1
|
Calderón-Ruiz P, Velez-Tobón G, Bolívar-Hernández S, Murcia-Montaño LM, Tobón-Castaño A. Chloroquine-primaquine therapeutic response and safety in patients with uncomplicated Plasmodium vivax malaria in the Colombian Amazon region. Malar J 2024; 23:348. [PMID: 39558343 PMCID: PMC11575219 DOI: 10.1186/s12936-024-05170-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/03/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND In Colombia, published studies on the treatment of uncomplicated Plasmodium vivax malaria with chloroquine-primaquine are scarce. The aim of this study was to evaluate the therapeutic response to two treatment regimens at the 28-day follow-up and the occurrence of adverse events in patients with P. vivax malaria. METHODS A quasi-experimental clinical trial was conducted at 3 sites in the Department of Amazonas. Patients received supervised or unsupervised anti-malarial treatment (chloroquine plus primaquine), and the primary effectiveness endpoint was the clinical and parasitological response. Safety was assessed through adverse event surveillance. RESULTS A total of 103 patients were included: 53 in the 7-day primaquine group (Group I) and 50 in the group receiving primaquine for 14 days (Group II). Among the patients in group I, an adequate treatment response of 100% and 89.5% was found in patients who received supervised and unsupervised treatment, respectively. In Group II, adequate responses of 100% and 95% were reported for patients who received supervised and unsupervised treatment, respectively. No adverse events were detected. CONCLUSIONS The response to combined treatment with chloroquine plus primaquine continues to be adequate for treating P. vivax malaria in the Colombian Amazon region; however, a response to unsupervised treatment in the region is recommended.
Collapse
Affiliation(s)
- Paula Calderón-Ruiz
- Malaria Group, Lab 610, Faculty of Medicine, University of Antioquia, Medellin, 050010, Colombia.
| | - Gabriel Velez-Tobón
- Malaria Group, Lab 610, Faculty of Medicine, University of Antioquia, Medellin, 050010, Colombia
| | | | - Luz Mila Murcia-Montaño
- Amazon Public Health Study Group, Amazon Public Health Laboratory, Leticia, 910001, Colombia
| | - Alberto Tobón-Castaño
- Malaria Group, Lab 610, Faculty of Medicine, University of Antioquia, Medellin, 050010, Colombia
| |
Collapse
|
2
|
Garcia Castillo SS, Abanto Alvarez C, Rosas-Aguirre Á, Acosta C, Corder RM, Gómez J, Guzmán M, Speybroeck N, Llanos-Cuentas A, Castro MC, Rosanas-Urgell A, Ferreira MU, Vinetz JM, Gamboa D, Torres K. Recurrence patterns and evolution of submicroscopic and asymptomatic Plasmodium vivax infections in malaria-endemic areas of the Peruvian Amazon. PLoS Negl Trop Dis 2024; 18:e0012566. [PMID: 39480785 PMCID: PMC11527163 DOI: 10.1371/journal.pntd.0012566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 09/23/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND In the Peruvian Amazon, Plasmodium vivax malaria transmission is maintained due to the high frequency of recurrences. By understanding the recurrence rates of submicroscopic and asymptomatic cases, we can develop informed strategies to prevent transmission more efficiently and disrupt the silent transmission cycle. METHODS A three-year, population-based cohort study was conducted in two sites, Cahuide and Lupuna, within the Loreto region in Peru from 2013 to 2015. The study included 385 individuals and aimed to examine the temporal dynamics of malaria recurrences and their impact on transmission and control. RESULTS Individuals from Lupuna presented a higher risk of P. vivax infections compared to Cahuide, where most recurrences were asymptomatic and submicroscopic. It is estimated that a great proportion of these recurrences were due to relapses in both communities. The application of molecular diagnostic method proved to be significantly more effective, detecting 2.3 times more episodes during the follow-up (PCR, 1068; microscopy, 467). PCR identified recurrences significantly earlier, at 151 days after an initial infection, compared to microscopy, which detected them on average after 365 days. Community, occupation and previous malaria infections were factors associated with recurrences. Finally, potential infection evolution scenarios were described where one frequent scenario involved the transition from symptomatic to asymptomatic infections with a mean evolution time of 240 days. CONCLUSIONS This study explores the contrast in malaria recurrence risk among individuals from two endemic settings, a consequence of prolonged exposure to the parasite. Through the analysis of the evolution scenarios of P. vivax recurrences, it is possible to have a more complete vision of how the transmission pattern changes over time and is conditioned by different factors.
Collapse
Affiliation(s)
- Stefano S. Garcia Castillo
- Laboratorio de Malaria: Parásitos y Vectores, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Caroline Abanto Alvarez
- Laboratorio de Malaria: Parásitos y Vectores, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Ángel Rosas-Aguirre
- Research Institute of Health and Society (IRSS), Université Catholique de Louvain, Brussels, Belgium
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Carlos Acosta
- Laboratorio de Malaria: Parásitos y Vectores, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Rodrigo M. Corder
- Division of Epidemiology and Biostatistics, University of California, Berkeley School of Public Health, Berkeley, California, United States of America
- Department of Parasitology, Instituto of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Joaquín Gómez
- Laboratorio de Malaria: Parásitos y Vectores, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Mitchel Guzmán
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Niko Speybroeck
- Research Institute of Health and Society (IRSS), Université Catholique de Louvain, Brussels, Belgium
| | - Alejandro Llanos-Cuentas
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Marcia C. Castro
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, United States of America
| | | | - Marcelo U. Ferreira
- Department of Parasitology, Instituto of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Global Health and Tropical Medicine, Institute of Hygiene and Tropical Medicine, NOVA University of Lisbon, Lisbon, Portugal
| | - Joseph M. Vinetz
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Dionicia Gamboa
- Laboratorio de Malaria: Parásitos y Vectores, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Katherine Torres
- Laboratorio de Malaria: Parásitos y Vectores, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| |
Collapse
|
3
|
Kattenberg JH, Cabrera-Sosa L, Figueroa-Ildefonso E, Mutsaers M, Monsieurs P, Guetens P, Infante B, Delgado-Ratto C, Gamboa D, Rosanas-Urgell A. Plasmodium vivax genomic surveillance in the Peruvian Amazon with Pv AmpliSeq assay. PLoS Negl Trop Dis 2024; 18:e0011879. [PMID: 38991038 PMCID: PMC11265702 DOI: 10.1371/journal.pntd.0011879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 07/23/2024] [Accepted: 06/12/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND Plasmodium vivax is the most predominant malaria species in Latin America, constituting 71.5% of malaria cases in 2021. With several countries aiming for malaria elimination, it is crucial to prioritize effectiveness of national control programs by optimizing the utilization of available resources and strategically implementing necessary changes. To support this, there is a need for innovative approaches such as genomic surveillance tools that can investigate changes in transmission intensity, imported cases and sources of reintroduction, and can detect molecular markers associated with drug resistance. METHODOLOGY/PRINCIPAL FINDINGS Here, we apply a modified highly-multiplexed deep sequencing assay: Pv AmpliSeq v2 Peru. The tool targets a newly developed 41-SNP Peru barcode for parasite population analysis within Peru, the 33-SNP vivaxGEN-geo panel for country-level classification, and 11 putative drug resistance genes. It was applied to 230 samples from the Peruvian Amazon (2007-2020), generating baseline surveillance data. We observed a heterogenous P. vivax population with high diversity and gene flow in peri-urban areas of Maynas province (Loreto region) with a temporal drift using all SNPs detected by the assay (nSNP = 2909). In comparison, in an indigenous isolated area, the parasite population was genetically differentiated (FST = 0.07-0.09) with moderate diversity and high relatedness between isolates in the community. In a remote border community, a clonal P. vivax cluster was identified, with distinct haplotypes in drug resistant genes and ama1, more similar to Brazilian isolates, likely representing an introduction of P. vivax from Brazil at that time. To test its applicability for Latin America, we evaluated the SNP Peru barcode in P. vivax genomes from the region and demonstrated the capacity to capture local population clustering at within-country level. CONCLUSIONS/SIGNIFICANCE Together this data shows that P. vivax transmission is heterogeneous in different settings within the Peruvian Amazon. Genetic analysis is a key component for regional malaria control, offering valuable insights that should be incorporated into routine surveillance.
Collapse
Affiliation(s)
| | - Luis Cabrera-Sosa
- Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru
- Laboratorio de Malaria: Parásitos y Vectores, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
- Malaria Research Group (MaRCH), Global Health Institute, Faculty of Medicine, University of Antwerp, Antwerp, Belgium
| | - Erick Figueroa-Ildefonso
- Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru
- Laboratorio de Malaria: Parásitos y Vectores, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Mathijs Mutsaers
- Malariology Unit, Biomedical Sciences Department, Institute of Tropical Medicine, Antwerp, Belgium
| | - Pieter Monsieurs
- Malariology Unit, Biomedical Sciences Department, Institute of Tropical Medicine, Antwerp, Belgium
| | - Pieter Guetens
- Malariology Unit, Biomedical Sciences Department, Institute of Tropical Medicine, Antwerp, Belgium
| | - Berónica Infante
- Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru
- Laboratorio de Malaria: Parásitos y Vectores, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Christopher Delgado-Ratto
- Malaria Research Group (MaRCH), Global Health Institute, Faculty of Medicine, University of Antwerp, Antwerp, Belgium
| | - Dionicia Gamboa
- Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru
- Laboratorio de Malaria: Parásitos y Vectores, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
- Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Anna Rosanas-Urgell
- Malariology Unit, Biomedical Sciences Department, Institute of Tropical Medicine, Antwerp, Belgium
| |
Collapse
|
4
|
Malla P, Wang Z, Brashear A, Yang Z, Lo E, Baird K, Wang C, Cui L. Effectiveness of an Unsupervised Primaquine Regimen for Preventing Plasmodium vivax Malaria Relapses in Northeast Myanmar: A Single-Arm Nonrandomized Observational Study. J Infect Dis 2024; 229:1557-1564. [PMID: 38041857 PMCID: PMC11095535 DOI: 10.1093/infdis/jiad552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 11/16/2023] [Accepted: 11/29/2023] [Indexed: 12/04/2023] Open
Abstract
BACKGROUND Plasmodium vivax presents a significant challenge for malaria elimination in the Greater Mekong Subregion. We evaluated the effectiveness of primaquine for reducing relapses of vivax malaria. METHODS Patients with uncomplicated P vivax malaria from eastern Myanmar received chloroquine (25-mg base/kg given in 3 days) plus unsupervised PQ (0.25 mg/kg/d for 14 days) without screening for glucose-6-phosphate dehydrogenase deficiency and were followed for a year. RESULTS A total of 556 patients were enrolled to receive the chloroquine/primaquine treatment from February 2012 to August 2013. During the follow-up, 38 recurrences were detected, presenting a cumulative recurrence rate of 9.1% (95% CI, 4.1%-14.1%). Genotyping at the pvmsp1 and pvmsp3α loci by amplicon deep sequencing and model prediction indicated that 13 of the 27 recurrences with genotyping data were likely due to relapses. Notably, all confirmed relapses occurred within the first 6 months. CONCLUSIONS The unsupervised standard dose of primaquine was highly effective as a radical cure for P vivax malaria in eastern Myanmar. The high presumed effectiveness might have benefited from the health messages delivered during the enrollment and follow-up activities. Six-month follow-ups in the Greater Mekong Subregion are sufficient for detecting most relapses.
Collapse
Affiliation(s)
- Pallavi Malla
- Department of Internal Medicine, Morsani College of Medicine
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa
| | - Zenglei Wang
- MHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Beijing Union Medical College
| | - Awtum Brashear
- Department of Internal Medicine, Morsani College of Medicine
| | - Zhaoqing Yang
- Department of Pathogen Biology and Immunology, Kunming Medical University, China
| | - Eugenia Lo
- Department of Microbiology and Immunology, College of Medicine, Drexel University
| | - Kevin Baird
- Eijkman-Oxford Clinical Research Unit, Eijkman Institute for Molecular Biology, Jakarta, Indonesia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Chengqi Wang
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine
| |
Collapse
|
5
|
Win KM, Aung PL, Ring Z, Linn NYY, Kyaw MP, Nguitragool W, Cui L, Sattabongkot J, Lawpoolsri S. Interventions for promoting patients' adherence to 14-day primaquine treatment in a highly malaria-endemic township in Myanmar: a qualitative study among key stakeholders. Malar J 2023; 22:302. [PMID: 37814267 PMCID: PMC10563334 DOI: 10.1186/s12936-023-04743-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/04/2023] [Indexed: 10/11/2023] Open
Abstract
BACKGROUND Plasmodium vivax malaria is considered a major threat to malaria eradication. The radical cure for P. vivax malaria normally requires a 14-day administration of primaquine (PQ) to clear hypnozoites. However, maintaining adherence to PQ treatment is a significant challenge, particularly in malaria-endemic rural areas. Hence, this study aimed to formulate interventions for promoting patients' commitment to PQ treatment in a highly malaria-endemic township in Myanmar. METHODS A qualitative study was conducted in Waingmaw Township in northern Myanmar, where P. vivax malaria is highly endemic. Key stakeholders including public health officers and community members participated in focus group discussions (FGDs) and in-depth interviews (IDIs) in September 2022. Data were collected using validated guidelines, translated into English, and visualized through thematic analysis. RESULTS Responsible individuals from different levels of the Myanmar National Malaria Control Programme participated in the IDIs. Most of them reported being aware of the markedly increasing trend of P. vivax and the possibility of relapse cases, especially among migrants who are lost to follow-up. Workload was a key concern surrounding intervention implementation. The respondents discussed possible interventions, such as implementing directly observed treatment (DOT) by family members, piloting a shorter PQ regimen, expanding the community's malaria volunteer network, and strengthening health education activities using local languages to promote reasonable drug adherence. FGDs among community members revealed that although people were knowledgeable about malaria symptoms, places to seek treatment, and the use of bed nets to prevent mosquito bites, most of them still preferred to be treated by quack doctors and rarely used insecticide-treated nets at worksites. Many often stopped taking the prescribed drugs once the symptoms disappeared. Nevertheless, some respondents requested more bed nets to be distributed and health promotion activities to be conducted. CONCLUSION In rural areas where human resources are limited, interventions such as implementing family member DOT or shortening PQ regimens should be introduced to enhance the radical cure for the P. vivax infection. Disseminating information about the importance of taking the entire treatment course and emphasizing the burden of relapse is also essential.
