1
|
Yadem AC, Armstrong JN, Sarimollaoglu M, Kiki Massa C, Ndifo JM, Menyaev YA, Mbe A, Richards K, Wade M, Zeng Y, Chen R, Zhou Q, Meten E, Ntone R, Tchuedji YLGN, Ullah S, Galanzha EI, Eteki L, Gonsu HK, Biris A, Suen JY, Boum Y, Zharov VP, Parikh S. Noninvasive in vivo photoacoustic detection of malaria with Cytophone in Cameroon. Nat Commun 2024; 15:9228. [PMID: 39455558 PMCID: PMC11511992 DOI: 10.1038/s41467-024-53243-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Current malaria diagnostics are invasive, lack sensitivity, and rapid tests are plagued by deletions in target antigens. Here we introduce the Cytophone, an innovative photoacoustic flow cytometer platform with high-pulse-rate lasers and a focused ultrasound transducer array to noninvasively detect and identify malaria-infected red blood cells (iRBCs) using specific wave shapes, widths, and time delays generated from the absorbance of laser energy by hemozoin, a universal biomarker of malaria infection. In a population of Cameroonian adults with uncomplicated malaria, we assess our device for safety in a cross-sectional cohort (n = 10) and conduct a performance assessment in a longitudinal cohort (n = 20) followed for 30 ± 7 days after clearance of parasitemia. Longitudinal cytophone measurements are compared to point-of-care and molecular assays (n = 94). Cytophone is safe with 90% sensitivity, 69% specificity, and a receiver-operator-curve-area-under-the-curve (ROC-AUC) of 0.84, as compared to microscopy. ROC-AUCs of Cytophone, microscopy, and RDT compared to quantitative PCR are not statistically different from one another. The ability to noninvasively detect iRBCs in the bloodstream is a major advancement which offers the potential to rapidly identify both the large asymptomatic reservoir of infection, as well as diagnose symptomatic cases without the need for a blood sample.
Collapse
Affiliation(s)
| | | | - Mustafa Sarimollaoglu
- CytoAstra, LLC, Bioventures/UAMS, Little Rock, AR, USA
- Department of Otolaryngology - Head and Neck Surgery, Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, USA
| | | | | | - Yulian A Menyaev
- CytoAstra, LLC, Bioventures/UAMS, Little Rock, AR, USA
- Department of Otolaryngology - Head and Neck Surgery, Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, USA
| | - Anastasie Mbe
- Epicentre, Yaoundé, Cameroon
- University of Yaoundé I, Yaoundé, Cameroon
| | | | - Martina Wade
- Yale School of Public Health, New Haven, CT, USA
| | - Yushun Zeng
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
- Department of Ophthalmology, University of Southern California, Los Angeles, CA, USA
| | - Ruimin Chen
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
- Department of Ophthalmology, University of Southern California, Los Angeles, CA, USA
| | - Qifa Zhou
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
- Department of Ophthalmology, University of Southern California, Los Angeles, CA, USA
| | - Elvis Meten
- Epicentre, Yaoundé, Cameroon
- University of Yaoundé I, Yaoundé, Cameroon
| | | | | | - Safi Ullah
- CytoAstra, LLC, Bioventures/UAMS, Little Rock, AR, USA
| | - Ekaterina I Galanzha
- CytoAstra, LLC, Bioventures/UAMS, Little Rock, AR, USA
- Department of Otolaryngology - Head and Neck Surgery, Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, USA
| | | | | | - Alexandru Biris
- Department of Applied Science & Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock (UALR), Little Rock, AR, USA
| | - James Y Suen
- CytoAstra, LLC, Bioventures/UAMS, Little Rock, AR, USA
- Department of Applied Science & Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock (UALR), Little Rock, AR, USA
| | - Yap Boum
- Epicentre, Yaoundé, Cameroon
- University of Yaoundé I, Yaoundé, Cameroon
| | - Vladimir P Zharov
- CytoAstra, LLC, Bioventures/UAMS, Little Rock, AR, USA.
- Department of Otolaryngology - Head and Neck Surgery, Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, USA.
| | - Sunil Parikh
- Yale School of Public Health, New Haven, CT, USA.
| |
Collapse
|
2
|
Goodwin J, Kajubi R, Wang K, Li F, Wade M, Orukan F, Huang L, Whalen M, Aweeka FT, Mwebaza N, Parikh S. Persistent and multiclonal malaria parasite dynamics despite extended artemether-lumefantrine treatment in children. Nat Commun 2024; 15:3817. [PMID: 38714692 PMCID: PMC11076639 DOI: 10.1038/s41467-024-48210-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 04/24/2024] [Indexed: 05/10/2024] Open
Abstract
Standard diagnostics used in longitudinal antimalarial studies are unable to characterize the complexity of submicroscopic parasite dynamics, particularly in high transmission settings. We use molecular markers and amplicon sequencing to characterize post-treatment stage-specific malaria parasite dynamics during a 42 day randomized trial of 3- versus 5 day artemether-lumefantrine in 303 children with and without HIV (ClinicalTrials.gov number NCT03453840). The prevalence of parasite-derived 18S rRNA is >70% in children throughout follow-up, and the ring-stage marker SBP1 is detectable in over 15% of children on day 14 despite effective treatment. We find that the extended regimen significantly lowers the risk of recurrent ring-stage parasitemia compared to the standard 3 day regimen, and that higher day 7 lumefantrine concentrations decrease the probability of ring-stage parasites in the early post-treatment period. Longitudinal amplicon sequencing reveals remarkably dynamic patterns of multiclonal infections that include new and persistent clones in both the early post-treatment and later time periods. Our data indicate that post-treatment parasite dynamics are highly complex despite efficacious therapy, findings that will inform strategies to optimize regimens in the face of emerging partial artemisinin resistance in Africa.
Collapse
Affiliation(s)
- Justin Goodwin
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Yale School of Medicine, New Haven, CT, USA
| | - Richard Kajubi
- Infectious Disease Research Collaboration, Kampala, Uganda
| | - Kaicheng Wang
- Yale Center for Analytical Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Fangyong Li
- Yale Center for Analytical Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Martina Wade
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Francis Orukan
- Infectious Disease Research Collaboration, Kampala, Uganda
| | - Liusheng Huang
- University of California, San Francisco, San Francisco, CA, USA
| | - Meghan Whalen
- University of California, San Francisco, San Francisco, CA, USA
| | | | - Norah Mwebaza
- Infectious Disease Research Collaboration, Kampala, Uganda
- Department of Pharmacology and Therapeutics, Makerere University College of Health Sciences, Kampala, Uganda
| | - Sunil Parikh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA.
- Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
3
|
Chavtur C, Staubus WJ, Ho M, Hergott DEB, Seilie AM, Healy S, Duffy P, Jackson L, Talley A, Kappe SHI, Hoffman SL, Richie TL, Kublin JG, Chang M, Murphy SC. Plasmodium 18S Ribosomal RNA Biomarker Clearance After Food and Drug Administration-Approved Antimalarial Treatment in Controlled Human Malaria Infection Trials. Open Forum Infect Dis 2023; 10:ofad202. [PMID: 37265668 PMCID: PMC10230565 DOI: 10.1093/ofid/ofad202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/12/2023] [Indexed: 06/03/2023] Open
Abstract
Background Sensitive molecular assays, such as quantitative reverse-transcription polymerase chain reaction (qRT-PCR) of Plasmodium 18S ribosomal RNA (rRNA), are increasingly the primary method of detecting infections in controlled human malaria infection (CHMI) trials. However, thick blood smears (TBSs) remain the main method for confirming clearance of parasites after curative treatment, in part owing to uncertainty regarding biomarker clearance rates. Methods For this analysis, 18S rRNA qRT-PCR data were compiled from 127 Plasmodium falciparum-infected participants treated with chloroquine or atovaquone-proguanil in 6 CHMI studies conducted in Seattle, Washington, over the past decade. A survival analysis approach was used to compare biomarker and TBS clearance times among studies. The effect of the parasite density at which treatment was initiated on clearance time was estimated using linear regression. Results The median time to biomarker clearance was 3 days (interquartile range, 3-5 days), while the median time to TBS clearance was 1 day (1-2 days). Time to biomarker clearance increased with the parasite density at which treatment was initiated. Parasite density did not have a significant effect on TBS clearance. Conclusions The Plasmodium 18S rRNA biomarker clears quickly and can be relied on to confirm the adequacy of Food and Drug Administration-approved treatments in CHMI studies at nonendemic sites.
Collapse
Affiliation(s)
- Chris Chavtur
- Malaria Molecular Diagnostic Laboratory, Department of Laboratory Medicine and Pathology and Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, Washington, USA
| | - Weston J Staubus
- Malaria Molecular Diagnostic Laboratory, Department of Laboratory Medicine and Pathology and Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, Washington, USA
| | - Mabel Ho
- Malaria Molecular Diagnostic Laboratory, Department of Laboratory Medicine and Pathology and Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, Washington, USA
| | - Dianna E B Hergott
- Malaria Molecular Diagnostic Laboratory, Department of Laboratory Medicine and Pathology and Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, Washington, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington, USA
| | - Annette M Seilie
- Malaria Molecular Diagnostic Laboratory, Department of Laboratory Medicine and Pathology and Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, Washington, USA
| | - Sara Healy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Patrick Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Lisa Jackson
- Kaiser Permanente Washington Health Research Institute, Seattle, Washington, USA
| | | | - Stefan H I Kappe
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | | | | | - James G Kublin
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Seattle Malaria Clinical Trials Center, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Ming Chang
- Malaria Molecular Diagnostic Laboratory, Department of Laboratory Medicine and Pathology and Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, Washington, USA
| | - Sean C Murphy
- Malaria Molecular Diagnostic Laboratory, Department of Laboratory Medicine and Pathology and Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, Washington, USA
- Seattle Malaria Clinical Trials Center, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Microbiology, University of Washington, Seattle, Washington, USA
- Department of Laboratories, Seattle Children's Hospital, Seattle, Washington, USA
| |
Collapse
|
4
|
Xiang Z, Li D, Wang S, Shen T, He W, Li M, Zeng W, Chen X, Wu Y, Cui L, Yang Z. A simple alkali lysis method for Plasmodium falciparum DNA extraction from filter paper blood samples. Mol Biochem Parasitol 2023; 254:111557. [PMID: 36822514 DOI: 10.1016/j.molbiopara.2023.111557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023]
Abstract
A fast, simple, easy, efficient, and inexpensive method for DNA extraction from malaria parasites collected on filter paper would be very useful for molecular surveillance. The quality and quantity of DNA are critical to molecular diagnosis and analysis. Here, we developed a simple alkali lysis method for DNA extraction from blood samples on filter paper. The results showed that 10-50 mM NaOH and deionized water all effectively isolated parasite DNA at higher parasitemia, as witnessed by successful PCR amplification, while at a parasitemia of 0.01%, the 10 mM NaOH lysis condition generated the best results. Furthermore, DNA extracted by this method was successfully used to amplify a fragment of > 2000 bp. This method successfully extracted DNA from 1 µl of blood at a parasitemia as low as 0.0001% (equivalent to 5 parasites /µl). The DNA isolated by the 10 mM NaOH lysis method was stable to yield PCR products after storage at 4 °C or - 20 °C for 12 months. These results indicate that this alkali lysis method is simple, effective, sensitive, and inexpensive for isolating stable Plasmodium DNA from dried blood spots on filter paper.
