1
|
Thiiru JW, Langat S, Mulwa F, Cinkovich S, Koka H, Yalwala S, Khamadi S, Onguso J, Odemba N, Ngere F, Johnson J, Egbo T, Garges E, Ojwang E, Eyase F. Characterization of West Nile virus Koutango lineage from phlebotomine sandflies in Kenya. PLoS One 2024; 19:e0301956. [PMID: 39173002 PMCID: PMC11341046 DOI: 10.1371/journal.pone.0301956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/16/2024] [Indexed: 08/24/2024] Open
Abstract
The West Nile virus (WNV), primarily transmitted by mosquitoes, is one of the most widespread flaviviruses globally, with past outbreaks occurring in the USA and Europe. Recent studies in parts of Africa, including Kenya, have identified the West Nile virus Koutango lineage (WN-KOUTV) among phlebotomine sandfly populations, however, our understanding of this virus remains limited. This study aimed to characterize WN-KOUTV from phlebotomine sandflies. Sandflies were sampled between 12th -16th March 2021 and 16th -20th March 2023 from six villages each in Baringo and Isiolo Counties, using CDC light traps. Female sandflies were taxonomically identified and pooled based on genus and site of collection. Virus isolation was performed in Vero cells. Viral genomes were determined using next-generation sequencing. Phylogenetic and molecular clock analyses were done to decipher the virus's evolutionary relationships. Comparative analyses of amino acid sequences were performed to determine variations. Protein modeling in Pymol was conducted to elucidate variations in key protein regions. Evolutionary pressure analysis investigated the selection pressures on the virus. In vitro experiments were done to investigate the virus growth kinetics in mammalian Vero E6 and mosquito C6/36 cells. We report the isolation of WN-KOUTV from Salabani in Baringo and Aremet in Isiolo, Kenya. The isolated WN-KOUTVs clustered with previously identified WN-KOUTV strains. Comparative analysis revealed a unique amino acid at NS5 653. The WN-KOUTV lineage as a whole is under purifying selective pressure, with diversifying pressure acting at site NS3 267. The current WN-KOUTV replicated in Vero E6 and C6/36 cells comparable to West Nile virus Lineage 1a, isolated from mosquitoes. Subsequent isolations of WN-KOUTV in phlebotomine sandflies suggest potential vectors, however, vector competence studies would confirm this. Replication in mammalian and insect cell lines suggests there may exist a vector/host relationship. We speculate the close genetic relationship of WN-KOUTV strains from East and West Africa may potentially be enabled by bird migratory routes between the two regions. If proven, this could point to a potential future pandemic pathway for this virus.
Collapse
Affiliation(s)
- Jane Wambui Thiiru
- Department of Emerging Infectious Diseases, United States Army Medical Research Directorate-Africa, Nairobi, Kenya
- Centre for Virus Research, Kenya Medical Research Institute, Nairobi, Kenya
- Institute for Biotechnology Research, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Solomon Langat
- Centre for Virus Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Francis Mulwa
- Centre for Virus Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Stephanie Cinkovich
- Global Emerging Infections Surveillance Branch, United States Armed Forces Health Surveillance Division, Silver Spring, Maryland, United States of America
| | - Hellen Koka
- Centre for Virus Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Santos Yalwala
- Department of Emerging Infectious Diseases, United States Army Medical Research Directorate-Africa, Nairobi, Kenya
| | - Samoel Khamadi
- Centre for Virus Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Justus Onguso
- Institute for Biotechnology Research, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Nicholas Odemba
- Department of Emerging Infectious Diseases, United States Army Medical Research Directorate-Africa, Nairobi, Kenya
| | - Francis Ngere
- Department of Emerging Infectious Diseases, United States Army Medical Research Directorate-Africa, Nairobi, Kenya
| | - Jaree Johnson
- United States Armed Forces Pest Management Board, Silver Spring, Maryland, United States of America
| | - Timothy Egbo
- Department of Emerging Infectious Diseases, United States Army Medical Research Directorate-Africa, Nairobi, Kenya
| | - Eric Garges
- Department of Emerging Infectious Diseases, United States Army Medical Research Directorate-Africa, Nairobi, Kenya
| | - Elly Ojwang
- Department of Emerging Infectious Diseases, United States Army Medical Research Directorate-Africa, Nairobi, Kenya
| | - Fredrick Eyase
- Department of Emerging Infectious Diseases, United States Army Medical Research Directorate-Africa, Nairobi, Kenya
- Centre for Virus Research, Kenya Medical Research Institute, Nairobi, Kenya
| |
Collapse
|
2
|
Antonov AS, Shpak IM, Ustinov DV, Izhberdeeva MP, Guseva AN, Galkina AY, Borodai NV, Udovichenko SK, Toporkov AV. Phylogenetic analysis and molecular genetic characteristics of West Nile virus lineage 2 isolates circulating in the Russian Federation. Virus Genes 2024; 60:370-376. [PMID: 38847934 DOI: 10.1007/s11262-024-02079-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/21/2024] [Indexed: 07/13/2024]
Abstract
Since its initial detection in Africa, the West Nile virus has disseminated widely across all continents, becoming endemic in numerous countries, including the Russian Federation. A substantial expansion of the West Nile virus range was observed in the European part of the Russian territory in 1999. In light of this epidemiological trend, research endeavours focusing on monitoring West Nile virus circulation activity in endemic regions of the country have gained paramount significance. A substantial dataset has been accrued from 2007 onwards regarding genomic variability and dissemination dynamics across the country throughout the entire monitoring period for the West Nile fever pathogen. The objective of this study was to characterise West Nile virus isolates that have been circulating in the Russian Federation and identify their molecular and genetic characteristics. A phylogenetic analysis of 55 complete genome sequences revealed that the West Nile virus population within the Russian Federation is genetically heterogeneous and is represented by four major clades. One of these clades is currently exhibiting extensive spread into new regions of the country.
Collapse
Affiliation(s)
- A S Antonov
- Federal Government Health Institution "Volgograd Plague Control Research Institute" of Federal Service for Surveillance in the Sphere of Consumers Rights Protection and Human Wellbeing, Volgograd, 400066, Russia.
| | - I M Shpak
- Federal Government Health Institution "Volgograd Plague Control Research Institute" of Federal Service for Surveillance in the Sphere of Consumers Rights Protection and Human Wellbeing, Volgograd, 400066, Russia
| | - D V Ustinov
- Federal Government Health Institution "Volgograd Plague Control Research Institute" of Federal Service for Surveillance in the Sphere of Consumers Rights Protection and Human Wellbeing, Volgograd, 400066, Russia
| | - M P Izhberdeeva
- Federal Government Health Institution "Volgograd Plague Control Research Institute" of Federal Service for Surveillance in the Sphere of Consumers Rights Protection and Human Wellbeing, Volgograd, 400066, Russia
| | - A N Guseva
- Federal Government Health Institution "Volgograd Plague Control Research Institute" of Federal Service for Surveillance in the Sphere of Consumers Rights Protection and Human Wellbeing, Volgograd, 400066, Russia
| | - A Y Galkina
- Federal Government Health Institution "Volgograd Plague Control Research Institute" of Federal Service for Surveillance in the Sphere of Consumers Rights Protection and Human Wellbeing, Volgograd, 400066, Russia
| | - N V Borodai
- Federal Government Health Institution "Volgograd Plague Control Research Institute" of Federal Service for Surveillance in the Sphere of Consumers Rights Protection and Human Wellbeing, Volgograd, 400066, Russia
| | - S K Udovichenko
- Federal Government Health Institution "Volgograd Plague Control Research Institute" of Federal Service for Surveillance in the Sphere of Consumers Rights Protection and Human Wellbeing, Volgograd, 400066, Russia
| | - A V Toporkov
- Federal Government Health Institution "Volgograd Plague Control Research Institute" of Federal Service for Surveillance in the Sphere of Consumers Rights Protection and Human Wellbeing, Volgograd, 400066, Russia
| |
Collapse
|
3
|
Haila GJ, Plante JA, Widen SG, Beasley DWC. Complete genome sequence of Koutango virus strain DakAnD5443 isolated from Tatera kempi in 1968. Microbiol Resour Announc 2023; 12:e0042323. [PMID: 37846978 PMCID: PMC10653001 DOI: 10.1128/mra.00423-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/13/2023] [Indexed: 10/18/2023] Open
Abstract
Koutango virus (KOUV), a close relative of West Nile virus, is highly neuroinvasive in animal models and has been associated with human disease. The complete genome of the KOUV prototype strain DakAnD5443 is reported here and may facilitate development of infectious clones for further characterization of this novel flavivirus.
Collapse
Affiliation(s)
- Gabriel J. Haila
- Microbiology and Immunology Graduate Program, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jessica A. Plante
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, Texas, USA
| | - Steven G. Widen
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
- Molecular Genomics Core Facility, University of Texas Medical Branch, Galveston, Texas, USA
| | - David W. C. Beasley
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Institutional Office of Regulated Nonclinical Studies, University of Texas Medical Branch, Galveston, Texas, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
4
|
Mencattelli G, Ndione MHD, Silverj A, Diagne MM, Curini V, Teodori L, Di Domenico M, Mbaye R, Leone A, Marcacci M, Gaye A, Ndiaye E, Diallo D, Ancora M, Secondini B, Di Lollo V, Mangone I, Bucciacchio A, Polci A, Marini G, Rosà R, Segata N, Fall G, Cammà C, Monaco F, Diallo M, Rota-Stabelli O, Faye O, Rizzoli A, Savini G. Spatial and temporal dynamics of West Nile virus between Africa and Europe. Nat Commun 2023; 14:6440. [PMID: 37833275 PMCID: PMC10575862 DOI: 10.1038/s41467-023-42185-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
It is unclear whether West Nile virus (WNV) circulates between Africa and Europe, despite numerous studies supporting an African origin and high transmission in Europe. We integrated genomic data with geographic observations and phylogenetic and phylogeographic inferences to uncover the spatial and temporal viral dynamics of WNV between these two continents. We focused our analysis towards WNV lineages 1 (L1) and 2 (L2), the most spatially widespread and pathogenic WNV lineages. Our study shows a Northern-Western African origin of L1, with back-and-forth exchanges between West Africa and Southern-Western Europe; and a Southern African origin of L2, with one main introduction from South Africa to Europe, and no back introductions observed. We also noticed a potential overlap between L1 and L2 Eastern and Western phylogeography and two Afro-Palearctic bird migratory flyways. Future studies linking avian and mosquito species susceptibility, migratory connectivity patterns, and phylogeographic inference are suggested to elucidate the dynamics of emerging viruses.
Collapse
Affiliation(s)
- Giulia Mencattelli
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, Italy.
- Centre Agriculture Food Environment, University of Trento, San Michele all'Adige, Italy.
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy.
| | | | - Andrea Silverj
- Centre Agriculture Food Environment, University of Trento, San Michele all'Adige, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
- Department CIBIO, University of Trento, Trento, Italy
| | | | - Valentina Curini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, Italy
| | - Liana Teodori
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, Italy
| | - Marco Di Domenico
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, Italy
| | - Rassoul Mbaye
- Virology Department, Institut Pasteur de Dakar, Dakar, Senegal
| | - Alessandra Leone
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, Italy
| | - Maurilia Marcacci
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, Italy
| | - Alioune Gaye
- Medical Zoology Department, Institut Pasteur de Dakar, Dakar, Senegal
| | - ElHadji Ndiaye
- Medical Zoology Department, Institut Pasteur de Dakar, Dakar, Senegal
| | - Diawo Diallo
- Medical Zoology Department, Institut Pasteur de Dakar, Dakar, Senegal
| | - Massimo Ancora
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, Italy
| | - Barbara Secondini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, Italy
| | - Valeria Di Lollo
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, Italy
| | - Iolanda Mangone
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, Italy
| | - Andrea Bucciacchio
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, Italy
| | - Andrea Polci
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, Italy
| | - Giovanni Marini
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Roberto Rosà
- Centre Agriculture Food Environment, University of Trento, San Michele all'Adige, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Nicola Segata
- Department CIBIO, University of Trento, Trento, Italy
| | - Gamou Fall
- Virology Department, Institut Pasteur de Dakar, Dakar, Senegal
| | - Cesare Cammà
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, Italy
| | - Federica Monaco
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, Italy
| | - Mawlouth Diallo
- Medical Zoology Department, Institut Pasteur de Dakar, Dakar, Senegal
| | - Omar Rota-Stabelli
- Centre Agriculture Food Environment, University of Trento, San Michele all'Adige, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
- Department CIBIO, University of Trento, Trento, Italy
| | - Oumar Faye
- Virology Department, Institut Pasteur de Dakar, Dakar, Senegal
| | - Annapaola Rizzoli
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Giovanni Savini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, Italy
| |
Collapse
|
5
|
Fall FK, Diarra AZ, Bouganali C, Sokhna C, Parola P. Using MALDI-TOF MS to Identify Mosquitoes from Senegal and the Origin of Their Blood Meals. INSECTS 2023; 14:785. [PMID: 37887797 PMCID: PMC10607482 DOI: 10.3390/insects14100785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/28/2023]
Abstract
Mosquitoes are arthropods that represent a real public health problem in Africa. Morphology and molecular biology techniques are usually used to identify different mosquito species. In recent years, an innovative tool, matrix-assisted desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), has been used to identify many arthropods quickly and at low cost, where equipment is available. We evaluated the ability of MALDI-TOF MS to identify mosquitoes collected in Senegal and stored for several months in silica gel, and to determine the origin of their blood meal. A total of 582 mosquitoes were collected and analysed. We obtained 329/582 (56.52%) MALDI-TOF MS good-quality spectra from mosquito legs and 123/157 (78.34%) good-quality spectra from engorged abdomens. We updated our home-made MALDI-TOF MS arthropod spectra database by adding 23 spectra of five mosquito species from Senegal that had been identified morphologically and molecularly. These included legs from Anopheles gambiae, Anopheles arabiensis, Anopheles cf. rivulorum, Culex nebulosus, Anopheles funestus, and three spectra from abdomens engorged with human blood. Having updated the database, all mosquitoes tested by MALDI-TOF MS were identified with scores greater than or equal to 1.7 as An. gambiae (n = 64), Anopheles coluzzii (n = 12), An. arabiensis (n = 1), An. funestus (n = 7), An. cf rivulorum (n = 1), Lutzia tigripes (n = 3), Cx. nebulosus (n = 211), Culex quinquefasciatus (n = 2), Culex duttoni (n = 1), Culex perfescus (n = 1), Culex tritaeniorhynchus (n = 1), and Aedes aegypti (n = 2). Blood meal identification by MALDI-TOF MS revealed that mosquitoes had fed on the blood of humans (n = 97), cows (n = 6), dogs (n = 2), goats (n = 1), sheep (n = 1), and bats (n = 1). Mixed meals were also detected. These results confirm that MALDI-TOF MS is a promising technique for identifying mosquitoes and the origin of their blood meal.