Collapse
Affiliation(s)
- Kyawt Mon Win
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Public Health, Ministry of Health, Naypyitaw, Myanmar
| | - Pyae Linn Aung
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Zau Ring
- State Public Health Department, Kachin State, Ministry of Health, Myitkyina, Myanmar
| | - Nay Yi Yi Linn
- Department of Public Health, Ministry of Health, Naypyitaw, Myanmar
| | | | - Wang Nguitragool
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Liwang Cui
- Division of Infectious Diseases and International Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Saranath Lawpoolsri
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
6
|
Atarihuana S, Gallardo-Condor J, López-Cortés A, Jimenes-Vargas K, Burgos G, Karina-Zambrano A, Flores-Espinoza R, Coral M, Cabrera-Andrade A. Genetic basis and spatial distribution of glucose-6-phosphate dehydrogenase deficiency in ecuadorian ethnic groups: a malaria perspective. Malar J 2023; 22:283. [PMID: 37752491 PMCID: PMC10521485 DOI: 10.1186/s12936-023-04716-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023] Open
Abstract
BACKGROUND Glucose-6-phosphate dehydrogenase deficiency (G6PDd) is an X-linked disorder affecting over 400 million people worldwide. Individuals with molecular variants associated with reduced enzymatic activity are susceptible to oxidative stress in red blood cells, thereby increasing the risk of pathophysiological conditions and toxicity to anti-malarial treatments. Globally, the prevalence of G6PDd varies among populations. Accordingly, this study aims to characterize G6PDd distribution within the Ecuadorian population and to describe the spatial distribution of reported malaria cases. METHODS Molecular variants associated with G6PDd were genotyped in 581 individuals from Afro-Ecuadorian, Indigenous, Mestizo, and Montubio ethnic groups. Additionally, spatial analysis was conducted to identify significant malaria clusters with high incidence rates across Ecuador, using data collected from 2010 to 2021. RESULTS The A- c.202G > A and A- c.968T > C variants underpin the genetic basis of G6PDd in the studied population. The overall prevalence of G6PDd was 4.6% in the entire population. However, this frequency increased to 19.2% among Afro-Ecuadorian people. Spatial analysis revealed 12 malaria clusters, primarily located in the north of the country and its Amazon region, with relative risks of infection of 2.02 to 87.88. CONCLUSIONS The findings of this study hold significant implications for public health interventions, treatment strategies, and targeted efforts to mitigate the burden of malaria in Ecuador. The high prevalence of G6PDd among Afro-Ecuadorian groups in the northern endemic areas necessitates the development of comprehensive malaria eradication strategies tailored to this geographical region.
Collapse
Affiliation(s)
- Sebastián Atarihuana
- Facultad de Ingeniería y Ciencias Aplicadas, Universidad de Las Américas, Quito, Ecuador
| | | | - Andrés López-Cortés
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Madrid, Spain
| | - Karina Jimenes-Vargas
- Grupo de Bio-Quimioinformática, Universidad de Las Américas, Quito, Ecuador
- Department of Computer Science and Information Technologies, Computer Science Faculty, CITIC, RNASA Group, University of A Coruña, A Coruña, Spain
| | - Germán Burgos
- One Health Research Group, Facultad de Medicina, Universidad de las Américas, Quito, Ecuador
- Grupo de Medicina Xenómica, Instituto de Ciencias Forenses, Universidad de Santiago de Compostela, A Coruña, Spain
| | - Ana Karina-Zambrano
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Rodrigo Flores-Espinoza
- Laboratório de Diagnóstico por DNA (LDD), Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marco Coral
- Grupo de Bio-Quimioinformática, Universidad de Las Américas, Quito, Ecuador
- Carrera de Medicina Veterinaria, Facultad de Ciencias de la Salud, Universidad de Las Américas, Quito, Ecuador
| | - Alejandro Cabrera-Andrade
- Grupo de Bio-Quimioinformática, Universidad de Las Américas, Quito, Ecuador.
- Escuela de Enfermería, Facultad de Ciencias de la Salud, Universidad de Las Américas, Quito, Ecuador.
| |
Collapse
|
7
|
Brashear AM, Cui L. Population genomics in neglected malaria parasites. Front Microbiol 2022; 13:984394. [PMID: 36160257 PMCID: PMC9493318 DOI: 10.3389/fmicb.2022.984394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Malaria elimination includes neglected human malaria parasites Plasmodium vivax, Plasmodium ovale spp., and Plasmodium malariae. Biological features such as association with low-density infection and the formation of hypnozoites responsible for relapse make their elimination challenging. Studies on these parasites rely primarily on clinical samples due to the lack of long-term culture techniques. With improved methods to enrich parasite DNA from clinical samples, whole-genome sequencing of the neglected malaria parasites has gained increasing popularity. Population genomics of more than 2200 P. vivax global isolates has improved our knowledge of parasite biology and host-parasite interactions, identified vaccine targets and potential drug resistance markers, and provided a new way to track parasite migration and introduction and monitor the evolutionary response of local populations to elimination efforts. Here, we review advances in population genomics for neglected malaria parasites, discuss how the rich genomic information is being used to understand parasite biology and epidemiology, and explore opportunities for the applications of malaria genomic data in malaria elimination practice.
Collapse
|
8
|
Watson JA, White NJ. Higher-Dose Primaquine to Prevent Relapse of Plasmodium vivax Malaria. N Engl J Med 2022; 387:282-283. [PMID: 35857669 PMCID: PMC7614973 DOI: 10.1056/nejmc2205922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- James A Watson
- Mahidol Oxford Tropical Research Unit, Bangkok, Thailand
| | | |
Collapse
|
9
|
Chamma-Siqueira NN, Negreiros SC, Ballard SB, Farias S, Silva SP, Chenet SM, Santos EJM, Pereira de Sena LW, Póvoa da Costa F, Cardoso-Mello AGN, Marchesini PB, Peterka CRL, Viana GMR, Macedo de Oliveira A. Higher-Dose Primaquine to Prevent Relapse of Plasmodium vivax Malaria. N Engl J Med 2022; 386:1244-1253. [PMID: 35353962 PMCID: PMC9132489 DOI: 10.1056/nejmoa2104226] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND In most of the Americas, the recommended treatment to prevent relapse of Plasmodium vivax malaria is primaquine at a total dose of 3.5 mg per kilogram of body weight, despite evidence of only moderate efficacy. METHODS In this trial conducted in Brazil, we evaluated three primaquine regimens to prevent relapse of P. vivax malaria in children at least 5 years of age and in adults with microscopy-confirmed P. vivax monoinfection. All the patients received directly observed chloroquine for 3 days (total dose, 25 mg per kilogram). Group 1 received a total primaquine dose of 3.5 mg per kilogram (0.5 mg per kilogram per day) over 7 days with unobserved administration; group 2 received the same regimen as group 1 but with observed administration; and group 3 received a total primaquine dose of 7.0 mg per kilogram over 14 days (also 0.5 mg per kilogram per day) with observed administration. We monitored the patients for 168 days. RESULTS We enrolled 63 patients in group 1, 96 in group 2, and 95 in group 3. The median age of the patients was 22.4 years (range, 5.4 to 79.8). By day 28, three P. vivax recurrences were observed: 2 in group 1 and 1 in group 2. By day 168, a total of 70 recurrences had occurred: 24 in group 1, 34 in group 2, and 12 in group 3. No serious adverse events were noted. On day 168, the percentage of patients without recurrence was 58% (95% confidence interval [CI], 44 to 70) in group 1, 59% (95% CI, 47 to 69) in group 2, and 86% (95% CI, 76 to 92) in group 3. Survival analysis showed a difference in the day 168 recurrence-free percentage of 27 percentage points (97.5% CI, 10 to 44; P<0.001) between group 1 and group 3 and a difference of 27 percentage points (97.5% CI, 12 to 42; P<0.001) between group 2 and group 3. CONCLUSIONS The administration of primaquine at a total dose of 7.0 mg per kilogram had higher efficacy in preventing relapse of P. vivax malaria than a total dose of 3.5 mg per kilogram through day 168. (Supported by the U.S. Agency for International Development; ClinicalTrials.gov number, NCT03610399.).
Collapse
Affiliation(s)
- Nathália N Chamma-Siqueira
- From Instituto Evandro Chagas, Ministério da Saúde do Brasil, Ananindeua (N.N.C-.S., S.P.S., G.M.R.V.), Programa de Pós-Graduação em Biologia de Agentes Infecciosos e Parasitários (N.N.C.-S., E.J.M.S., F.P.C., G.M.R.V.) and Laboratório de Genética de Doenças Complexas (E.J.M.S., F.P.C.), Instituto de Ciências Biológicas, and Laboratório de Farmacocinética de Drogas Antimaláricas, Instituto de Ciências da Saúde (L.W.P.S., A.G.N.C.-M.), Universidade Federal do Pará, Belém, Secretaria de Saúde do Estado do Acre, Cruzeiro do Sul (S.C.N., S.F.), and Grupo Técnico da Malária, Coordenação-Geral de Vigilância de Zoonoses e Doenças de Transmissão Vetorial, Departamento de Imunização e Doenças Transmissíveis, Secretaria de Vigilância em Saúde, Ministério da Saúde (P.B.M.), and Diretoria de Vigilância Epidemiológica, Subsecretaria de Vigilância em Saúde, Secretaria Estadual de Saúde do Distrito Federal (C.R.L.P.), Brasília - all in Brazil; Epidemic Intelligence Service, Center for Surveillance, Epidemiology, and Laboratory Services (S.-B.B.), and the Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention (S.-B.B., A.M.O.) - both in Atlanta; and Instituto de Investigaciones en Ciencias Biomedicas, Universidad Ricardo Palma, Lima, and Instituto de Enfermedades Tropicales, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas (S.M.C.) - both in Peru
| | - Suiane C Negreiros
- From Instituto Evandro Chagas, Ministério da Saúde do Brasil, Ananindeua (N.N.C-.S., S.P.S., G.M.R.V.), Programa de Pós-Graduação em Biologia de Agentes Infecciosos e Parasitários (N.N.C.-S., E.J.M.S., F.P.C., G.M.R.V.) and Laboratório de Genética de Doenças Complexas (E.J.M.S., F.P.C.), Instituto de Ciências Biológicas, and Laboratório de Farmacocinética de Drogas Antimaláricas, Instituto de Ciências da Saúde (L.W.P.S., A.G.N.C.-M.), Universidade Federal do Pará, Belém, Secretaria de Saúde do Estado do Acre, Cruzeiro do Sul (S.C.N., S.F.), and Grupo Técnico da Malária, Coordenação-Geral de Vigilância de Zoonoses e Doenças de Transmissão Vetorial, Departamento de Imunização e Doenças Transmissíveis, Secretaria de Vigilância em Saúde, Ministério da Saúde (P.B.M.), and Diretoria de Vigilância Epidemiológica, Subsecretaria de Vigilância em Saúde, Secretaria Estadual de Saúde do Distrito Federal (C.R.L.P.), Brasília - all in Brazil; Epidemic Intelligence Service, Center for Surveillance, Epidemiology, and Laboratory Services (S.-B.B.), and the Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention (S.-B.B., A.M.O.) - both in Atlanta; and Instituto de Investigaciones en Ciencias Biomedicas, Universidad Ricardo Palma, Lima, and Instituto de Enfermedades Tropicales, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas (S.M.C.) - both in Peru
| | - Sarah-Blythe Ballard
- From Instituto Evandro Chagas, Ministério da Saúde do Brasil, Ananindeua (N.N.C-.S., S.P.S., G.M.R.V.), Programa de Pós-Graduação em Biologia de Agentes Infecciosos e Parasitários (N.N.C.-S., E.J.M.S., F.P.C., G.M.R.V.) and Laboratório de Genética de Doenças Complexas (E.J.M.S., F.P.C.), Instituto de Ciências Biológicas, and Laboratório de Farmacocinética de Drogas Antimaláricas, Instituto de Ciências da Saúde (L.W.P.S., A.G.N.C.-M.), Universidade Federal do Pará, Belém, Secretaria de Saúde do Estado do Acre, Cruzeiro do Sul (S.C.N., S.F.), and Grupo Técnico da Malária, Coordenação-Geral de Vigilância de Zoonoses e Doenças de Transmissão Vetorial, Departamento de Imunização e Doenças Transmissíveis, Secretaria de Vigilância em Saúde, Ministério da Saúde (P.B.M.), and Diretoria de Vigilância Epidemiológica, Subsecretaria de Vigilância em Saúde, Secretaria Estadual de Saúde do Distrito Federal (C.R.L.P.), Brasília - all in Brazil; Epidemic Intelligence Service, Center for Surveillance, Epidemiology, and Laboratory Services (S.-B.B.), and the Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention (S.-B.B., A.M.O.) - both in Atlanta; and Instituto de Investigaciones en Ciencias Biomedicas, Universidad Ricardo Palma, Lima, and Instituto de Enfermedades Tropicales, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas (S.M.C.) - both in Peru
| | - Sâmela Farias
- From Instituto Evandro Chagas, Ministério da Saúde do Brasil, Ananindeua (N.N.C-.S., S.P.S., G.M.R.V.), Programa de Pós-Graduação em Biologia de Agentes Infecciosos e Parasitários (N.N.C.-S., E.J.M.S., F.P.C., G.M.R.V.) and Laboratório de Genética de Doenças Complexas (E.J.M.S., F.P.C.), Instituto de Ciências Biológicas, and Laboratório de Farmacocinética de Drogas Antimaláricas, Instituto de Ciências da Saúde (L.W.P.S., A.G.N.C.-M.), Universidade Federal do Pará, Belém, Secretaria de Saúde do Estado do Acre, Cruzeiro do Sul (S.C.N., S.F.), and Grupo Técnico da Malária, Coordenação-Geral de Vigilância de Zoonoses e Doenças de Transmissão Vetorial, Departamento de Imunização e Doenças Transmissíveis, Secretaria de Vigilância em Saúde, Ministério da Saúde (P.B.M.), and Diretoria de Vigilância Epidemiológica, Subsecretaria de Vigilância em Saúde, Secretaria Estadual de Saúde do Distrito Federal (C.R.L.P.), Brasília - all in Brazil; Epidemic Intelligence Service, Center for Surveillance, Epidemiology, and Laboratory Services (S.-B.B.), and the Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention (S.-B.B., A.M.O.) - both in Atlanta; and Instituto de Investigaciones en Ciencias Biomedicas, Universidad Ricardo Palma, Lima, and Instituto de Enfermedades Tropicales, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas (S.M.C.) - both in Peru
| | - Sandro P Silva