Collapse
Affiliation(s)
- Zheng Xiang
- Department of Pathogen Biology and Immunology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, Yunnan, China.
| | - Danlin Li
- Department of Pathogen Biology and Immunology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Siqi Wang
- Department of Pathogen Biology and Immunology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Ting Shen
- Department of Pathogen Biology and Immunology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Wen He
- Department of Pathogen Biology and Immunology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Mier Li
- Department of Pathogen Biology and Immunology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Weilin Zeng
- Department of Pathogen Biology and Immunology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Xi Chen
- Department of Pathogen Biology and Immunology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Yanrui Wu
- Department of Cell Biology & Genetics, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Liwang Cui
- Department of Internal Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Zhaoqing Yang
- Department of Pathogen Biology and Immunology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, Yunnan, China.
| |
Collapse
|
5
|
Owalla TJ, Hergott DEB, Seilie AM, Staubus W, Chavtur C, Chang M, Kublin JG, Egwang TG, Murphy SC. Rethinking detection of pre-existing and intervening Plasmodium infections in malaria clinical trials. Front Immunol 2022; 13:1003452. [PMID: 36203582 PMCID: PMC9531235 DOI: 10.3389/fimmu.2022.1003452] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/22/2022] [Indexed: 02/02/2023] Open
Abstract
Pre-existing and intervening low-density Plasmodium infections complicate the conduct of malaria clinical trials. These infections confound infection detection endpoints, and their immunological effects may detract from intended vaccine-induced immune responses. Historically, these infections were often unrecognized since infrequent and often analytically insensitive parasitological testing was performed before and during trials. Molecular diagnostics now permits their detection, but investigators must weigh the cost, complexity, and personnel demands on the study and the laboratory when scheduling such tests. This paper discusses the effect of pre-existing and intervening, low-density Plasmodium infections on malaria vaccine trial endpoints and the current methods employed for their infection detection. We review detection techniques, that until recently, provided a dearth of cost-effective strategies for detecting low density infections. A recently deployed, field-tested, simple, and cost-effective molecular diagnostic strategy for detecting pre-existing and intervening Plasmodium infections from dried blood spots (DBS) in malaria-endemic settings is discussed to inform new clinical trial designs. Strategies that combine sensitive molecular diagnostic techniques with convenient DBS collections and cost-effective pooling strategies may enable more thorough and informative infection monitoring in upcoming malaria clinical trials and epidemiological studies.
Collapse
Affiliation(s)
- Tonny J. Owalla
- Department of Immunology and Parasitology, Med Biotech Laboratories, Kampala, Uganda
| | - Dianna E. B. Hergott
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States,Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, United States
| | - Annette M. Seilie
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States,Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA, United States
| | - Weston Staubus
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States,Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA, United States
| | - Chris Chavtur
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States,Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA, United States
| | - Ming Chang
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States,Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA, United States
| | - James G. Kublin
- Department of Global Health, University of Washington, Seattle, WA, United States,Seattle Malaria Clinical Trials Center, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Thomas G. Egwang
- Department of Immunology and Parasitology, Med Biotech Laboratories, Kampala, Uganda
| | - Sean C. Murphy
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States,Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA, United States,Seattle Malaria Clinical Trials Center, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States,Department of Microbiology, University of Washington, Seattle, WA, United States,*Correspondence: Sean C. Murphy,
| |
Collapse
|
6
|
Amin J, Sharif M, Mallah GA, Fernandes SL. An optimized features selection approach based on Manta Ray Foraging Optimization (MRFO) method for parasite malaria classification. Front Public Health 2022; 10:969268. [PMID: 36148344 PMCID: PMC9486170 DOI: 10.3389/fpubh.2022.969268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/03/2022] [Indexed: 01/25/2023] Open
Abstract
Malaria is a serious and lethal disease that has been reported by the World Health Organization (WHO), with an estimated 219 million new cases and 435,000 deaths globally. The most frequent malaria detection method relies mainly on the specialists who examine the samples under a microscope. Therefore, a computerized malaria diagnosis system is required. In this article, malaria cell segmentation and classification methods are proposed. The malaria cells are segmented using a color-based k-mean clustering approach on the selected number of clusters. After segmentation, deep features are extracted using pre-trained models such as efficient-net-b0 and shuffle-net, and the best features are selected using the Manta-Ray Foraging Optimization (MRFO) method. Two experiments are performed for classification using 10-fold cross-validation, the first experiment is based on the best features selected from the pre-trained models individually, while the second experiment is performed based on the selection of best features from the fusion of extracted features using both pre-trained models. The proposed method provided an accuracy of 99.2% for classification using the linear kernel of the SVM classifier. An empirical study demonstrates that the fused features vector results are better as compared to the individual best-selected features vector and the existing latest methods published so far.
Collapse
Affiliation(s)
- Javeria Amin
- Department of Computer Science, University of Wah, Wah Cantt, Pakistan,*Correspondence: Javeria Amin
| | - Muhammad Sharif
- Department of Computer Science, COMSATS University Islamabad, Islamabad, Pakistan
| | - Ghulam Ali Mallah
- Department of Computer Science, Shah Abdul Latif University, Khairpur, Pakistan
| | - Steven L. Fernandes
- Department of Computer Science, Design and Journalism, Creighton University, Omaha, NE, United States
| |
Collapse
|
7
|
Suryapranata FS, Overbosch FW, Matser A, Grobusch MP, McCall MB, van Rijckevorsel GG, Prins M, Sonder GJ. Malaria in long-term travelers: Infection risks and adherence to preventive measures – A prospective cohort study. Travel Med Infect Dis 2022; 49:102406. [DOI: 10.1016/j.tmaid.2022.102406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/07/2022] [Accepted: 07/25/2022] [Indexed: 11/27/2022]
|
8
|
Saidi Q, Minja D, Njau J, Hansson H, Kavishe R, Alifrangis M. Ultrasensitive qPCR-Based Detection of Plasmodium falciparum in Pregnant Women Using Dried Blood or Whole Blood Pellet Samples Processed through Different DNA Extraction Methods. Am J Trop Med Hyg 2022; 106:846-849. [PMID: 34872057 PMCID: PMC8922499 DOI: 10.4269/ajtmh.21-0496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 10/23/2021] [Indexed: 11/07/2022] Open
Abstract
Highly sensitive molecular techniques for the detection of low-level Plasmodium falciparum parasitemia are highly useful for various clinical and epidemiological studies. However, differences in how blood samples are preserved, the quantity of blood stored, as well as genomic DNA extraction methods used may compromise the potential usefulness of these methodologies. This study compared diagnostic sensitivity based on microscopy and malaria rapid diagnostic tests (mRDTs), with quantitative polymerase chain reaction (qPCR) P. falciparum positivity of dried blood spots (DBS) or whole blood pellets (WBP) from pregnant women using different DNA extraction protocols (Chelex-saponin or a commercial kit). Samples from 129 pregnant women were analyzed, of which 13 were P. falciparum positive by mRDT and 5 by microscopy. By using extraction kit on WBP and on DBS, qPCR positivity was 27 (20.9%) and 16 (12.4%), respectively, whereas Chelex extraction on DBS only resulted in 4 (3.1%) P. falciparum positive samples. Thus, extraction using commercial kits greatly improve the likelihood of detecting P. falciparum infections.
Collapse
Affiliation(s)
- Queen Saidi
- Kilimanjaro Clinical Research Institute, Moshi, Tanzania;,Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark;,Address correspondence to Queen Saidi, Kilimanjaro Clinical Research Institute, P.O. Box 2236, Moshi, Tanzania. E-mail:
| | - Daniel Minja
- National Institute for Medical Research, Tanga Research Centre, Tanga, Tanzania
| | - Judith Njau
- Kilimanjaro Clinical Research Institute, Moshi, Tanzania
| | - Helle Hansson
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Reginald Kavishe
- Kilimanjaro Clinical Research Institute, Moshi, Tanzania;,Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Michael Alifrangis
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| |
Collapse
|
9
|
Onken A, Haanshuus CG, Miraji MK, Marijani M, Kibwana KO, Abeid KA, Mørch K, Reimers M, Langeland N, Müller F, Jenum PA, Blomberg B. Malaria prevalence and performance of diagnostic tests among patients hospitalized with acute undifferentiated fever in Zanzibar. Malar J 2022; 21:54. [PMID: 35183188 PMCID: PMC8858509 DOI: 10.1186/s12936-022-04067-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 01/31/2022] [Indexed: 12/04/2022] Open
Abstract
Background Control efforts in Zanzibar reduced the burden of malaria substantially from 2000 to 2015, but re-emergence of falciparum malaria has been observed lately. This study evaluated the prevalence of malaria and performance of routine diagnostic tests among hospitalized fever patients in a 1.5 years period in 2015 and 2016. Methods From March 2015 to October 2016, paediatric and adult patients hospitalized with acute undifferentiated fever at Mnazi Mmoja Hospital, Zanzibar were included. The malaria prevalence, and performance of rapid diagnostic test (RDT) and microscopy, were assessed using polymerase chain reaction (PCR) as gold standard. Results The malaria prevalence was 9% (63/731). Children under 5 years old had lower malaria prevalence (5%, 14/260) than older children (15%, 20/131, p = 0.001) and persons aged 16 to 30 years (13%, 15/119, p = 0.02), but not different from persons over 30 years old (6%, 14/217, p = 0.7). All cases had Plasmodium falciparum infection, except for one case of Plasmodium ovale. Ten malaria patients had no history of visiting mainland Tanzania. The RDT had a sensitivity of 64% (36/56) and a specificity of 98% (561/575), and microscopy had a sensitivity of 50% (18/36) and a specificity of 99% (251/254), compared to PCR. The malaria parasitaemia was lower in patients with false negative results on RDT (median 7 × 103 copies/µL, interquartile range [IQR] 2 × 103 – 8 × 104, p = 0.002) and microscopy (median 9 × 103 copies/µL, IQR 8 × 102 – 7 × 104, p = 0.006) compared to those with true positive RDT (median 2 × 105 copies/µL, IQR 3 × 104 – 5 × 105) and microscopy (median 2 × 105 copies/µL, IQR 6 × 104 – 5 × 105). Conclusions The study emphasizes that malaria was a frequent cause of febrile illness in hospitalized patients in Zanzibar in the years 2015-2016, particularly among school age children and young adults. We found evidence of autochthonous malaria transmission in Zanzibar. Compared to PCR, both RDT and microscopy had low sensitivity, and false negative results were associated with low parasitaemia. While low parasitaemia identified only by PCR in a semi-immune individual could be coincidental and without clinical relevance, clinicians should be aware of the risk of false negative results on routine tests.
Collapse
|
10
|
The acceptability of targeted mass treatment with primaquine for local elimination of vivax malaria in a northern Myanmar township: a mixed-methods study. Parasit Vectors 2021; 14:549. [PMID: 34689796 PMCID: PMC8543804 DOI: 10.1186/s13071-021-05064-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/12/2021] [Indexed: 11/10/2022] Open
Abstract
Background Radical cure of the Plasmodium vivax latent liver stage is required to effectively manage vivax malaria. Targeted mass treatment with primaquine may be an effective mechanism for reducing reservoirs of the disease. Since community engagement and high coverage are essential for mass treatment programs, this study aimed to determine the acceptability of mass primaquine treatment in a targeted community in a northern Myanmar township. Methods A cross-sectional mixed-methods study was deployed among household leaders in July 2019. Face-to-face interviews using structured questionnaires and standardized qualitative guidelines were conducted to gather information. Descriptive and inferential statistics, including logistic regression models, were applied. Results Among 609 study respondents, > 90% agreed to participate in an upcoming targeted mass primaquine treatment (TPT) program. Factors contributing to higher odds of acceptability of the program were older age [adjusted odds ratios (aOR): 2.38, 95% confidence intervals (CI) 1.08–8.96], secondary education level (aOR: 3.99, 95% CI 1.12–20.01), having good knowledge of malaria (aOR: 2.12, 95% CI 1.04–4.76), experiencing malaria within the family (aOR: 1.92, 95% CI 1.14–5.13), and believing eliminating malaria from the village is possible (aOR: 2.83, 95% CI 1.07–4.07). Furthermore, 50 community respondents, 6 midwives, and 4 public health staff (grade II) participated in the qualitative component of the study. Many thought that TPT seemed feasible and stressed that high coverage of underserved groups and health education are needed before commencing the activity. Conclusions Most respondents agreed to participate in the proposed mass treatment campaign. Older people with secondary education level and those who had experienced malaria within their families were most likely to report willingness to participate. These same individuals may be important in the community engagement process to increase community acceptance of the program. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-05064-y.
