorhexidine mouthrinse. The MIC and MBC for hibiscus acid were 3 and 5 mg/mL, respectively, and was between 30 and 50 μg/mL for mouthrinse. The crystal violet test results indicate that hibiscus acid and mouthrinse alter the permeability of the bacterial membrane. Finally, hibiscus acid did not show toxicity in mouse studies.
Collapse
Affiliation(s)
- Elena S Baena-Santillán
- Institute of Agricultural Sciences, Rancho Universitario, Autonomous University of the Hidalgo State (UAEH), Tulancingo, Mexico.,Institute of Basic Sciences and Engineering, UAEH, City of Knowledge, Hidalgo, Mexico
| | - Javier Piloni-Martini
- Institute of Agricultural Sciences, Rancho Universitario, Autonomous University of the Hidalgo State (UAEH), Tulancingo, Mexico
| | | | - Carlos A Gómez-Aldapa
- Institute of Basic Sciences and Engineering, UAEH, City of Knowledge, Hidalgo, Mexico
| | | | | | - Javier Castro-Rosas
- Institute of Basic Sciences and Engineering, UAEH, City of Knowledge, Hidalgo, Mexico
| |
Collapse
|
8
|
Schwenker JA, Schotte U, Hölzel CS. Minimum inhibitory concentrations of chlorhexidine- and lactic acid-based teat disinfectants: An intervention trial assessing bacterial selection and susceptibility. J Dairy Sci 2021; 105:734-747. [PMID: 34756445 DOI: 10.3168/jds.2021-20824] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/09/2021] [Indexed: 11/19/2022]
Abstract
Teat disinfection is a recommended preventive tool to improve udder health and to prevent new intramammary infections. However, side effects are discussed, such as bacterial selection of less-susceptible bacteria with the application of certain teat disinfectants. The objective of this study was to assess the species composition and bacterial in vitro susceptibility by means of an interventive trial. For this purpose, 3 different postmilking teat treatments (disinfection with 0.215% chlorhexidine or 3.5% lactic acid, or control group with no dipping) were applied to 28 cows in a 6-d intervention approach using a split-udder design. Milk samples were taken before and after intervention. Bacteria were cultured and differentiated to species or genus level by MALDI-TOF mass spectrometry. Minimum inhibitory concentrations (MIC) were determined, and MIC changes over time were recorded. Susceptibilities to chlorhexidine and lactic acid were compared between species of the genera Staphylococcus, Streptococcus, Corynebacterium, and others. Species composition changed during the intervention. Under the treatment of chlorhexidine and lactic acid, the proportion of coagulase-negative staphylococci (CNS) decreased. An increased proportion of species belonging to the genus Corynebacterium was observed especially under the application of lactic acid. Although both teat disinfectants were basically effective, isolates differed in their susceptibility to both teat disinfectants. Populations of CNS, Staphylococcus aureus, and Corynebacterium spp. showed significantly lower absolute MIC values for chlorhexidine. Compared with other species, Corynebacterium spp. showed the lowest susceptibility for chlorhexidine as well as for lactic acid. A significant increase in MIC values after 6 d of intervention was observed with the lactic acid treatment in all isolates, as well as in CNS. This increase can be interpreted as either adaptation of isolates or displacement of more-susceptible species by less-susceptible species. Further studies using long-term intervention might reveal more pronounced effects on MIC values and species composition.
Collapse
Affiliation(s)
- J A Schwenker
- Department for Animal Hygiene and Animal Health, Institute of Animal Breeding and Husbandry, Christian-Albrechts-University Kiel, 24098 Kiel, Germany.