Collapse
Affiliation(s)
- Fatou Kiné Fall
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, 13005 Marseille, France; (F.K.F.); (A.Z.D.)
- IHU Méditerranée Infection, VITROME, 19–21 Boulevard Jean Moulin, 13005 Marseille, France;
- VITROME Dakar, Campus International IRD-UCAD Hann, Dakar 1386, Senegal;
| | - Adama Zan Diarra
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, 13005 Marseille, France; (F.K.F.); (A.Z.D.)
- IHU Méditerranée Infection, VITROME, 19–21 Boulevard Jean Moulin, 13005 Marseille, France;
| | - Charles Bouganali
- VITROME Dakar, Campus International IRD-UCAD Hann, Dakar 1386, Senegal;
| | - Cheikh Sokhna
- IHU Méditerranée Infection, VITROME, 19–21 Boulevard Jean Moulin, 13005 Marseille, France;
- VITROME Dakar, Campus International IRD-UCAD Hann, Dakar 1386, Senegal;
| | - Philippe Parola
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, 13005 Marseille, France; (F.K.F.); (A.Z.D.)
- IHU Méditerranée Infection, VITROME, 19–21 Boulevard Jean Moulin, 13005 Marseille, France;
| |
Collapse
|
6
|
Diagne MM, Ndione MHD, Mencattelli G, Diallo A, Ndiaye EH, Di Domenico M, Diallo D, Kane M, Curini V, Top NM, Marcacci M, Mbanne M, Ancora M, Secondini B, Di Lollo V, Teodori L, Leone A, Puglia I, Gaye A, Sall AA, Loucoubar C, Rosà R, Diallo M, Monaco F, Faye O, Cammà C, Rizzoli A, Savini G, Faye O. Novel Amplicon-Based Sequencing Approach to West Nile Virus. Viruses 2023; 15:1261. [PMID: 37376561 DOI: 10.3390/v15061261] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/14/2023] [Accepted: 05/17/2023] [Indexed: 06/29/2023] Open
Abstract
West Nile virus is a re-emerging arbovirus whose impact on public health is increasingly important as more and more epidemics and epizootics occur, particularly in America and Europe, with evidence of active circulation in Africa. Because birds constitute the main reservoirs, migratory movements allow the diffusion of various lineages in the world. It is therefore crucial to properly control the dispersion of these lineages, especially because some have a greater health impact on public health than others. This work describes the development and validation of a novel whole-genome amplicon-based sequencing approach to West Nile virus. This study was carried out on different strains from lineage 1 and 2 from Senegal and Italy. The presented protocol/approach showed good coverage using samples derived from several vertebrate hosts and may be valuable for West Nile genomic surveillance.
Collapse
Affiliation(s)
| | | | - Giulia Mencattelli
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, 64100 Teramo, Italy
- Centre Agriculture Food Environment, University of Trento, 38010 San Michele all'Adige, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all'Adige, Italy
| | - Amadou Diallo
- Epidemiology, Clinical Research and Data Science Department, Institut Pasteur de Dakar, Dakar BP220, Senegal
| | - El Hadji Ndiaye
- Medical Zoology Department, Institut Pasteur de Dakar, Dakar BP220, Senegal
| | - Marco Di Domenico
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, 64100 Teramo, Italy
| | - Diawo Diallo
- Medical Zoology Department, Institut Pasteur de Dakar, Dakar BP220, Senegal
| | - Mouhamed Kane
- Virology Department, Institut Pasteur de Dakar, Dakar BP220, Senegal
| | - Valentina Curini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, 64100 Teramo, Italy
| | - Ndeye Marieme Top
- Epidemiology, Clinical Research and Data Science Department, Institut Pasteur de Dakar, Dakar BP220, Senegal
| | - Maurilia Marcacci
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, 64100 Teramo, Italy
| | - Maïmouna Mbanne
- Virology Department, Institut Pasteur de Dakar, Dakar BP220, Senegal
| | - Massimo Ancora
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, 64100 Teramo, Italy
| | - Barbara Secondini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, 64100 Teramo, Italy
| | - Valeria Di Lollo
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, 64100 Teramo, Italy
| | - Liana Teodori
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, 64100 Teramo, Italy
| | - Alessandra Leone
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, 64100 Teramo, Italy
| | - Ilaria Puglia
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, 64100 Teramo, Italy
| | - Alioune Gaye
- Medical Zoology Department, Institut Pasteur de Dakar, Dakar BP220, Senegal
| | - Amadou Alpha Sall
- Virology Department, Institut Pasteur de Dakar, Dakar BP220, Senegal
| | - Cheikh Loucoubar
- Epidemiology, Clinical Research and Data Science Department, Institut Pasteur de Dakar, Dakar BP220, Senegal
| | - Roberto Rosà
- Centre Agriculture Food Environment, University of Trento, 38010 San Michele all'Adige, Italy
| | - Mawlouth Diallo
- Medical Zoology Department, Institut Pasteur de Dakar, Dakar BP220, Senegal
| | - Federica Monaco
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, 64100 Teramo, Italy
| | - Ousmane Faye
- Virology Department, Institut Pasteur de Dakar, Dakar BP220, Senegal
| | - Cesare Cammà
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, 64100 Teramo, Italy
| | - Annapaola Rizzoli
- Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all'Adige, Italy
| | - Giovanni Savini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, 64100 Teramo, Italy
| | - Oumar Faye
- Virology Department, Institut Pasteur de Dakar, Dakar BP220, Senegal
| |
Collapse
|
7
|
Körsten C, Al-Hosary AA, Holicki CM, Schäfer M, Tews BA, Vasić A, Ziegler U, Groschup MH, Silaghi C. Simultaneous Coinfections with West Nile Virus and Usutu Virus in Culex pipiens and Aedes vexans Mosquitoes. Transbound Emerg Dis 2023. [DOI: 10.1155/2023/6305484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
The mosquito-borne zoonotic flaviviruses West Nile virus (WNV) and Usutu virus (USUV) are endemic in many European countries and emerged in Germany in recent years. Due to the increasing overlap of their distribution areas and their similar epidemiology, coinfections of WNV and USUV are possible. Indeed, coinfections in vertebrate hosts as a rare event have already been reported from some countries including Germany. However, it is largely unknown whether and to what extent coinfections could affect the vector competence of mosquitoes for WNV and USUV. For this purpose, the mosquito species Culex pipiens biotype pipiens, Culex pipiens biotype molestus, and Aedes vexans were orally infected in mono- and simultaneous coinfections with German strains of WNV and USUV. Mosquitoes were incubated for 14 days at 26°C, 85% relative humidity, and a 16 : 8 light-dark photocycle, before they were dissected and forced to salivate. The results showed a decrease in USUV susceptibility in Culex pipiens biotype pipiens, an increase in USUV susceptibility in Aedes vexans, and no obvious interaction between both viruses in Culex pipiens biotype molestus. Vector competence for WNV appeared to be unaffected by a simultaneous occurrence of USUV in all tested mosquito species. Coinfections with both viruses were only found in Culex mosquitoes, and cotransmission of WNV and USUV was observed in Culex pipiens biotype molestus. Overall, our results show that viral interactions between WNV and USUV vary between mosquito species, and that the interaction mainly occurs during infection and replication in the mosquito midgut. The results of this study confirm that to fully understand the interaction between WNV and USUV, studies with various mosquito species are necessary. In addition, we found that even mosquito species with a low susceptibility to both viruses, such as Ae. vexans, can play a role in their transmission in areas with cocirculation.
Collapse
|
8
|
Ndione MHD, Ndiaye EH, Faye M, Diagne MM, Diallo D, Diallo A, Sall AA, Loucoubar C, Faye O, Diallo M, Faye O, Barry MA, Fall G. Re-Introduction of West Nile Virus Lineage 1 in Senegal from Europe and Subsequent Circulation in Human and Mosquito Populations between 2012 and 2021. Viruses 2022; 14:2720. [PMID: 36560724 PMCID: PMC9785585 DOI: 10.3390/v14122720] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
West Nile virus (WNV) is a virus of the Japanese encephalitis antigenic complex and belongs to the family Flaviviridae of the genus flavivirus. The virus can cause infection in humans which in most cases is asymptomatic, however symptomatic cases exist and the disease can be severe causing encephalitis and meningoencephalitis. The virus is maintained in an enzootic cycle involving mosquitoes and birds, humans and other mammals such as horses can be accidental hosts. A mosquito-based arbovirus surveillance system and the sentinel syndromic surveillance network (4S) have been in place since 1988 and 2015 respectively, to better understand the transmission dynamics of arboviruses including WNV in Senegal. Arthropod and human samples have been collected from the field and analysed at Institut Pasteur de Dakar using different methods including RT-PCR, ELISA, plaque reduction neutralization test and viral isolation. RT-PCR positive samples have been analysed by Next Generation Sequencing. From 2012 to 2021, 7912 samples have been analysed and WNV positive cases have been detected, 20 human cases (19 IgM and 1 RT-PCR positive cases) and 41 mosquito pools. Phylogenetic analyzes of the sequences of complete genomes obtained showed the circulation of lineage 1a, with all these recent strains from Senegal identical to each other and very close to strains isolated from horse in France in 2015, Italy and Spain. Our data showed lineage 1a endemicity in Senegal as previously described, with circulation of WNV in humans and mosquitoes. Phylogenetic analyzes carried out with the genome sequences obtained also revealed exchanges of WNV strains between Europe and Senegal which could be possible via migratory birds. The surveillance systems that have enabled the detection of WNV in humans and arthropods should be extended to animals in a one-health approach to better prepare for global health threats.
Collapse
Affiliation(s)
| | - El Hadji Ndiaye
- Zoology Medical Department, Institut Pasteur de Dakar, Dakar 220, Senegal
| | - Martin Faye
- Virology Department, Institut Pasteur de Dakar, Dakar 220, Senegal
| | | | - Diawo Diallo
- Zoology Medical Department, Institut Pasteur de Dakar, Dakar 220, Senegal
| | - Amadou Diallo
- Epidemiology, Clinical Research and Data Science Department, Institut Pasteur de Dakar, Dakar 220, Senegal
| | | | - Cheikh Loucoubar
- Epidemiology, Clinical Research and Data Science Department, Institut Pasteur de Dakar, Dakar 220, Senegal
| | - Oumar Faye
- Virology Department, Institut Pasteur de Dakar, Dakar 220, Senegal
| | - Mawlouth Diallo
- Zoology Medical Department, Institut Pasteur de Dakar, Dakar 220, Senegal
| | - Ousmane Faye
- Virology Department, Institut Pasteur de Dakar, Dakar 220, Senegal
| | - Mamadou Aliou Barry
- Epidemiology, Clinical Research and Data Science Department, Institut Pasteur de Dakar, Dakar 220, Senegal
| | - Gamou Fall
- Virology Department, Institut Pasteur de Dakar, Dakar 220, Senegal
| |
Collapse
|
9
|
Abstract
Purpose of Review West Nile virus (WNV) is an arbovirus transmitted by mosquitos of the genus Culex. Manifestations of WNV infection range from asymptomatic to devastating neuroinvasive disease leading to flaccid paralysis and death. This review examines WNV epidemiology and ecology, with an emphasis on travel-associated infection. Recent Findings WNV is widespread, including North America and Europe, where its range has expanded in the past decade. Rising temperatures in temperate regions are predicted to lead to an increased abundance of Culex mosquitoes and an increase in their ability to transmit WNV. Although the epidemiologic patterns of WNV appear variable, its geographic distribution most certainly will continue to increase. Travelers are at risk for WNV infection and its complications. Literature review identified 39 cases of documented travel-related WNV disease, the majority of which resulted in adverse outcomes, such as neuroinvasive disease, prolonged recovery period, or death. Summary The prediction of WNV risk is challenging due to the complex interactions of vector, pathogen, host, and environment. Travelers planning to visit endemic areas should be advised regarding WNV risk and mosquito bite prevention. Evaluation of ill travelers with compatible symptoms should consider the diagnosis of WNV for those visiting in endemic areas as well as for those returning from destinations with known WNV circulation.