- From Instituto Evandro Chagas, Ministério da Saúde do Brasil, Ananindeua (N.N.C-.S., S.P.S., G.M.R.V.), Programa de Pós-Graduação em Biologia de Agentes Infecciosos e Parasitários (N.N.C.-S., E.J.M.S., F.P.C., G.M.R.V.) and Laboratório de Genética de Doenças Complexas (E.J.M.S., F.P.C.), Instituto de Ciências Biológicas, and Laboratório de Farmacocinética de Drogas Antimaláricas, Instituto de Ciências da Saúde (L.W.P.S., A.G.N.C.-M.), Universidade Federal do Pará, Belém, Secretaria de Saúde do Estado do Acre, Cruzeiro do Sul (S.C.N., S.F.), and Grupo Técnico da Malária, Coordenação-Geral de Vigilância de Zoonoses e Doenças de Transmissão Vetorial, Departamento de Imunização e Doenças Transmissíveis, Secretaria de Vigilância em Saúde, Ministério da Saúde (P.B.M.), and Diretoria de Vigilância Epidemiológica, Subsecretaria de Vigilância em Saúde, Secretaria Estadual de Saúde do Distrito Federal (C.R.L.P.), Brasília - all in Brazil; Epidemic Intelligence Service, Center for Surveillance, Epidemiology, and Laboratory Services (S.-B.B.), and the Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention (S.-B.B., A.M.O.) - both in Atlanta; and Instituto de Investigaciones en Ciencias Biomedicas, Universidad Ricardo Palma, Lima, and Instituto de Enfermedades Tropicales, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas (S.M.C.) - both in Peru
| | - Stella M Chenet
- From Instituto Evandro Chagas, Ministério da Saúde do Brasil, Ananindeua (N.N.C-.S., S.P.S., G.M.R.V.), Programa de Pós-Graduação em Biologia de Agentes Infecciosos e Parasitários (N.N.C.-S., E.J.M.S., F.P.C., G.M.R.V.) and Laboratório de Genética de Doenças Complexas (E.J.M.S., F.P.C.), Instituto de Ciências Biológicas, and Laboratório de Farmacocinética de Drogas Antimaláricas, Instituto de Ciências da Saúde (L.W.P.S., A.G.N.C.-M.), Universidade Federal do Pará, Belém, Secretaria de Saúde do Estado do Acre, Cruzeiro do Sul (S.C.N., S.F.), and Grupo Técnico da Malária, Coordenação-Geral de Vigilância de Zoonoses e Doenças de Transmissão Vetorial, Departamento de Imunização e Doenças Transmissíveis, Secretaria de Vigilância em Saúde, Ministério da Saúde (P.B.M.), and Diretoria de Vigilância Epidemiológica, Subsecretaria de Vigilância em Saúde, Secretaria Estadual de Saúde do Distrito Federal (C.R.L.P.), Brasília - all in Brazil; Epidemic Intelligence Service, Center for Surveillance, Epidemiology, and Laboratory Services (S.-B.B.), and the Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention (S.-B.B., A.M.O.) - both in Atlanta; and Instituto de Investigaciones en Ciencias Biomedicas, Universidad Ricardo Palma, Lima, and Instituto de Enfermedades Tropicales, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas (S.M.C.) - both in Peru
| | - Eduardo J M Santos
- From Instituto Evandro Chagas, Ministério da Saúde do Brasil, Ananindeua (N.N.C-.S., S.P.S., G.M.R.V.), Programa de Pós-Graduação em Biologia de Agentes Infecciosos e Parasitários (N.N.C.-S., E.J.M.S., F.P.C., G.M.R.V.) and Laboratório de Genética de Doenças Complexas (E.J.M.S., F.P.C.), Instituto de Ciências Biológicas, and Laboratório de Farmacocinética de Drogas Antimaláricas, Instituto de Ciências da Saúde (L.W.P.S., A.G.N.C.-M.), Universidade Federal do Pará, Belém, Secretaria de Saúde do Estado do Acre, Cruzeiro do Sul (S.C.N., S.F.), and Grupo Técnico da Malária, Coordenação-Geral de Vigilância de Zoonoses e Doenças de Transmissão Vetorial, Departamento de Imunização e Doenças Transmissíveis, Secretaria de Vigilância em Saúde, Ministério da Saúde (P.B.M.), and Diretoria de Vigilância Epidemiológica, Subsecretaria de Vigilância em Saúde, Secretaria Estadual de Saúde do Distrito Federal (C.R.L.P.), Brasília - all in Brazil; Epidemic Intelligence Service, Center for Surveillance, Epidemiology, and Laboratory Services (S.-B.B.), and the Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention (S.-B.B., A.M.O.) - both in Atlanta; and Instituto de Investigaciones en Ciencias Biomedicas, Universidad Ricardo Palma, Lima, and Instituto de Enfermedades Tropicales, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas (S.M.C.) - both in Peru
| | - Luann W Pereira de Sena
- From Instituto Evandro Chagas, Ministério da Saúde do Brasil, Ananindeua (N.N.C-.S., S.P.S., G.M.R.V.), Programa de Pós-Graduação em Biologia de Agentes Infecciosos e Parasitários (N.N.C.-S., E.J.M.S., F.P.C., G.M.R.V.) and Laboratório de Genética de Doenças Complexas (E.J.M.S., F.P.C.), Instituto de Ciências Biológicas, and Laboratório de Farmacocinética de Drogas Antimaláricas, Instituto de Ciências da Saúde (L.W.P.S., A.G.N.C.-M.), Universidade Federal do Pará, Belém, Secretaria de Saúde do Estado do Acre, Cruzeiro do Sul (S.C.N., S.F.), and Grupo Técnico da Malária, Coordenação-Geral de Vigilância de Zoonoses e Doenças de Transmissão Vetorial, Departamento de Imunização e Doenças Transmissíveis, Secretaria de Vigilância em Saúde, Ministério da Saúde (P.B.M.), and Diretoria de Vigilância Epidemiológica, Subsecretaria de Vigilância em Saúde, Secretaria Estadual de Saúde do Distrito Federal (C.R.L.P.), Brasília - all in Brazil; Epidemic Intelligence Service, Center for Surveillance, Epidemiology, and Laboratory Services (S.-B.B.), and the Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention (S.-B.B., A.M.O.) - both in Atlanta; and Instituto de Investigaciones en Ciencias Biomedicas, Universidad Ricardo Palma, Lima, and Instituto de Enfermedades Tropicales, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas (S.M.C.) - both in Peru
| | - Flávia Póvoa da Costa
- From Instituto Evandro Chagas, Ministério da Saúde do Brasil, Ananindeua (N.N.C-.S., S.P.S., G.M.R.V.), Programa de Pós-Graduação em Biologia de Agentes Infecciosos e Parasitários (N.N.C.-S., E.J.M.S., F.P.C., G.M.R.V.) and Laboratório de Genética de Doenças Complexas (E.J.M.S., F.P.C.), Instituto de Ciências Biológicas, and Laboratório de Farmacocinética de Drogas Antimaláricas, Instituto de Ciências da Saúde (L.W.P.S., A.G.N.C.-M.), Universidade Federal do Pará, Belém, Secretaria de Saúde do Estado do Acre, Cruzeiro do Sul (S.C.N., S.F.), and Grupo Técnico da Malária, Coordenação-Geral de Vigilância de Zoonoses e Doenças de Transmissão Vetorial, Departamento de Imunização e Doenças Transmissíveis, Secretaria de Vigilância em Saúde, Ministério da Saúde (P.B.M.), and Diretoria de Vigilância Epidemiológica, Subsecretaria de Vigilância em Saúde, Secretaria Estadual de Saúde do Distrito Federal (C.R.L.P.), Brasília - all in Brazil; Epidemic Intelligence Service, Center for Surveillance, Epidemiology, and Laboratory Services (S.-B.B.), and the Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention (S.-B.B., A.M.O.) - both in Atlanta; and Instituto de Investigaciones en Ciencias Biomedicas, Universidad Ricardo Palma, Lima, and Instituto de Enfermedades Tropicales, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas (S.M.C.) - both in Peru
| | - Amanda G N Cardoso-Mello
- From Instituto Evandro Chagas, Ministério da Saúde do Brasil, Ananindeua (N.N.C-.S., S.P.S., G.M.R.V.), Programa de Pós-Graduação em Biologia de Agentes Infecciosos e Parasitários (N.N.C.-S., E.J.M.S., F.P.C., G.M.R.V.) and Laboratório de Genética de Doenças Complexas (E.J.M.S., F.P.C.), Instituto de Ciências Biológicas, and Laboratório de Farmacocinética de Drogas Antimaláricas, Instituto de Ciências da Saúde (L.W.P.S., A.G.N.C.-M.), Universidade Federal do Pará, Belém, Secretaria de Saúde do Estado do Acre, Cruzeiro do Sul (S.C.N., S.F.), and Grupo Técnico da Malária, Coordenação-Geral de Vigilância de Zoonoses e Doenças de Transmissão Vetorial, Departamento de Imunização e Doenças Transmissíveis, Secretaria de Vigilância em Saúde, Ministério da Saúde (P.B.M.), and Diretoria de Vigilância Epidemiológica, Subsecretaria de Vigilância em Saúde, Secretaria Estadual de Saúde do Distrito Federal (C.R.L.P.), Brasília - all in Brazil; Epidemic Intelligence Service, Center for Surveillance, Epidemiology, and Laboratory Services (S.-B.B.), and the Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention (S.-B.B., A.M.O.) - both in Atlanta; and Instituto de Investigaciones en Ciencias Biomedicas, Universidad Ricardo Palma, Lima, and Instituto de Enfermedades Tropicales, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas (S.M.C.) - both in Peru
| | - Paola B Marchesini
- From Instituto Evandro Chagas, Ministério da Saúde do Brasil, Ananindeua (N.N.C-.S., S.P.S., G.M.R.V.), Programa de Pós-Graduação em Biologia de Agentes Infecciosos e Parasitários (N.N.C.-S., E.J.M.S., F.P.C., G.M.R.V.) and Laboratório de Genética de Doenças Complexas (E.J.M.S., F.P.C.), Instituto de Ciências Biológicas, and Laboratório de Farmacocinética de Drogas Antimaláricas, Instituto de Ciências da Saúde (L.W.P.S., A.G.N.C.-M.), Universidade Federal do Pará, Belém, Secretaria de Saúde do Estado do Acre, Cruzeiro do Sul (S.C.N., S.F.), and Grupo Técnico da Malária, Coordenação-Geral de Vigilância de Zoonoses e Doenças de Transmissão Vetorial, Departamento de Imunização e Doenças Transmissíveis, Secretaria de Vigilância em Saúde, Ministério da Saúde (P.B.M.), and Diretoria de Vigilância Epidemiológica, Subsecretaria de Vigilância em Saúde, Secretaria Estadual de Saúde do Distrito Federal (C.R.L.P.), Brasília - all in Brazil; Epidemic Intelligence Service, Center for Surveillance, Epidemiology, and Laboratory Services (S.-B.B.), and the Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention (S.-B.B., A.M.O.) - both in Atlanta; and Instituto de Investigaciones en Ciencias Biomedicas, Universidad Ricardo Palma, Lima, and Instituto de Enfermedades Tropicales, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas (S.M.C.) - both in Peru
| | - Cássio R L Peterka
- From Instituto Evandro Chagas, Ministério da Saúde do Brasil, Ananindeua (N.N.C-.S., S.P.S., G.M.R.V.), Programa de Pós-Graduação em Biologia de Agentes Infecciosos e Parasitários (N.N.C.-S., E.J.M.S., F.P.C., G.M.R.V.) and Laboratório de Genética de Doenças Complexas (E.J.M.S., F.P.C.), Instituto de Ciências Biológicas, and Laboratório de Farmacocinética de Drogas Antimaláricas, Instituto de Ciências da Saúde (L.W.P.S., A.G.N.C.-M.), Universidade Federal do Pará, Belém, Secretaria de Saúde do Estado do Acre, Cruzeiro do Sul (S.C.N., S.F.), and Grupo Técnico da Malária, Coordenação-Geral de Vigilância de Zoonoses e Doenças de Transmissão Vetorial, Departamento de Imunização e Doenças Transmissíveis, Secretaria de Vigilância em Saúde, Ministério da Saúde (P.B.M.), and Diretoria de Vigilância Epidemiológica, Subsecretaria de Vigilância em Saúde, Secretaria Estadual de Saúde do Distrito Federal (C.R.L.P.), Brasília - all in Brazil; Epidemic Intelligence Service, Center for Surveillance, Epidemiology, and Laboratory Services (S.-B.B.), and the Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention (S.-B.B., A.M.O.) - both in Atlanta; and Instituto de Investigaciones en Ciencias Biomedicas, Universidad Ricardo Palma, Lima, and Instituto de Enfermedades Tropicales, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas (S.M.C.) - both in Peru
| | - Giselle M R Viana
- From Instituto Evandro Chagas, Ministério da Saúde do Brasil, Ananindeua (N.N.C-.S., S.P.S., G.M.R.V.), Programa de Pós-Graduação em Biologia de Agentes Infecciosos e Parasitários (N.N.C.-S., E.J.M.S., F.P.C., G.M.R.V.) and Laboratório de Genética de Doenças Complexas (E.J.M.S., F.P.C.), Instituto de Ciências Biológicas, and Laboratório de Farmacocinética de Drogas Antimaláricas, Instituto de Ciências da Saúde (L.W.P.S., A.G.N.C.-M.), Universidade Federal do Pará, Belém, Secretaria de Saúde do Estado do Acre, Cruzeiro do Sul (S.C.N., S.F.), and Grupo Técnico da Malária, Coordenação-Geral de Vigilância de Zoonoses e Doenças de Transmissão Vetorial, Departamento de Imunização e Doenças Transmissíveis, Secretaria de Vigilância em Saúde, Ministério da Saúde (P.B.M.), and Diretoria de Vigilância Epidemiológica, Subsecretaria de Vigilância em Saúde, Secretaria Estadual de Saúde do Distrito Federal (C.R.L.P.), Brasília - all in Brazil; Epidemic Intelligence Service, Center for Surveillance, Epidemiology, and Laboratory Services (S.-B.B.), and the Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention (S.-B.B., A.M.O.) - both in Atlanta; and Instituto de Investigaciones en Ciencias Biomedicas, Universidad Ricardo Palma, Lima, and Instituto de Enfermedades Tropicales, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas (S.M.C.) - both in Peru
| | - Alexandre Macedo de Oliveira
- From Instituto Evandro Chagas, Ministério da Saúde do Brasil, Ananindeua (N.N.C-.S., S.P.S., G.M.R.V.), Programa de Pós-Graduação em Biologia de Agentes Infecciosos e Parasitários (N.N.C.-S., E.J.M.S., F.P.C., G.M.R.V.) and Laboratório de Genética de Doenças Complexas (E.J.M.S., F.P.C.), Instituto de Ciências Biológicas, and Laboratório de Farmacocinética de Drogas Antimaláricas, Instituto de Ciências da Saúde (L.W.P.S., A.G.N.C.-M.), Universidade Federal do Pará, Belém, Secretaria de Saúde do Estado do Acre, Cruzeiro do Sul (S.C.N., S.F.), and Grupo Técnico da Malária, Coordenação-Geral de Vigilância de Zoonoses e Doenças de Transmissão Vetorial, Departamento de Imunização e Doenças Transmissíveis, Secretaria de Vigilância em Saúde, Ministério da Saúde (P.B.M.), and Diretoria de Vigilância Epidemiológica, Subsecretaria de Vigilância em Saúde, Secretaria Estadual de Saúde do Distrito Federal (C.R.L.P.), Brasília - all in Brazil; Epidemic Intelligence Service, Center for Surveillance, Epidemiology, and Laboratory Services (S.-B.B.), and the Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention (S.-B.B., A.M.O.) - both in Atlanta; and Instituto de Investigaciones en Ciencias Biomedicas, Universidad Ricardo Palma, Lima, and Instituto de Enfermedades Tropicales, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas (S.M.C.) - both in Peru
| |
Collapse
|
10
|
Charnaud S, Munro JE, Semenec L, Mazhari R, Brewster J, Bourke C, Ruybal-Pesántez S, James R, Lautu-Gumal D, Karunajeewa H, Mueller I, Bahlo M. PacBio long-read amplicon sequencing enables scalable high-resolution population allele typing of the complex CYP2D6 locus. Commun Biol 2022; 5:168. [PMID: 35217695 PMCID: PMC8881578 DOI: 10.1038/s42003-022-03102-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 02/01/2022] [Indexed: 01/31/2023] Open
Abstract
The CYP2D6 enzyme is estimated to metabolize 25% of commonly used pharmaceuticals and is of intense pharmacogenetic interest due to the polymorphic nature of the CYP2D6 gene. Accurate allele typing of CYP2D6 has proved challenging due to frequent copy number variants (CNVs) and paralogous pseudogenes. SNP-arrays, qPCR and short-read sequencing have been employed to interrogate CYP2D6, however these technologies are unable to capture longer range information. Long-read sequencing using the PacBio Single Molecule Real Time (SMRT) sequencing platform has yielded promising results for CYP2D6 allele typing. However, previous studies have been limited in scale and have employed nascent data processing pipelines. We present a robust data processing pipeline "PLASTER" for accurate allele typing of SMRT sequenced amplicons. We demonstrate the pipeline by typing CYP2D6 alleles in a large cohort of 377 Solomon Islanders. This pharmacogenetic method will improve drug safety and efficacy through screening prior to drug administration.