| | - U Schotte
- Department A-Veterinary Medicine, Central Institute of the Bundeswehr Medical Service Kiel, 24119 Kronshagen, Germany
| | - C S Hölzel
- Department for Animal Hygiene and Animal Health, Institute of Animal Breeding and Husbandry, Christian-Albrechts-University Kiel, 24098 Kiel, Germany
| |
Collapse
|
9
|
Liu N, Li X, Wang M, Zhang F, Wang C, Zhang K, Wang H, Xu S, Hu W, Gu L. DexA70, the Truncated Form of a Self-Produced Dextranase, Effectively Disrupts Streptococcus mutans Biofilm. Front Microbiol 2021; 12:737458. [PMID: 34650538 PMCID: PMC8505985 DOI: 10.3389/fmicb.2021.737458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/30/2021] [Indexed: 11/30/2022] Open
Abstract
Billions of people suffer from dental caries every year in spite of the effort to reduce the prevalence over the past few decades. Streptococcus mutans is the leading member of a specific group of cariogenic bacteria that cause dental caries. S. mutans forms biofilm, which is highly resistant to harsh environment, host immunity, and antimicrobial treatments. In this study, we found that S. mutans biofilm is highly resistant to both antimicrobial agents and lysozyme. DexA70, the truncated form of DexA (amino acids 100–732), a dextranase in S. mutans, prevents S. mutans biofilm formation and disassembles existing biofilms within minutes at nanomolar concentrations when supplied exogenously. DexA70 treatment markedly enhances biofilm sensitivity to antimicrobial agents and lysozyme, indicating its great potential in combating biofilm-related dental caries.
Collapse
Affiliation(s)
- Nan Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xin Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Maofeng Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Fengyu Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Chuandong Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Kundi Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Hongwei Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Sujuan Xu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Wei Hu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Lichuan Gu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
10
|
Asahara E, Abe Y, Nakamori K, Okazaki Y, Makita Y, Hasebe A, Tsuga K, Yokoyama A. Controlled release, antimicrobial activity, and oral mucosa irritation of cetylpyridinium chloride-montmorillonite incorporated in a tissue conditioner. Dent Mater J 2021; 41:142-149. [PMID: 34556596 DOI: 10.4012/dmj.2021-155] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study examined the controlled release of cetylpyridinium chloride (CPC) from a tissue conditioner (TC) containing CPC-montmorillonite (CPC-Mont), the associated antimicrobial activity, and oral mucosa irritation. The CPC release test was performed daily for 28 days in three test solutions: distilled water, 0.2 M NaCl, and 0.2 M HCl. The antimicrobial activities for 7, 14, 21, and 28 days against Candida albicans, Staphylococcus aureus, and Streptococcus mutans were assessed according to the JIS Z 2801/ISO 22196 standard. An oral mucosa irritation test was conducted using cheek pouches in five male hamsters according to the ISO 10993-10:2010 standard. The amount of CPC released each day and the cumulative amount released over 28 days (6.12 mg) were less than the daily safe maximum of sore throat medicines (8 mg). Additionally, TC with CPC-Mont could sustain antimicrobial activity against adherent bacteria for 14 days and has no oral mucosa irritation potential.
Collapse
Affiliation(s)
- Erika Asahara
- Department of Advanced Prosthodontics, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Yasuhiko Abe
- Department of Advanced Prosthodontics, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Kiichi Nakamori
- Department of Advanced Prosthodontics, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Yohei Okazaki
- Department of Advanced Prosthodontics, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Yoji Makita
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Akira Hasebe
- Oral Molecular Microbiology, Department of Oral Pathobiological Science, Faculty and Graduate School of Dental Medicine, Hokkaido University
| | - Kazuhiro Tsuga
- Department of Advanced Prosthodontics, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Atsuro Yokoyama
- Oral Functional Prosthodontics, Department of Oral Functional Science, Faculty and Graduate School of Dental Medicine, Hokkaido University
| |
Collapse
|
11
|
Wolfoviz-Zilberman A, Kraitman R, Hazan R, Friedman M, Houri-Haddad Y, Beyth N. Phage Targeting Streptococcus mutans In Vitro and In Vivo as a Caries-Preventive Modality. Antibiotics (Basel) 2021; 10:antibiotics10081015. [PMID: 34439064 PMCID: PMC8389033 DOI: 10.3390/antibiotics10081015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 12/20/2022] Open
Abstract
Dental caries is a common infectious disease worldwide. Current conventional therapies lack specific antimicrobial effects against Streptococcus mutans, a key bacterium that induces caries. A promising alternative approach is bacteriophage (phage) therapy. Recently, SMHBZ8 phage targeting S. mutans was isolated and characterized. The aim of this study was to evaluate the caries-prevention efficacy of SMHBZ8 using in vitro and in vivo caries models. Hemi-mandibles dissected from euthanized healthy mice were subjected to caries-promoting conditions in vitro. Jaws treated with phage therapy in suspension and in formulation with a sustained-release delivery system showed no carious lesions, similar to control and chlorhexidine-treated jaws. Subsequently, SMHBZ8 phage suspension also prevented carious lesion development in a murine caries model in vivo. In both models, caries lesions were analyzed clinically and radiographically by µCT scans. This study shows how SMHBZ8 phage therapy targeting S. mutans can serve as an efficient caries-prevention modality, in suspension or with a sustained-release delivery system, by in vitro and in vivo mouse models.