Collapse
|
10
|
Mencattelli G, Ndione MHD, Rosà R, Marini G, Diagne CT, Diagne MM, Fall G, Faye O, Diallo M, Faye O, Savini G, Rizzoli A. Epidemiology of West Nile virus in Africa: An underestimated threat. PLoS Negl Trop Dis 2022; 16:e0010075. [PMID: 35007285 PMCID: PMC8789169 DOI: 10.1371/journal.pntd.0010075] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 01/25/2022] [Accepted: 12/09/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND West Nile virus is a mosquito-borne flavivirus which has been posing continuous challenges to public health worldwide due to the identification of new lineages and clades and its ability to invade and establish in an increasing number of countries. Its current distribution, genetic variability, ecology, and epidemiological pattern in the African continent are only partially known despite the general consensus on the urgency to obtain such information for quantifying the actual disease burden in Africa other than to predict future threats at global scale. METHODOLOGY AND PRINCIPAL FINDINGS References were searched in PubMed and Google Scholar electronic databases on January 21, 2020, using selected keywords, without language and date restriction. Additional manual searches of reference list were carried out. Further references have been later added accordingly to experts' opinion. We included 153 scientific papers published between 1940 and 2021. This review highlights: (i) the co-circulation of WNV-lineages 1, 2, and 8 in the African continent; (ii) the presence of diverse WNV competent vectors in Africa, mainly belonging to the Culex genus; (iii) the lack of vector competence studies for several other mosquito species found naturally infected with WNV in Africa; (iv) the need of more competence studies to be addressed on ticks; (iv) evidence of circulation of WNV among humans, animals and vectors in at least 28 Countries; (v) the lack of knowledge on the epidemiological situation of WNV for 19 Countries and (vii) the importance of carrying out specific serological surveys in order to avoid possible bias on WNV circulation in Africa. CONCLUSIONS This study provides the state of art on WNV investigation carried out in Africa, highlighting several knowledge gaps regarding i) the current WNV distribution and genetic diversity, ii) its ecology and transmission chains including the role of different arthropods and vertebrate species as competent reservoirs, and iii) the real disease burden for humans and animals. This review highlights the needs for further research and coordinated surveillance efforts on WNV in Africa.
Collapse
Affiliation(s)
- Giulia Mencattelli
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Trento, Italy
- Center Agriculture Food Environment, University of Trento, San Michele all'Adige, Trento, Italy
| | | | - Roberto Rosà
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Trento, Italy
- Center Agriculture Food Environment, University of Trento, San Michele all'Adige, Trento, Italy
| | - Giovanni Marini
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Trento, Italy
| | | | | | - Gamou Fall
- Department of Virology, Fondation Institut Pasteur de Dakar, Dakar, Senegal
| | - Ousmane Faye
- Department of Virology, Fondation Institut Pasteur de Dakar, Dakar, Senegal
| | - Mawlouth Diallo
- Department of Zoology, Fondation Institut Pasteur de Dakar, Dakar, Senegal
| | - Oumar Faye
- Department of Virology, Fondation Institut Pasteur de Dakar, Dakar, Senegal
| | - Giovanni Savini
- Department of Public Health, OIE Reference Laboratory for WND, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy
| | - Annapaola Rizzoli
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Trento, Italy
| |
Collapse
|
11
|
Mohammed B, Yayo A, Ajanusi O, Lawal I. Relative abundance and molecular identification of Culex pipiens complex (Diptera: Culicidae), in Kura Local Government Area, North-western Nigeria. Parasite Epidemiol Control 2021; 14:e00213. [PMID: 34027142 PMCID: PMC8131315 DOI: 10.1016/j.parepi.2021.e00213] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/07/2021] [Accepted: 04/28/2021] [Indexed: 11/20/2022] Open
Abstract
Culex species are the most widespread mosquito species across the world and are known to be highly opportunistic, feeding on humans and livestock. They are known to acquire the potential to transmit zoonotic diseases, including Rift Valley Fever (RVF). However, despite their public health significance, they remain understudied in North-western Nigeria, compared to Anophelines. This study was therefore aimed at determining the relative abundance and Multiplex polymerase chain reaction (Multiplex PCR) identification of members of the Culex pipiens complex, in Kura Local Government Area (LGA), North-western, Nigeria. Adult mosquitoes were collected using Center for Disease Control (CDC) miniature light traps from August to October 2019. Mosquitoes were identified using morphological identification keys. Members of the Culex pipiens complex were further identified using Multiplex PCR to assess the presence of sibling species. A total of 413 mosquitoes, belonging to 3 genera, Culex, Anopheles and Aedes were collected. Of this figure, 120 Culex spp. females were collected. Homes with livestock had the highest occurrence of mosquitoes, 123 (61.19%) compared to those without livestock, 78 (38.81%). There was no statistical difference among the two (2) categories of homes (P ≥ 0.005). Culicoides spp. were the most common with 130 collected (65.38%). Again, homes with livestock had the highest occurrence, 85 whilst homes without livestock had 45 of the other flies caught. Multiplex- PCR revealed no expected bands for Cx. quinquefasciatus and Cx. pipiens from the DNA obtained from field collected mosquitoes as confirmed by using genomic DNA of an insectary Culex quinquefasciatus as control. Cx. spp. is presently regarded as a biting nuisance having no significant epidemiological importance. Efforts at its control should be intensified before it is too late. This study provides useful information on the occurrence and multiplex PCR of Culex spp in Kura Local Government Area, North-western Nigeria. These results have implications for the control of Culex spp. mosquito populations and the spread of human, livestock and avian diseases.
Collapse
Affiliation(s)
- B.R. Mohammed
- Department of Veterinary Parasitology and Entomology, Faculty of Veterinary Medicine, University of Abuja, P.M.B. 117, Abuja, Nigeria (Formerly of Abertay University, DD1 1HG, Dundee, UK)
- College of Veterinary Surgeons of Nigeria (CVSN), (Zaria Study Center), Ahmadu Bello University, Zaria, Nigeria
| | - A.M. Yayo
- Centre for Infectious Diseases Research, Bayero University, Kano, Nigeria
- Department of Medical Microbiology/Parasitology, Faculty of Medicine, Bayero University, Kano State, Nigeria
| | - O.J. Ajanusi
- College of Veterinary Surgeons of Nigeria (CVSN), (Zaria Study Center), Ahmadu Bello University, Zaria, Nigeria
| | - I.A. Lawal
- College of Veterinary Surgeons of Nigeria (CVSN), (Zaria Study Center), Ahmadu Bello University, Zaria, Nigeria
| |
Collapse
|
12
|
Saiz JC, Martín-Acebes MA, Blázquez AB, Escribano-Romero E, Poderoso T, Jiménez de Oya N. Pathogenicity and virulence of West Nile virus revisited eight decades after its first isolation. Virulence 2021; 12:1145-1173. [PMID: 33843445 PMCID: PMC8043182 DOI: 10.1080/21505594.2021.1908740] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
West Nile virus (WNV) is a flavivirus which transmission cycle is maintained between mosquitoes and birds, although it occasionally causes sporadic outbreaks in horses and humans that can result in serious diseases and even death. Since its first isolation in Africa in 1937, WNV had been considered a neglected pathogen until its recent spread throughout Europe and the colonization of America, regions where it continues to cause outbreaks with severe neurological consequences in humans and horses. Although our knowledge about the characteristics and consequences of the virus has increased enormously lately, many questions remain to be resolved. Here, we thoroughly update our knowledge of different aspects of the WNV life cycle: virology and molecular classification, host cell interactions, transmission dynamics, host range, epidemiology and surveillance, immune response, clinical presentations, pathogenesis, diagnosis, prophylaxis (antivirals and vaccines), and prevention, and we highlight those aspects that are still unknown and that undoubtedly require further investigation.
Collapse
Affiliation(s)
- Juan-Carlos Saiz
- Department of Biotechnology, National Institute for Agricultural and Food Research and Technology (INIA), Madrid, Spain
| | - Miguel A Martín-Acebes
- Department of Biotechnology, National Institute for Agricultural and Food Research and Technology (INIA), Madrid, Spain
| | - Ana B Blázquez
- Department of Biotechnology, National Institute for Agricultural and Food Research and Technology (INIA), Madrid, Spain
| | - Estela Escribano-Romero
- Department of Biotechnology, National Institute for Agricultural and Food Research and Technology (INIA), Madrid, Spain
| | - Teresa Poderoso
- Molecular Virology Group, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Nereida Jiménez de Oya
- Department of Biotechnology, National Institute for Agricultural and Food Research and Technology (INIA), Madrid, Spain
| |
Collapse
|
13
|
Fall G, Diallo D, Soumaila H, Ndiaye EH, Lagare A, Sadio BD, Ndione MHD, Wiley M, Dia M, Diop M, Ba A, Sidikou F, Ngoy BB, Faye O, Testa J, Loucoubar C, Sall AA, Diallo M, Faye O. First Detection of the West Nile Virus Koutango Lineage in Sandflies in Niger. Pathogens 2021; 10:257. [PMID: 33668365 PMCID: PMC7996184 DOI: 10.3390/pathogens10030257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 11/23/2022] Open
Abstract
West Nile virus (WNV), belonging to the Flaviviridae family, causes a mosquito-borne disease and shows great genetic diversity, with at least eight different lineages. The Koutango lineage of WNV (WN-KOUTV), mostly associated with ticks and rodents in the wild, is exclusively present in Africa and shows evidence of infection in humans and high virulence in mice. In 2016, in a context of Rift Valley fever (RVF) outbreak in Niger, mosquitoes, biting midges and sandflies were collected for arbovirus isolation using cell culture, immunofluorescence and RT-PCR assays. Whole genome sequencing and in vivo replication studies using mice were later conducted on positive samples. The WN-KOUTV strain was detected in a sandfly pool. The sequence analyses and replication studies confirmed that this strain belonged to the WN-KOUTV lineage and caused 100% mortality of mice. Further studies should be done to assess what genetic traits of WN-KOUTV influence this very high virulence in mice. In addition, given the risk of WN-KOUTV to infect humans, the possibility of multiple vectors as well as birds as reservoirs of WNV, to spread the virus beyond Africa, and the increasing threats of flavivirus infections in the world, it is important to understand the potential of WN-KOUTV to emerge.