Collapse
|
11
|
Prah JK, Amoah S, Yartey AN, Ampofo-Asiama A, Ameyaw EO. Assessment of malaria diagnostic methods and treatments at a Ghanaian health facility. Pan Afr Med J 2021; 39:251. [PMID: 34707752 PMCID: PMC8520419 DOI: 10.11604/pamj.2021.39.251.28996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 08/08/2021] [Indexed: 11/11/2022] Open
Abstract
INTRODUCTION it has been more than a decade since the World Health Organization (WHO) recommended parasitological confirmation of malaria before treatment begins. Light microscopy and rapid diagnostic tests are currently being used for diagnosing malaria in routine clinical care settings. Many clinicians have however raised questions about the competencies of laboratory staff who perform these tests and the performance of these diagnostic methods. This study aimed at assessing the performance of microscopy and two rapid diagnostic test kits in the hands of routine laboratory staff compared to expert microscopy as well as assess the performance of clinical diagnosis. METHODS this was a cross sectional study involving 799 participants of all ages who visited the out patient department of the University of Cape Coast Hospital with symptoms suggestive of malaria. RESULTS when the different methods were compared to expert microscopy, the rapid diagnostic test kits had the highest sensitivities, Wondfo 94.83% (95% CI: 85.62-98.20) and CareStart 91.38 (95% CI: 81.02-97.14). Microscopy by laboratory staff had a sensitivity of 68.79 (95% CI: 55.46-80.46) whilst clinical diagnosis had the lowest sensitivity of 17.24 (95% CI: 8.59-29.43). Cohen´s kappa coefficient was used to measure the level of agreement of the methods with expert microscopy. Microscopy by laboratory staff, CareStart and Wondfo showed substantial measures of agreement (k = 0.737, 0.683, and 0.691 respectively). CONCLUSION these findings suggest that clinical diagnosis is highly unreliable whilst rapid diagnostic tests and microscopy performed by routine laboratory staff could be trusted by clinicians as reliable diagnostic methods.
Collapse
Affiliation(s)
| | - Samuel Amoah
- University of Cape Coast Hospital, Cape Coast, Ghana
| | | | | | - Elvis Ofori Ameyaw
- School of Pharmacy and Pharmaceutical Sciences, University of Cape Coast, Cape Coast, Ghana
| |
Collapse
|
12
|
Horn S, Snoep JL, van Niekerk DD. Uncovering the effects of heterogeneity and parameter sensitivity on within-host dynamics of disease: malaria as a case study. BMC Bioinformatics 2021; 22:384. [PMID: 34303353 PMCID: PMC8305899 DOI: 10.1186/s12859-021-04289-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/11/2021] [Indexed: 12/04/2022] Open
Abstract
Background The fidelity and reliability of disease model predictions depend on accurate and precise descriptions of processes and determination of parameters. Various models exist to describe within-host dynamics during malaria infection but there is a shortage of clinical data that can be used to quantitatively validate them and establish confidence in their predictions. In addition, model parameters often contain a degree of uncertainty and show variations between individuals, potentially undermining the reliability of model predictions. In this study models were reproduced and analysed by means of robustness, uncertainty, local sensitivity and local sensitivity robustness analysis to establish confidence in their predictions. Results Components of the immune system are responsible for the most uncertainty in model outputs, while disease associated variables showed the greatest sensitivity for these components. All models showed a comparable degree of robustness but displayed different ranges in their predictions. In these different ranges, sensitivities were well-preserved in three of the four models. Conclusion Analyses of the effects of parameter variations in models can provide a comparative tool for the evaluation of model predictions. In addition, it can assist in uncovering model weak points and, in the case of disease models, be used to identify possible points for therapeutic intervention. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-021-04289-z.
Collapse
Affiliation(s)
- Shade Horn
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland, 7602, Stellenbosch, South Africa
| | - Jacky L Snoep
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland, 7602, Stellenbosch, South Africa.,Molecular Cell Physiology, Vrije Universiteit, De Boelelaan 1087, 1081 HV, Amsterdam, The Netherlands
| | - David D van Niekerk
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland, 7602, Stellenbosch, South Africa.
| |
Collapse
|
13
|
Ivan I, Ivan I, Stella MM, Stella MM, Tandarto K, Tandarto K, Budiman F, Budiman F, Joprang FS, Joprang FS. Plasmodium falciparum Breath Metabolomics (Breathomics) Analysis as a Non-Invasive Practical Method to Diagnose Malaria in Pediatric. INDONESIAN JOURNAL OF TROPICAL AND INFECTIOUS DISEASE 2021. [DOI: 10.20473/ijtid.v9i1.24069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Children under 5 years of age are particularly vulnerable to malaria. Malaria has caused 445,000 deaths worldwide. Currently, rapid diagnostic tests (RDTs) are the fastest method to diagnose malaria. However, there are limitations that exist such as low sensitivity in detecting infections with low parasitemia. Practical, non-invasive and high ability tests to detect parasite are needed to find specific biomarkers for P. falciparum infection to determine the potential of P. falciparum 4 thioether in breathomics analysis by GC-MS as a practical non-invasive method in diagnosing malaria in pediatrics. Literature reviews from Google Scholar and ProQuest were published no later than the last 5 years. The concept of breathomics is that the breath’s volatile organic compounds (VOCs) profile is altered when the health condition changes. Breath samples from individuals infected with P. falciparum malaria were taken by exhalation. Through GC-MS analysis, it was found that 4 thioether compounds (allyl methyl sulfide (AMS), 1-methylthio-propane, (Z) -1-methylthio-1-propene and (E) -1-methylthio-1-propene) underwent a significant change in concentration during the infection. Based on experiments conducted on mice and humans, the breathomics method is known to be able to detect parasitemia levels up to <100 parasites/µL, has a sensitivity level of about 71% to 91% and a specificity of about 75% to 94%. The discovery of 4 thioether compounds by GC-MS is a strong indication of malaria, because it has the potential for high sensitivity and specificity, and the detection power exceeds the ability of RDTs.
Collapse
|
14
|
Wang CYT, Ballard EL, Pava Z, Marquart L, Gaydon J, Murphy SC, Whiley D, O'Rourke P, McCarthy JS. Analytical validation of a real-time hydrolysis probe PCR assay for quantifying Plasmodium falciparum parasites in experimentally infected human adults. Malar J 2021; 20:181. [PMID: 33838672 PMCID: PMC8035755 DOI: 10.1186/s12936-021-03717-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 03/29/2021] [Indexed: 11/10/2022] Open
Abstract
Background Volunteer infection studies have become a standard model for evaluating drug efficacy against Plasmodium infections. Molecular techniques such as qPCR are used in these studies due to their ability to provide robust and accurate estimates of parasitaemia at increased sensitivity compared to microscopy. The validity and reliability of assays need to be ensured when used to evaluate the efficacy of candidate drugs in clinical trials. Methods A previously described 18S rRNA gene qPCR assay for quantifying Plasmodium falciparum in blood samples was evaluated. Assay performance characteristics including analytical sensitivity, reportable range, precision, accuracy and specificity were assessed using experimental data and data compiled from phase 1 volunteer infection studies conducted between 2013 and 2019. Guidelines for validation of laboratory-developed molecular assays were followed. Results The reportable range was 1.50 to 6.50 log10 parasites/mL with a limit of detection of 2.045 log10 parasites/mL of whole blood based on a parasite diluted standard series over this range. The assay was highly reproducible with minimal intra-assay (SD = 0.456 quantification cycle (Cq) units [0.137 log10 parasites/mL] over 21 replicates) and inter-assay (SD = 0.604 Cq units [0.182 log10 parasites/mL] over 786 qPCR runs) variability. Through an external quality assurance program, the QIMR assay was shown to generate accurate results (quantitative bias + 0.019 log10 parasites/mL against nominal values). Specificity was 100% after assessing 164 parasite-free human blood samples. Conclusions The 18S rRNA gene qPCR assay is specific and highly reproducible and can provide reliable and accurate parasite quantification. The assay is considered fit for use in evaluating drug efficacy in malaria clinical trials. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-021-03717-y.
Collapse
Affiliation(s)
- Claire Y T Wang
- Centre for Children's Health Research, Children's Health Queensland, Brisbane, Australia. .,Child Health Research Centre, The University of Queensland, Brisbane, Australia.
| | - Emma L Ballard
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Zuleima Pava
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Louise Marquart
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Jane Gaydon
- Centre for Children's Health Research, Children's Health Queensland, Brisbane, Australia.,Child Health Research Centre, The University of Queensland, Brisbane, Australia
| | - Sean C Murphy
- Departments of Laboratory Medicine and Microbiology, University of Washington, Seattle, WA, USA.,Center for Emerging and Re-Emerging Infectious Diseases, University of Washington, Seattle, WA, USA
| | - David Whiley
- Centre for Children's Health Research, Children's Health Queensland, Brisbane, Australia.,UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Peter O'Rourke
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - James S McCarthy
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,School of Medicine, The University of Queensland, Brisbane, Australia
| |
Collapse
|
15
|
Das D, Dahal P, Dhorda M, Citarella BW, Kennon K, Stepniewska K, Felger I, Chappuis F, Guerin PJ. A Systematic Literature Review of Microscopy Methods Reported in Malaria Clinical Trials. Am J Trop Med Hyg 2020; 104:836-841. [PMID: 33350371 PMCID: PMC7941839 DOI: 10.4269/ajtmh.20-1219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 10/21/2020] [Indexed: 12/04/2022] Open
Abstract
Microscopy of stained blood films is essential for the diagnosis of malaria, differentiation of parasite species, and estimation of parasite density performed for assessments of antimalarial drug efficacy. The accuracy and comparability of these measures over time and space are vital to discern the emergence or spread of antimalarial drug resistance. Although evidence-based guidelines for malaria microscopy methods exist, the age-old microscopy techniques for parasitological assessments are subject to considerable methodological variations. The purpose of this review was to explore critically how microscopy methods were reported in published malarial studies between 2013 and 2017 with the focus on outlining the methodological differences and improving reporting standards in practice.
Collapse
Affiliation(s)
- Debashish Das
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom.,Infectious Diseases Data Observatory (IDDO), Oxford, United Kingdom.,Institute of Global Health, University of Geneva, Geneva, Switzerland
| | - Prabin Dahal
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom.,Infectious Diseases Data Observatory (IDDO), Oxford, United Kingdom
| | - Mehul Dhorda
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom.,Infectious Diseases Data Observatory (IDDO), Oxford, United Kingdom
| | - Barbara Wanjiru Citarella
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom.,Infectious Diseases Data Observatory (IDDO), Oxford, United Kingdom
| | - Kalynn Kennon
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom.,Infectious Diseases Data Observatory (IDDO), Oxford, United Kingdom
| | - Kasia Stepniewska
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom.,Infectious Diseases Data Observatory (IDDO), Oxford, United Kingdom
| | - Ingrid Felger
- University of Basel, Basel, Switzerland.,Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - François Chappuis
- Division of Tropical and Humanitarian Medicine, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Philippe J Guerin
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom.,Infectious Diseases Data Observatory (IDDO), Oxford, United Kingdom
| |
Collapse
|
16
|
Kucharski M, Tripathi J, Nayak S, Zhu L, Wirjanata G, van der Pluijm RW, Dhorda M, Dondorp A, Bozdech Z. A comprehensive RNA handling and transcriptomics guide for high-throughput processing of Plasmodium blood-stage samples. Malar J 2020; 19:363. [PMID: 33036628 PMCID: PMC7547485 DOI: 10.1186/s12936-020-03436-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/01/2020] [Indexed: 02/06/2023] Open
Abstract
Background Sequencing technology advancements opened new opportunities to use transcriptomics for studying malaria pathology and epidemiology. Even though in recent years the study of whole parasite transcriptome proved to be essential in understanding parasite biology there is no compiled up-to-date reference protocol for the efficient generation of transcriptome data from growing number of samples. Here, a comprehensive methodology on how to preserve, extract, amplify, and sequence full-length mRNA transcripts from Plasmodium-infected blood samples is presented that can be fully streamlined for high-throughput studies. Results The utility of various commercially available RNA-preserving reagents in a range of storage conditions was evaluated. Similarly, several RNA extraction protocols were compared and the one most suitable method for the extraction of high-quality total RNA from low-parasitaemia and low-volume blood samples was established. Furthermore, the criteria needed to evaluate the quality and integrity of Plasmodium RNA in the presence of human RNA was updated. Optimization of SMART-seq2 amplification method to better suit AT-rich Plasmodium falciparum RNA samples allowed us to generate high-quality transcriptomes from as little as 10 ng of total RNA and a lower parasitaemia limit of 0.05%. Finally, a modified method for depletion of unwanted human haemoglobin transcripts using in vitro CRISPR-Cas9 treatment was designed, thus improving parasite transcriptome coverage in low parasitaemia samples. To prove the functionality of the pipeline for both laboratory and field strains, the highest 2-hour resolution RNA-seq transcriptome for P. falciparum 3D7 intraerythrocytic life cycle available to date was generated, and the entire protocol was applied to create the largest transcriptome data from Southeast Asian field isolates. Conclusions Overall, the presented methodology is an inclusive pipeline for generation of good quality transcriptomic data from a diverse range of Plasmodium-infected blood samples with varying parasitaemia and RNA inputs. The flexibility of this pipeline to be adapted to robotic handling will facilitate both small and large-scale future transcriptomic studies in the field of malaria.