Collapse
Affiliation(s)
- Amit Wolfoviz-Zilberman
- Department of Prosthodontics, Hadassah Medical Center, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (A.W.-Z.); (R.K.); (Y.H.-H.)
- Institute of Biomedical and Oral Research (IBOR), Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem 9112001, Israel;
| | - Reut Kraitman
- Department of Prosthodontics, Hadassah Medical Center, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (A.W.-Z.); (R.K.); (Y.H.-H.)
- Institute of Biomedical and Oral Research (IBOR), Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem 9112001, Israel;
| | - Ronen Hazan
- Institute of Biomedical and Oral Research (IBOR), Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem 9112001, Israel;
| | - Michael Friedman
- Department of Pharmaceutics, The Institute for Drug Research, Faculty of Medicine, The Hebrew University, Jerusalem 91120, Israel;
| | - Yael Houri-Haddad
- Department of Prosthodontics, Hadassah Medical Center, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (A.W.-Z.); (R.K.); (Y.H.-H.)
| | - Nurit Beyth
- Department of Prosthodontics, Hadassah Medical Center, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (A.W.-Z.); (R.K.); (Y.H.-H.)
- Correspondence:
| |
Collapse
|
12
|
Neves JG, Marcato PD, de Paula E Silva FWG, Mantovani CPT, Prado HS, Aires CP, Massaro TNC, Borsato MC. Synthesis and characterization of an experimental primer containing chitosan nanoparticles - Effect on the inactivation of metalloproteinases, antimicrobial activity and adhesive strength. Arch Oral Biol 2021; 127:105148. [PMID: 34022546 DOI: 10.1016/j.archoralbio.2021.105148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE The aim of this study was to synthesize and characterize an experimental primer containing cationic lipid nanoparticles (NPL-chitosan) and to evaluate its properties. DESIGN The NPL-chitosan were synthesized by emulsion and sonication method. The experimental primers were applied in dentin surface of fifty human molars. The experimental groups were: 1) application of commercial primer; 2) Primer containing 2% of Chlorhexidine (CHX) 3); Primer with 2% NPL-chitosan 4); Primer with 0.6 % of NPL-chitosan 5); Primer with 0.4 % of NPL-chitosan. A composite resin plateau was used for the analysis, where sections were made for making the dentin beams. The effect of experimental primer with cationic nanoparticles in the inhibition of matrix metalloproteinase (MMP) activity was carrying out by in situ zymography. For the Resin-Dentin Adhesive Strength and in situ Zymography analysis, was used the One-way analysis of variance (ANOVA) with significance level of 95 %. RESULTS Spherical NPL-chitosan presented size below 220 nm, polydispersity index of 0.179 and zeta potential positive and was stable over 75 days. These nanoparticles showed antibacterial activity agsainst S. mutans with MIC of the 0.4 % and MBC of 0.67 %. In the Microtensile Strength, no statistical difference was observed between the experimental groups (p = 0.9054). The in situ zymography assay showed that the group with 2% of NPL-chitosan presented higher inactivation activity of MMPs compared to the other groups (p < 0.05). CONCLUSION The experimental primer containing NPL-chitosan has antimicrobial activity, does not alter the adhesive resistance and inactivates MMPs present in dentin.