Collapse
Affiliation(s)
- Gamou Fall
- Pole of Virology, WHO Collaborating Center For Arbovirus and Haemorrhagic Fever Virus, Institut Pasteur, Dakar BP 220, Senegal; (B.D.S.); (M.H.D.N.); (M.D.); (A.B.); (O.F.); (A.A.S.); (O.F.)
| | - Diawo Diallo
- Pole of Zoology, Medical Entomology Unit, Institut Pasteur, Dakar BP 220, Senegal; (D.D.); (E.H.N.); (M.D.)
| | - Hadiza Soumaila
- Programme National de Lutte contre le Paludisme, Ministère de la Santé Publique du Niger, Niamey BP 623, Niger;
- PMI Vector Link Project, Niamey BP 11051, Niger
| | - El Hadji Ndiaye
- Pole of Zoology, Medical Entomology Unit, Institut Pasteur, Dakar BP 220, Senegal; (D.D.); (E.H.N.); (M.D.)
| | - Adamou Lagare
- Centre de Recherche Médicale et Sanitaire, Niamey BP 10887, Niger; (A.L.); (F.S.); (J.T.)
| | - Bacary Djilocalisse Sadio
- Pole of Virology, WHO Collaborating Center For Arbovirus and Haemorrhagic Fever Virus, Institut Pasteur, Dakar BP 220, Senegal; (B.D.S.); (M.H.D.N.); (M.D.); (A.B.); (O.F.); (A.A.S.); (O.F.)
| | - Marie Henriette Dior Ndione
- Pole of Virology, WHO Collaborating Center For Arbovirus and Haemorrhagic Fever Virus, Institut Pasteur, Dakar BP 220, Senegal; (B.D.S.); (M.H.D.N.); (M.D.); (A.B.); (O.F.); (A.A.S.); (O.F.)
| | - Michael Wiley
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702-5011, USA;
- Department of Environmental, Agricultural, and Occupational Health, University of Nebraska, Omaha, NE 68198-4355, USA
| | - Moussa Dia
- Pole of Virology, WHO Collaborating Center For Arbovirus and Haemorrhagic Fever Virus, Institut Pasteur, Dakar BP 220, Senegal; (B.D.S.); (M.H.D.N.); (M.D.); (A.B.); (O.F.); (A.A.S.); (O.F.)
| | - Mamadou Diop
- Biostatistic, Biomathematics and Modelling Group, Institut Pasteur, Dakar BP 220, Senegal; (M.D.); (C.L.)
| | - Arame Ba
- Pole of Virology, WHO Collaborating Center For Arbovirus and Haemorrhagic Fever Virus, Institut Pasteur, Dakar BP 220, Senegal; (B.D.S.); (M.H.D.N.); (M.D.); (A.B.); (O.F.); (A.A.S.); (O.F.)
| | - Fati Sidikou
- Centre de Recherche Médicale et Sanitaire, Niamey BP 10887, Niger; (A.L.); (F.S.); (J.T.)
| | | | - Oumar Faye
- Pole of Virology, WHO Collaborating Center For Arbovirus and Haemorrhagic Fever Virus, Institut Pasteur, Dakar BP 220, Senegal; (B.D.S.); (M.H.D.N.); (M.D.); (A.B.); (O.F.); (A.A.S.); (O.F.)
| | - Jean Testa
- Centre de Recherche Médicale et Sanitaire, Niamey BP 10887, Niger; (A.L.); (F.S.); (J.T.)
| | - Cheikh Loucoubar
- Biostatistic, Biomathematics and Modelling Group, Institut Pasteur, Dakar BP 220, Senegal; (M.D.); (C.L.)
| | - Amadou Alpha Sall
- Pole of Virology, WHO Collaborating Center For Arbovirus and Haemorrhagic Fever Virus, Institut Pasteur, Dakar BP 220, Senegal; (B.D.S.); (M.H.D.N.); (M.D.); (A.B.); (O.F.); (A.A.S.); (O.F.)
| | - Mawlouth Diallo
- Pole of Zoology, Medical Entomology Unit, Institut Pasteur, Dakar BP 220, Senegal; (D.D.); (E.H.N.); (M.D.)
| | - Ousmane Faye
- Pole of Virology, WHO Collaborating Center For Arbovirus and Haemorrhagic Fever Virus, Institut Pasteur, Dakar BP 220, Senegal; (B.D.S.); (M.H.D.N.); (M.D.); (A.B.); (O.F.); (A.A.S.); (O.F.)
| |
Collapse
|
14
|
Autochthonous Transmission of West Nile Virus by a New Vector in Iran, Vector-Host Interaction Modeling and Virulence Gene Determinants. Viruses 2020; 12:v12121449. [PMID: 33339336 PMCID: PMC7766443 DOI: 10.3390/v12121449] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/27/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023] Open
Abstract
Using molecular techniques and bioinformatics tools, we studied the vector-host interactions and the molecular epidemiology of West Nile virus (WNV) in western Iran. Mosquitoes were collected during 2017 and 2018. DNA typing assays were used to study vector-host interactions. Mosquitoes were screened by RT-PCR for the genomes of five virus families. WNV-positive samples were fully sequenced and evolutionary tree and molecular architecture were constructed by Geneious software and SWISS-MODEL workspace, respectively. A total of 5028 mosquito specimens were collected and identified. The most prevalent species was Culex (Cx.) pipiens complex (57.3%). Analysis of the blood-feeding preferences of blood-fed mosquitoes revealed six mammalian and one bird species as hosts. One mosquito pool containing non-blood-fed Cx. theileri and one blood-fed Culex pipiens pipiens (Cpp.) biotype pipiens were positive for WNV. A phylogram indicated that the obtained WNV sequences belonged to lineage 2, subclade 2 g. Several amino acid substitutions suspected as virulence markers were observed in the Iranian WNV strains. The three-dimensional structural homology model of the E-protein identified hot spot domains known to facilitate virus invasion and neurotropism. The recent detection of WNV lineage 2 in mosquitoes from several regions of Iran in consecutive years suggests that the virus is established in the country.
Collapse
|
15
|
Yeo G, Chan S, How CB, Humaidi M, Lim XF, Mailepessov D, Chong CS, Phua-Lam SG, Lee R, Hapuarachchi HC, Ng LC, Yap G. Molecular Analysis of the Bloodmeals of Culex spp. Mosquitoes at Natural Habitats in Singapore to Investigate the Potential Risk of Japanese Encephalitis Virus and West Nile Virus Transmission. Vector Borne Zoonotic Dis 2020; 20:703-714. [PMID: 32931404 DOI: 10.1089/vbz.2019.2576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Japanese encephalitis virus (JEV) and West Nile virus (WNV) are arboviruses primarily transmitted by Culex spp. mosquitoes. Birds are the primary hosts for JEV and WNV. Recent WNV outbreaks in Europe and United States and their association with migratory birds highlight the importance of understanding the feeding host preference of potential vectors for outbreak preparedness, especially in nonendemic settings. Singapore is nonendemic to JEV and WNV, but is a stopover site for migratory birds of the East Asian-Australasian Flyway. Therefore, we elucidated the feeding host range of Culex spp. mosquitoes captured in four natural (bird) habitats in Singapore from January 2011 to December 2012. We characterized feeding host DNA in field-caught mosquitoes using a PCR sequencing-based assay targeting the mitochondrial gene regions. Of 22,648 mosquitoes captured, 21,287 belonged to the Culex vishnui subgroup. The host DNA analysis showed that mosquitoes from the Cx. vishnui subgroup are opportunistic biters, feeding on a range of birds and mammals. Cx. vishnui subgroup, Culex sitiens and Culex bitaeniorhynchus, was primarily ornithophagic, although they fed opportunistically on mammals, including humans. Culex gelidus and Culex quinquefasciatus, in contrast, fed mainly on mammals. The presence of ornitho- and anthropophilic mosquito vectors and susceptible avian and mammalian hosts poses a risk spill-over transmission of JEV and WNV among humans, should these viruses be introduced through migratory birds and establish persistent transmission in resident birds and animal hosts in Singapore.
Collapse
Affiliation(s)
- Gladys Yeo
- Environmental Health Institute, National Environment Agency, Singapore, Singapore
| | - Sharon Chan
- Sungei Buloh Wetlands Reserve, National Parks Board, Singapore, Singapore
| | - Choon Beng How
- Sungei Buloh Wetlands Reserve, National Parks Board, Singapore, Singapore
| | - Mahathir Humaidi
- Environmental Health Institute, National Environment Agency, Singapore, Singapore
| | - Xiao Fang Lim
- Environmental Health Institute, National Environment Agency, Singapore, Singapore
| | - Diyar Mailepessov
- Environmental Health Institute, National Environment Agency, Singapore, Singapore
| | - Chee Seng Chong
- Environmental Health Institute, National Environment Agency, Singapore, Singapore
| | - Sai Gek Phua-Lam
- Environmental Health Institute, National Environment Agency, Singapore, Singapore
| | - Ruth Lee
- Environmental Health Institute, National Environment Agency, Singapore, Singapore
| | | | - Lee Ching Ng
- Environmental Health Institute, National Environment Agency, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Grace Yap
- Environmental Health Institute, National Environment Agency, Singapore, Singapore
| |
Collapse
|
16
|
West Nile Virus: An Update on Pathobiology, Epidemiology, Diagnostics, Control and "One Health" Implications. Pathogens 2020; 9:pathogens9070589. [PMID: 32707644 PMCID: PMC7400489 DOI: 10.3390/pathogens9070589] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/16/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023] Open
Abstract
West Nile virus (WNV) is an important zoonotic flavivirus responsible for mild fever to severe, lethal neuroinvasive disease in humans, horses, birds, and other wildlife species. Since its discovery, WNV has caused multiple human and animal disease outbreaks in all continents, except Antarctica. Infections are associated with economic losses, mainly due to the cost of treatment of infected patients, control programmes, and loss of animals and animal products. The pathogenesis of WNV has been extensively investigated in natural hosts as well as in several animal models, including rodents, lagomorphs, birds, and reptiles. However, most of the proposed pathogenesis hypotheses remain contentious, and much remains to be elucidated. At the same time, the unavailability of specific antiviral treatment or effective and safe vaccines contribute to the perpetuation of the disease and regular occurrence of outbreaks in both endemic and non-endemic areas. Moreover, globalisation and climate change are also important drivers of the emergence and re-emergence of the virus and disease. Here, we give an update of the pathobiology, epidemiology, diagnostics, control, and “One Health” implications of WNV infection and disease.
Collapse
|
17
|
Impact of genetic diversity on biological characteristics of Usutu virus strains in Africa. Virus Res 2019; 273:197753. [PMID: 31521764 DOI: 10.1016/j.virusres.2019.197753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 11/20/2022]
Abstract
Usutu virus (USUV) previously restricted to Africa where it caused mild infections, emerged in 2001 in Europe and caused more severe infections among birds and humans with neurological forms, suggesting an adaptation and increasing virulence. This evolution suggests the need to better understand USUV transmission patterns for assessing risks and to develop control strategies. Phylogenetic analysis conducted in Africa showed low genetic diversity of African USUV strains except for one human and the USUV subtype (USUVsub) strains, which exhibited a deletion in the 3'UTR and nucleotide substitutions throughout the genome. Here we analyzed their viral replication in vitro in mosquito and mammalian cells, and vector competence of Culex quinquefasciatus, compared to a reference strain. Growth kinetics of the different strains showed comparable replication rates however variations in replication and translation efficiency were observed. Vector competence analysis showed that all strains were able to infect Culex quinquefasciatus the main peridomestic Culex species in Africa, with detection of USUV viral genomes and infectious particles. Dissemination and transmission were observed only for USUVsub, but infectious particles were not detected in Culex quinquefasciatus saliva. Our findings suggest that genetic variability can affect USUV in vitro replication in a cell type-dependent manner and in vivo in mosquitoes. In addition, the results show that Culex quinquefasciatus is not competent for the USUV strains analyzed here and also suggest an aborted transmission process for the USUVsub, which requires further investigations.
Collapse
|
18
|
Maharaj PD, Langevin SA, Bolling BG, Andrade CC, Engle XA, Ramey WN, Bosco-Lauth A, Bowen RA, Sanders TA, Huang CYH, Reisen WK, Brault AC. N-linked glycosylation of the West Nile virus envelope protein is not a requisite for avian virulence or vector competence. PLoS Negl Trop Dis 2019; 13:e0007473. [PMID: 31306420 PMCID: PMC6658116 DOI: 10.1371/journal.pntd.0007473] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 07/25/2019] [Accepted: 05/17/2019] [Indexed: 01/27/2023] Open
Abstract
The N-linked glycosylation motif at amino acid position 154-156 of the envelope (E) protein of West Nile virus (WNV) is linked to enhanced murine neuroinvasiveness, avian pathogenicity and vector competence. Naturally occurring isolates with altered E protein glycosylation patterns have been observed in WNV isolates; however, the specific effects of these polymorphisms on avian host pathogenesis and vector competence have not been investigated before. In the present study, amino acid polymorphisms, NYT, NYP, NYF, SYP, SYS, KYS and deletion (A'DEL), were reverse engineered into a parental WNV (NYS) cDNA infectious clone to generate WNV glycosylation mutant viruses. These WNV glycosylation mutant viruses were characterized for in vitro growth, pH-sensitivity, temperature-sensitivity and host competence in American crows (AMCR), house sparrows (HOSP) and Culex quinquefasciatus. The NYS and NYT glycosylated viruses showed higher viral replication, and lower pH and temperature sensitivity than NYP, NYF, SYP, SYS, KYS and A'DEL viruses in vitro. Interestingly, in vivo results demonstrated asymmetric effects in avian and mosquito competence that were independent of the E-protein glycosylation status. In AMCRs and HOSPs, all viruses showed comparable viremias with the exception of NYP and KYS viruses that showed attenuated phenotypes. Only NYP showed reduced vector competence in both Cx. quinquefasciatus and Cx. tarsalis. Glycosylated NYT exhibited similar avian virulence properties as NYS, but resulted in higher mosquito oral infectivity than glycosylated NYS and nonglycosylated, NYP, NYF, SYP and KYS mutants. These data demonstrated that amino acid polymorphisms at E154/156 dictate differential avian host and vector competence phenotypes independent of E-protein glycosylation status.