Collapse
Affiliation(s)
- Michal Kucharski
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore.
| | - Jaishree Tripathi
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore.
| | - Sourav Nayak
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Lei Zhu
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Grennady Wirjanata
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Rob W van der Pluijm
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Mehul Dhorda
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.,WorldWide Antimalarial Resistance Network-Asia Regional Centre, Bangkok, Thailand
| | - Arjen Dondorp
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Zbynek Bozdech
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore.
| |
Collapse
|
17
|
Shrivastava J. Assessors assemble: the need for harmonised external quality assessment schemes for emerging diagnostic methodologies in the field of parasitology. Trans R Soc Trop Med Hyg 2020; 113:820-822. [PMID: 30576480 DOI: 10.1093/trstmh/try129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/12/2018] [Accepted: 12/06/2018] [Indexed: 11/14/2022] Open
Abstract
Global travel and migration trends have meant a huge increase in the numbers of people exposed to tropical parasitic diseases. Thus, there is an increasing need for robust, reproducible and reliable diagnostic techniques in the field. Advanced molecular and lateral flow techniques have pushed the boundaries of clinical parasite diagnostics with their enhanced sensitivities and specificities. These emerging technologies are, however, not without their challenges, and recently there has been multiple evidence of a lack of consensus among protocols and results obtained by quality assessment of these novel technologies. This commentary discusses findings from some recent quality assessment studies in the field of blood and faecal parasitology. The article also makes recommendations for a unified and harmonised approach towards delivering high-quality clinical parasitology diagnoses, especially through the use of proficiency testing.
Collapse
Affiliation(s)
- Jaya Shrivastava
- UK NEQAS Parasitology, National Infection Services, Public Health England, The Halo, 1 Mabledon Place, London WC1H 9AZ, United Kingdom
| |
Collapse
|
18
|
Plasmodium falciparum Histidine-Rich Protein 2 and 3 Gene Deletions and Their Implications in Malaria Control. Diseases 2020; 8:diseases8020015. [PMID: 32443811 PMCID: PMC7349124 DOI: 10.3390/diseases8020015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/25/2020] [Accepted: 05/05/2020] [Indexed: 01/15/2023] Open
Abstract
Malaria remains the biggest threat to public health, especially among pregnant women and young children in sub-Saharan Africa. Prompt and accurate diagnosis is critical for effective case management and detection of drug resistance. Conventionally, microscopy and rapid diagnostic tests (RDTs) are the tools of choice for malaria diagnosis. RDTs are simple to use and have been extensively used in the diagnosis of malaria among travelers to malaria-endemic regions, routine case management, and surveillance studies. Most RDTs target the histidine-rich protein (PfHRP) which is exclusively found in Plasmodium falciparum and a metabolic enzyme Plasmodium lactate dehydrogenase (pLDH) which is common among all Plasmodium species. Other RDTs incorporate the enzyme aldolase that is produced by all Plasmodium species. Recently, studies have reported false-negative RDTs primarily due to the deletion of the histidine-rich protein (pfhrp2 and pfhrp3) genes in field isolates of P. falciparum. Herein, we review published literature to establish pfhrp2/pfhrp3 deletions, the extent of these deletions in different geographical regions, and the implication in malaria control. We searched for publications on pfhrp2/pfhrp3 deletions and retrieved all publications that reported on this subject. Overall, 20 publications reported on pfhrp2/pfhrp3 deletions, and most of these studies were done in Central and South America, with very few in Asia and Africa. The few studies in Africa that reported on the occurrence of pfhrp2/pfhrp3 deletions rarely evaluated deletions on the flanking genes. More studies are required to evaluate the existence and extent of these gene deletions, whose presence may lead to delayed or missed treatment. This information will guide appropriate diagnostic approaches in the respective areas.
Collapse
|
19
|
Cunningham JA, Thomson RM, Murphy SC, de la Paz Ade M, Ding XC, Incardona S, Legrand E, Lucchi NW, Menard D, Nsobya SL, Saez AC, Chiodini PL, Shrivastava J. WHO malaria nucleic acid amplification test external quality assessment scheme: results of distribution programmes one to three. Malar J 2020; 19:129. [PMID: 32228615 PMCID: PMC7106789 DOI: 10.1186/s12936-020-03200-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 03/23/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The World Health Organization (WHO) recommends parasite-based diagnosis of malaria. In recent years, there has been surge in the use of various kinds of nucleic-acid amplification based tests (NAATs) for detection and identification of Plasmodium spp. to support clinical care in high-resource settings and clinical and epidemiological research worldwide. However, these tests are not without challenges, including lack (or limited use) of standards and lack of reproducibility, due in part to variation in protocols amongst laboratories. Therefore, there is a need for rigorous quality control, including a robust external quality assessment (EQA) scheme targeted towards malaria NAATs. To this effect, the WHO Global Malaria Programme worked with the UK National External Quality Assessment Scheme (UK NEQAS) Parasitology and with technical experts to launch a global NAAT EQA scheme in January 2017. METHODS Panels of NAAT EQA specimens containing five major species of human-infecting Plasmodium at various parasite concentrations and negative samples were created in lyophilized blood (LB) and dried blood spot (DBS) formats. Two distributions per year were sent, containing five LB and five DBS specimens. Samples were tested and validated by six expert referee laboratories prior to distribution. Between 37 and 45 laboratories participated in each distribution and submitted results using the online submission portal of UK NEQAS. Participants were scored based on their laboratory's stated capacity to identify Plasmodium species, and individual laboratory reports were sent which included performance comparison with anonymized peers. RESULTS Analysis of the first three distributions revealed that the factors that most significantly affected performance were sample format (DBS vs LB), species and parasite density, while laboratory location and the reported methodology used (type of nucleic acid extraction, amplification, or DNA vs RNA target) did not significantly affect performance. Referee laboratories performed better than non-referee laboratories. CONCLUSIONS Globally, malaria NAAT assays now inform a range of clinical, epidemiological and research investigations. EQA schemes offer a way for laboratories to assess and improve their performance, which is critical to safeguarding the reliability of data and diagnoses especially in situations where various NAAT methodologies and protocols are in use.
Collapse
Affiliation(s)
| | | | - Sean C Murphy
- Seattle Malaria Clinical Trials Center, Fred Hutchinson Cancer Research Center, Seattle, USA
| | - Maria de la Paz Ade
- Department of Communicable Diseases and Health Analysis, Pan American Health Organization/World Health Organization, Washington, DC, USA
| | - Xavier C Ding
- Foundation for Innovative New Diagnostics, Geneva, Switzerland
| | | | - Eric Legrand
- Biology of Host-Parasite Interactions Unit, Institut Pasteur, INSERM U1201/CNRS ERL9195, Paris, France
| | - Naomi W Lucchi
- Malaria Branch, Division of Parasitic Diseases and MalariaCenter for Global Health, Centers for Disease Control and Prevention, Atlanta, USA
| | - Didier Menard
- Biology of Host-Parasite Interactions Unit, Institut Pasteur, INSERM U1201/CNRS ERL9195, Paris, France
| | - Samuel L Nsobya
- Department of Pathology, School of Biomedical Science, Makerere University, Kampala, Uganda
| | - Agatha C Saez
- UK NEQAS Parasitology, Public Health England, London, UK
| | - Peter L Chiodini
- UK NEQAS Parasitology, Public Health England, London, UK
- The Hospital for Tropical Diseases, London, UK
| | - Jaya Shrivastava
- UK NEQAS Parasitology, Public Health England, London, UK
- The Hospital for Tropical Diseases, London, UK
| |
Collapse
|
20
|
Seilie AM, Chang M, Hanron AE, Billman ZP, Stone BC, Zhou K, Olsen TM, Daza G, Ortega J, Cruz KR, Smith N, Healy SA, Neal J, Wallis CK, Shelton L, Mankowski TV, Wong-Madden S, Mikolajczak SA, Vaughan AM, Kappe SHI, Fishbaugher M, Betz W, Kennedy M, Hume JCC, Talley AK, Hoffman SL, Chakravarty S, Sim BKL, Richie TL, Wald A, Plowe CV, Lyke KE, Adams M, Fahle GA, Cowan EP, Duffy PE, Kublin JG, Murphy SC. Beyond Blood Smears: Qualification of Plasmodium 18S rRNA as a Biomarker for Controlled Human Malaria Infections. Am J Trop Med Hyg 2020; 100:1466-1476. [PMID: 31017084 PMCID: PMC6553913 DOI: 10.4269/ajtmh.19-0094] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
18S rRNA is a biomarker that provides an alternative to thick blood smears in controlled human malaria infection (CHMI) trials. We reviewed data from CHMI trials at non-endemic sites that used blood smears and Plasmodium 18S rRNA/rDNA biomarker nucleic acid tests (NATs) for time to positivity. We validated a multiplex quantitative reverse transcription–polymerase chain reaction (qRT-PCR) for Plasmodium 18S rRNA, prospectively compared blood smears and qRT-PCR for three trials, and modeled treatment effects at different biomarker-defined parasite densities to assess the impact on infection detection, symptom reduction, and measured intervention efficacy. Literature review demonstrated accelerated NAT-based infection detection compared with blood smears (mean acceleration: 3.2–3.6 days). For prospectively tested trials, the validated Plasmodium 18S rRNA qRT-PCR positivity was earlier (7.6 days; 95% CI: 7.1–8.1 days) than blood smears (11.0 days; 95% CI: 10.3–11.8 days) and significantly preceded the onset of grade 2 malaria-related symptoms (12.2 days; 95% CI: 10.6–13.3 days). Discrepant analysis showed that the risk of a blood smear–positive, biomarker-negative result was negligible. Data modeling predicted that treatment triggered by specific biomarker-defined thresholds can differentiate complete, partial, and non-protective outcomes and eliminate many grade 2 and most grade 3 malaria-related symptoms post-CHMI. Plasmodium 18S rRNA is a sensitive and specific biomarker that can justifiably replace blood smears for infection detection in CHMI trials in non-endemic settings. This study led to biomarker qualification through the U.S. Food and Drug Administration for use in CHMI studies at non-endemic sites, which will facilitate biomarker use for the qualified context of use in drug and vaccine trials.