Collapse
Affiliation(s)
- J G Neves
- University of Campinas (Unicamp), Piracicaba Dental School, Department of Restorative Dentistry- Dental Materials Division, Av. Limeira, 901 - Areião, Piracicaba, 13414-903, Brazil.
| | - P D Marcato
- University of São Paulo (USP), School of Pharmaceutical Sciences, Ribeirão Preto Av. Café s/n., Ribeirão Preto, SP, Cep 14040-904, Brazil
| | - F W G de Paula E Silva
- University of São Paulo (USP), School of Dentistry, Ribeirão Preto, Department of Pediatric Dentistry, Av. Café s/n., Ribeirão Preto, SP, Cep 14040-904, Brazil
| | - C P T Mantovani
- University of São Paulo (USP), School of Dentistry, Ribeirão Preto, Department of Pediatric Dentistry, Av. Café s/n., Ribeirão Preto, SP, Cep 14040-904, Brazil
| | - H S Prado
- University of São Paulo (USP), School of Dentistry, Ribeirão Preto, Department of Restorative Dentistry, Av. Café s/n., Ribeirão Preto, SP, Cep 14040-904, Brazil
| | - C P Aires
- University of São Paulo (USP), School of Pharmaceutical Sciences, Ribeirão Preto Av. Café s/n., Ribeirão Preto, SP, Cep 14040-904, Brazil
| | - T N C Massaro
- University of São Paulo (USP), School of Pharmaceutical Sciences, Ribeirão Preto Av. Café s/n., Ribeirão Preto, SP, Cep 14040-904, Brazil
| | - M C Borsato
- University of São Paulo (USP), School of Dentistry, Ribeirão Preto, Department of Pediatric Dentistry, Av. Café s/n., Ribeirão Preto, SP, Cep 14040-904, Brazil
| |
Collapse
|
13
|
Dimou I, Dritsas S, Aggelopoulou P, Vassilatou K, Damianaki S, Giaouris E. Development of a herbal mouthwash containing a mixture of essential oils and plant extracts and in vitro testing of its antimicrobial efficiency against the planktonic and biofilm-enclosed cariogenic bacterium Streptococcus mutans. BIOFOULING 2021; 37:397-409. [PMID: 34027763 DOI: 10.1080/08927014.2021.1924693] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
A herbal mouthwash containing essential oils of holy basil and mountain tea, extracts of St John's wort and European goldenrod (Bucovia™) and cetylpyridinium chloride, was developed and in vitro tested for its efficiency against biofilm formation by Streptococcus mutans, together with its eradicating activity against already preformed (48 h with saccharose) streptococcal biofilm. The minimum inhibitory (MIC) and bactericidal concentrations (MBC) of the final formulation, as well as of its individual components, were initially determined. The results revealed that the mouthwash needed to be applied at two-times its MIC (0.63% v.v-1) to completely inhibit biofilm formation by S. mutans, which was otherwise capable of developing a robust biofilm on the tested surface. Once fully developed, the matrix of the biofilm was found to contain a significant amount of exopolysaccharides protecting the cells, being impossible to eradicate even when exposed to pure mouthwash for 15 min, highlighting the great recalcitrance of biofilm-embedded S. mutans.