Collapse
Affiliation(s)
- Payal D. Maharaj
- Division of Vector-Borne Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, United States of America
- Center for Vector-borne Disease Research and Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States of America
| | - Stanley A. Langevin
- Center for Vector-borne Disease Research and Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States of America
| | - Bethany G. Bolling
- Division of Vector-Borne Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, United States of America
| | - Christy C. Andrade
- Center for Vector-borne Disease Research and Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States of America
| | - Xavier A. Engle
- Division of Vector-Borne Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, United States of America
| | - Wanichaya N. Ramey
- Center for Vector-borne Disease Research and Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States of America
| | - Angela Bosco-Lauth
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States of America
| | - Richard A. Bowen
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States of America
| | - Todd A. Sanders
- U.S. Fish and Wildlife Service, Vancouver, WA, United States of America
| | - Claire Y.-H. Huang
- Division of Vector-Borne Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, United States of America
| | - William K. Reisen
- Center for Vector-borne Disease Research and Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States of America
| | - Aaron C. Brault
- Division of Vector-Borne Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, United States of America
- Center for Vector-borne Disease Research and Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States of America
| |
Collapse
|
19
|
Ndiaye EH, Diallo D, Fall G, Ba Y, Faye O, Dia I, Diallo M. Arboviruses isolated from the Barkedji mosquito-based surveillance system, 2012-2013. BMC Infect Dis 2018; 18:642. [PMID: 30541472 PMCID: PMC6292156 DOI: 10.1186/s12879-018-3538-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 11/20/2018] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND A mosquito-based arbovirus surveillance system was set up at Barkedji, Senegal after the first outbreak of Rift valley fever in West Africa in 1988. This system was recently updated using more sampling methods and collecting in greater number of ponds and villages sites. METHODS For the current study, mosquitoes were sampled biweekly between July and December 2012 and 2013 using CDC+CO2 light traps set at ground and canopy level, mosquito nets baited with goat, sheep, human or chicken, light traps baited with goat, sheep and chicken; bird-baited traps using pigeons or chickens placed either at the ground or canopy level. Collected mosquitoes were identified, pooled and screened for arboviruses. RESULTS A total of 42,969 mosquitoes in 4,429 pools were processed for virus isolation. Ten virus species were identified among 103 virus isolates. West Nile virus (WNV; 31 isolates), Barkedji virus (BARV; 18), Sindbis virus (SINV; 13), Usutu virus (USUV; 12), Acado virus (ACAV; 8), Ndumu virus (NDUV; 9), Sanar virus (SANV; 7), Bagaza virus (BAGV; 3), Rift valley fever virus (RVFV; 1), and Yaounde virus (YAOV; 1) were isolated from 9 ponds (91 strains) and 7 villages (12 strains). Only 3 virus species (WNV, NDU and SINV) were isolated from villages. The largest numbers of isolates were collected in October (29.1% of total isolates) and November (50.5%). Viruses were isolated from 14 mosquito species including Cx. neavei (69.9% of the strains), Cx. antennatus (9.7%), and Ma. uniformis (4.8%). NDUV, ACAV, and SINV are herein reported for the first time in the Barkedji area. Isolation of ACAV and SANV from a pool of male Ma. uniformis and USUV and BARV from a pool of male Cx. neavei, are reported for the first time to our knowledge. CONCLUSION Our data indicate that the Barkedji area is characterized by a high diversity of viruses of medical, veterinary and unknown importance. Arboviruses were first detected in July at the beginning of the rainy season and peaked in abundance in October and November. The Barkedji area, an enzootic focus of several potentially emerging arboviruses, should be surveilled annually to be prepared to deal with future disease emergence events.
Collapse
Affiliation(s)
- El Hadji Ndiaye
- Unité d’Entomologie Médicale, Institut Pasteur de Dakar, 36 Avenue Pasteur, BP 220 Dakar, Senegal
| | - Diawo Diallo
- Unité d’Entomologie Médicale, Institut Pasteur de Dakar, 36 Avenue Pasteur, BP 220 Dakar, Senegal
| | - Gamou Fall
- Unité des Arbovirus et Virus de Fièvres Hémorragiques, Institut Pasteur de Dakar, 36 Avenue Pasteur, BP 220 Dakar, Senegal
| | - Yamar Ba
- Unité d’Entomologie Médicale, Institut Pasteur de Dakar, 36 Avenue Pasteur, BP 220 Dakar, Senegal
| | - Ousmane Faye
- Unité des Arbovirus et Virus de Fièvres Hémorragiques, Institut Pasteur de Dakar, 36 Avenue Pasteur, BP 220 Dakar, Senegal
| | - Ibrahima Dia
- Unité d’Entomologie Médicale, Institut Pasteur de Dakar, 36 Avenue Pasteur, BP 220 Dakar, Senegal
| | - Mawlouth Diallo
- Unité d’Entomologie Médicale, Institut Pasteur de Dakar, 36 Avenue Pasteur, BP 220 Dakar, Senegal
| |
Collapse
|
20
|
Tandina F, Doumbo O, Yaro AS, Traoré SF, Parola P, Robert V. Mosquitoes (Diptera: Culicidae) and mosquito-borne diseases in Mali, West Africa. Parasit Vectors 2018; 11:467. [PMID: 30103823 PMCID: PMC6090629 DOI: 10.1186/s13071-018-3045-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 08/01/2018] [Indexed: 11/16/2022] Open
Abstract
Mosquito-borne diseases cause major human diseases in almost every part of the world. In West Africa, and notably in Mali, vector control measures help reduce the impact of mosquito-borne diseases, although malaria remains a threat to both morbidity and mortality. The most recent overview article on mosquitoes in Mali was published in 1961, with a total of 88 species. Our present review focuses on mosquitoes of medical importance among which the Anopheles vectors of Plasmodium and filaria, as well as the Culex and Aedes vectors of arboviruses. It aims to provide a concise update of the literature on Culicidae, covering the ecological areas in which the species are found but also the transmitted pathogens and recent innovative tools for vector surveys. This review highlights the recent introduction of invasive mosquito species, including Aedes albopictus and Culex neavei. The comprehensive list of mosquito species currently recorded includes 106 species (28 species of the Anophelinae and 78 species of the Culicinae). There are probable gaps in our knowledge concerning mosquitoes of the subfamily Culicinae and northern half of Mali because most studies have been carried out on the genus Anopheles and have taken place in the southern part of the country. It is hoped that this review may be useful to decision makers responsible for vector control strategies and to researchers for future surveys on mosquitoes, particularly the vectors of emerging arboviruses.
Collapse
Affiliation(s)
- Fatalmoudou Tandina
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection, Marseille, France
- Department of Epidemiology of Parasitic Diseases, Malaria Research and Training Center, Faculty of Sciences and Techniques, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Ogobara Doumbo
- Department of Epidemiology of Parasitic Diseases, Malaria Research and Training Center, Faculty of Sciences and Techniques, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Alpha Seydou Yaro
- Department of Epidemiology of Parasitic Diseases, Malaria Research and Training Center, Faculty of Sciences and Techniques, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Sékou F. Traoré
- Department of Epidemiology of Parasitic Diseases, Malaria Research and Training Center, Faculty of Sciences and Techniques, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Philippe Parola
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection, Marseille, France
| | - Vincent Robert
- MIVEGEC Unit, IRD-CNRS-Univ. Montpellier, Montpellier, France
| |
Collapse
|
21
|
Full-Genome Characterization and Genetic Evolution of West African Isolates of Bagaza Virus. Viruses 2018; 10:v10040193. [PMID: 29652824 PMCID: PMC5923487 DOI: 10.3390/v10040193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/12/2018] [Accepted: 03/30/2018] [Indexed: 01/26/2023] Open
Abstract
Bagaza virus is a mosquito-borne flavivirus, first isolated in 1966 in Central African Republic. It has currently been identified in mosquito pools collected in the field in West and Central Africa. Emergence in wild birds in Europe and serological evidence in encephalitis patients in India raise questions on its genetic evolution and the diversity of isolates circulating in Africa. To better understand genetic diversity and evolution of Bagaza virus, we describe the full-genome characterization of 11 West African isolates, sampled from 1988 to 2014. Parameters such as genetic distances, N-glycosylation patterns, recombination events, selective pressures, and its codon adaptation to human genes are assessed. Our study is noteworthy for the observation of N-glycosylation and recombination in Bagaza virus and provides insight into its Indian origin from the 13th century. Interestingly, evidence of Bagaza virus codon adaptation to human house-keeping genes is also observed to be higher than those of other flaviviruses well known in human infections. Genetic variations on genome of West African Bagaza virus could play an important role in generating diversity and may promote Bagaza virus adaptation to other vertebrates and become an important threat in human health.
Collapse
|
22
|
Abstract
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been recently described as an innovative and effective tool for identifying arthropods and mosquito blood meal sources. To test this approach in the context of an entomological survey in the field, mosquitoes were collected from five ecologically distinct areas of Mali. We successfully analysed the blood meals from 651 mosquito abdomens crushed on Whatman filter paper (WFPs) in the field using MALDI-TOF MS. The legs of 826 mosquitoes were then submitted for MALDI-TOF MS analysis in order to identify the different mosquito species. Eight mosquito species were identified, including Anopheles gambiae Giles, Anopheles coluzzii, Anopheles arabiensis, Culex quinquefasciatus, Culex neavei, Culex perexiguus, Aedes aegypti and Aedes fowleri in Mali. The field mosquitoes for which MALDI-TOF MS did not provide successful identification were not previously available in our database. These specimens were subsequently molecularly identified. The WFP blood meal sources found in this study were matched against human blood (n = 619), chicken blood (n = 9), cow blood (n = 9), donkey blood (n = 6), dog blood (n = 5) and sheep blood (n = 3). This study reinforces the fact that MALDI-TOF MS is a promising tool for entomological surveys.
Collapse
|
23
|
Does adaptation to vertebrate codon usage relate to flavivirus emergence potential? PLoS One 2018; 13:e0191652. [PMID: 29385205 PMCID: PMC5792106 DOI: 10.1371/journal.pone.0191652] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 01/09/2018] [Indexed: 12/30/2022] Open
Abstract
Codon adaptation index (CAI) is a measure of synonymous codon usage biases given a usage reference. Through mutation, selection, and drift, viruses can optimize their replication efficiency and produce more offspring, which could increase the chance of secondary transmission. To evaluate how higher CAI towards the host has been associated with higher viral titers, we explored temporal trends of several historic and extensively sequenced zoonotic flaviviruses and relationships within the genus itself. To showcase evolutionary and epidemiological relationships associated with silent, adaptive synonymous changes of viruses, we used codon usage tables from human housekeeping and antiviral immune genes, as well as tables from arthropod vectors and vertebrate species involved in the flavivirus maintenance cycle. We argue that temporal trends of CAI changes could lead to a better understanding of zoonotic emergences, evolutionary dynamics, and host adaptation. CAI appears to help illustrate historically relevant trends of well-characterized viruses, in different viral species and genetic diversity within a single species. CAI can be a useful tool together with in vivo and in vitro kinetics, phylodynamics, and additional functional genomics studies to better understand species trafficking and viral emergence in a new host.
Collapse
|
24
|
Fall G, Di Paola N, Faye M, Dia M, Freire CCDM, Loucoubar C, Zanotto PMDA, Faye O, Sall AA. Biological and phylogenetic characteristics of West African lineages of West Nile virus. PLoS Negl Trop Dis 2017; 11:e0006078. [PMID: 29117195 PMCID: PMC5695850 DOI: 10.1371/journal.pntd.0006078] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 11/20/2017] [Accepted: 10/27/2017] [Indexed: 11/19/2022] Open
Abstract
The West Nile virus (WNV), isolated in 1937, is an arbovirus (arthropod-borne virus) that infects thousands of people each year. Despite its burden on global health, little is known about the virus’ biological and evolutionary dynamics. As several lineages are endemic in West Africa, we obtained the complete polyprotein sequence from three isolates from the early 1990s, each representing a different lineage. We then investigated differences in growth behavior and pathogenicity for four distinct West African lineages in arthropod (Ap61) and primate (Vero) cell lines, and in mice. We found that genetic differences, as well as viral-host interactions, could play a role in the biological properties in different WNV isolates in vitro, such as: (i) genome replication, (ii) protein translation, (iii) particle release, and (iv) virulence. Our findings demonstrate the endemic diversity of West African WNV strains and support future investigations into (i) the nature of WNV emergence, (ii) neurological tropism, and (iii) host adaptation. The West Nile virus (WNV) can cause severe neurological diseases including meningitis, encephalitis, and acute flaccid paralysis. Differences in WNV genetics could play a role in the frequency of neurological symptoms from an infection. For the first time, we observed how geographically similar but genetically distinct lineages grow in cellular environments that agree with the transmission chain of West Nile virus—vertebrate-arthropod-vertebrate. We were able to connect our in vitro and in vivo results with relevant epidemiological and molecular data. Our findings highlight the existence of West African lineages with higher virulence and replicative efficiency in vitro and in vivo compared to lineages similar to circulating strains in the United States and Europe. Our investigation of four West African lineages of West Nile virus will help us better understand the biology of the virus and assess future epidemiological threats.