Collapse
Affiliation(s)
- Sarah Charnaud
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Melbourne, VIC Australia
| | - Jacob E. Munro
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Melbourne, VIC Australia
| | - Lucie Semenec
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Melbourne, VIC Australia ,grid.1004.50000 0001 2158 5405ARC Centre of Excellence in Synthetic Biology, Department of Molecular Sciences, Macquarie University, Sydney, NSW Australia
| | - Ramin Mazhari
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Melbourne, VIC Australia
| | - Jessica Brewster
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Melbourne, VIC Australia
| | - Caitlin Bourke
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Melbourne, VIC Australia
| | - Shazia Ruybal-Pesántez
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Melbourne, VIC Australia ,grid.1056.20000 0001 2224 8486Burnet Institute, Melbourne, VIC Australia
| | - Robert James
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Melbourne, VIC Australia
| | - Dulcie Lautu-Gumal
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Melbourne, VIC Australia
| | - Harin Karunajeewa
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Melbourne, VIC Australia
| | - Ivo Mueller
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Melbourne, VIC Australia
| | - Melanie Bahlo
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Melbourne, VIC Australia
| |
Collapse
|
11
|
Woon SA, Manning L, Moore BR. Antimalarials for children with Plasmodium vivax infection: Current status, challenges, and research priorities. Parasitol Int 2021; 87:102512. [PMID: 34785369 DOI: 10.1016/j.parint.2021.102512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 11/01/2021] [Accepted: 11/09/2021] [Indexed: 10/19/2022]
Abstract
The aim of this narrative review is to summarise efficacy and pharmacokinetic data for Plasmodium vivax in children. The burden of P. vivax malaria in children continues to remain a significant public health issue, and the need for improved treatment regimens for this vulnerable population is critical. Relapse after re-activation of dormant liver-stage hypnozoites poses additional challenges for treatment, elimination, and control strategies for P. vivax. Whilst it is recognised that paediatric pharmacology may be significantly influenced by anatomical and physiological changes of childhood, dosing regimens often continue to be extrapolated from adult data, highlighting the need for antimalarial dosing in children to be evaluated in early phase clinical trials. This will ensure that globally recommended treatment regimens do not result in suboptimal dosing in children. Furthermore, the development of affordable paediatric formulations to enhance treatment acceptability and widespread G6PD testing to facilitate use of anti-hypnozoite treatment such as primaquine and tafenoquine, should be further prioritised. As the world prepares for malaria elimination, a renewed focus on P. vivax malaria provides an ideal opportunity to harness momentum and ensure that all populations, including children have access to safe, efficacious, and correctly dosed antimalarial therapies.
Collapse
Affiliation(s)
- Sze-Ann Woon
- Medical School, University of Western Australia, Perth, Western Australia, Australia
| | - Laurens Manning
- Medical School, University of Western Australia, Perth, Western Australia, Australia; Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia
| | - Brioni R Moore
- Medical School, University of Western Australia, Perth, Western Australia, Australia; Curtin Medical School, Curtin University, Perth, Western Australia, Australia; Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia.
| |
Collapse
|
12
|
Fernandez-Miñope C, Delgado-Ratto C, Contreras-Mancilla J, Ferrucci HR, Llanos-Cuentas A, Gamboa D, Van Geertruyden JP. Towards one standard treatment for uncomplicated Plasmodium falciparum and Plasmodium vivax malaria: Perspectives from and for the Peruvian Amazon. Int J Infect Dis 2021; 105:293-297. [PMID: 33596478 DOI: 10.1016/j.ijid.2021.02.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 11/29/2022] Open
Abstract
Malaria continues to wreak havoc in the Peruvian Amazon. Lengthy research efforts have brought important lessons on its particular epidemiology: the heterogeneous levels of transmission, the large reservoir of both asymptomatic and submicroscopic infections, the co-transmission of Plasmodium vivax and Plasmodium falciparum in the same areas, and the limitations of current diagnostics. Based on these features, the national elimination program could greatly benefit from simplified standard treatment, with the use of artemisinin-based combination therapy and even shorter schemes of primaquine maintaing the total dosing. It is acknowledged that there is some uncertainty regarding the true prevalence of glucose-6-phosphate dehydrogenase deficiency (G6PD) and genetic polymorphisms related to cytochrome P-450 isozyme 2D6 functioning. Once we have a better understanding, tafenoquine, whether or not in combination with a rapid G6PD enzyme test, may become a future pathway to eliminate the otherwise hidden reservoir of the P. vivax hypnozoite through one standard Plasmodium treatment.
Collapse
Affiliation(s)
- Carlos Fernandez-Miñope
- Global Health Institute, University of Antwerp, Antwerp, Belgium; Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru.
| | - Christopher Delgado-Ratto
- Global Health Institute, University of Antwerp, Antwerp, Belgium; Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru.
| | - Juan Contreras-Mancilla
- Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru.
| | | | - Alejandro Llanos-Cuentas
- Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru.
| | - Dionicia Gamboa
- Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru; Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru.
| | | |
Collapse
|
13
|
Villena FE, Maguiña JL, Santolalla ML, Pozo E, Salas CJ, Ampuero JS, Lescano AG, Bishop DK, Valdivia HO. Molecular surveillance of the Plasmodium vivax multidrug resistance 1 gene in Peru between 2006 and 2015. Malar J 2020; 19:450. [PMID: 33276776 PMCID: PMC7718670 DOI: 10.1186/s12936-020-03519-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 11/25/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The high incidence of Plasmodium vivax infections associated with clinical severity and the emergence of chloroquine (CQ) resistance has posed a challenge to control efforts aimed at eliminating this disease. Despite conflicting evidence regarding the role of mutations of P. vivax multidrug resistance 1 gene (pvmdr1) in drug resistance, this gene can be a tool for molecular surveillance due to its variability and spatial patterns. METHODS Blood samples were collected from studies conducted between 2006 and 2015 in the Northern and Southern Amazon Basin and the North Coast of Peru. Thick and thin blood smears were prepared for malaria diagnosis by microscopy and PCR was performed for detection of P. vivax monoinfections. The pvmdr1 gene was subsequently sequenced and the genetic data was used for haplotype and diversity analysis. RESULTS A total of 550 positive P. vivax samples were sequenced; 445 from the Northern Amazon Basin, 48 from the Southern Amazon Basin and 57 from the North Coast. Eight non-synonymous mutations and three synonymous mutations were analysed in 4,395 bp of pvmdr1. Amino acid changes at positions 976F and 1076L were detected in the Northern Amazon Basin (12.8%) and the Southern Amazon Basin (4.2%) with fluctuations in the prevalence of both mutations in the Northern Amazon Basin during the course of the study that seemed to correspond with a malaria control programme implemented in the region. A total of 13 pvmdr1 haplotypes with non-synonymous mutations were estimated in Peru and an overall nucleotide diversity of π = 0.00054. The Northern Amazon Basin was the most diverse region (π = 0.00055) followed by the Southern Amazon and the North Coast (π = 0.00035 and π = 0.00014, respectively). CONCLUSION This study showed a high variability in the frequencies of the 976F and 1076L polymorphisms in the Northern Amazon Basin between 2006 and 2015. The low and heterogeneous diversity of pvmdr1 found in this study underscores the need for additional research that can elucidate the role of this gene on P. vivax drug resistance as well as in vitro and clinical data that can clarify the extend of CQ resistance in Peru.
Collapse
Affiliation(s)
- Fredy E Villena
- Department of Parasitology, U.S. Naval Medical Research Unit No, 6 (NAMRU-6), Lima, Peru.
| | - Jorge L Maguiña
- Emerge, Emerging Diseases and Climate Change Research Unit, School of Public Health and Administration, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Meddly L Santolalla
- Emerge, Emerging Diseases and Climate Change Research Unit, School of Public Health and Administration, Universidad Peruana Cayetano Heredia, Lima, Peru.,Departamento de Parasitología, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Edwar Pozo
- Piura Sanitary Intelligence Unit, Piura Health Region, Piura, Peru
| | - Carola J Salas
- Department of Parasitology, U.S. Naval Medical Research Unit No, 6 (NAMRU-6), Lima, Peru
| | - Julia S Ampuero
- Department of Parasitology, U.S. Naval Medical Research Unit No, 6 (NAMRU-6), Lima, Peru
| | - Andres G Lescano
- Emerge, Emerging Diseases and Climate Change Research Unit, School of Public Health and Administration, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Danett K Bishop
- Department of Parasitology, U.S. Naval Medical Research Unit No, 6 (NAMRU-6), Lima, Peru
| | - Hugo O Valdivia
- Department of Parasitology, U.S. Naval Medical Research Unit No, 6 (NAMRU-6), Lima, Peru
| |
Collapse
|
14
|
Milligan R, Daher A, Villanueva G, Bergman H, Graves PM. Primaquine alternative dosing schedules for preventing malaria relapse in people with Plasmodium vivax. Cochrane Database Syst Rev 2020; 8:CD012656. [PMID: 32816320 DOI: 10.1002/14651858.cd012656.pub3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Plasmodium vivax liver stages (hypnozoites) may cause relapses, prolonging morbidity, and impeding malaria control and elimination. The World Health Organization (WHO) recommends three schedules for primaquine: 0.25 mg/kg/day (standard), or 0.5 mg/kg/day (high standard) for 14 days, or 0.75 mg/kg once weekly for eight weeks, all of which can be difficult to complete. Since primaquine can cause haemolysis in individuals with glucose-6-phosphate dehydrogenase (G6PD) deficiency, clinicians may be reluctant to prescribe primaquine without G6PD testing, and recommendations when G6PD status is unknown must be based on an assessment of the risks and benefits of prescribing primaquine. Alternative safe and efficacious regimens are needed. OBJECTIVES To assess the efficacy and safety of alternative primaquine regimens for radical cure of P vivax malaria compared to the standard or high-standard 14-day courses. SEARCH METHODS We searched the Cochrane Infectious Diseases Group Specialized Register; the Cochrane Central Register of Controlled Trials (CENTRAL); MEDLINE (PubMed); Embase (Ovid); LILACS (BIREME); WHO International Clinical Trials Registry Platform and ClinicalTrials.gov up to 2 September 2019, and checked the reference lists of all identified studies. SELECTION CRITERIA Randomized controlled trials (RCTs) of adults and children with P vivax malaria using either chloroquine or artemisinin-based combination therapy plus primaquine at a total adult dose of at least 210 mg, compared with the WHO-recommended regimens of 0.25 or 0.5 mg/kg/day for 14 days. DATA COLLECTION AND ANALYSIS Two review authors independently assessed trial eligibility and quality, and extracted data. We calculated risk ratios (RRs) with 95% confidence intervals (CIs) for dichotomous data. We grouped efficacy data according to length of follow-up, partner drug, and trial location. We analysed safety data where included. MAIN RESULTS 0.5 mg/kg/day for seven days versus standard 0.25 mg/kg/day for 14 days There may be little or no difference in P vivax recurrences at six to seven months when using the same total dose (210 mg adult dose) over seven days compared to 14 days (RR 0.96, 95% CI 0.66 to 1.39; 4 RCTs, 1211 participants; low-certainty evidence). No serious adverse events were reported. We do not know if there is any difference in the number of adverse events resulting in discontinuation of primaquine (RR 1.04, 95% CI 0.15 to 7.38; 5 RCTs, 1427 participants) or in the frequency of anaemia (RR 3.00, 95% CI 0.12 to 72.91, 1 RCT, 240 participants) between the shorter and longer regimens (very low-certainty evidence). Three trials excluded people with G6PD deficiency; two did not provide this information. Pregnant and lactating women were either excluded or no details were provided. High-standard 0.5 mg/kg/day for 14 days versus standard 0.25 mg/kg/day for 14 days There may be little or no difference in P vivax recurrences at six months with 0.5 mg/kg/day primaquine for 14 days compared to 0.25 mg/kg/day for 14 days (RR 0.84 (95% CI 0.49 to 1.43; 2 RCTs, 677 participants, low-certainty evidence). No serious adverse events were reported. We do not know whether there is a difference in adverse events resulting in discontinuation of treatment with the high-standard dosage (RR 4.19, 95% CI 0.90 to 19.60; 1 RCT, 778 participants, very low-certainty evidence). People with G6PD deficiency and pregnant or lactating women were excluded. 0.75 mg/kg/week for eight weeks versus high-standard 0.5 mg/kg/day for 14 days We do not know whether weekly primaquine increases or decreases recurrences of P vivax compared to high-standard 0.5 mg/kg/day for 14 days, at 11 months' follow-up (RR 3.18, 95% CI 0.37 to 27.60; 1 RCT, 122 participants; very low-certainty evidence). No serious adverse events and no episodes of anaemia were reported. G6PD-deficient patients were not randomized but included in the weekly primaquine group (only one patient detected). 1 mg/kg/day for seven days versus high standard 0.5 mg/kg/day for 14 days There is probably little or no difference in P vivax recurrences at 12 months between 1.0 mg/kg/day primaquine for seven days and the high-standard 0.5 mg/kg/day for 14 days (RR 1.03, 95% CI 0.82 to 1.30; 2 RCTs, 2526 participants; moderate-certainty evidence). There may be moderate to large increase in serious adverse events in the 1.0 mg/kg/day primaquine for seven days compared with the high-standard 0.5 mg/kg/day for 14 days, during 42 days follow-up (RR 12.03, 95% CI 1.57 to 92.30; 1 RCT, 1872 participants, low-certainty evidence). We do not know if there is a difference between 1.0 mg/kg/day primaquine for seven days and high-standard 0.5 mg/kg/day for 14 days in adverse events that resulted in discontinuation of treatment (RR 2.50, 95% CI 0.49 to 12.87; 1 RCT, 2526 participants, very low-certainty evidence), nor if there is difference in frequency of anaemia by 42 days (RR 0.93, 95% CI 0.62 to 1.41; 2 RCTs, 2440 participants, very low-certainty evidence). People with G6PD deficiency were excluded. Other regimens Two RCTs evaluated other rarely-used doses of primaquine, one of which had very high loss to follow-up. Adverse events were not reported. People with G6PD deficiency and pregnant or lactating women were excluded. AUTHORS' CONCLUSIONS Trials available to date do not detect a difference in recurrence between the following regimens: 1) 0.5 mg/kg/day for seven days versus standard 0.25 mg/kg/day for 14 days; 2) high-standard 0.5 mg/kg/day for 14 days versus standard 0.25 mg/kg/day for 14 days; 3) 0.75 mg/kg/week for eight weeks versus high-standard 0.5 mg/kg/day for 14 days; 4) 1 mg/kg/day for seven days versus high-standard 0.5 mg/kg/day for 14 days. There were no differences detected in adverse events for Comparisons 1, 2 or 3, but there may be more serious adverse events with the high seven-day course in Comparison 4. The shorter regimen of 0.5 mg/kg/day for seven days versus standard 0.25 mg/kg/day for 14 days may suit G6PD-normal patients. Further research will help increase the certainty of the findings and applicability in different settings.