Collapse
Affiliation(s)
- Annette M Seilie
- Department of Laboratory Medicine, Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, Washington
| | - Ming Chang
- Department of Laboratory Medicine, Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, Washington
| | - Amelia E Hanron
- Department of Laboratory Medicine, Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, Washington
| | - Zachary P Billman
- Department of Laboratory Medicine, Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, Washington
| | - Brad C Stone
- Department of Laboratory Medicine, Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, Washington
| | - Kevin Zhou
- Department of Laboratory Medicine, Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, Washington
| | - Tayla M Olsen
- Department of Laboratory Medicine, Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, Washington
| | - Glenda Daza
- Department of Laboratory Medicine, Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, Washington
| | - Jose Ortega
- Department of Laboratory Medicine, Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, Washington
| | - Kurtis R Cruz
- Department of Laboratory Medicine, Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, Washington
| | - Nahum Smith
- Department of Laboratory Medicine, Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, Washington
| | - Sara A Healy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland.,Division of Pediatric Infectious Diseases, Department of Pediatrics, University of Washington, Seattle, Washington.,Center for Global Infectious Disease Research, Seattle Children's Research Institute (formerly the Center for Infectious Disease Research), Seattle, Washington
| | - Jillian Neal
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Carolyn K Wallis
- Department of Laboratory Medicine, Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, Washington
| | - Lisa Shelton
- Center for Global Infectious Disease Research, Seattle Children's Research Institute (formerly the Center for Infectious Disease Research), Seattle, Washington
| | - Tracie VonGoedert Mankowski
- Center for Global Infectious Disease Research, Seattle Children's Research Institute (formerly the Center for Infectious Disease Research), Seattle, Washington
| | - Sharon Wong-Madden
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Sebastian A Mikolajczak
- Center for Global Infectious Disease Research, Seattle Children's Research Institute (formerly the Center for Infectious Disease Research), Seattle, Washington
| | - Ashley M Vaughan
- Center for Global Infectious Disease Research, Seattle Children's Research Institute (formerly the Center for Infectious Disease Research), Seattle, Washington
| | - Stefan H I Kappe
- Center for Global Infectious Disease Research, Seattle Children's Research Institute (formerly the Center for Infectious Disease Research), Seattle, Washington
| | - Matt Fishbaugher
- Center for Global Infectious Disease Research, Seattle Children's Research Institute (formerly the Center for Infectious Disease Research), Seattle, Washington
| | - Will Betz
- Center for Global Infectious Disease Research, Seattle Children's Research Institute (formerly the Center for Infectious Disease Research), Seattle, Washington
| | - Mark Kennedy
- Center for Global Infectious Disease Research, Seattle Children's Research Institute (formerly the Center for Infectious Disease Research), Seattle, Washington
| | - Jen C C Hume
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Angela K Talley
- Center for Global Infectious Disease Research, Seattle Children's Research Institute (formerly the Center for Infectious Disease Research), Seattle, Washington
| | | | | | | | | | - Anna Wald
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington
| | | | - Kirsten E Lyke
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland
| | - Matthew Adams
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland
| | - Gary A Fahle
- Microbiology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | | | - Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - James G Kublin
- Seattle Malaria Clinical Trials Center, Fred Hutch Cancer Research Center, Seattle, Washington.,Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Sean C Murphy
- Department of Microbiology, University of Washington, Seattle, Washington.,Seattle Malaria Clinical Trials Center, Fred Hutch Cancer Research Center, Seattle, Washington.,Center for Global Infectious Disease Research, Seattle Children's Research Institute (formerly the Center for Infectious Disease Research), Seattle, Washington.,Department of Laboratory Medicine, Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, Washington
| |
Collapse
|
21
|
Ling XX, Jin JJ, Zhu GD, Wang WM, Cao YY, Yang MM, Zhou HY, Cao J, Huang JY. Cost-effectiveness analysis of malaria rapid diagnostic tests: a systematic review. Infect Dis Poverty 2019; 8:104. [PMID: 31888731 PMCID: PMC6937952 DOI: 10.1186/s40249-019-0615-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 12/09/2019] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Rapid diagnostic tests (RDT) can effectively manage malaria cases and reduce excess costs brought by misdiagnosis. However, few studies have evaluated the economic value of this technology. The purpose of this study is to systematically review the economic value of RDT in malaria diagnosis. MAIN TEXT A detailed search strategy was developed to identify published economic evaluations that provide evidence regarding the cost-effectiveness of malaria RDT. Electronic databases including MEDLINE, EMBASE, Biosis Previews, Web of Science and Cochrane Library were searched from Jan 2007 to July 2018. Two researchers screened studies independently based on pre-specified inclusion and exclusion criteria. The Consolidated Health Economic Evaluation Reporting Standards (CHEERS) checklist was applied to evaluate the quality of the studies. Then cost and effectiveness data were extracted and summarized in a narrative way. Fifteen economic evaluations of RDT compared to other diagnostic methods were identified. The overall quality of studies varied greatly but most of them were scored to be of high or moderate quality. Ten of the fifteen studies reported that RDT was likely to be a cost-effective approach compared to its comparisons, but the results could be influenced by the alternatives, study perspectives, malaria prevalence, and the types of RDT. CONCLUSIONS Based on available evidence, RDT had the potential to be more cost-effective than either microscopy or presumptive diagnosis. Further research is also required to draw a more robust conclusion.
Collapse
Affiliation(s)
- Xiao-Xiao Ling
- School of Public Health, Fudan University, Key Laboratory of Health Technology Assessment, National Health Commission, Shanghai, 200032, China
| | - Jia-Jie Jin
- School of Public Health, Fudan University, Key Laboratory of Health Technology Assessment, National Health Commission, Shanghai, 200032, China
| | - Guo-Ding Zhu
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, 214064, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
- Public Health Research Centre, Jiangnan University, Wuxi, 214122, China
| | - Wei-Ming Wang
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, 214064, China
| | - Yuan-Yuan Cao
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, 214064, China
| | - Meng-Meng Yang
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, 214064, China
| | - Hua-Yun Zhou
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, 214064, China
| | - Jun Cao
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, 214064, China.
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
- Public Health Research Centre, Jiangnan University, Wuxi, 214122, China.
| | - Jia-Yan Huang
- School of Public Health, Fudan University, Key Laboratory of Health Technology Assessment, National Health Commission, Shanghai, 200032, China.
| |
Collapse
|
22
|
Ballard E, Wang CYT, Hien TT, Tong NT, Marquart L, Pava Z, Tarning J, O'Rourke P, McCarthy JS. A validation study of microscopy versus quantitative PCR for measuring Plasmodium falciparum parasitemia. Trop Med Health 2019; 47:49. [PMID: 31485189 PMCID: PMC6712708 DOI: 10.1186/s41182-019-0176-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 08/12/2019] [Indexed: 12/02/2022] Open
Abstract
Microscopy and 18S qPCR are the most common and field-friendly methods for quantifying malaria parasite density, and it is important that these methods can be interpreted as giving equivalent results. We compared results of quantitative measurement of Plasmodium falciparum parasitemia by microscopy and by 18S qPCR in a phase 2a study. Microscopy positive samples (n = 355; median 810 parasites/μL [IQR 40–10,471]) showed close agreement with 18S qPCR in mean log10/mL transformed parasitemia values by paired t test (difference 0.04, 95%CI − 0.01–0.10, p = 0.088). Excellent intraclass correlation (0.97) and no evidence of systematic or proportional differences by Passing–Bablok regression were observed. 18S qPCR appears to give equivalent parasitemia values to microscopy, which indicates 18S qPCR is an appropriate alternative method to quantify parasitemia in clinical trials.
Collapse
Affiliation(s)
- Emma Ballard
- 1QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Claire Y T Wang
- Queensland Paediatric Infectious Diseases Laboratory, Centre for Children's Health Research, Brisbane, Australia
| | - Tran Tinh Hien
- 3Oxford University Clinical Research Unit-Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Nguyen Thanh Tong
- 3Oxford University Clinical Research Unit-Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Louise Marquart
- 1QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Zuleima Pava
- 1QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Joel Tarning
- 4Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,5Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford University, Oxford, UK
| | - Peter O'Rourke
- 1QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - James S McCarthy
- 1QIMR Berghofer Medical Research Institute, Brisbane, Australia.,6The University of Queensland, Brisbane, Australia
| |
Collapse
|
23
|
Talapko J, Škrlec I, Alebić T, Jukić M, Včev A. Malaria: The Past and the Present. Microorganisms 2019; 7:microorganisms7060179. [PMID: 31234443 PMCID: PMC6617065 DOI: 10.3390/microorganisms7060179] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/28/2019] [Accepted: 06/19/2019] [Indexed: 02/07/2023] Open
Abstract
Malaria is a severe disease caused by parasites of the genus Plasmodium, which is transmitted to humans by a bite of an infected female mosquito of the species Anopheles. Malaria remains the leading cause of mortality around the world, and early diagnosis and fast-acting treatment prevent unwanted outcomes. It is the most common disease in Africa and some countries of Asia, while in the developed world malaria occurs as imported from endemic areas. The sweet sagewort plant was used as early as the second century BC to treat malaria fever in China. Much later, quinine started being used as an antimalaria drug. A global battle against malaria started in 1955, and Croatia declared 1964 to be the year of eradication of malaria. The World Health Organization carries out a malaria control program on a global scale, focusing on local strengthening of primary health care, early diagnosis of the disease, timely treatment, and disease prevention. Globally, the burden of malaria is lower than ten years ago. However, in the last few years, there has been an increase in the number of malaria cases around the world. It is moving towards targets established by the WHO, but that progress has slowed down.
Collapse
Affiliation(s)
- Jasminka Talapko
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Crkvena 21, HR-31000 Osijek, Croatia.
| | - Ivana Škrlec
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Crkvena 21, HR-31000 Osijek, Croatia.
| | - Tamara Alebić
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, HR-31000 Osijek, Croatia.
| | - Melita Jukić
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, HR-31000 Osijek, Croatia.
- General Hospital Vukovar, Županijska 35, HR-32000 Vukovar, Croatia.
| | - Aleksandar Včev
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Crkvena 21, HR-31000 Osijek, Croatia.
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, HR-31000 Osijek, Croatia.
| |
Collapse
|
24
|
Berna AZ, McCarthy JS, Wang XR, Michie M, Bravo FG, Cassells J, Trowell SC. Diurnal variation in expired breath volatiles in malaria-infected and healthy volunteers. J Breath Res 2018; 12:046014. [PMID: 30129561 PMCID: PMC7753889 DOI: 10.1088/1752-7163/aadbbb] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 08/17/2018] [Accepted: 08/21/2018] [Indexed: 12/16/2022]
Abstract
We previously showed that thioether levels in the exhaled breath volatiles of volunteers undergoing controlled human malaria infection (CHMI) with P. falciparum increase as infection progresses. In this study, we show that thioethers have diurnal cyclical increasing patterns and their levels are significantly higher in P. falciparum CHMI volunteers compared to those of healthy volunteers. The synchronized cycle and elevation of thioethers were not present in P. vivax-infection, therefore it is likely that the thioethers are associated with unique factors in the pathology of P. falciparum. Moreover, we found that time-of-day of breath collection is important to accurately predict (98%) P. falciparum-infection. Critically, this was achieved when the disease was asymptomatic and parasitemia was below the level detectable by microscopy. Although these findings are encouraging, they show limitations because of the limited and logistically difficult diagnostic window and its utility to P. falciparum malaria only. We looked for new biomarkers in the breath of P. vivax CHMI volunteers and found that a set of terpenes increase significantly over the course of the malaria infection. The accuracy of predicting P. vivax using breath terpenes was up to 91%. Moreover, some of the terpenes were also found in the breath of P. falciparum CHMI volunteers (accuracy up to 93.5%). The results suggest that terpenes might represent better biomarkers than thioethers to predict malaria as they were not subject to malaria pathogens diurnal changes.
Collapse
Affiliation(s)
- Amalia Z Berna
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, United States of America. CSIRO Health and Biosecurity, Clunies-Ross Street, Acton ACT 2601, Australia
| | | | | | | | | | | | | |
Collapse
|
25
|
Murphy SC, Ishizuka AS, Billman ZP, Olsen TM, Seilie AM, Chang M, Smith N, Chuenchob V, Chakravarty S, Sim BKL, Kappe SHI, Hoffman SL, Seder RA. Plasmodium 18S rRNA of intravenously administered sporozoites does not persist in peripheral blood. Malar J 2018; 17:275. [PMID: 30053881 PMCID: PMC6062992 DOI: 10.1186/s12936-018-2422-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/19/2018] [Indexed: 01/14/2023] Open
Abstract
Background Plasmodium 18S rRNA is a biomarker used to monitor blood-stage infections in malaria clinical trials. Plasmodium sporozoites also express this biomarker, and there is conflicting evidence about how long sporozoite-derived 18S rRNA persists in peripheral blood. If present in blood for an extended timeframe, sporozoite-derived 18S rRNA could complicate use as a blood-stage biomarker. Methods Blood samples from Plasmodium yoelii infected mice were tested for Plasmodium 18S rRNA and their coding genes (rDNA) using sensitive quantitative reverse transcription PCR and quantitative PCR assays, respectively. Blood and tissues from Plasmodium falciparum sporozoite (PfSPZ)-infected rhesus macaques were similarly tested. Results In mice, when P. yoelii sporozoite inoculation and blood collection were performed at the same site (tail vein), low level rDNA positivity persisted for 2 days post-infection. Compared to intact parasites with high rRNA-to-rDNA ratios, this low level positivity was accompanied by no increase in rRNA-to-rDNA, indicating detection of residual, non-viable parasite rDNA. When P. yoelii sporozoites were administered via the retro-orbital vein and blood sampled by cardiac puncture, neither P. yoelii 18S rRNA nor rDNA were detected 24 h post-infection. Similarly, there was no P. falciparum 18S rRNA detected in blood of rhesus macaques 3 days after intravenous injection with extremely high doses of PfSPZ. Plasmodium 18S rRNA in the rhesus livers increased by approximately 101-fold from 3 to 6 days post infection, indicating liver-stage proliferation. Conclusions Beyond the first few hours after injection, sporozoite-derived Plasmodium 18S rRNA was not detected in peripheral blood. Diagnostics based on 18S rRNA are unlikely to be confounded by sporozoite inocula in human clinical trials.