Collapse
Affiliation(s)
- Gamou Fall
- Pôle de Virologie, Unité des Arbovirus et virus des fièvres hémorragiques, Institut Pasteur de Dakar, Dakar, Sénégal
| | - Nicholas Di Paola
- Laboratory of Molecular Evolution and Bioinformatics, Department of Microbiology, Biomedical Sciences Institute, University of Sao Paulo, Sao Paulo, Brazil
| | - Martin Faye
- Pôle de Virologie, Unité des Arbovirus et virus des fièvres hémorragiques, Institut Pasteur de Dakar, Dakar, Sénégal
| | - Moussa Dia
- Pôle de Virologie, Unité des Arbovirus et virus des fièvres hémorragiques, Institut Pasteur de Dakar, Dakar, Sénégal
| | | | - Cheikh Loucoubar
- Groupe à 4 ans de Biostatistiques, Bioinformatique et modélisation, Institut Pasteur de Dakar, Dakar, Sénégal
| | - Paolo Marinho de Andrade Zanotto
- Laboratory of Molecular Evolution and Bioinformatics, Department of Microbiology, Biomedical Sciences Institute, University of Sao Paulo, Sao Paulo, Brazil
- * E-mail:
| | - Ousmane Faye
- Pôle de Virologie, Unité des Arbovirus et virus des fièvres hémorragiques, Institut Pasteur de Dakar, Dakar, Sénégal
| | - Amadou Alpha Sall
- Pôle de Virologie, Unité des Arbovirus et virus des fièvres hémorragiques, Institut Pasteur de Dakar, Dakar, Sénégal
| |
Collapse
|
25
|
RNA Interference Restricts Rift Valley Fever Virus in Multiple Insect Systems. mSphere 2017; 2:mSphere00090-17. [PMID: 28497117 PMCID: PMC5415632 DOI: 10.1128/msphere.00090-17] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 03/31/2017] [Indexed: 01/03/2023] Open
Abstract
The emerging bunyavirus Rift Valley fever virus (RVFV) is transmitted to humans and livestock by a large number of mosquito species. RNA interference (RNAi) has been characterized as an important innate immune defense mechanism used by mosquitoes to limit replication of positive-sense RNA flaviviruses and togaviruses; however, little is known about its role against negative-strand RNA viruses such as RVFV. We show that virus-specific small RNAs are produced in infected mosquito cells, in Drosophila melanogaster cells, and, most importantly, also in RVFV vector mosquitoes. By addressing the production of small RNAs in adult Aedes sp. and Culex quinquefasciatus mosquitoes, we showed the presence of virus-derived Piwi-interacting RNAs (piRNAs) not only in Aedes sp. but also in C. quinquefasciatus mosquitoes, indicating that antiviral RNA interference in C. quinquefasciatus mosquitoes is similar to the described activities of RNAi in Aedes sp. mosquitoes. We also show that these have antiviral activity, since silencing of RNAi pathway effectors enhances viral replication. Moreover, our data suggest that RVFV does not encode a suppressor of RNAi. These findings point toward a significant role of RNAi in the control of RVFV in mosquitoes. IMPORTANCE Rift Valley fever virus (RVFV; Phlebovirus, Bunyaviridae) is an emerging zoonotic mosquito-borne pathogen of high relevance for human and animal health. Successful strategies of intervention in RVFV transmission by its mosquito vectors and the prevention of human and veterinary disease rely on a better understanding of the mechanisms that govern RVFV-vector interactions. Despite its medical importance, little is known about the factors that govern RVFV replication, dissemination, and transmission in the invertebrate host. Here we studied the role of the antiviral RNA interference immune pathways in the defense against RVFV in natural vector mosquitoes and mosquito cells and draw comparisons to the model insect Drosophila melanogaster. We found that RVFV infection induces both the exogenous small interfering RNA (siRNA) and piRNA pathways, which contribute to the control of viral replication in insects. Furthermore, we demonstrate the production of virus-derived piRNAs in Culex quinquefasciatus mosquitoes. Understanding these pathways and the targets within them offers the potential of the development of novel RVFV control measures in vector-based strategies.
Collapse
|
26
|
More S, Bicout D, Bøtner A, Butterworth A, Calistri P, De Koeijer A, Depner K, Edwards S, Garin-Bastuji B, Good M, Gortazar Schmidt C, Michel V, Miranda MA, Nielsen SS, Raj M, Sihvonen L, Spoolder H, Thulke HH, Velarde A, Willeberg P, Winckler C, Bau A, Beltran-Beck B, Carnesecchi E, Casier P, Czwienczek E, Dhollander S, Georgiadis M, Gogin A, Pasinato L, Richardson J, Riolo F, Rossi G, Watts M, Lima E, Stegeman JA. Vector-borne diseases. EFSA J 2017; 15:e04793. [PMID: 32625493 PMCID: PMC7009857 DOI: 10.2903/j.efsa.2017.4793] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
After a request from the European Commission, EFSA's Panel on Animal Health and Welfare summarised the main characteristics of 36 vector-borne diseases (VBDs) in https://efsa.maps.arcgis.com/apps/PublicGallery/index.html?appid=dfbeac92aea944599ed1eb754aa5e6d1. The risk of introduction in the EU through movement of livestock or pets was assessed for each of the 36 VBDs individually, using a semiquantitative Method to INTegrate all relevant RISK aspects (MINTRISK model), which was further modified to a European scale into the http://www3.lei.wur.nl/mintrisk/ModelMgt.aspx. Only eight of the 36 VBD-agents had an overall rate of introduction in the EU (being the combination of the rate of entry, vector transmission and establishment) which was estimated to be above 0.001 introductions per year. These were Crimean-Congo haemorrhagic fever virus, bluetongue virus, West Nile virus, Schmallenberg virus, Hepatozoon canis, Leishmania infantum, Bunyamwera virus and Highlands J. virus. For these eight diseases, the annual extent of spread was assessed, assuming the implementation of available, authorised prevention and control measures in the EU. Further, the probability of overwintering was assessed, as well as the possible impact of the VBDs on public health, animal health and farm production. For the other 28 VBD-agents for which the rate of introduction was estimated to be very low, no further assessments were made. Due to the uncertainty related to some parameters used for the risk assessment or the instable or unpredictability disease situation in some of the source regions, it is recommended to update the assessment when new information becomes available. Since this risk assessment was carried out for large regions in the EU for many VBD-agents, it should be considered as a first screening. If a more detailed risk assessment for a specific VBD is wished for on a national or subnational level, the EFSA-VBD-RISK-model is freely available for this purpose.
Collapse
|
27
|
Pérez-Ramírez E, Llorente F, del Amo J, Fall G, Sall AA, Lubisi A, Lecollinet S, Vázquez A, Jiménez-Clavero MÁ. Pathogenicity evaluation of twelve West Nile virus strains belonging to four lineages from five continents in a mouse model: discrimination between three pathogenicity categories. J Gen Virol 2017; 98:662-670. [DOI: 10.1099/jgv.0.000743] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Elisa Pérez-Ramírez
- Centro de Investigación en Sanidad Animal-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CISA), Carretera Algete-El casar s/n, 28130 Valdeolmos, Madrid, Spain
| | - Francisco Llorente
- Centro de Investigación en Sanidad Animal-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CISA), Carretera Algete-El casar s/n, 28130 Valdeolmos, Madrid, Spain
| | - Javier del Amo
- Centro de Investigación en Sanidad Animal-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CISA), Carretera Algete-El casar s/n, 28130 Valdeolmos, Madrid, Spain
| | - Gamou Fall
- Unité des Arbovirus et Virus de Fièvres Hémorragiques, Institut Pasteur de Dakar, BP220, Senegal
| | - Amadou Alpha Sall
- Unité des Arbovirus et Virus de Fièvres Hémorragiques, Institut Pasteur de Dakar, BP220, Senegal
| | - Alison Lubisi
- ARC-Onderstepoort Veterinary Institute, Onderstepoort, 0110 Pretoria, South Africa
| | - Sylvie Lecollinet
- French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Animal Health Laboratory, UMR1161 Virology, INRA, ANSES, ENVA, Maisons-Alfort 94706, France
| | - Ana Vázquez
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Miguel Ángel Jiménez-Clavero
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Centro de Investigación en Sanidad Animal-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CISA), Carretera Algete-El casar s/n, 28130 Valdeolmos, Madrid, Spain
| |
Collapse
|
28
|
Amraoui F, Atyame-Nten C, Vega-Rúa A, Lourenço-de-Oliveira R, Vazeille M, Failloux AB. Culex mosquitoes are experimentally unable to transmit Zika virus. ACTA ACUST UNITED AC 2017; 21:30333. [PMID: 27605159 PMCID: PMC5015461 DOI: 10.2807/1560-7917.es.2016.21.35.30333] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 09/01/2016] [Indexed: 11/20/2022]
Abstract
We report that two laboratory colonies of Culex quinquefasciatus and Culex pipiens mosquitoes were experimentally unable to transmit ZIKV either up to 21 days post an infectious blood meal or up to 14 days post intrathoracic inoculation. Infectious viral particles were detected in bodies, heads or saliva by a plaque forming unit assay on Vero cells. We therefore consider it unlikely that Culex mosquitoes are involved in the rapid spread of ZIKV.
Collapse
Affiliation(s)
- Fadila Amraoui
- Institut Pasteur, Arboviruses and Insect Vectors, Department of Virology, Paris, France
| | | | | | | | | | | |
Collapse
|
29
|
Fall G, Faye M, Weidmann M, Kaiser M, Dupressoir A, Ndiaye EH, Ba Y, Diallo M, Faye O, Sall AA. Real-Time RT-PCR Assays for Detection and Genotyping of West Nile Virus Lineages Circulating in Africa. Vector Borne Zoonotic Dis 2016; 16:781-789. [PMID: 27710313 DOI: 10.1089/vbz.2016.1967] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
West Nile virus (WNV) is an emerging arbovirus, circulating worldwide between birds and mosquitoes, which impacts human and animal health. Since the mid-1990s, WNV outbreaks have emerged in Europe and America and represent currently the primary cause of encephalitis in the United States. WNV exhibits a great genetic diversity with at least eight different lineages circulating in the world, and four (1, 2, Koutango, and putative new) are present in Africa. These different WNV lineages are not readily differentiated by serology, and thus, rapid molecular tools are required for diagnostic. We developed here real-time RT-PCR assays for detection and genotyping of African WNV lineages. The specificity of the assays was tested using other flaviviruses circulating in Africa. The sensitivity was determined by testing serial 10-fold dilutions of viruses and RNA standards. The assays provided good specificity and sensitivity and the analytical detection limit was 10 copies/reaction. The RT-PCR assays allowed the detection and genotyping of all WNV isolates in culture medium, human serum, and vertebrate tissues, as well as in field and experimental mosquito samples. Comparing the ratios of genome copy number/infectious virion (plaque-forming units), our study finally revealed new insight on the replication of these different WNV lineages in mosquito cells. Our RT-PCR assays are the first ones allowing the genotyping of all WNV African variants, and this may have important applications in surveillance and epidemiology in Africa and also for monitoring of their emergence in Europe and other continents.
Collapse
Affiliation(s)
- Gamou Fall
- 1 Unité des Arbovirus et Virus de Fièvres Hémorragiques, Institut Pasteur de Dakar , Dakar, Senegal
| | - Martin Faye
- 1 Unité des Arbovirus et Virus de Fièvres Hémorragiques, Institut Pasteur de Dakar , Dakar, Senegal
| | - Manfred Weidmann
- 2 Institute of Aquaculture, University of Stirling , Stirling, Scotland
| | | | - Anne Dupressoir
- 1 Unité des Arbovirus et Virus de Fièvres Hémorragiques, Institut Pasteur de Dakar , Dakar, Senegal
| | - El Hadj Ndiaye
- 4 Unité d'Entomologie Médicale, Institut Pasteur de Dakar , Dakar, Senegal
| | - Yamar Ba
- 4 Unité d'Entomologie Médicale, Institut Pasteur de Dakar , Dakar, Senegal
| | - Mawlouth Diallo
- 4 Unité d'Entomologie Médicale, Institut Pasteur de Dakar , Dakar, Senegal
| | - Ousmane Faye
- 1 Unité des Arbovirus et Virus de Fièvres Hémorragiques, Institut Pasteur de Dakar , Dakar, Senegal
| | - Amadou Alpha Sall
- 1 Unité des Arbovirus et Virus de Fièvres Hémorragiques, Institut Pasteur de Dakar , Dakar, Senegal
| |
Collapse
|
30
|
Vázquez A, Herrero L, Negredo A, Hernández L, Sánchez-Seco MP, Tenorio A. Real time PCR assay for detection of all known lineages of West Nile virus. J Virol Methods 2016; 236:266-270. [PMID: 27481597 DOI: 10.1016/j.jviromet.2016.07.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 07/29/2016] [Accepted: 07/29/2016] [Indexed: 11/17/2022]
Abstract
West Nile virus (WNV) is one of the most widespread arbovirus and a large variety of WNV strains and lineages have been described. The molecular methods for the diagnosis of WNV target mainly lineages 1 and 2, which have caused outbreaks in humans, equines and birds. But the last few years new and putative WNV lineages of unknown pathogenicity have been described. Here we describe a new sensitive and specific real-time PCR assay for the detection and quantification of all the WNV lineages described until now. Primers and probe were designed in the 3'-untranslated region (3'-UTR) of the WNV genome and were designed to match all sequenced WNV strains perfectly. The sensitivity of the assay ranged from 1,5 to 15 copies per reaction depending on the WNV lineage tested. The method was validated for WNV diagnosis using different viral strains, human samples (cerebrospinal fluid, biopsies, serum and plasma) and mosquito pools. The assay did not amplify any other phylogenetically or symptomatically related viruses. All of the above make it a very suitable tool for the diagnosis of WNV and for surveillance studies.