Collapse
Affiliation(s)
- Rachael Milligan
- Cochrane Infectious Diseases Group, Liverpool School of Tropical Medicine, Liverpool, UK
| | - André Daher
- Vice-Presidency of Research and Biological Collections, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | | | | | - Patricia M Graves
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Cairns, Australia
| |
Collapse
|
15
|
Vieira MVDF, Matos Lopes TR, Mello AGNC, de Sena LWP, Commons RJ, Vieira JLF. Doses of primaquine administered to children with Plasmodium vivax according to an age-based dose regimen. Pathog Glob Health 2020; 114:388-392. [PMID: 32705964 DOI: 10.1080/20477724.2020.1799166] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Primaquine is still the first-line drug to eliminate hypnozoites of Plasmodium vivax. The therapeutic efficacy is related to the total dose administered. In several endemic areas, the drug is administered for children in an age-based regimen, which can lead to inadequate exposure, increasing the rates of recurrence of the infection. The present study aims to describe the mg/kg total dose of primaquine administered to children for treatment for vivax malaria when an age-based regimen is used and to measure the plasma concentrations of primaquine and carboxyprimaquine. A total of 85 children were included in the study. The total dose of primaquine administered based on mg/kg had a median value of 3.22 mg/kg. The percentage of patients with a total dose below the required dose of 3.5 mg/kg was 55.75%. The median primaquine maximum concentration was 94 ng/ml. For carboxy-primaquine, the median maximum concentration was 375 ng/ml. The results suggest that age-based dosing regimens likely lead to substantial under-dosing of primaquine, which is evident in the youngest children and is reflected in decreased levels of primaquine and carboxy-primaquine in plasma samples 13.
Collapse
Affiliation(s)
| | | | | | | | - Robert J Commons
- Global Health Division, Menzies School of Health Research and Charles Darwin University , Darwin, Australia.,WorldWide Antimalarial Resistance Network , Oxford, UK
| | | |
Collapse
|
16
|
Phommasone K, van Leth F, Imwong M, Henriques G, Pongvongsa T, Adhikari B, Peto TJ, Promnarate C, Dhorda M, Sirithiranont P, Mukaka M, Peerawaranun P, Day NPJ, Cobelens F, Dondorp AM, Newton PN, White NJ, von Seidlein L, Mayxay M. The use of ultrasensitive quantitative-PCR to assess the impact of primaquine on asymptomatic relapse of Plasmodium vivax infections: a randomized, controlled trial in Lao PDR. Malar J 2020; 19:4. [PMID: 31900172 PMCID: PMC6942400 DOI: 10.1186/s12936-019-3091-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 12/25/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Trials to assess the efficacy of the radical cure of Plasmodium vivax malaria with 8-aminoquinolines require that most post-treatment relapses are identified, but there is no consensus on the optimal duration of follow-up in either symptomatic or asymptomatic vivax malaria. The efficacy of a 14-day course of primaquine on the cumulative incidence of recurrent asymptomatic P. vivax infections detected by ultrasensitive quantitative PCR (uPCR) as a primary endpoint was assessed. METHODS A randomized, placebo-controlled, single-blind trial was conducted in four villages of the Lao PDR during 2016-2018 nested in a larger project evaluating mass drug administrations (MDA) with dihydroartemisinin-piperaquine (DP) and a single low-dose primaquine to clear Plasmodium falciparum infections. In the nested sub-study, eligible participants with mono- or mixed P. vivax infections detected by uPCR were randomized to receive either 14 days of primaquine (0.5 mg/kg/day) or placebo during the last round of MDA (round 3) through directly observed therapy. Participants were checked monthly for 12 months for parasitaemia using uPCR. The primary outcome was cumulative incidence of participants with at least one recurrent episode of P. vivax infection. RESULTS 20 G6PD-normal participants were randomized in each arm. 5 (29%) of 20 participants in the placebo arm experienced asymptomatic, recurrent P. vivax infections, resulting in a cumulative incidence at month 12 of 29%. None of the 20 participants in the intervention arm had recurrent infections (p = 0.047 Fisher's exact test). Participants with recurrent P. vivax infections were found to be parasitaemic for between one and five sequential monthly tests. The median time to recurrence of P. vivax parasitaemia was 178 days (range 62-243 days). CONCLUSIONS A 14-day course of primaquine in addition to a DP-MDA was safe, well-tolerated, and prevented recurrent asymptomatic P. vivax infections. Long follow-up for up to 12 months is required to capture all recurrences following the treatment of asymptomatic vivax infection. To eliminate all malarias in settings where P. vivax is endemic, a full-course of an 8-aminoquinolines should be added to MDA to eliminate all malarias. Trial registration This study was registered with ClinicalTrials.gov under NCT02802813 on 16th June 2016. https://clinicaltrials.gov/ct2/show/NCT02802813.
Collapse
Affiliation(s)
- Koukeo Phommasone
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
- Department of Global Health, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
- Amsterdam Institute for Global Health & Development, Amsterdam, The Netherlands
| | - Frank van Leth
- Department of Global Health, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
- Amsterdam Institute for Global Health & Development, Amsterdam, The Netherlands
| | - Mallika Imwong
- Mahidol Oxford Research Unit, Mahidol University, Bangkok, Thailand
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Gisela Henriques
- Mahidol Oxford Research Unit, Mahidol University, Bangkok, Thailand
| | - Tiengkham Pongvongsa
- Savannakhet Provincial Health Department, Savannakhet, Savannakhet Province, Lao PDR
| | - Bipin Adhikari
- Mahidol Oxford Research Unit, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Thomas J Peto
- Mahidol Oxford Research Unit, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Mehul Dhorda
- Mahidol Oxford Research Unit, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- WWARN Asia Regional Centre, Mahidol University, Bangkok, Thailand
| | | | - Mavuto Mukaka
- Mahidol Oxford Research Unit, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Nicholas P J Day
- Mahidol Oxford Research Unit, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Frank Cobelens
- Department of Global Health, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
- Amsterdam Institute for Global Health & Development, Amsterdam, The Netherlands
| | - Arjen M Dondorp
- Mahidol Oxford Research Unit, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Paul N Newton
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nicholas J White
- Mahidol Oxford Research Unit, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Lorenz von Seidlein
- Mahidol Oxford Research Unit, Mahidol University, Bangkok, Thailand.
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Mayfong Mayxay
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
- Institute of Research and Education Development, University of Health Sciences, Vientiane, Lao PDR
| |
Collapse
|
17
|
Lo E, Zhong D, Raya B, Pestana K, Koepfli C, Lee MC, Yewhalaw D, Yan G. Prevalence and distribution of G6PD deficiency: implication for the use of primaquine in malaria treatment in Ethiopia. Malar J 2019; 18:340. [PMID: 31590661 PMCID: PMC6781416 DOI: 10.1186/s12936-019-2981-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/28/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND G6PD enzyme deficiency is a common enzymatic X-linked disorder. Deficiency of the G6PD enzyme can cause free radical-mediated oxidative damage to red blood cells, leading to premature haemolysis. Treatment of Plasmodium vivax malaria with primaquine poses a potential risk of mild to severe acute haemolytic anaemia in G6PD deficient people. In this study, the prevalence and distribution of G6PD mutations were investigated across broad areas of Ethiopia, and tested the association between G6PD genotype and phenotype with the goal to provide additional information relevant to the use of primaquine in malaria treatment. METHODS This study examined G6PD mutations in exons 3-11 for 344 febrile patient samples collected from seven sites across Ethiopia. In addition, the G6PD enzyme level of 400 febrile patient samples from Southwestern Ethiopia was determined by the CareStart™ biosensor. The association between G6PD phenotype and genotype was examined by Fisher exact test on a subset of 184 samples. RESULTS Mutations were observed at three positions of the G6PD gene. The most common G6PD mutation across all sites was A376G, which was detected in 21 of 344 (6.1%) febrile patients. Thirteen of them were homozygous and eight were heterozygous for this mutation. The G267+119C/T mutation was found in 4 (1.2%) individuals in South Ethiopia, but absent in other sites. The G1116A mutation was also found in 4 (1.2%) individuals from East and South Ethiopia. For the 400 samples in the south, 17 (4.25%) were shown to be G6PD-deficient. G6PD enzyme level was not significantly different by age or gender. Among a subset of 202 febrile patients who were diagnosed with malaria, 11 (5.45%) were G6PD-deficient. These 11 infected samples were diagnosed with Plasmodium vivax by microscopy. Parasitaemia was not significantly different between the G6PD-deficient and G6PD-normal infections. CONCLUSIONS The prevalence of G6PD deficiency is modest among febrile patients in Ethiopia. G6PD deficiency testing is thus recommended before administrating primaquine for radical cure of P. vivax infected patients. The present study did not indicate a significant association between G6PD gene mutations and enzyme levels.
Collapse
Affiliation(s)
- Eugenia Lo
- Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA.
| | - Daibin Zhong
- Program in Public Health, College of Health Sciences, University of California, Irvine, CA, 92697, USA
| | - Beka Raya
- School of Medical Laboratory Sciences, Jimma University, Jimma, Ethiopia
| | - Kareen Pestana
- Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Cristian Koepfli
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Ming-Chieh Lee
- Program in Public Health, College of Health Sciences, University of California, Irvine, CA, 92697, USA
| | - Delenasaw Yewhalaw
- School of Medical Laboratory Sciences, Jimma University, Jimma, Ethiopia
- Tropical and Infectious Diseases Research Center, Jimma University, Jimma, Ethiopia
| | - Guiyun Yan
- Program in Public Health, College of Health Sciences, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
18
|
Milligan R, Daher A, Graves PM. Primaquine at alternative dosing schedules for preventing relapse in people with Plasmodium vivax malaria. Cochrane Database Syst Rev 2019; 7:CD012656. [PMID: 31274189 PMCID: PMC6611223 DOI: 10.1002/14651858.cd012656.pub2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Malaria caused by Plasmodium vivax requires treatment of the blood-stage infection and treatment of the hypnozoites that develop in the liver. This is a challenge to effective case management of P vivax malaria, as well as being a more general substantial impediment to malaria control. The World Health Organization (WHO) recommends a 14-day drug course with primaquine, an 8-aminoquinoline, at 0.25 mg/kg/day in most of the world (standard course), or 0.5 mg/kg/day in East Asia and Oceania (high-standard course). This long treatment course can be difficult to complete, and primaquine can cause dangerous haemolysis in individuals with glucose-6-phosphate dehydrogenase (G6PD) deficiency, meaning that physicians may be reluctant to prescribe in areas where G6PD testing is not available. This Cochrane Review evaluated whether more patient-friendly alternative regimens are as efficacious as the standard regimen for radical cure ofP vivax malaria. OBJECTIVES To assess the efficacy and safety of alternative primaquine regimens for radical cure of P vivax malaria compared to the standard or high-standard 14 days of primaquine (0.25 or 0.5 mg/kg/day), as well as comparison of these two WHO-recommended regimens. SEARCH METHODS We searched the Cochrane Infectious Diseases Group (CIDG) Specialized Register; the Cochrane Central Register of Controlled Trials (CENTRAL); MEDLINE (PubMed); Embase (Ovid); and LILACS (BIREME) up to 17 December 2018. We also searched the WHO International Clinical Trials Registry Platform (ICTRP) and ClinicalTrials.gov, and checked the reference lists of all studies identified by the above methods. SELECTION CRITERIA Randomized controlled trials (RCTs) of adults and children with P vivax malaria using any regimen of either chloroquine or an artemisinin-based combination therapy (ACT) plus primaquine with either higher daily doses for 14 days, shorter regimens with the same total dose, or using weekly dosing regimens; compared with the usual standard regimens recommended by the WHO (0.25 or 0.5 mg/kg/day for 14 days), or a comparison of these two WHO-recommended regimens. DATA COLLECTION AND ANALYSIS Two review authors independently assessed trial eligibility and quality, and extracted data. We calculated risk ratios (RRs) with 95% confidence intervals (CIs) for dichotomous data. We grouped efficacy data according to length of follow-up. We analysed safety data where this information was included. MAIN RESULTS High-standard 14-day course versus standard 14-day courseTwo RCTs compared the high-standard 14-day regimen with the standard 14-day regimen. People with G6PD deficiency and pregnant or lactating women were excluded. We do not know if there is any difference in P vivax recurrences at 6 months with 0.5 mg/kg/day primaquine therapy for 14 days compared to 0.25 mg/kg/day primaquine therapy for 14 days (with chloroquine: RR 0.82, 95% CI 0.47 to 1.43, 639 participants, very low-certainty evidence; with chloroquine or an ACT: RR 1.11, 95% CI 0.17 to 7.09, 38 participants, very low-certainty evidence). No serious adverse events were reported. We do not know whether there is a difference in adverse events with the higher dosage (very low-certainty evidence).0.5 mg/kg/day primaquine for 7 days versus standard 14-day courseFive RCTs compared 0.5 mg/kg/day primaquine for 7 days with the standard 14-day course. There may be little or no difference in P vivax recurrences at 6 to 7 months when using the same total dose (0.5 mg/kg/day to 210 mg) over 7 days as compared to 14 days (RR 0.96, 95% CI 0.66 to 1.39; 1211 participants; low-certainty evidence). No serious adverse events were reported. There may be little or no difference in the number of adverse events known to occur with primaquine between the primaquine shorter regimen as compared to the longer regimen (RR 1.06, 95% CI 0.64 to 1.76; 1154 participants; low-certainty evidence). We do not know whether there is any difference in the frequency of anaemia or discontinuation of treatment between groups (very low-certainty evidence). Three trials excluded people with G6PD deficiency, and two did not provide this information. Pregnant and lactating women were either excluded or no details were provided regarding their inclusion or exclusion.0.75 mg/kg primaquine/week for 8 weeks versus high-standard course One RCT compared weekly primaquine with the high-standard 14-day course. G6PD-deficient patients were not randomized but were included in the weekly primaquine group. Only one G6PD-deficient participant was detected during the trial. We do not know whether weekly primaquine increases or decreases recurrences of P vivax compared to the 14-day regimen at 11 months' follow-up (RR 3.18, 95% CI 0.37 to 27.6; 122 participants; very low-certainty evidence). No serious adverse events and no episodes of anaemia were reported.Three other RCTs evaluated different alternative regimens and doses of primaquine, but one of these RCTs did not have results available, and two used regimens that have not been widely used and the evidence was of very low certainty. AUTHORS' CONCLUSIONS Although limited data were available, the analysis did not detect a difference in recurrence between the 7-day regimen and the standard 14-day regimen of 0.5 mg/kg/day primaquine, and no serious adverse events were reported in G6PD-normal participants taking 0.5 mg/kg/day of primaquine. This shorter regimen may be useful in G6PD-normal patients if there are treatment adherence concerns. Further large high-quality RCTs are needed, such as the IMPROV trial, with more standardised comparison regimens and longer follow-up to help resolve uncertainties.