Collapse
Affiliation(s)
- Sean C Murphy
- Departments of Laboratory Medicine and Microbiology, University of Washington, 750 Republican St., E630, Seattle, WA, 98109, USA. .,Center for Emerging and Re-emerging Infectious Diseases, University of Washington, 750 Republican St., Seattle, WA, 98109, USA.
| | - Andrew S Ishizuka
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Building 40, Room 3512, 40 Convent Drive, Bethesda, MD, 20814, USA
| | - Zachary P Billman
- Departments of Laboratory Medicine and Microbiology, University of Washington, 750 Republican St., E630, Seattle, WA, 98109, USA
| | - Tayla M Olsen
- Departments of Laboratory Medicine and Microbiology, University of Washington, 750 Republican St., E630, Seattle, WA, 98109, USA
| | - Annette M Seilie
- Departments of Laboratory Medicine and Microbiology, University of Washington, 750 Republican St., E630, Seattle, WA, 98109, USA
| | - Ming Chang
- Departments of Laboratory Medicine and Microbiology, University of Washington, 750 Republican St., E630, Seattle, WA, 98109, USA
| | - Nahum Smith
- Departments of Laboratory Medicine and Microbiology, University of Washington, 750 Republican St., E630, Seattle, WA, 98109, USA
| | - Vorada Chuenchob
- Center for Infectious Disease Research, 307 Westlake Ave N #500, Seattle, WA, 98109, USA
| | - Sumana Chakravarty
- Sanaria, Inc., 9800 Medical Center Drive, Suite A209, Rockville, MD, 20850, USA
| | - B Kim Lee Sim
- Sanaria, Inc., 9800 Medical Center Drive, Suite A209, Rockville, MD, 20850, USA
| | - Stefan H I Kappe
- Center for Infectious Disease Research, 307 Westlake Ave N #500, Seattle, WA, 98109, USA
| | - Stephen L Hoffman
- Sanaria, Inc., 9800 Medical Center Drive, Suite A209, Rockville, MD, 20850, USA
| | - Robert A Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Building 40, Room 3512, 40 Convent Drive, Bethesda, MD, 20814, USA
| |
Collapse
|
26
|
Ghosh S, Pathak S, Sonawat HM, Sharma S, Sengupta A. Metabolomic changes in vertebrate host during malaria disease progression. Cytokine 2018; 112:32-43. [PMID: 30057363 DOI: 10.1016/j.cyto.2018.07.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 07/16/2018] [Accepted: 07/17/2018] [Indexed: 12/24/2022]
Abstract
Metabolomics refers to top-down systems biological analysis of metabolites in biological specimens. Phenotypic proximity of metabolites makes them interesting candidates for studying biomarkers of environmental stressors such as parasitic infections. Moreover, the host-parasite interaction directly impinges upon metabolic pathways since the parasite uses the host metabolite pool as a biosynthetic resource. Malarial infection, although not recognized as a classic metabolic disorder, often leads to severe metabolic changes such as hypoglycemia and lactic acidosis. Thus, metabolomic analysis of the infection has become an invaluable tool for promoting a better understanding of the host-parasite interaction and for the development of novel therapeutics. In this review, we summarize the current knowledge obtained from metabolomic studies of malarial infection in rodent models and human patients. Metabolomic analysis of experimental rodent malaria has provided significant insights into the mechanisms of disease progression including utilization of host resources by the parasite, sexual dimorphism in metabolic phenotypes, and cellular changes in host metabolism. Moreover, these studies also provide proof of concept for prediction of cerebral malaria. On the other hand, metabolite analysis of patient biofluids generates extensive data that could be of use in identifying biomarkers of infection severity and in monitoring disease progression. Through the use of metabolomic datasets one hopes to assess crucial infection-specific issues such as clinical severity, drug resistance, therapeutic targets, and biomarkers. Also discussed are nascent or newly emerging areas of metabolomics such as pre-erythrocytic stages of the infection and the host immune response. This review is organized in four broad sections-methodologies for metabolomic analysis, rodent infection models, studies of human clinical specimens, and potential of immunometabolomics. Data summarized in this review should serve as a springboard for novel hypothesis testing and lead to a better understanding of malarial infection and parasite biology.
Collapse
Affiliation(s)
- Soumita Ghosh
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA.
| | - Sulabha Pathak
- Department of Biological Sciences, Tata Institute of Fundamental Research, 1, Homi Bhabha Road, Mumbai 400005, India
| | - Haripalsingh M Sonawat
- Department of Chemical Sciences, Tata Institute of Fundamental Research, 1, Homi Bhabha Road, Mumbai 400005, India
| | - Shobhona Sharma
- Department of Biological Sciences, Tata Institute of Fundamental Research, 1, Homi Bhabha Road, Mumbai 400005, India
| | - Arjun Sengupta
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA.
| |
Collapse
|
27
|
Shittu O, Opeyemi OA, Ajibaye O, Omotesho BO, Fakayode O. Evaluation of the Clinical Proficiency of RDTs, Microscopy and Nested PCR in the Diagnosis of Symptomatic Malaria in Ilorin, North-Central, Nigeria. Open Access Maced J Med Sci 2018; 6:1032-1040. [PMID: 29983797 PMCID: PMC6026432 DOI: 10.3889/oamjms.2018.218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/20/2018] [Accepted: 04/30/2018] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND: Accurate laboratory diagnosis of suspected malaria is the hallmark to the control of the disease. AIM: The clinical proficiency of commercial Rapid Diagnostic test kits (RDTs) using nested PCR as quality control was evaluated among patients attending two public healthcare providing institutions in Ilorin, Kwara state, North-Central, Nigeria. METHOD: A cross-sectional evaluation of finger prick blood samples of volunteer patients were accessed for malaria parasites with pLDH, HRP2, Pf, Pf/PAN and nested PCR molecular assays. The data derived were analysed using standard formulae for diagnostic accuracy, and the obtained predictive values were subjected to a comparison with one-way analysis of variance (ANOVA). RESULT: Three hundred and sixty-eight (368) patients comprising 203 (55%) females and 165 (45%) males participated in this study. Routine microscopy revealed that 54 (32.7%) males and 80 (39.4%) was infected with Plasmodium falciparum. SD Bioline (pLDH) 47.4%; Carestart Malaria (HRP2) 49.8% recorded low sensitivities. Micropoint (pfPAN) 82.8% and Micropoint (Mal. Pf) 64.4% recorded a high sensitivity. SD Bioline (pLDH) 67.4%; Carestart Malaria (HRP2) 85.9%; Micropoint (PfPAN) 62.2% and Micropoint (Mal. Pf) 86.7% had high specificities. The positive predictive value (PPV) ranged from 67.7% to 85.94%, while the negative predictive values (NPV) of 64.4% for SD Bioline (pLDH); 86.7% for Carestart Malaria (HRP2); 89.3% for Micropoint (pfPAN) and 58.5% for Micropoint (Mal. Pf). Agarose gel analysis of P. falciparumssrRNA gene (206 bp) for 28 specimens containing 10% concordant and discordant samples showed that all 12 negative specimens for RDTs and routine microscopy were truly negative for nPCR. However, the remaining 16 specimens were positive for nPCR and showed discrepancies with routine microscopy and RDTs. Cohen’s interrater diagnostic measure analysis revealed that the weighted kappa for the RDTs was moderate 0.417 (p=0.027), 95%CI (0.756, 0.078) and good for nPCR 0.720 (p < 0.001), 95%CI (0.963, 0.477). The area under the curve (AUC) specify that nPCR has been more effective than the RDTs (nPCRAUC = 0.875; p < 0.001 and RDTsAUC = 0.708; p = 0.063). CONCLUSION: A thorough large-scale quality control is advocated on all commercial RDTs being used in most sub-Saharan African countries. This is to avoid double jeopardy consequent upon misdiagnosis on unidentified positive cases serving as pool reservoir for the insect vector and cyclical infection and re-infection of the populace.
Collapse
Affiliation(s)
- Olalere Shittu
- Parasitology Unit, Department of Zoology, University of Ilorin, Ilorin, Nigeria
| | | | - Olusola Ajibaye
- Biochemistry and Nutrition Unit, Nigeria Institute of Medical Research, Lagos, Nigeria
| | | | | |
Collapse
|
28
|
Ragavan K, Kumar S, Swaraj S, Neethirajan S. Advances in biosensors and optical assays for diagnosis and detection of malaria. Biosens Bioelectron 2018; 105:188-210. [DOI: 10.1016/j.bios.2018.01.037] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 01/11/2018] [Accepted: 01/17/2018] [Indexed: 12/22/2022]
|
29
|
|
30
|
Fraser LA, Kinghorn AB, Dirkzwager RM, Liang S, Cheung YW, Lim B, Shiu SCC, Tang MSL, Andrew D, Manitta J, Richards JS, Tanner JA. A portable microfluidic Aptamer-Tethered Enzyme Capture (APTEC) biosensor for malaria diagnosis. Biosens Bioelectron 2017; 100:591-596. [PMID: 29032164 DOI: 10.1016/j.bios.2017.10.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 09/29/2017] [Accepted: 10/02/2017] [Indexed: 01/04/2023]
Abstract
There is a critical need for better biosensors for the detection and diagnosis of malaria. We previously developed a DNA aptamer that recognises the Plasmodium falciparum lactate dehydrogenase (PfLDH) enzyme with high sensitivity and specificity. The aptamer was integrated into an Aptamer-Tethered Enzyme Capture (APTEC) assay as a laboratory-based diagnostic approach. However, a portable equipment-free point-of-care aptamer-mediated biosensor could have a significant impact on malaria diagnosis in endemic regions. Here, we present a new concept for a malaria biosensor whereby aptamers are coated onto magnetic microbeads for magnet-guided capture, wash and detection of the biomarker. A biosensor incorporating three separate microfluidic chambers was designed to enable such magnet-guided equipment-free colorimetric detection of PfLDH. A series of microfluidic biosensor prototypes were optimised to lower rates of inter-chamber diffusion, increase sensitivity, and provide a method for point-of-care sample testing. The biosensor showed high sensitivity and specificity when detecting PfLDH using both in vitro cultured parasite samples and using clinical samples from malaria patients. The high performance of the biosensor provides a proof-of-principle for a portable biosensor that could be adaptable for a variety of aptamer-mediated diagnostic scenarios.
Collapse
Affiliation(s)
- Lewis A Fraser
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Andrew B Kinghorn
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Roderick M Dirkzwager
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Shaolin Liang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Yee-Wai Cheung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Bryce Lim
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Simon Chi-Chin Shiu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Marco S L Tang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Dean Andrew
- Centre for Biomedical Research, The Burnet Institute of Medical Research and Public Health, Melbourne, Victoria, Australia
| | - Joseph Manitta
- Department of Haematology, Victorian Infectious Diseases Reference Laboratory, Melbourne, Victoria, Australia
| | - Jack S Richards
- Centre for Biomedical Research, The Burnet Institute of Medical Research and Public Health, Melbourne, Victoria, Australia; Department of Medicine, University of Melbourne, Parkville, Victoria, Australia; Department of Infectious Diseases, Monash University, Melbourne, Victoria, Australia
| | - Julian A Tanner
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.