Collapse
Affiliation(s)
- Ana Vázquez
- Laboratory of Arboviruses and Imported Viral Diseases, National Centre for Microbiology, Instituto de Salud Carlos III, Ctra. Majadahonda-Pozuelo, km. 2, 28220 Majadahonda, Madrid, Spain.
| | - Laura Herrero
- Laboratory of Arboviruses and Imported Viral Diseases, National Centre for Microbiology, Instituto de Salud Carlos III, Ctra. Majadahonda-Pozuelo, km. 2, 28220 Majadahonda, Madrid, Spain
| | - Anabel Negredo
- Laboratory of Arboviruses and Imported Viral Diseases, National Centre for Microbiology, Instituto de Salud Carlos III, Ctra. Majadahonda-Pozuelo, km. 2, 28220 Majadahonda, Madrid, Spain
| | - Lourdes Hernández
- Laboratory of Arboviruses and Imported Viral Diseases, National Centre for Microbiology, Instituto de Salud Carlos III, Ctra. Majadahonda-Pozuelo, km. 2, 28220 Majadahonda, Madrid, Spain
| | - María Paz Sánchez-Seco
- Laboratory of Arboviruses and Imported Viral Diseases, National Centre for Microbiology, Instituto de Salud Carlos III, Ctra. Majadahonda-Pozuelo, km. 2, 28220 Majadahonda, Madrid, Spain
| | - Antonio Tenorio
- Laboratory of Arboviruses and Imported Viral Diseases, National Centre for Microbiology, Instituto de Salud Carlos III, Ctra. Majadahonda-Pozuelo, km. 2, 28220 Majadahonda, Madrid, Spain
| |
Collapse
|
31
|
Brustolin M, Talavera S, Santamaría C, Rivas R, Pujol N, Aranda C, Marquès E, Valle M, Verdún M, Pagès N, Busquets N. Culex pipiens and Stegomyia albopicta (= Aedes albopictus) populations as vectors for lineage 1 and 2 West Nile virus in Europe. MEDICAL AND VETERINARY ENTOMOLOGY 2016; 30:166-173. [PMID: 26890285 DOI: 10.1111/mve.12164] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 12/01/2015] [Accepted: 12/10/2015] [Indexed: 06/05/2023]
Abstract
The emerging disease West Nile fever is caused by West Nile virus (WNV), one of the most widespread arboviruses. This study represents the first test of the vectorial competence of European Culex pipiens Linnaeus 1758 and Stegomyia albopicta (= Aedes albopictus) (both: Diptera: Culicidae) populations for lineage 1 and 2 WNV isolated in Europe. Culex pipiens and S. albopicta populations were susceptible to WNV infection, had disseminated infection, and were capable of transmitting both WNV lineages. This is the first WNV competence assay to maintain mosquito specimens under environmental conditions mimicking the field (day/night) conditions associated with the period of maximum expected WNV activity. The importance of environmental conditions is discussed and the issue of how previous experiments conducted in fixed high temperatures may have overestimated WNV vector competence results with respect to natural environmental conditions is analysed. The information presented should be useful to policymakers and public health authorities for establishing effective WNV surveillance and vector control programmes. This would improve preparedness to prevent future outbreaks.
Collapse
Affiliation(s)
- M Brustolin
- Centre de Recerca en Sanitat Animal (CReSA), Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - S Talavera
- Centre de Recerca en Sanitat Animal (CReSA), Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - C Santamaría
- Centre de Recerca en Sanitat Animal (CReSA), Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - R Rivas
- Centre de Recerca en Sanitat Animal (CReSA), Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - N Pujol
- Centre de Recerca en Sanitat Animal (CReSA), Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - C Aranda
- Servei de Control de Mosquits, Consell Comarcal del Baix Llobregat, Barcelona, Spain
| | - E Marquès
- Servei de Control de Mosquits de la Badia de Roses i del Baix Ter, Empuriabrava, Spain
| | - M Valle
- Centre de Recerca en Sanitat Animal (CReSA), Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - M Verdún
- Centre de Recerca en Sanitat Animal (CReSA), Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - N Pagès
- Centre de Recerca en Sanitat Animal (CReSA), Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - N Busquets
- Centre de Recerca en Sanitat Animal (CReSA), Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
32
|
Leggewie M, Badusche M, Rudolf M, Jansen S, Börstler J, Krumkamp R, Huber K, Krüger A, Schmidt-Chanasit J, Tannich E, Becker SC. Culex pipiens and Culex torrentium populations from Central Europe are susceptible to West Nile virus infection. One Health 2016; 2:88-94. [PMID: 28616480 PMCID: PMC5462652 DOI: 10.1016/j.onehlt.2016.04.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 04/14/2016] [Accepted: 04/19/2016] [Indexed: 11/18/2022] Open
Abstract
West Nile virus (WNV), a Flavivirus with an avian primary host, is already widespread in Europe and might also pose an infection risk to Germany, should competent mosquito vectors be present. Therefore, we analysed the ability of WNV to infect German Culex mosquitoes with special emphasis on field collected specimens of Culex torrentium and Culex pipiens biotype pipiens. We collected egg rafts of Culex mosquitoes over two subsequent seasons at two geographically distinct sampling areas in Germany and differentiated the samples by molecular methods. Adult females, reared from the various egg rafts, were challenged with WNV by feeding of artificial blood meals. WNV infection was confirmed by real-time RT-PCR and virus titration. The results showed that field collected C. pipiens biotype pipiens and C. torrentium mosquitoes native to Germany are susceptible to WNV infection at 25 °C as well as 18 °C incubation temperature. C. torrentium mosquitoes, which have not been established as WNV vector so far, were the most permissive species tested with maximum infection rates of 96% at 25 °C. Furthermore, a disseminating infection was found in up to 94% of tested C. pipiens biotype pipiens and 100% of C. torrentium. Considering geographical variation of susceptibility, C. pipiens biotype pipiens mosquitoes from Southern Germany were more susceptible to WNV infection than corresponding populations from Northern Germany. All in all, we observed high infection and dissemination rates even at a low average ambient temperature of 18 °C. The high susceptibility of German Culex populations for WNV indicates that an enzootic transmission cycle in Germany could be possible.
Collapse
Affiliation(s)
- Mayke Leggewie
- Molecular Entomology Group, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
| | - Marlis Badusche
- Molecular Entomology Group, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
| | - Martin Rudolf
- Molecular Entomology Group, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
| | - Stephanie Jansen
- Molecular Entomology Group, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
| | - Jessica Börstler
- Arbovirology Group, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
| | - Ralf Krumkamp
- Research Group Infectious Disease Epidemiology, Bernhard-Nocht-Institute for Tropical Medicine, 20359 Hamburg, Germany
- German Centre for Infection Research, partner site Hamburg-Lübeck-Borstel, Hamburg, Germany
| | - Katrin Huber
- Molecular Entomology Group, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
- KABS e.V., Ludwigstrasse 99, 67165 Waldsee, Germany
| | - Andreas Krüger
- Bundeswehr Hospital Hamburg, Department Tropical Medicine, Entomology Group, Bernhard-Nocht-Strasse 74, 20359 Hamburg, Germany
| | - Jonas Schmidt-Chanasit
- Arbovirology Group, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
- German Centre for Infection Research, partner site Hamburg-Lübeck-Borstel, Hamburg, Germany
| | - Egbert Tannich
- German Centre for Infection Research, partner site Hamburg-Lübeck-Borstel, Hamburg, Germany
- Department of Parasitology, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
| | - Stefanie C. Becker
- Molecular Entomology Group, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
- Institute for Parasitology, University of Veterinary Medicine Hannover, 30599 Hannover, Germany
- Corresponding author.
| |
Collapse
|
33
|
Davoust B, Maquart M, Roqueplo C, Gravier P, Sambou M, Mediannikov O, Leparc-Goffart I. Serological Survey of West Nile Virus in Domestic Animals from Northwest Senegal. Vector Borne Zoonotic Dis 2016; 16:359-61. [PMID: 27002305 DOI: 10.1089/vbz.2015.1881] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In Africa, infection with West Nile virus (WNV) is frequent but almost always asymptomatic in humans and equids. The aim of this study was to identify whether any other domestic animal living in the same enzootic locality may be the sentinel of WNV circulation. In northwest Senegal, blood samples were collected from 283 adult domestic animals (136 sheep, 64 horses, 29 donkeys, 29 goats, 14 cattle, and 11 dogs), in three localities near Keur Momar Sarr. Each serum was tested for WNV immunoglobulin G using enzyme-linked immunosorbent assay. The prevalence among donkeys, horses, dogs, goats, cattle, and sheep was 86.2%, 68.7%, 27.3%, 6.9%, 0%, and 0%, respectively. This survey confirms that equids and dogs could be the best sentinel animals for surveillance of WNV. The ruminants do not play a role in WNV epidemiology.
Collapse
Affiliation(s)
- Bernard Davoust
- 1 Research Unit of Emerging Infectious and Tropical Diseases (URMITE) UMR CNRS 7278 IRD 198 INSERM U1095 Aix-Marseille University , Marseille, France
| | - Marianne Maquart
- 2 French National Reference Centre for Arbovirus-Armed Forces Biomedical Research Institute, Marseille , France
| | - Cédric Roqueplo
- 3 Animal Epidemiology Working Group of the Military Health Service , Toulon, France
| | - Patrick Gravier
- 2 French National Reference Centre for Arbovirus-Armed Forces Biomedical Research Institute, Marseille , France
| | - Masse Sambou
- 4 Research Unit of Emerging Infectious and Tropical Diseases (URMITE - IRD 198) , Dakar, Senegal
| | - Oleg Mediannikov
- 4 Research Unit of Emerging Infectious and Tropical Diseases (URMITE - IRD 198) , Dakar, Senegal
| | - Isabelle Leparc-Goffart
- 2 French National Reference Centre for Arbovirus-Armed Forces Biomedical Research Institute, Marseille , France
| |
Collapse
|
34
|
Diagne CT, Diallo D, Faye O, Ba Y, Faye O, Gaye A, Dia I, Faye O, Weaver SC, Sall AA, Diallo M. Potential of selected Senegalese Aedes spp. mosquitoes (Diptera: Culicidae) to transmit Zika virus. BMC Infect Dis 2015; 15:492. [PMID: 26527535 PMCID: PMC4629289 DOI: 10.1186/s12879-015-1231-2] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 10/19/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Zika virus (ZIKV; genus Flavivirus, family Flaviviridae) is an emerging virus of medical importance maintained in a zoonotic cycle between arboreal Aedes spp. mosquitoes and nonhuman primates in African and Asian forests. Serological evidence and virus isolations have demonstrated widespread distribution of the virus in Senegal. Several mosquito species have been found naturally infected by ZIKV but little is known about their vector competence. METHODS We assessed the vector competence of Ae. aegypti from Kedougou and Dakar, Ae. unilineatus, Ae. vittatus and Ae. luteocephalus from Kedougou in Senegal for 6 ZIKV strains using experimental oral infection. Fully engorged female mosquitoes were maintained in an environmental chamber set at 27 ± 1 °C and 80 ± 5% Relative humidity. At day 5, 10 and 15 days post infection (dpi), individual mosquito saliva, legs/wings and bodies were tested for the presence of ZIKV genome using real time RT-PCR to estimate the infection, dissemination, and transmission rates. RESULTS All the species tested were infected by all viral strains but only Ae. vittatus and Ae. luteocephalus were potentially capable of transmitting ZIKV after 15 dpi with 20 and 50% of mosquitoes, respectively, delivering epidemic (HD 78788) and prototype (MR 766) ZIKV strains in saliva. CONCLUSION All the species tested here were susceptible to oral infection of ZIKV but only a low proportion of Ae. vittatus and Ae. luteocephalus had the viral genome in their saliva and thus the potential to transmit the virus. Further investigations are needed on the vector competence of other species associated with ZIKV for better understanding of the ecology and epidemiology of this virus in Senegal.
Collapse
Affiliation(s)
- Cheikh Tidiane Diagne
- Unité d'Entomologie Médicale, Institut Pasteur de Dakar, 36 Avenue Pasteur, BP 220,, Dakar, Senegal.