Collapse
Affiliation(s)
- Rachael Milligan
- Liverpool School of Tropical MedicineCochrane Infectious Diseases GroupPembroke PlaceLiverpoolUKL3 5QA
| | - André Daher
- Oswaldo Cruz Foundation (FIOCRUZ)Vice‐Presidency of Research and Biological CollectionsRio de JaneiroBrazil
- Liverpool School of Tropical MedicineDepartment of Clinical SciencesLiverpoolUK
| | - Patricia M Graves
- James Cook UniversityCollege of Public Health, Medical and Veterinary SciencesPO Box 6811CairnsQueenslandAustralia4870
| | | |
Collapse
|
19
|
Guerra RI, Ore M, Valdivia HO, Bishop DK, Ramos M, Mores CN, Campbell WR. A cluster of the first reported Plasmodium ovale spp. infections in Peru occuring among returning UN peace-keepers, a review of epidemiology, prevention and diagnostic challenges in nonendemic regions. Malar J 2019; 18:176. [PMID: 31113437 PMCID: PMC6530030 DOI: 10.1186/s12936-019-2809-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/13/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Plasmodium ovale curtisi and Plasmodium ovale wallikeri are regarded as less virulent forms of malaria with a geographic distribution including Southeast Asia, Central and West Africa, and is increasingly reported as an infection in returning travellers. A species of malaria that may have delayed or relapsing presentations similar to Plasmodium vivax, the clinical presentation of P. ovale spp. has been described to have prepatent periods of 2 weeks or slightly longer with reports of relapse following primary infection out to 8-9 months. This presentation may be obscured further in the setting of anti-malarial exposure, with report of delayed primary infection out to 4 years. Presented is a cluster of 4 imported P. ovale spp. cases in returning Peruvian military personnel assigned to United Nations peace-keeping operations in the Central African Republic. CASE PRESENTATION From January to December 2016, Peruvian peace-keepers were deployed in support of United Nations (UN) operations in the Central African Republic (CAR). While serving abroad, Navy, Army, and Air Force members experienced 223 episodes of Plasmodium falciparum malaria following interruption of prophylaxis with mefloquine. Diagnosis was made using rapid diagnostics tests (RDTs) and/or smear with no coinfections identified. Cases of malaria were treated with locally-procured artemether-lumefantrine. Returning to Peru in January 2017, 200 peace-keepers were screened via thick and thin smear while on weekly mefloquine prophylaxis with only 1 showing nucleic acid within red blood cells consistent with Plasmodium spp. and 11 reporting syndromes of ill-defined somatic complaints. Between a period of 5 days to 11 months post return, 4 cases of P. ovale spp. were diagnosed using smear and polymerase chain reaction (PCR) following febrile complaints. All cases were subsequently treated with chloroquine and primaquine, with cure of clinical disease and documented clearance of parasitaemia. CONCLUSION These patients represent the first imported cases in Peru of this species of malaria as well as highlight the challenges in implementing population level prophylaxis in a deployed environment, and the steps for timely diagnosis and management in a non-endemic region where risk of introduction for local transmission exists.
Collapse
Affiliation(s)
| | | | | | | | | | - Christopher N Mores
- U.S. Naval Medical Research Unit No. 6, Lima, Peru
- Department of Global Health, Milken Institute School of Public Health, The George Washington University, Washington, DC, USA
| | - Wesley R Campbell
- U.S. Naval Medical Research Unit No. 6, Lima, Peru.
- Division of Infectious Diseases, Department of Internal Medicine, Walter Reed National Military Medical Center, Bethesda, MD, USA.
| |
Collapse
|
20
|
Parasite Removal for Malaria Elimination in Costa Rica. Trends Parasitol 2019; 35:585-588. [PMID: 31129039 DOI: 10.1016/j.pt.2019.04.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 03/25/2019] [Accepted: 04/24/2019] [Indexed: 11/23/2022]
Abstract
In Costa Rica, malaria parasite removal via treatment shift and focalized mass drug administration (MDA) largely decreased malaria transmission between 2006 and 2009, and led to malaria elimination from 2013 to 2015. These results can help to shape a regional strategy for malaria elimination in Mesoamerica and México.
Collapse
|
21
|
Saravu K, Tellapragada C, Kulavalli S, Xavier W, Umakanth S, Brahmarouphu G, Srinivas NK, Channabasavaiah JP, Bava A, Saadi AV, Guddattu V, Satyamoorthy K, Bhat K. A pilot randomized controlled trial to compare the effectiveness of two 14-day primaquine regimens for the radical cure of vivax malaria in South India. Malar J 2018; 17:321. [PMID: 30176897 PMCID: PMC6122616 DOI: 10.1186/s12936-018-2472-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 08/30/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Radical cure of Plasmodium vivax malaria requires treatment with a blood schizonticide and a hypnozoitocide (primaquine) to eradicate the dormant liver stages. There has been uncertainty about the operational effectiveness and optimum dosing of the currently recommended 14-day primaquine (PQ) course. METHODS A two centre, randomized, open-label, two arm study was conducted in South India. Patients were randomized to receive either high dose (0.5 mg base/kg body weight) or conventional dose (0.25 mg/kg) PQ for 14 days. Plasma concentrations of PQ and carboxyprimaquine (CPQ) on the 7th day of treatment were measured by reverse phase high performance liquid chromatography. Study subjects were followed up for 6 months. Recurrent infections were genotyped using capillary fragment length polymorphism of two PCR-amplified microsatellite markers (MS07 and MS 10). RESULTS Fifty patients were enrolled. Baseline characteristics and laboratory features did not differ significantly between the groups. Mean age of the study population was 42 ± 16.0 years. Recurrences 80-105 days later occurred in 4 (8%) patients, two in each the groups. All recurrences had the same microsatellite genotype as that causing the index infection suggesting all were relapses. One relapse was associated with low CPQ concentrations suggesting poor adherence. CONCLUSIONS This small pilot trial supports the effectiveness of the currently recommended lower dose (0.25 mg/kg/day) 14 day PQ regimen for the radical cure of vivax malaria in South India. Trial registration Clinical Trials Registry-India, CTRI/2017/03/007999. Registered 3 March 2017, http://ctri.nic.in/Clinicaltrials/regtrial.php?modid=1&compid=19&EncHid=82755.86366 .
Collapse
Affiliation(s)
- Kavitha Saravu
- Department of Medicine, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Madhava Nagar, Manipal, Karnataka, 576104, India. .,Manipal McGill Centre for Infectious Diseases, Prasanna School of Public Health, Manipal Academy of Higher Education, Madhava Nagar, Manipal, Karnataka, 576104, India.
| | - Chaitanya Tellapragada
- Department of Virus Research, Manipal Academy of Higher Education, Madhava Nagar, Manipal, Karnataka, 576104, India
| | - Shrivathsa Kulavalli
- Manipal McGill Centre for Infectious Diseases, Prasanna School of Public Health, Manipal Academy of Higher Education, Madhava Nagar, Manipal, Karnataka, 576104, India
| | - Wilbin Xavier
- Department of Medicine, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Madhava Nagar, Manipal, Karnataka, 576104, India
| | - Shashikiran Umakanth
- Department of Medicine, Dr. TMA Pai Hospital, Udupi, Melaka Manipal Medical College, Manipal Academy of Higher Education, Madhava Nagar, Manipal, Karnataka, 576104, India
| | - Gouthami Brahmarouphu
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Madhava Nagar, Manipal, Karnataka, 576104, India
| | - Navyasree Kola Srinivas
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Madhava Nagar, Manipal, Karnataka, 576104, India
| | - Jagadish Puralae Channabasavaiah
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Madhava Nagar, Manipal, Karnataka, 576104, India
| | - Anzil Bava
- Department of Cell & Molecular Biology, School of Life Sciences, Manipal Academy of Higher Education, Madhava Nagar, Manipal, Karnataka, 576104, India
| | - Abdul Vahab Saadi
- Department of Cell & Molecular Biology, School of Life Sciences, Manipal Academy of Higher Education, Madhava Nagar, Manipal, Karnataka, 576104, India
| | - Vasudev Guddattu
- Department of Statistics, Manipal Academy of Higher Education, Madhava Nagar, Manipal, Karnataka, 576104, India
| | - Kapaettu Satyamoorthy
- Department of Cell & Molecular Biology, School of Life Sciences, Manipal Academy of Higher Education, Madhava Nagar, Manipal, Karnataka, 576104, India
| | - Krishnamurthy Bhat
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Madhava Nagar, Manipal, Karnataka, 576104, India
| |
Collapse
|
22
|
Cowell AN, Valdivia HO, Bishop DK, Winzeler EA. Exploration of Plasmodium vivax transmission dynamics and recurrent infections in the Peruvian Amazon using whole genome sequencing. Genome Med 2018; 10:52. [PMID: 29973248 PMCID: PMC6032790 DOI: 10.1186/s13073-018-0563-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 06/25/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Plasmodium vivax poses a significant challenge to malaria elimination due to its ability to cause relapsed infections from reactivation of dormant liver parasites called hypnozoites. We analyzed 69 P. vivax whole genome sequences obtained from subjects residing in three different villages along the Peruvian Amazon. This included 23 paired P. vivax samples from subjects who experienced recurrent P. vivax parasitemia following observed treatment with chloroquine and primaquine. METHODS Genomic DNA was extracted from whole blood samples collected from subjects. P. vivax DNA was enriched using selective whole genome amplification and whole genome sequencing. We used single nucleotide polymorphisms (SNPs) from the core P. vivax genome to determine characteristics of the parasite population using discriminant analysis of principal components, maximum likelihood estimation of individual ancestries, and phylogenetic analysis. We estimated the relatedness of the paired samples by calculating the number of segregating sites and using a hidden Markov model approach to estimate identity by descent. RESULTS We present a comprehensive dataset of population genetics of Plasmodium vivax in the Peruvian Amazonian. We define the parasite population structure in this region and demonstrate a novel method for distinguishing homologous relapses from reinfections or heterologous relapses with improved accuracy. The parasite population in this area was quite diverse with an estimated five subpopulations and evidence of a highly heterogeneous ancestry of some of the isolates, similar to previous analyses of P. vivax in this region. Pairwise comparison of recurrent infections determined that there were 12 homologous relapses and 3 likely heterologous relapses with highly related parasites. To the best of our knowledge, this is the first large-scale study to evaluate recurrent P. vivax infections using whole genome sequencing. CONCLUSIONS Whole genome sequencing is a high-resolution tool that can identify P. vivax homologous relapses with increased sensitivity, while also providing data about drug resistance and parasite population genetics. This information is important for evaluating the efficacy of known and novel antirelapse medications in endemic areas and thus advancing the campaign to eliminate malaria.
Collapse
Affiliation(s)
- Annie N Cowell
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA.
| | - Hugo O Valdivia
- U.S. Naval Medical Research No. 6, Venezuela Ave, Block 36, Bellavista, Callao, Peru
| | - Danett K Bishop
- U.S. Naval Medical Research No. 6, Venezuela Ave, Block 36, Bellavista, Callao, Peru
| | - Elizabeth A Winzeler
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, UC San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| |
Collapse
|
23
|
Martin TCS, Vinetz JM. Asymptomatic Plasmodium vivax parasitaemia in the low-transmission setting: the role for a population-based transmission-blocking vaccine for malaria elimination. Malar J 2018; 17:89. [PMID: 29466991 PMCID: PMC5822557 DOI: 10.1186/s12936-018-2243-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 02/17/2018] [Indexed: 12/21/2022] Open
Abstract
Plasmodium vivax remains an important cause of morbidity and mortality across the Americas, Horn of Africa, East and South East Asia. Control of transmission has been hampered by emergence of chloroquine resistance and several intrinsic characteristics of infection including asymptomatic carriage, challenges with diagnosis, difficulty eradicating the carrier state and early gametocyte appearance. Complex human-parasite-vector immunological interactions may facilitate onward infection of mosquitoes. Given these challenges, new therapies are being explored including the development of transmission to mosquito blocking vaccines. Herein, the case supporting the need for transmission-blocking vaccines to augment control of P. vivax parasite transmission and explore factors that are limiting eradication efforts is discussed.
Collapse
Affiliation(s)
- Thomas C S Martin
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Joseph M Vinetz
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
24
|
Daher A, Pereira D, Lacerda MVG, Alexandre MAA, Nascimento CT, Alves de Lima E Silva JC, Tada M, Ruffato R, Maia I, Dos Santos TC, Marchesini P, Santelli AC, Lalloo DG. Efficacy and safety of artemisinin-based combination therapy and chloroquine with concomitant primaquine to treat Plasmodium vivax malaria in Brazil: an open label randomized clinical trial. Malar J 2018; 17:45. [PMID: 29361939 PMCID: PMC5782374 DOI: 10.1186/s12936-018-2192-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 01/16/2018] [Indexed: 02/06/2023] Open
Abstract
Background There is general international agreement that the importance of vivax malaria has been neglected, and there is a need for new treatment approaches in an effort to progress towards control and elimination in Latin America. This open label randomized clinical trial evaluated the efficacy and safety of three treatment regimens using either one of two fixed dose artemisinin-based combinations or chloroquine in combination with a short course of primaquine (7–9 days: total dose 3–4.2 mg/kg) in Brazil. The primary objective was establishing whether cure rates above 90% could be achieved in each arm. Results A total of 264 patients were followed up to day 63. The cure rate of all three treatment arms was greater than 90% at 28 and 42 days. Cure rates were below 90% in all three treatment groups at day 63, although the 95% confidence interval included 90% for all three treatments. Most of the adverse events were mild in all treatment arms. Only one of the three serious adverse events was related to the treatment and significant drops in haemoglobin were rare. Conclusion This study demonstrated the efficacy and safety of all three regimens that were tested with 42-day cure rates that meet World Health Organization criteria. The efficacy and safety of artemisinin-based combination therapy regimens in this population offers the opportunity to treat all species of malaria with the same regimen, simplifying protocols for malaria control programmes and potentially contributing to elimination of both vivax and falciparum malaria. Trial registration RBR-79s56s Electronic supplementary material The online version of this article (10.1186/s12936-018-2192-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- André Daher
- Institute of Drug Technology (Farmanguinhos), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil. .,Vice-presidency of Research and Reference Laboratories, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil. .,Liverpool School of Tropical Medicine, Liverpool, UK.
| | - Dhelio Pereira
- Tropical Medicine Research Center of Rondonia (CEPEM), Porto Velho, Brazil.,Federal University of Rondonia (UNIR), Porto Velho, Brazil
| | - Marcus V G Lacerda
- Research Institute Leônidas & Maria Deane, FIOCRUZ, Manaus, Brazil.,Tropical Medicine Foundation Dr Heitor Vieira Dourado, Manaus, Brazil
| | | | | | | | - Mauro Tada
- Tropical Medicine Research Center of Rondonia (CEPEM), Porto Velho, Brazil
| | - Rosilene Ruffato
- Tropical Medicine Research Center of Rondonia (CEPEM), Porto Velho, Brazil
| | - Ivan Maia
- Vice-presidency of Research and Reference Laboratories, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | | | - Paola Marchesini
- National Malaria Control Programme, Ministry of Health, Brasília, Brazil
| | | | | |
Collapse
|
25
|
Mac Donald-Ottevanger MS, Adhin MR, Jitan JK, Bretas G, Vreden SG. Primaquine double dose for 7 days is inferior to single-dose treatment for 14 days in preventing Plasmodium vivax recurrent episodes in Suriname. Infect Drug Resist 2018; 11:3-8. [PMID: 29317838 PMCID: PMC5743107 DOI: 10.2147/idr.s135897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Recurrent episodes of Plasmodium vivax are caused by dormant liver stages of the parasite, which are not eradicated by choloroquine. Therefore, effective treatment also includes the use of primaquine (PQ). However, this secondary preventive therapy is often not effective, mostly due to poor adherence to the relatively long treatment course, justifying a comparative study of the efficacy of different durations of PQ treatment. Materials and methods We included patients presenting with an acute and documented P. vivax infection from January 2006 to February 2008. All patients received chloroquine 25 mg/kg over a 3-day period. Subsequently, patients in group 7D received PQ 30 mg/day for 7 days, and patients in group 14D received standard PQ 15 mg/day for 14 days. All doses were given under supervision and patients were followed up for at least 6 months. The Kaplan–Meier method was used to estimate cumulative probability of recurrence up to 12 months after treatment initiation stratified by treatment group. Cox regression was used to assess possible determinants for recurrent parasitemia. Results Forty-seven of the 79 included patients (59.5%) were allocated to group 7D and 32 patients (40.5%) were allocated to group 14D. Recurrent parasitemia was detected in 31.9% of the cases in group 7D compared to 12.5% of the cases in group 14D (hazard ratio [HR] =3.36, 95% CI 1.11–10.16). Cumulative probability for recurrent parasitemia at 3, 6, and 12 months was 0.201 (95% CI 0.106–0.362), 0.312 (95% CI 0.190–0.485), and 0.424 (95% CI 0.274–0.615) for group 7D and 0.100 (95% CI 0.033–0.279), 0.100 (95% CI 0.033–0.279), and 0.138 (95% CI 0.054–0.327) for group 14D, respectively. When adjusted for possible confounders, differences in recurrent parasitemia remained significant between the two regimens in Cox regression analysis. Conclusion More than 30% of the patients receiving shorter treatment course had recurrent parasitemia, suggesting that the standard dose of 15 mg/day PQ for 14 days is more efficacious than 30 mg for 7 days in preventing P. vivax recurrent episodes. Furthermore, we suggest that P. vivax treatment in Suriname should be changed to PQ 30 mg/day for 14 days, as per Center for Disease Control and Prevention recommendation, in light of a recurrence rate of over 10%, even in group 14D.