| |
Collapse
|
31
|
Devi SS, Laskar RH, Sheikh SA. Hybrid classifier based life cycle stages analysis for malaria-infected erythrocyte using thin blood smear images. Neural Comput Appl 2017. [DOI: 10.1007/s00521-017-2937-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Campuzano S, Yáñez-Sedeño P, Pingarrón JM. Electrochemical Biosensing for the Diagnosis of Viral Infections and Tropical Diseases. ChemElectroChem 2017. [DOI: 10.1002/celc.201600805] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Susana Campuzano
- Department Analytical Chemistry; Complutense University of Madrid; Av. Complutense s/n 28040- Madrid Spain
| | - Paloma Yáñez-Sedeño
- Department Analytical Chemistry; Complutense University of Madrid; Av. Complutense s/n 28040- Madrid Spain
| | - José Manuel Pingarrón
- Department Analytical Chemistry; Complutense University of Madrid; Av. Complutense s/n 28040- Madrid Spain
| |
Collapse
|
33
|
Hobbs CV, Gabriel EE, Kamthunzi P, Tegha G, Tauzie J, Petzold E, Barlow-Mosha L, Chi BH, Li Y, Ilmet T, Kirmse B, Neal J, Parikh S, Deygoo N, Jean Philippe P, Mofenson L, Prescott W, Chen J, Musoke P, Palumbo P, Duffy PE, Borkowsky W. Malaria in HIV-Infected Children Receiving HIV Protease-Inhibitor- Compared with Non-Nucleoside Reverse Transcriptase Inhibitor-Based Antiretroviral Therapy, IMPAACT P1068s, Substudy to P1060. PLoS One 2016; 11:e0165140. [PMID: 27936233 PMCID: PMC5147802 DOI: 10.1371/journal.pone.0165140] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/05/2016] [Indexed: 11/21/2022] Open
Abstract
Background HIV and malaria geographically overlap. HIV protease inhibitors kill malaria parasites in vitro and in vivo, but further evaluation in clinical studies is needed. Methods Thirty-one children from Malawi aged 4–62 months were followed every 3 months and at intercurrent illness visits for ≤47 months (September 2009-December 2011). We compared malaria parasite carriage by blood smear microscopy (BS) and confirmed clinical malaria incidence (CCM, or positive BS with malaria symptoms) in children initiated on HIV antiretroviral therapy (ART) with zidovudine, lamivudine, and either nevirapine (NVP), a non-nucleoside reverse transcriptase inhibitor, or lopinavir-ritonavir (LPV-rtv), a protease inhibitor. Results We found an association between increased time to recurrent positive BS, but not CCM, when anti-malarial treatment and LPV-rtv based ART were used concurrently and when accounting for a LPV-rtv and antimalarial treatment interaction (adjusted HR 0.39; 95% CI (0.17,0.89); p = 0.03). Conclusions LPV-rtv in combination with malaria treatment was associated with lower risk of recurrent positive BS, but not CCM, in HIV-infected children. Larger, randomized studies are needed to confirm these findings which may permit ART optimization for malaria-endemic settings. Trial Registration ClinicalTrials.gov NCT00719602
Collapse
Affiliation(s)
- Charlotte V. Hobbs
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States of America
- Department of Pediatrics, Division of Infectious Disease and Immunology, New York University School of Medicine, NY, United States of America
- Batson Children’s Hospital, Department of Pediatrics (Division of Infectious Diseases) and Department of Microbiology, University of Mississippi Medical Center, Jackson, MS, United States of America
- * E-mail:
| | - Erin E. Gabriel
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Portia Kamthunzi
- Kamuzu Central Hospital, University of North Carolina at Chapel Hill Lilongwe Project, Lilongwe, Malawi
| | - Gerald Tegha
- Kamuzu Central Hospital, University of North Carolina at Chapel Hill Lilongwe Project, Lilongwe, Malawi
| | - Jean Tauzie
- Kamuzu Central Hospital, University of North Carolina at Chapel Hill Lilongwe Project, Lilongwe, Malawi
| | - Elizabeth Petzold
- Duke Clinical Research Institute, Durham, NC, United States of America
| | - Linda Barlow-Mosha
- Makerere University-Johns Hopkins University Research Collaboration, Kampala, Uganda
| | - Benjamin H. Chi
- Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Yonghua Li
- Department of Pediatrics, Division of Infectious Disease and Immunology, New York University School of Medicine, NY, United States of America
| | - Tiina Ilmet
- Department of Pediatrics, Division of Infectious Disease and Immunology, New York University School of Medicine, NY, United States of America
- Cornell Clinical Trials Unit, Weill Cornell Medicine, NY, United States of America
| | - Brian Kirmse
- Department of Pediatrics, Division of Medical Genetics, University of Mississippi Medical Center, Batson Children’s Hospital, Jackson, MS, United States of America
| | - Jillian Neal
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States of America
| | - Sunil Parikh
- Yale Schools of Public Health and Medicine, New Haven, Connecticut, United States of America
| | - Nagamah Deygoo
- Department of Pediatrics, Division of Infectious Disease and Immunology, New York University School of Medicine, NY, United States of America
| | - Patrick Jean Philippe
- HJF-DAIDS, a Division of the Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Contractor to NIAID, NIH, DHHS, Bethesda, MD, United States of America
| | - Lynne Mofenson
- Elizabeth Glaser Pediatric AIDS Foundation, Washington, DC, United States of America
| | - William Prescott
- HYDAS World Health, Inc., Hummelstown, PA, United States of America
| | - Jingyang Chen
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States of America
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, the University of Washington, and the Fred Hutchinson Cancer Research Center, Seattle WA, United States of America
| | - Philippa Musoke
- Makerere University-Johns Hopkins University Research Collaboration, Kampala, Uganda
- Department of Pediatrics and Child Health, Makerere University, Kampala, Uganda
| | - Paul Palumbo
- Division of Infectious Diseases and International Health, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - Patrick E. Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States of America
| | - William Borkowsky
- Department of Pediatrics, Division of Infectious Disease and Immunology, New York University School of Medicine, NY, United States of America
| | | |
Collapse
|
34
|
|
35
|
West N, Gyeltshen S, Dukpa S, Khoshnood K, Tashi S, Durante A, Parikh S. An Evaluation of the National Malaria Surveillance System of Bhutan, 2006-2012 as It Approaches the Goal of Malaria Elimination. Front Public Health 2016; 4:167. [PMID: 27595095 PMCID: PMC4990597 DOI: 10.3389/fpubh.2016.00167] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 07/29/2016] [Indexed: 01/26/2023] Open
Abstract
INTRODUCTION Bhutan is progressing toward malaria elimination. The purpose of this evaluation was to assess the ability of the surveillance system from 2006 to 2012 to meet the objectives of the Bhutan Vector-borne Disease Control Program (VDCP) and to highlight priorities requiring attention as the nation transitions to elimination. METHODS The evaluation was conducted using the Center for Disease Control guidelines for evaluating public health surveillance systems. Data sources included a search of publically available literature, VDCP program data, and interviews with malaria surveillance personnel. Blood slide quality assurance and control through formal assessment of slide preparation and measures of between-reader correlation were performed. RESULTS Total malaria cases declined from 2006 to 2012. The average slide positivity rate decreased from 3.4% in 2006 to 0.2% in 2012. The proportion of non-residents in all cases increased to its highest value of 22.6% in 2012, and significant clustering in the border regions of India was noted, with Sarpang accounting for more cases than any other district from 2009 onward. Case detection was almost exclusively passive, but flexibility and sensitivity was demonstrated by the later addition of active case detection and specification of imported and locally acquired cases. Spatial data were limited to the village level, not allowing identification of transmission hotspots. For blood smears, statistical measures of between-reader agreement and predictive value were not computed. Blood smear quality was suboptimal by at least one criterion in over half of evaluated smears. Timeliness in reporting of cases was on a weekly to monthly basis, and did not meet the WHO goal of immediate notification. CONCLUSION As of 2012, the national malaria surveillance system demonstrated flexibility, representativeness, simplicity, and stability. The full potential for data analysis was not yet realized. Attaining the goal of malaria elimination will require system function enhancement through increased and more accurate case detection and rapid investigation, improved health worker training and accountability, focally targeted response measures, and, in particular, the challenge of finding re-introductions of infections from India. Many such measure have been undertaken or planned as part of the next phase of the Bhutan's National Strategic Plan.
Collapse
Affiliation(s)
- Nicole West
- Yale School of Public Health and Medicine , New Haven, CT , USA
| | - Sonam Gyeltshen
- Vector-Borne Disease Control Programme, Department of Public Health, Ministry of Health , Gelephu , Bhutan
| | - Singye Dukpa
- Vector-Borne Disease Control Programme, Department of Public Health, Ministry of Health , Gelephu , Bhutan
| | - Kaveh Khoshnood
- Yale School of Public Health and Medicine , New Haven, CT , USA
| | - Sonam Tashi
- Vector-Borne Disease Control Programme, Department of Public Health, Ministry of Health , Gelephu , Bhutan
| | - Amanda Durante
- City of New Haven Department of Health , New Haven, CT , USA
| | - Sunil Parikh
- Yale School of Public Health and Medicine , New Haven, CT , USA
| |
Collapse
|
36
|
Haanshuus CG, Chandy S, Manoharan A, Vivek R, Mathai D, Xena D, Singh A, Langeland N, Blomberg B, Vasanthan G, Sitaram U, Appasamy J, Nesaraj J, Henry A, Patil S, Alvarez-Uria G, Armstrong L, Mørch K. A High Malaria Prevalence Identified by PCR among Patients with Acute Undifferentiated Fever in India. PLoS One 2016; 11:e0158816. [PMID: 27389396 PMCID: PMC4936667 DOI: 10.1371/journal.pone.0158816] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 06/22/2016] [Indexed: 11/29/2022] Open
Abstract
Background Approximately one million malaria cases were reported in India in 2015, based on microscopy. This study aims to assess the malaria prevalence among hospitalised fever patients in India identified by PCR, and to evaluate the performance of routine diagnostic methods. Methods During June 2011-December 2012, patients admitted with acute undifferentiated fever to seven secondary level community hospitals in Assam (Tezpur), Bihar (Raxaul), Chhattisgarh (Mungeli), Maharashtra (Ratnagiri), Andhra Pradesh (Anantapur) and Tamil Nadu (Oddanchatram and Ambur) were included. The malaria prevalence was assessed by polymerase chain reaction (PCR), routine microscopy, and a rapid diagnostic test (RDT) with PCR as a reference method. Results The malaria prevalence by PCR was 19% (268/1412) ranging from 6% (Oddanchatram, South India) to 35% (Ratnagiri, West India). Among malaria positive patients P. falciparum single infection was detected in 46%, while 38% had P. vivax, 11% mixed infections with P. falciparum and P. vivax, and 5% P. malariae. Compared to PCR, microscopy had sensitivity of 29% and specificity of 98%, while the RDT had sensitivity of 24% and specificity of 99%. Conclusions High malaria prevalence was identified by PCR in this cohort. Routine diagnostic methods had low sensitivity compared to PCR. The results suggest that malaria is underdiagnosed in rural India. However, low parasitaemia controlled by immunity may constitute a proportion of PCR positive cases, which calls for awareness of the fact that other pathogens could be responsible for the febrile disease in submicroscopic malaria.
Collapse
Affiliation(s)
- Christel Gill Haanshuus
- National Centre for Tropical Infectious Diseases, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Sara Chandy
- Infectious Diseases Training and Research Center, Department of Medicine Unit-1 and Infectious Diseases, Christian Medical College, Vellore, India
| | - Anand Manoharan
- Infectious Diseases Training and Research Center, Department of Medicine Unit-1 and Infectious Diseases, Christian Medical College, Vellore, India
- * E-mail:
| | - Rosario Vivek
- Infectious Diseases Training and Research Center, Department of Medicine Unit-1 and Infectious Diseases, Christian Medical College, Vellore, India
| | - Dilip Mathai
- Infectious Diseases Training and Research Center, Department of Medicine Unit-1 and Infectious Diseases, Christian Medical College, Vellore, India
| | - Deepika Xena
- Infectious Diseases Training and Research Center, Department of Medicine Unit-1 and Infectious Diseases, Christian Medical College, Vellore, India
| | - Ashita Singh
- Baptist Christian Hospital, Tezpur, Assam, India
| | - Nina Langeland
- National Centre for Tropical Infectious Diseases, Department of Medicine, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Bjørn Blomberg
- National Centre for Tropical Infectious Diseases, Department of Medicine, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - George Vasanthan
- Infectious Diseases Training and Research Center, Department of Medicine Unit-1 and Infectious Diseases, Christian Medical College, Vellore, India
| | - Usha Sitaram
- Infectious Diseases Training and Research Center, Department of Medicine Unit-1 and Infectious Diseases, Christian Medical College, Vellore, India
| | | | | | - Anil Henry
- Christian Hospital, Mungeli, Chhattisgarh, India
| | - Suvarna Patil
- B.K.L. Walawalkar Hospital, Ratnagiri, Maharashtra, India
| | | | | | - Kristine Mørch
- National Centre for Tropical Infectious Diseases, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
37
|
Newell K, Kiggundu V, Ouma J, Baghendage E, Kiwanuka N, Gray R, Serwadda D, Hobbs CV, Healy SA, Quinn TC, Reynolds SJ. Longitudinal household surveillance for malaria in Rakai, Uganda. Malar J 2016; 15:77. [PMID: 26861943 PMCID: PMC4746783 DOI: 10.1186/s12936-016-1128-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 01/25/2016] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND HIV and malaria exert co-pathogenic effects. Malaria surveillance data are necessary for public health strategies to reduce the burden of disease in high HIV prevalence settings. METHODS This was a longitudinal cohort study to assess the burden of malaria in rural Rakai, Uganda. Households were visited monthly for 1 year to identify confirmed clinical malaria (CCM), or parasitaemia with temperature >37.5 °C, and asymptomatic parasitaemia (AP). Interviews of the adult or child's caregiver and clinical and laboratory assessments were conducted. Rapid diagnostic testing for malaria and anaemia was performed if participants were febrile and anti-malarial treatment given per Uganda Ministry of Health 2010 guidelines. Blood was drawn at every household visit to assess for parasitaemia, and blood smears were assessed at the Rakai Health Science Programme laboratory. RESULTS A total of 1640 participants were enrolled, including 975 children aged 6 months up to 10 years, 393 adult caregivers, and 272 adolescent/adult household members from 393 randomly selected households in two representative communities. 1459 (89 %) participants completed all study visits. CCM was identified in 304 (19 %) participants, with the highest incidence rate for CCM of 0.38 per person-year (ppy) identified in children <5 years, and rates decreased with age; the rates were 0.27, 0.16, and 0.09 ppy for ages 5-<10 years, 10-<18 years, and adults 18+ years, respectively. AP was identified in 943 (57 %) participants; the incidence rate was 1.99 ppy for <5 years, 2.72 ppy for 5-<10 years, 2.55 ppy for 10-<18 years, and 0.86 ppy among adults, with 92 % of cases being attributed to Plasmodium falciparum by smear. 994 (61 %) individuals had at least one positive smear; 342 (21 %) had one positive result, 203 (12 %) had two, 115 (7 %) had three, and 334 (21 %) had >3 positive smears during follow-up. Seasonal rates generally followed the rains and peaked during July, then decreased through November before increasing again. CONCLUSIONS Plasmodium falciparum infection remains high in rural Uganda. Increased malaria control interventions should be prioritized. Trial registration Clinicaltrials.gov identifier NCT01265407.