Collapse
Affiliation(s)
- Ioanna Dimou
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Myrina, Lemnos, Greece
| | - Stavros Dritsas
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Myrina, Lemnos, Greece
| | - Paraskevi Aggelopoulou
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Myrina, Lemnos, Greece
- The NuCLab, Nutrition and Cosmetics R&D Laboratory, Athens, Greece
| | | | | | - Efstathios Giaouris
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Myrina, Lemnos, Greece
| |
Collapse
|
14
|
Göstemeyer G, Woike H, Paris S, Schwendicke F, Schlafer S. Root Caries Preventive Effect of Varnishes Containing Fluoride or Fluoride + Chlorhexidine/Cetylpyridinium Chloride In Vitro. Microorganisms 2021; 9:microorganisms9040737. [PMID: 33916105 PMCID: PMC8065905 DOI: 10.3390/microorganisms9040737] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/08/2021] [Accepted: 03/31/2021] [Indexed: 11/23/2022] Open
Abstract
Caries preventive varnishes containing only fluoride might differ from those containing a combination of fluoride and antimicrobial components in terms of mineralization properties and their impact on the cariogenic biofilm. We compared a fluoride and a fluoride + chlorhexidine (CHX)/cetylpyridinium chloride (CPC) varnish on root caries formation in vitro. One hundred bovine root dentin samples were allocated to five groups (n = 20/group): (1) 7700 ppm fluoride varnish (Fluorprotector S (F)), (2) experimental placebo varnish for F (F-P), (3) 1400 ppm fluoride + 0.3% CHX/0.5% CPC varnish (Cervitec F (CF)), (4) experimental placebo varnish for CF (CF-P), (5) untreated control. Cariogenic challenge was provided using a multi-station, continuous-culture 3-species (Streptococcus mutans (SM), Lactobacillus rhamnosus (LR), Actinomyces naeslundii (AN)) biofilm model for 10 days. Mineral loss (ΔZ) was evaluated using transversal microradiography and bacterial counts in the biofilm assessed as colony-forming units. Fluorescence in situ hybridization (FISH) and confocal microscopy were performed to assess the three-dimensional biofilm architecture. Mean ± SD (vol% × μm) ΔZ was significantly lower for F (9133 ± 758) and CF (9835 ± 1677) compared to control (11362 ± 919) (p < 0.05), without significant differences between F and CF. SM counts were significantly lower and LR counts significantly higher in F- and CF-biofilms compared to control. AN counts were significantly higher in the F-biofilms than in all other groups. According to FISH, SM and LR invaded dentinal tubules only in the control-group. In the CF-group, the basal biofilm layer did not contain SM and AN. Both F and CF varnishes had similar caries-preventive effects and a considerable impact on biofilm structure and composition.
Collapse
Affiliation(s)
- Gerd Göstemeyer
- Department of Operative and Preventive Dentistry, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Aßmannshauser Straße 4-6, 14197 Berlin, Germany; (H.W.); (S.P.)
- Correspondence: ; Tel.: +49-30-450-562-328
| | - Helen Woike
- Department of Operative and Preventive Dentistry, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Aßmannshauser Straße 4-6, 14197 Berlin, Germany; (H.W.); (S.P.)
| | - Sebastian Paris
- Department of Operative and Preventive Dentistry, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Aßmannshauser Straße 4-6, 14197 Berlin, Germany; (H.W.); (S.P.)
| | - Falk Schwendicke
- Department of Oral Diagnostics, Digital Health and Health Services Research, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Aßmannshauser Straße 4-6, 14197 Berlin, Germany;
| | - Sebastian Schlafer
- Section for Oral Ecology and Caries Control, Department of Dentistry and Oral Health, Aarhus University, Vennelyst Boulevard 9, 8000 Aarhus C, Denmark;
| |
Collapse
|
15
|
Cetylpyridinium Chloride: Mechanism of Action, Antimicrobial Efficacy in Biofilms, and Potential Risks of Resistance. Antimicrob Agents Chemother 2020; 64:AAC.00576-20. [PMID: 32513792 DOI: 10.1128/aac.00576-20] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Antimicrobial resistance is a serious issue for public health care all over the world. While resistance toward antibiotics has attracted strong interest among researchers and the general public over the last 2 decades, the directly related problem of resistance toward antiseptics and biocides has been somewhat left untended. In the field of dentistry, antiseptics are routinely used in professional care, but they are also included in lots of oral care products such as mouthwashes or dentifrices, which are easily available for consumers over-the-counter. Despite this fact, there is little awareness among the dental community about potential risks of the widespread, unreflected, and potentially even needless use of antiseptics in oral care. Cetylpyridinium chloride (CPC), a quaternary ammonium compound, which was first described in 1939, is one of the most commonly used antiseptics in oral care products and included in a wide range of over-the-counter products such as mouthwashes and dentifrices. The aim of the present review is to summarize the current literature on CPC, particularly focusing on its mechanism of action, its antimicrobial efficacy toward biofilms, and on potential risks of resistance toward this antiseptic as well as underlying mechanisms. Furthermore, this work aims to raise awareness among the dental community about the risk of resistance toward antiseptics in general.
Collapse
|