Collapse
Affiliation(s)
| | - Malti R Adhin
- Department of Biochemistry, Anton de Kom University of Suriname
| | | | | | | |
Collapse
|
26
|
Carrasco-Escobar G, Gamboa D, Castro MC, Bangdiwala SI, Rodriguez H, Contreras-Mancilla J, Alava F, Speybroeck N, Lescano AG, Vinetz JM, Rosas-Aguirre A, Llanos-Cuentas A. Micro-epidemiology and spatial heterogeneity of P. vivax parasitaemia in riverine communities of the Peruvian Amazon: A multilevel analysis. Sci Rep 2017; 7:8082. [PMID: 28808240 PMCID: PMC5556029 DOI: 10.1038/s41598-017-07818-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 07/04/2017] [Indexed: 01/07/2023] Open
Abstract
Malaria has steadily increased in the Peruvian Amazon over the last five years. This study aimed to determine the parasite prevalence and micro-geographical heterogeneity of Plasmodium vivax parasitaemia in communities of the Peruvian Amazon. Four cross-sectional active case detection surveys were conducted between May and July 2015 in four riverine communities in Mazan district. Analysis of 2785 samples of 820 individuals nested within 154 households for Plasmodium parasitaemia was carried out using light microscopy and qPCR. The spatio-temporal distribution of Plasmodium parasitaemia, dominated by P. vivax, was shown to cluster at both household and community levels. Of enrolled individuals, 47% had at least one P. vivax parasitaemia and 10% P. falciparum, by qPCR, both of which were predominantly sub-microscopic and asymptomatic. Spatial analysis detected significant clustering in three communities. Our findings showed that communities at small-to-moderate spatial scales differed in P. vivax parasite prevalence, and multilevel Poisson regression models showed that such differences were influenced by factors such as age, education, and location of households within high-risk clusters, as well as factors linked to a local micro-geographic context, such as travel and occupation. Complex transmission patterns were found to be related to human mobility among communities in the same micro-basin.
Collapse
Affiliation(s)
- Gabriel Carrasco-Escobar
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigacióny Desarrollo, Facultad de Cienciasy Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru.
- Facultad de Salud Públicay Administración, Universidad Peruana Cayetano Heredia, Lima, Peru.
| | - Dionicia Gamboa
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigacióny Desarrollo, Facultad de Cienciasy Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
- Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru
- Departamento de Ciencias Celularesy Moleculares, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Marcia C Castro
- Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Shrikant I Bangdiwala
- Department of Biostatistics, University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC, USA
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, ON, Canada
| | | | - Juan Contreras-Mancilla
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigacióny Desarrollo, Facultad de Cienciasy Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | - Niko Speybroeck
- Research Institute of Health and Society (IRSS), Université Catholique de Louvain, Brussels, Belgium
| | - Andres G Lescano
- Facultad de Salud Públicay Administración, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Joseph M Vinetz
- Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru
- Departamento de Ciencias Celularesy Moleculares, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
- Division of Infectious Diseases, Department of Medicine, University of California San Diego School of Medicine, La Jolla, California, USA
| | - Angel Rosas-Aguirre
- Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru
- Research Institute of Health and Society (IRSS), Université Catholique de Louvain, Brussels, Belgium
| | - Alejandro Llanos-Cuentas
- Facultad de Salud Públicay Administración, Universidad Peruana Cayetano Heredia, Lima, Peru.
- Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru.
| |
Collapse
|
27
|
Selective Whole-Genome Amplification Is a Robust Method That Enables Scalable Whole-Genome Sequencing of Plasmodium vivax from Unprocessed Clinical Samples. mBio 2017; 8:mBio.02257-16. [PMID: 28174312 PMCID: PMC5296604 DOI: 10.1128/mbio.02257-16] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Whole-genome sequencing (WGS) of microbial pathogens from clinical samples is a highly sensitive tool used to gain a deeper understanding of the biology, epidemiology, and drug resistance mechanisms of many infections. However, WGS of organisms which exhibit low densities in their hosts is challenging due to high levels of host genomic DNA (gDNA), which leads to very low coverage of the microbial genome. WGS of Plasmodium vivax, the most widely distributed form of malaria, is especially difficult because of low parasite densities and the lack of an ex vivo culture system. Current techniques used to enrich P. vivax DNA from clinical samples require significant resources or are not consistently effective. Here, we demonstrate that selective whole-genome amplification (SWGA) can enrich P. vivax gDNA from unprocessed human blood samples and dried blood spots for high-quality WGS, allowing genetic characterization of isolates that would otherwise have been prohibitively expensive or impossible to sequence. We achieved an average genome coverage of 24×, with up to 95% of the P. vivax core genome covered by ≥5 reads. The single-nucleotide polymorphism (SNP) characteristics and drug resistance mutations seen were consistent with those of other P. vivax sequences from a similar region in Peru, demonstrating that SWGA produces high-quality sequences for downstream analysis. SWGA is a robust tool that will enable efficient, cost-effective WGS of P. vivax isolates from clinical samples that can be applied to other neglected microbial pathogens. Malaria is a disease caused by Plasmodium parasites that caused 214 million symptomatic cases and 438,000 deaths in 2015. Plasmodium vivax is the most widely distributed species, causing the majority of malaria infections outside sub-Saharan Africa. Whole-genome sequencing (WGS) of Plasmodium parasites from clinical samples has revealed important insights into the epidemiology and mechanisms of drug resistance of malaria. However, WGS of P. vivax is challenging due to low parasite levels in humans and the lack of a routine system to culture the parasites. Selective whole-genome amplification (SWGA) preferentially amplifies the genomes of pathogens from mixtures of target and host gDNA. Here, we demonstrate that SWGA is a simple, robust method that can be used to enrich P. vivax genomic DNA (gDNA) from unprocessed human blood samples and dried blood spots for cost-effective, high-quality WGS.
Collapse
|
28
|
Rosas-Aguirre A, Gamboa D, Manrique P, Conn JE, Moreno M, Lescano AG, Sanchez JF, Rodriguez H, Silva H, Llanos-Cuentas A, Vinetz JM. Epidemiology of Plasmodium vivax Malaria in Peru. Am J Trop Med Hyg 2016; 95:133-144. [PMID: 27799639 PMCID: PMC5201219 DOI: 10.4269/ajtmh.16-0268] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 09/29/2016] [Indexed: 01/01/2023] Open
Abstract
Malaria in Peru, dominated by Plasmodium vivax, remains a public health problem. The 1990s saw newly epidemic malaria emerge, primarily in the Loreto Department in the Amazon region, including areas near to Iquitos, the capital city, but sporadic malaria transmission also occurred in the 1990s–2000s in both north-coastal Peru and the gold mining regions of southeastern Peru. Although a Global Fund-supported intervention (PAMAFRO, 2005–2010) was temporally associated with a decrease of malaria transmission, from 2012 to the present, both P. vivax and Plasmodium falciparum malaria cases have rapidly increased. The Peruvian Ministry of Health continues to provide artemesinin-based combination therapy for microscopy-confirmed cases of P. falciparum and chloroquine–primaquine for P. vivax. Malaria transmission continues in remote areas nonetheless, where the mobility of humans and parasites facilitates continued reintroduction outside of ongoing surveillance activities, which is critical to address for future malaria control and elimination efforts. Ongoing P. vivax research gaps in Peru include the following: identification of asymptomatic parasitemics, quantification of the contribution of patent and subpatent parasitemics to mosquito transmission, diagnosis of nonparasitemic hypnozoite carriers, and implementation of surveillance for potential emergence of chloroquine- and 8-aminoquinoline-resistant P. vivax. Clinical trials of tafenoquine in Peru have been promising, and glucose-6-phosphate dehydrogenase deficiency in the region has not been observed to be a limitation to its use. Larger-scale challenges for P. vivax (and malaria in general) in Peru include logistical difficulties in accessing remote riverine populations, consequences of government policy and poverty trends, and obtaining international funding for malaria control and elimination.
Collapse
Affiliation(s)
- Angel Rosas-Aguirre
- Research Institute of Health and Society, Université Catholique de Louvain, Brussels, Belgium.,Instituto de Medicina Tropical "Alexander von Humboldt," Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Dionicia Gamboa
- Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru.,Instituto de Medicina Tropical "Alexander von Humboldt," Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Paulo Manrique
- Instituto de Medicina Tropical "Alexander von Humboldt," Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Jan E Conn
- Wadsworth Center, New York State Department of Health, Albany, New York.,Department of Biomedical Sciences, School of Public Health, University at Albany (State University of New York), Albany, New York
| | - Marta Moreno
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, San Diego, California
| | - Andres G Lescano
- Facultad de Salud Pública, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Juan F Sanchez
- Facultad de Salud Pública, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Hugo Rodriguez
- Dirección Regional de Salud Loreto, Ministerio de Salud, Iquitos, Peru
| | - Hermann Silva
- Dirección Regional de Salud Loreto, Ministerio de Salud, Iquitos, Peru
| | - Alejandro Llanos-Cuentas
- Instituto de Medicina Tropical "Alexander von Humboldt," Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Joseph M Vinetz
- Instituto de Medicina Tropical "Alexander von Humboldt," Universidad Peruana Cayetano Heredia, Lima, Peru.,Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru.,Division of Infectious Diseases, Department of Medicine, University of California San Diego, San Diego, California
| |
Collapse
|
29
|
Abstract
Introduction: Relapses are important contributors to illness and morbidity in Plasmodium vivax and P. ovale infections. Relapse prevention (radical cure) with primaquine is required for optimal management, control and ultimately elimination of Plasmodium vivax malaria. A review was conducted with publications in English, French, Portuguese and Spanish using the search terms ‘P. vivax’ and ‘relapse’. Areas covered: Hypnozoites causing relapses may be activated weeks or months after initial infection. Incidence and temporal patterns of relapse varies geographically. Relapses derive from parasites either genetically similar or different from the primary infection indicating that some derive from previous infections. Malaria illness itself may activate relapse. Primaquine is the only widely available treatment for radical cure. However, it is often not given because of uncertainty over the risks of primaquine induced haemolysis when G6PD deficiency testing is unavailable. Recommended dosing of primaquine for radical cure in East Asia and Oceania is 0.5 mg base/kg/day and elsewhere is 0.25 mg base/kg/day. Alternative treatments are under investigation. Expert commentary: Geographic heterogeneity in relapse patterns and chloroquine susceptibility of P. vivax, and G6PD deficiency epidemiology mean that radical treatment should be given much more than it is today. G6PD testing should be made widely available so primaquine can be given more safely.
Collapse
Affiliation(s)
- Cindy S Chu
- a Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine , Mahidol University , Mae Sot , Thailand.,b Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine , Mahidol University , Bangkok , Thailand
| | - Nicholas J White
- b Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine , Mahidol University , Bangkok , Thailand.,c Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine , University of Oxford , Oxford , UK
| |
Collapse
|
30
|
Negreiros S, Farias S, Viana GMR, Okoth SA, Chenet SM, de Souza TMH, Marchesini P, Udhayakumar V, Povoa MM, Santelli ACFES, de Oliveira AM. Efficacy of Chloroquine and Primaquine for the Treatment of Uncomplicated Plasmodium vivax Malaria in Cruzeiro do Sul, Brazil. Am J Trop Med Hyg 2016; 95:1061-1068. [PMID: 27549633 DOI: 10.4269/ajtmh.16-0075] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 07/12/2016] [Indexed: 11/07/2022] Open
Abstract
We evaluated the efficacy of chloroquine and primaquine on uncomplicated Plasmodium vivax malaria in Cruzeiro do Sul, Brazil, in 2014. Patients ≥ 5 years of age with either fever or history of fever, and laboratory-confirmed P. vivax monoinfection received chloroquine (total dose = 25 mg/kg) and primaquine (total dose = 3.5 mg/kg), and were followed up for 168 days (24 weeks). We used microsatellite genotyping to differentiate recurrent infections caused by heterologous parasites from those caused by homologous ones. No new P. vivax episode occurred by Day 28 among 119 enrolled patients, leading to Day 28, with adequate clinical and parasitological response (ACPR) of 100% (95% confidence interval [CI] = 96.7-100%). Twenty-eight P. vivax episodes occurred by Day 168, with uncorrected ACPR of 69.9% (95% CI = 59.5-79.0%). Fifteen of these episodes were caused by either homologous haplotypes or haplotypes that could not be determined. Excluding the 13 recurrent episodes caused by heterologous parasites, Day 168 microsatellite-corrected ACPR was estimated at 81.2% (95% CI = 71.0-89.1%). Chloroquine and primaquine remain efficacious to treat acute uncomplicated P. vivax infection, but moderate recurrence rates were observed within 24 weeks of follow-up.