Collapse
Affiliation(s)
- Kevin Newell
- Research Data and Communication Technologies, Inc., Garrett Park, MD, USA.
| | - Valerian Kiggundu
- Office of HIV/AIDS/Global Health Bureau, USAID Global Health Fellows Program, 1300 Pennsylvania Avenue NW, Washington, 20523, DC, USA.
| | - Joseph Ouma
- Rakai Health Sciences Program, Kalisizo, Uganda.
| | | | - Noah Kiwanuka
- International AIDS Vaccine Initiative (IAVI), Uganda Program, Entebbe, Uganda.
| | - Ronald Gray
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | - David Serwadda
- Rakai Health Sciences Program, Kalisizo, Uganda.
- School of Public Health, Makerere College of Health Sciences, Kampala, Uganda.
| | - Charlotte V Hobbs
- Batson Children's Hospital, Division of Infectious Disease, Department of Pediatrics, University of Mississippi Medical Center, Jackson, MS, USA.
| | - Sara A Healy
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Thomas C Quinn
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
- Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Steven J Reynolds
- Rakai Health Sciences Program, Kalisizo, Uganda.
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
- Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- NIAID/NIH ICER Program, c/o US Embassy Kampala, P.O. Box 7007, Kampala, Uganda.
| |
Collapse
|
38
|
Salinas JL, Kissinger JC, Jones DP, Galinski MR. Metabolomics in the fight against malaria. Mem Inst Oswaldo Cruz 2015; 109:589-97. [PMID: 25185001 PMCID: PMC4156452 DOI: 10.1590/0074-0276140043] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 03/11/2014] [Indexed: 02/06/2023] Open
Abstract
Metabolomics uses high-resolution mass spectrometry to provide a chemical fingerprint of thousands of metabolites present in cells, tissues or body fluids. Such metabolic phenotyping has been successfully used to study various biologic processes and disease states. High-resolution metabolomics can shed new light on the intricacies of host-parasite interactions in each stage of the Plasmodium life cycle and the downstream ramifications on the host's metabolism, pathogenesis and disease. Such data can become integrated with other large datasets generated using top-down systems biology approaches and be utilised by computational biologists to develop and enhance models of malaria pathogenesis relevant for identifying new drug targets or intervention strategies. Here, we focus on the promise of metabolomics to complement systems biology approaches in the quest for novel interventions in the fight against malaria. We introduce the Malaria Host-Pathogen Interaction Center (MaHPIC), a new systems biology research coalition. A primary goal of the MaHPIC is to generate systems biology datasets relating to human and non-human primate (NHP) malaria parasites and their hosts making these openly available from an online relational database. Metabolomic data from NHP infections and clinical malaria infections from around the world will comprise a unique global resource.
Collapse
Affiliation(s)
- Jorge L Salinas
- Division of Infectious Diseases, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Jessica C Kissinger
- Department of Genetics, Institute of Bioinformatics, Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
| | - Dean P Jones
- Division of Pulmonary Medicine, Department of Medicine, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Mary R Galinski
- Division of Infectious Diseases, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| |
Collapse
|
39
|
Dahal P, d'Alessandro U, Dorsey G, Guerin PJ, Nsanzabana C, Price RN, Sibley CH, Stepniewska K, Talisuna AO. Clinical determinants of early parasitological response to ACTs in African patients with uncomplicated falciparum malaria: a literature review and meta-analysis of individual patient data. BMC Med 2015; 13:212. [PMID: 26343145 PMCID: PMC4561425 DOI: 10.1186/s12916-015-0445-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 08/11/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Artemisinin-resistant Plasmodium falciparum has emerged in the Greater Mekong sub-region and poses a major global public health threat. Slow parasite clearance is a key clinical manifestation of reduced susceptibility to artemisinin. This study was designed to establish the baseline values for clearance in patients from Sub-Saharan African countries with uncomplicated malaria treated with artemisinin-based combination therapies (ACTs). METHODS A literature review in PubMed was conducted in March 2013 to identify all prospective clinical trials (uncontrolled trials, controlled trials and randomized controlled trials), including ACTs conducted in Sub-Saharan Africa, between 1960 and 2012. Individual patient data from these studies were shared with the WorldWide Antimalarial Resistance Network (WWARN) and pooled using an a priori statistical analytical plan. Factors affecting early parasitological response were investigated using logistic regression with study sites fitted as a random effect. The risk of bias in included studies was evaluated based on study design, methodology and missing data. RESULTS In total, 29,493 patients from 84 clinical trials were included in the analysis, treated with artemether-lumefantrine (n = 13,664), artesunate-amodiaquine (n = 11,337) and dihydroartemisinin-piperaquine (n = 4,492). The overall parasite clearance rate was rapid. The parasite positivity rate (PPR) decreased from 59.7 % (95 % CI: 54.5-64.9) on day 1 to 6.7 % (95 % CI: 4.8-8.7) on day 2 and 0.9 % (95 % CI: 0.5-1.2) on day 3. The 95th percentile of observed day 3 PPR was 5.3 %. Independent risk factors predictive of day 3 positivity were: high baseline parasitaemia (adjusted odds ratio (AOR) = 1.16 (95 % CI: 1.08-1.25); per 2-fold increase in parasite density, P <0.001); fever (>37.5 °C) (AOR = 1.50 (95 % CI: 1.06-2.13), P = 0.022); severe anaemia (AOR = 2.04 (95 % CI: 1.21-3.44), P = 0.008); areas of low/moderate transmission setting (AOR = 2.71 (95 % CI: 1.38-5.36), P = 0.004); and treatment with the loose formulation of artesunate-amodiaquine (AOR = 2.27 (95 % CI: 1.14-4.51), P = 0.020, compared to dihydroartemisinin-piperaquine). CONCLUSIONS The three ACTs assessed in this analysis continue to achieve rapid early parasitological clearance across the sites assessed in Sub-Saharan Africa. A threshold of 5 % day 3 parasite positivity from a minimum sample size of 50 patients provides a more sensitive benchmark in Sub-Saharan Africa compared to the current recommended threshold of 10 % to trigger further investigation of artemisinin susceptibility.
Collapse
Affiliation(s)
| | - Prabin Dahal
- WorldWide Antimalarial Resistance Network (WWARN); Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Kobayashi T, Gamboa D, Ndiaye D, Cui L, Sutton PL, Vinetz JM. Malaria Diagnosis Across the International Centers of Excellence for Malaria Research: Platforms, Performance, and Standardization. Am J Trop Med Hyg 2015; 93:99-109. [PMID: 26259937 PMCID: PMC4574279 DOI: 10.4269/ajtmh.15-0004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 06/23/2015] [Indexed: 12/14/2022] Open
Abstract
Diagnosis is “the act of identifying a disease, illness, or problem by examining someone or something.” When an individual with acute fever presents for clinical attention, accurate diagnosis leading to specific, prompt treatment often saves lives. As applied to malaria, not only individual patient diagnosis is important but also assessing population-level malaria prevalence using appropriate diagnostic methods is essential for public health purposes. Similarly, identifying (diagnosing) fake antimalarial medications prevents the use of counterfeit drugs that can have disastrous effects. Therefore, accurate diagnosis in broad areas related to malaria is fundamental to improving health-care delivery, informing funding agencies of current malaria situations, and aiding in the prioritization of regional and national control efforts. The International Centers of Excellence for Malaria Research (ICEMR), supported by the U.S. National Institute of Allergy and Infectious Diseases, has collaborated on global efforts to improve malaria diagnostics by working to harmonize and systematize procedures across different regions where endemicity and financial resources vary. In this article, the different diagnostic methods used across each ICEMR are reviewed and challenges are discussed.
Collapse
Affiliation(s)
- Tamaki Kobayashi
- *Address correspondence to Tamaki Kobayashi, Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, W4612, Baltimore, MD 21205, E-mail: or Joseph M. Vinetz, Division of Infectious Diseases, Department of Medicine, University of California San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093-0760, E-mail:
| | | | | | | | | | - Joseph M. Vinetz
- *Address correspondence to Tamaki Kobayashi, Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, W4612, Baltimore, MD 21205, E-mail: or Joseph M. Vinetz, Division of Infectious Diseases, Department of Medicine, University of California San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093-0760, E-mail:
| |
Collapse
|
41
|
Abstract
Current guidelines on the diagnosis and exclusion of malaria stipulate that if there is an initial negative result on blood film, multiple blood film preparations should be taken to sufficiently exclude malaria.We looked at a state-wide database of blood results retrospectively for a period of 14 years to identify subjects who had been tested for malaria.Most (93%) of patients were diagnosed on the first blood smear. Almost 7% of patients had an initial negative blood film result but subsequently went on to have a positive result. The majority of patients diagnosed with malaria on the first blood film had Plasmodium falciparum (66%) whilst the majority of patients with an initial negative blood film result were later diagnosed with P. vivax (78%).Most of the subjects in the 7% group were members of the Australian Defence Force and would have received chemoprophylaxis against malaria.The majority of malaria diagnoses are confirmed on a single blood film result. However, a significant proportion of malaria diagnoses would be missed if only one blood film were examined. Currently there is insufficient clinical and epidemiological information to predict which subjects would require one versus three blood film examinations. As such, three blood films should be obtained for patients suspected of having malaria.
Collapse
|
42
|
Culleton RL, Abkallo HM. Malaria parasite genetics: doing something useful. Parasitol Int 2014; 64:244-53. [PMID: 25073068 DOI: 10.1016/j.parint.2014.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 07/11/2014] [Indexed: 01/15/2023]
Abstract
Genetics has informed almost every aspect of the study of malaria parasites, and remains a key component of much of the research that aims to reduce the burden of the disease they cause. We describe the history of genetic studies of malaria parasites and give an overview of the utility of the discipline to malariology.
Collapse
Affiliation(s)
- Richard L Culleton
- Malaria Unit, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan.
| | - Hussein M Abkallo
- Malaria Unit, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
43
|
External quality assurance of malaria nucleic acid testing for clinical trials and eradication surveillance. PLoS One 2014; 9:e97398. [PMID: 24838112 PMCID: PMC4023973 DOI: 10.1371/journal.pone.0097398] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 04/18/2014] [Indexed: 11/19/2022] Open
Abstract
Nucleic acid testing (NAT) for malaria parasites is an increasingly recommended diagnostic endpoint in clinical trials of vaccine and drug candidates and is also important in surveillance of malaria control and elimination efforts. A variety of reported NAT assays have been described, yet no formal external quality assurance (EQA) program provides validation for the assays in use. Here, we report results of an EQA exercise for malaria NAT assays. Among five centers conducting controlled human malaria infection trials, all centers achieved 100% specificity and demonstrated limits of detection consistent with each laboratory's pre-stated expectations. Quantitative bias of reported results compared to expected results was generally <0.5 log10 parasites/mL except for one laboratory where the EQA effort identified likely reasons for a general quantitative shift. The within-laboratory variation for all assays was low at <10% coefficient of variation across a range of parasite densities. Based on this study, we propose to create a Molecular Malaria Quality Assessment program that fulfills the need for EQA of malaria NAT assays worldwide.
Collapse
|