Collapse
Affiliation(s)
| | | | | | - Sheila Akinyi Okoth
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia.,Atlanta Research and Education Foundation, Decatur, Georgia
| | - Stella M Chenet
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | - Paola Marchesini
- National Malaria Control Program, Brazilian Ministry of Health, Brasilia, Brazil
| | - Venkatachalam Udhayakumar
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | | | - Alexandre Macedo de Oliveira
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia.
| |
Collapse
|
31
|
Prospective Study of Plasmodium vivax Malaria Recurrence after Radical Treatment with a Chloroquine-Primaquine Standard Regimen in Turbo, Colombia. Antimicrob Agents Chemother 2016; 60:4610-9. [PMID: 27185794 DOI: 10.1128/aac.00186-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 05/09/2016] [Indexed: 01/15/2023] Open
Abstract
Plasmodium vivax recurrences help maintain malaria transmission. They are caused by recrudescence, reinfection, or relapse, which are not easily differentiated. A longitudinal observational study took place in Turbo municipality, Colombia. Participants with uncomplicated P. vivax infection received supervised treatment concomitantly with 25 mg/kg chloroquine and 0.25 mg/kg/day primaquine for 14 days. Incidence of recurrence was assessed over 180 days. Samples were genotyped, and origins of recurrences were established. A total of 134 participants were enrolled between February 2012 and July 2013, and 87 were followed for 180 days, during which 29 recurrences were detected. The cumulative incidence of first recurrence was 24.1% (21/87) (95% confidence interval [CI], 14.6 to 33.7%), and 86% (18/21) of these events occurred between days 51 and 110. High genetic diversity of P. vivax strains was found, and 12.5% (16/128) of the infections were polyclonal. Among detected recurrences, 93.1% (27/29) of strains were genotyped as genetically identical to the strain from the previous infection episode, and 65.5% (19/29) of infections were classified as relapses. Our results indicate that there is a high incidence of P. vivax malaria recurrence after treatment in Turbo municipality, Colombia, and that a large majority of these episodes are likely relapses from the previous infection. We attribute this to the primaquine regimen currently used in Colombia, which may be insufficient to eliminate hypnozoites.
Collapse
|
32
|
Quispe AM, Llanos-Cuentas A, Rodriguez H, Clendenes M, Cabezas C, Leon LM, Chuquiyauri R, Moreno M, Kaslow DC, Grogl M, Herrera S, Magill AJ, Kosek M, Vinetz JM, Lescano AG, Gotuzzo E. Accelerating to Zero: Strategies to Eliminate Malaria in the Peruvian Amazon. Am J Trop Med Hyg 2016; 94:1200-1207. [PMID: 30851016 PMCID: PMC4889734 DOI: 10.4269/ajtmh.15-0369] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AbstractIn February 2014, the Malaria Elimination Working Group, in partnership with the Peruvian Ministry of Health (MoH), hosted its first international conference on malaria elimination in Iquitos, Peru. The 2-day meeting gathered 85 malaria experts, including 18 international panelists, 23 stakeholders from different malaria-endemic regions of Peru, and 11 MoH authorities. The main outcome was consensus that implementing a malaria elimination project in the Amazon region is achievable, but would require: 1) a comprehensive strategic plan, 2) the altering of current programmatic guidelines from control toward elimination by including symptomatic as well as asymptomatic individuals for antimalarial therapy and transmission-blocking interventions, and 3) the prioritization of community-based active case detection with proper rapid diagnostic tests to interrupt transmission. Elimination efforts must involve key stakeholders and experts at every level of government and include integrated research activities to evaluate, implement, and tailor sustainable interventions appropriate to the region.
Collapse
Affiliation(s)
- Antonio M. Quispe
- *Address correspondence to Antonio M. Quispe, Department of International Health, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD 21205. E-mail:
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
The relapsing peculiarity of Plasmodium vivax is one of the prime reasons for sustained global malaria transmission. Global containment of P. vivax is more challenging and crucial compared to other species for achieving total malaria control/elimination. Primaquine (PQ) failure and P. vivax relapse is a major global public health concern. Identification and characterization of different relapse strains of P. vivax prevalent across the globe should be one of the thrust areas in malaria research. Despite renewed and rising global concern by researchers on this once 'neglected' species, research and development on the very topic of P. vivax reappearance remains inadequate. Many malaria endemic countries have not mandated routine glucose-6-phosphate dehydrogenase (G6PD) testing before initiating PQ radical cure in P. vivax malaria. This results in either no PQ prescription or thoughtless prescription and administration of PQ to P. vivax patients by healthcare providers without being concerned about patients' G6PD status and associated complications. It is imperative to ascertain the G6PD status and optimum dissemination of PQ radical cure in all cases of P. vivax malaria across the globe. There persists a compelling need to develop/validate a rapid, easy-to-perform, easy-to-interpret, quality controllable, robust, and cost-effective G6PD assay. High-dose PQ of both standard and short duration appears to be safe and more effective for preventing relapses and should be practiced among patients with normal G6PD activity. Multicentric studies involving adequately representative populations across the globe with reference PQ dose must be carried out to determine the true distribution of PQ failure. Study proving role of cytochrome P450-2D6 gene in PQ metabolism and association of CYP2D6 metabolizer phenotypes and P. vivax relapse is of prime importance and should be carried forward in multicentric systems across the globe.
Collapse
Affiliation(s)
- Kumar Rishikesh
- a Department of Medicine , Kasturba Medical College, Manipal University , Madhav Nagar, Manipal 576104 , Karnataka , India.,b Tropical Medicine Research Centre, Kasturba Medical College, Manipal University , Madhav Nagar, Manipal 576104 , Karnataka , India
| | - Kavitha Saravu
- a Department of Medicine , Kasturba Medical College, Manipal University , Madhav Nagar, Manipal 576104 , Karnataka , India.,b Tropical Medicine Research Centre, Kasturba Medical College, Manipal University , Madhav Nagar, Manipal 576104 , Karnataka , India
| |
Collapse
|
34
|
Zuluaga-Idarraga LM, Tamayo Perez ME, Aguirre-Acevedo DC. Therapeutic efficacy of alternative primaquine regimens to standard treatment in preventing relapses by Plasmodium vivax: A systematic review and meta-analysis. Colomb Med (Cali) 2015; 46:183-91. [PMID: 26848199 PMCID: PMC4732508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVE To compare efficacy and safety of primaquine regimens currently used to prevent relapses by P. vivax. METHODS A systematic review was carried out to identify clinical trials evaluating efficacy and safety to prevent malaria recurrences by P. vivax of primaquine regimen 0.5 mg/kg/ day for 7 or 14 days compared to standard regimen of 0.25 mg/kg/day for 14 days. Efficacy of primaquine according to cumulative incidence of recurrences after 28 days was determined. The overall relative risk with fixed-effects meta-analysis was estimated. RESULTS For the regimen 0.5 mg/kg/day/7 days were identified 7 studies, which showed an incidence of recurrence between 0% and 20% with follow-up 60-210 days; only 4 studies comparing with the standard regimen 0.25 mg/kg/day/14 days and no difference in recurrences between both regimens (RR= 0.977, 95% CI= 0.670 to 1.423) were found. 3 clinical trials using regimen 0.5 mg/kg/day/14 days with an incidence of recurrences between 1.8% and 18.0% during 330-365 days were identified; only one study comparing with the standard regimen (RR= 0.846, 95% CI= 0.484 to 1.477). High risk of bias and differences in handling of included studies were found. CONCLUSION Available evidence is insufficient to determine whether currently PQ regimens used as alternative rather than standard treatment have better efficacy and safety in preventing relapse of P. vivax. Clinical trials are required to guide changes in treatment regimen of malaria vivax.
Collapse
Affiliation(s)
- Lina Marcela Zuluaga-Idarraga
- Grupo Malaria, Facultad de Medicina. Universidad de Antioquia. Medellín, Colombia.
, Grupo Epidemiología y Bioestadística, Facultad de Medicina. Universidad CES. Medellín, Colombia Medellín
| | - María-Eulalia Tamayo Perez
- Grupo Académico de Epidemiología Clínica, Facultad de Medicina. Universidad de Antioquia. Medellín, Colombia., Departamento de Pediatría, Universidad de Antioquia, Fundación Hospital Universitario San Vicente, Medellín, Colombia
| | | |
Collapse
|
35
|
McFarland AP, Sanchez JF, Mercado A, Ventocilla JA, Cavalcanti S, Gonzalez S, Lescano AG. Repeated Plasmodium vivax malaria relapses in a Peruvian sailor. Malar J 2015; 14:478. [PMID: 26620122 PMCID: PMC4665899 DOI: 10.1186/s12936-015-0959-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 10/21/2015] [Indexed: 01/05/2023] Open
Abstract
Two Plasmodium vivax recurrences in a Peruvian sailor with weight above the 60 kg (cap for primaquine dosage) highlight the importance of adequate radical cure weight dosage for patient treatment and control efforts, particularly within the military.
Collapse
Affiliation(s)
- Adam P McFarland
- School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA.
| | - Juan F Sanchez
- Department of Parasitology, U.S. Naval Medical Research Unit No. 6 (NAMRU-6), Av. Venezuela Cdra. 36 S/N. Bellavista, Callao, 03, Peru.
| | - Alejandro Mercado
- Centro Medico Naval "Cirujano Mayor Santiago Tavara", Peruvian Navy, Callao, Peru.
| | - Julio A Ventocilla
- Department of Parasitology, U.S. Naval Medical Research Unit No. 6 (NAMRU-6), Av. Venezuela Cdra. 36 S/N. Bellavista, Callao, 03, Peru.
| | - Sofia Cavalcanti
- Centro Medico Naval "Cirujano Mayor Santiago Tavara", Peruvian Navy, Callao, Peru.
| | - Sofia Gonzalez
- Centro Medico Naval "Cirujano Mayor Santiago Tavara", Peruvian Navy, Callao, Peru.
| | - Andres G Lescano
- Department of Parasitology, U.S. Naval Medical Research Unit No. 6 (NAMRU-6), Av. Venezuela Cdra. 36 S/N. Bellavista, Callao, 03, Peru. .,School of Public Health and Management, Universidad Peruana Cayetano Heredia (UPCH), Lima, Peru.
| |
Collapse
|
36
|
Flannery EL, Wang T, Akbari A, Corey VC, Gunawan F, Bright AT, Abraham M, Sanchez JF, Santolalla ML, Baldeviano GC, Edgel KA, Rosales LA, Lescano AG, Bafna V, Vinetz JM, Winzeler EA. Next-Generation Sequencing of Plasmodium vivax Patient Samples Shows Evidence of Direct Evolution in Drug-Resistance Genes. ACS Infect Dis 2015; 1:367-79. [PMID: 26719854 DOI: 10.1021/acsinfecdis.5b00049] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Understanding the mechanisms of drug resistance in Plasmodium vivax, the parasite that causes the most widespread form of human malaria, is complicated by the lack of a suitable long-term cell culture system for this parasite. In contrast to P. falciparum, which can be more readily manipulated in the laboratory, insights about parasite biology need to be inferred from human studies. Here we analyze the genomes of parasites within 10 human P. vivax infections from the Peruvian Amazon. Using next-generation sequencing we show that some P. vivax infections analyzed from the region are likely polyclonal. Despite their polyclonality we observe limited parasite genetic diversity by showing that three or fewer haplotypes comprise 94% of the examined genomes, suggesting the recent introduction of parasites into this geographic region. In contrast we find more than three haplotypes in putative drug-resistance genes, including the gene encoding dihydrofolate reductase-thymidylate synthase and the P. vivax multidrug resistance associated transporter, suggesting that resistance mutations have arisen independently. Additionally, several drug-resistance genes are located in genomic regions with evidence of increased copy number. Our data suggest that whole genome sequencing of malaria parasites from patients may provide more insight about the evolution of drug resistance than genetic linkage or association studies, especially in geographical regions with limited parasite genetic diversity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Juan F. Sanchez
- U.S. Naval Medical Research Unit No. 6 (NAMRU-6), Avenida Venezuela Cuadra 36 S/N, Centro Médico
Naval, Lima Callao 02, Peru
| | - Meddly L. Santolalla
- U.S. Naval Medical Research Unit No. 6 (NAMRU-6), Avenida Venezuela Cuadra 36 S/N, Centro Médico
Naval, Lima Callao 02, Peru
| | - G. Christian Baldeviano
- U.S. Naval Medical Research Unit No. 6 (NAMRU-6), Avenida Venezuela Cuadra 36 S/N, Centro Médico
Naval, Lima Callao 02, Peru
| | - Kimberly A. Edgel
- U.S. Naval Medical Research Unit No. 6 (NAMRU-6), Avenida Venezuela Cuadra 36 S/N, Centro Médico
Naval, Lima Callao 02, Peru
| | - Luis A. Rosales
- U.S. Naval Medical Research Unit No. 6 (NAMRU-6), Avenida Venezuela Cuadra 36 S/N, Centro Médico
Naval, Lima Callao 02, Peru
| | - Andrés G. Lescano
- U.S. Naval Medical Research Unit No. 6 (NAMRU-6), Avenida Venezuela Cuadra 36 S/N, Centro Médico
Naval, Lima Callao 02, Peru
| | | | | | | |
Collapse
|
37
|
Baird JK, Dewi M, Subekti D, Elyazar I, Satyagraha AW. Noninferiority of glucose-6-phosphate dehydrogenase deficiency diagnosis by a point-of-care rapid test vs the laboratory fluorescent spot test demonstrated by copper inhibition in normal human red blood cells. Transl Res 2015; 165:677-88. [PMID: 25312015 PMCID: PMC4451869 DOI: 10.1016/j.trsl.2014.09.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 08/13/2014] [Accepted: 09/17/2014] [Indexed: 01/08/2023]
Abstract
Tens of millions of patients diagnosed with vivax malaria cannot safely receive primaquine therapy against repeated attacks caused by activation of dormant liver stages called hypnozoites. Most of these patients lack access to screening for glucose-6-phosphate dehydrogenase (G6PD) deficiency, a highly prevalent disorder causing serious acute hemolytic anemia with primaquine therapy. We optimized CuCl inhibition of G6PD in normal red blood cells (RBCs) to assess G6PD diagnostic technologies suited to point of care in the impoverished rural tropics. The most widely applied technology for G6PD screening-the fluorescent spot test (FST)-is impractical in that setting. We evaluated a new point-of-care G6PD screening kit (CareStart G6PD, CSG) against FST using graded CuCl treatments to simulate variable hemizygous states, and varying proportions of CuCl-treated RBC suspensions to simulate variable heterozygous states of G6PD deficiency. In experiments double-blinded to CuCl treatment, technicians reading FST and CSG test (n = 269) classified results as positive or negative for deficiency. At G6PD activity ≤40% of normal (n = 112), CSG test was not inferior to FST in detecting G6PD deficiency (P = 0.003), with 96% vs 90% (P = 0.19) sensitivity and 75% and 87% (P = 0.01) specificity, respectively. The CSG test costs less, requires no specialized equipment, laboratory skills, or cold chain for successful application, and performs as well as the FST standard of care for G6PD screening. Such a device may vastly expand access to primaquine therapy and aid in mitigating the very substantial burden of morbidity and mortality imposed by the hypnozoite reservoir of vivax malaria.
Collapse
Affiliation(s)
- J Kevin Baird
- Eijkman-Oxford Clinical Research Unit, Jakarta, Indonesia; Nuffield Department of Medicine, Centre for Tropical Medicine, University of Oxford, Oxford, United Kingdom.
| | - Mewahyu Dewi
- Eijkman-Oxford Clinical Research Unit, Jakarta, Indonesia
| | - Decy Subekti
- Eijkman-Oxford Clinical Research Unit, Jakarta, Indonesia
| | - Iqbal Elyazar
- Eijkman-Oxford Clinical Research Unit, Jakarta, Indonesia
| | | |
Collapse
|
38
|
Affiliation(s)
- Ric N. Price
- *Address correspondence to Ric N. Price, Menzies School of Health Research, PO Box 41096, Casuarina, Darwin, NT 0811 Australia. E-mail:
| |
Collapse
|