- Département de Biologie Animale, Laboratoire d'Écologie Vectorielle et Parasitaire, Université Cheikh Anta Diop, Dakar, Senegal.
| | - Diawo Diallo
- Unité d'Entomologie Médicale, Institut Pasteur de Dakar, 36 Avenue Pasteur, BP 220,, Dakar, Senegal.
| | - Oumar Faye
- Unité des Arbovirus et Virus de Fièvres Hémorragiques, Institut Pasteur de Dakar, 36 Avenue Pasteur, BP 220,, Dakar, Senegal.
| | - Yamar Ba
- Unité d'Entomologie Médicale, Institut Pasteur de Dakar, 36 Avenue Pasteur, BP 220,, Dakar, Senegal.
| | - Ousmane Faye
- Unité des Arbovirus et Virus de Fièvres Hémorragiques, Institut Pasteur de Dakar, 36 Avenue Pasteur, BP 220,, Dakar, Senegal.
| | - Alioune Gaye
- Unité d'Entomologie Médicale, Institut Pasteur de Dakar, 36 Avenue Pasteur, BP 220,, Dakar, Senegal.
| | - Ibrahima Dia
- Unité d'Entomologie Médicale, Institut Pasteur de Dakar, 36 Avenue Pasteur, BP 220,, Dakar, Senegal.
| | - Ousmane Faye
- Département de Biologie Animale, Laboratoire d'Écologie Vectorielle et Parasitaire, Université Cheikh Anta Diop, Dakar, Senegal.
| | - Scott C Weaver
- Institute for Human Infections and Immunity, Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, 77555-0610, USA.
- Department of Pathology and Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, 77555-0610, USA.
| | - Amadou Alpha Sall
- Unité des Arbovirus et Virus de Fièvres Hémorragiques, Institut Pasteur de Dakar, 36 Avenue Pasteur, BP 220,, Dakar, Senegal.
| | - Mawlouth Diallo
- Unité d'Entomologie Médicale, Institut Pasteur de Dakar, 36 Avenue Pasteur, BP 220,, Dakar, Senegal.
| |
Collapse
|
35
|
Pachler K, Lebl K, Berer D, Rudolf I, Hubalek Z, Nowotny N. Putative new West Nile virus lineage in Uranotaenia unguiculata mosquitoes, Austria, 2013. Emerg Infect Dis 2015; 20:2119-22. [PMID: 25418009 PMCID: PMC4257835 DOI: 10.3201/eid2012.140921] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
West Nile virus (WNV) is becoming more widespread and markedly effecting public health. We sequenced the complete polyprotein gene of a divergent WNV strain newly detected in a pool of Uranotaenia unguiculata mosquitoes in Austria. Phylogenetic analyses suggest that the new strain constitutes a ninth WNV lineage or a sublineage of WNV lineage 4.
Collapse
|
36
|
Rizzoli A, Jimenez-Clavero MA, Barzon L, Cordioli P, Figuerola J, Koraka P, Martina B, Moreno A, Nowotny N, Pardigon N, Sanders N, Ulbert S, Tenorio A. The challenge of West Nile virus in Europe: knowledge gaps and research priorities. ACTA ACUST UNITED AC 2015; 20. [PMID: 26027485 DOI: 10.2807/1560-7917.es2015.20.20.21135] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
West Nile virus (WNV) is continuously spreading across Europe, and other continents, i.e. North and South America and many other regions of the world. Despite the overall sporadic nature of outbreaks with cases of West Nile neuroinvasive disease (WNND) in Europe, the spillover events have increased and the virus has been introduced into new areas. The high genetic diversity of the virus, with remarkable phenotypic variation, and its endemic circulation in several countries, require an intensification of the integrated and multidisciplinary research efforts built under the 7th Framework Programme of the European Union (FP7). It is important to better clarify several aspects of WNV circulation in Europe, including its ecology, genomic diversity, pathogenicity, transmissibility, diagnosis and control options, under different environmental and socio-economic scenarios. Identifying WNV endemic as well as infection-free areas is becoming a need for the development of human vaccines and therapeutics and the application of blood and organs safety regulations. This review, produced as a joint initiative among European experts and based on analysis of 118 scientific papers published between 2004 and 2014, provides the state of knowledge on WNV and highlights the existing knowledge and research gaps that need to be addressed with high priority in Europe and neighbouring countries.
Collapse
Affiliation(s)
- A Rizzoli
- Fondazione Edmund Mach, Research and Innovation Centre, Department of Biodiversity and Molecular Ecology, San Michele all Adige (TN), Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
The global ecology and epidemiology of West Nile virus. BIOMED RESEARCH INTERNATIONAL 2015; 2015:376230. [PMID: 25866777 PMCID: PMC4383390 DOI: 10.1155/2015/376230] [Citation(s) in RCA: 319] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 08/10/2014] [Indexed: 12/30/2022]
Abstract
Since its initial isolation in Uganda in 1937 through the present, West Nile virus (WNV) has become an important cause of human and animal disease worldwide. WNV, an enveloped virus of the genus Flavivirus, is naturally maintained in an enzootic cycle between birds and mosquitoes, with occasional epizootic spillover causing disease in humans and horses. The mosquito vectors for WNV are widely distributed worldwide, and the known geographic range of WNV transmission and disease has continued to increase over the past 77 years. While most human infections with WNV are asymptomatic, severe neurological disease may develop resulting in long-term sequelae or death. Surveillance and preventive measures are an ongoing need to reduce the public health impact of WNV in areas with the potential for transmission.
Collapse
|
38
|
Barzon L, Pacenti M, Ulbert S, Palù G. Latest developments and challenges in the diagnosis of human West Nile virus infection. Expert Rev Anti Infect Ther 2015; 13:327-42. [PMID: 25641365 DOI: 10.1586/14787210.2015.1007044] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
West Nile virus (WNV) is a mosquito-borne flavivirus responsible for an increasing number of human outbreaks of neuroinvasive disease in Europe and in North America. Notwithstanding the improvements in the knowledge of virus epidemiology and clinical course of infection and the development of new laboratory tests, the diagnosis of WNV infection remains challenging and many cases still remain unrecognized. WNV genome diversity, transient viremia with low viral load and cross-reactivity with other flaviviruses of the antibodies induced by WNV infection are important hurdles that require the diagnosis to be performed by experienced laboratories. Herein, we present and discuss the novel findings on the molecular epidemiology and clinical features of WNV infection in humans with special focus on Europe, the performance of diagnostic tests and the novel methods that have been developed for the diagnosis of WNV infection. A view on how the field might evolve in the future is also presented.
Collapse
Affiliation(s)
- Luisa Barzon
- Department of Molecular Medicine, University of Padova, via A. Gabelli 63, 35121 Padova, Italy
| | | | | | | |
Collapse
|
39
|
de Araújo Lobo JM, Christofferson RC, Mores CN. Investigations of Koutango Virus Infectivity and Dissemination Dynamics in Aedes aegypti Mosquitoes. ENVIRONMENTAL HEALTH INSIGHTS 2014; 8:9-13. [PMID: 25574140 PMCID: PMC4267440 DOI: 10.4137/ehi.s16005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 08/30/2014] [Accepted: 09/02/2014] [Indexed: 06/04/2023]
Abstract
Aedes aegypti has already been implicated in the emergence of dengue and chikungunya viruses in the southern US. Vector competence is the ability of a mosquito species to support transmission of an arbovirus, which is bounded by its ability to support replication and dissemination of the virus through the mosquito body to the salivary glands to be expectorated in the saliva at the time of feeding on a vertebrate host. Here, we investigate the vector competence of A. aegypti for the arbovirus koutango by orally challenging mosquitoes with two titers of virus. We calculated the effective vector competence, a cumulative measure of transmission capability weighted by mosquito survival, and determined that A. aegypti was competent at the higher dose only. We conclude that further investigation is needed to determine the infectiousness of vertebrate hosts to fully assess the emergence potential of this virus in areas rich in A. aegypti.
Collapse
Affiliation(s)
- Jaime M de Araújo Lobo
- Project Coordinator, Agricultural Projects Agroshop, Luanda, Angola
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | | | - Christopher N Mores
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, LA, USA
- Center for Experimental Infectious Disease Research, Louisiana State University, Baton Rouge, LA, USA
| |
Collapse
|
40
|
Di Sabatino D, Bruno R, Sauro F, Danzetta ML, Cito F, Iannetti S, Narcisi V, De Massis F, Calistri P. Epidemiology of West Nile disease in Europe and in the Mediterranean Basin from 2009 to 2013. BIOMED RESEARCH INTERNATIONAL 2014; 2014:907852. [PMID: 25302311 PMCID: PMC4180897 DOI: 10.1155/2014/907852] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 09/02/2014] [Indexed: 01/26/2023]
Abstract
West Nile virus (WNV) transmission has been confirmed in the last four years in Europe and in the Mediterranean Basin. An increasing concern towards West Nile disease (WND) has been observed due to the high number of human and animal cases reported in these areas confirming the importance of this zoonosis. A new epidemiological scenario is currently emerging: although new introductions of the virus from abroad are always possible, confirming the epidemiological role played by migratory birds, the infection endemisation in some European territories today is a reality supported by the constant reoccurrence of the same strains across years in the same geographical areas. Despite the WND reoccurrence in the Old World, the overwintering mechanisms are not well known, and the role of local resident birds or mosquitoes in this context is poorly understood. A recent new epidemiological scenario is the spread of lineage 2 strain across European and Mediterranean countries in regions where lineage 1 strain is still circulating creating favourable conditions for genetic reassortments and emergence of new strains. This paper summarizes the main epidemiological findings on WNV occurrence in Europe and in the Mediterranean Basin from 2009 to 2013, considering potential future spread patterns.
Collapse
Affiliation(s)
- Daria Di Sabatino
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise “G. Caporale,” 64100 Teramo, Italy
| | - Rossana Bruno
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise “G. Caporale,” 64100 Teramo, Italy
| | - Francesca Sauro
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise “G. Caporale,” 64100 Teramo, Italy
| | - Maria Luisa Danzetta
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise “G. Caporale,” 64100 Teramo, Italy
| | - Francesca Cito
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise “G. Caporale,” 64100 Teramo, Italy
| | - Simona Iannetti
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise “G. Caporale,” 64100 Teramo, Italy
| | - Valeria Narcisi
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise “G. Caporale,” 64100 Teramo, Italy
| | - Fabrizio De Massis
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise “G. Caporale,” 64100 Teramo, Italy
| | - Paolo Calistri
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise “G. Caporale,” 64100 Teramo, Italy
| |
Collapse
|
41
|
Ergunay K, Gunay F, Erisoz Kasap O, Oter K, Gargari S, Karaoglu T, Tezcan S, Cabalar M, Yildirim Y, Emekdas G, Alten B, Ozkul A. Serological, molecular and entomological surveillance demonstrates widespread circulation of West Nile virus in Turkey. PLoS Negl Trop Dis 2014; 8:e3028. [PMID: 25058465 PMCID: PMC4109882 DOI: 10.1371/journal.pntd.0003028] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 06/06/2014] [Indexed: 11/22/2022] Open
Abstract
West Nile virus (WNV), a mosquito-borne flavivirus with significant impact on human and animal health, has recently demonstrated an expanded zone of activity globally. The aim of this study is to investigate the frequency and distribution of WNV infections in potential vectors and several mammal and avian species in Turkey, where previous data indicate viral circulation. The study was conducted in 15 provinces across Turkey during 2011–2013. In addition, the entomological study was extended to 4 districts of the Turkish Republic of Northern Cyprus. WNV exposure was determined in humans, horses, sheep and ducks from Mersin, Sanliurfa, Van and Kars provinces of Turkey, via the detection of neutralizing antibodies. WNV RNA was sought in human and equine samples from Mersin, Adana and Mugla provinces. Field-collected mosquitoes from 92 sites at 46 locations were characterized morphologically and evaluated for viral RNA. Neutralizing antibodies were identified in 10.5% of the 1180 samples studied and detected in all species evaluated. Viral nucleic acids were observed in 5.9% of 522 samples but only in horses. A total of 2642 mosquito specimens belonging to 15 species were captured, where Ochlerotatus caspius (52.4%), Culex pipiens sensu lato (24.2%) comprise the most frequent species. WNV RNA was detected in 4 mosquito pools (1.9%), that comprise Oc. caspius Cx. pipiens s.l. and DNA barcoding revealed the presence of Cx. quinquefasciatus and Cx. perexiguus mosquitoes in infected Culex pools. All WNV partial sequences were characterized as lineage 1 clade 1a. These findings indicate a widespread WNV activity in Turkey, in Eastern Thrace and Mediterranean-Aegean regions as well as Southeastern and Northeastern Anatolia. West Nile virus (WNV), frequently transmitted to humans and other susceptible species via bites of infected mosquitoes, is a significant global public health threat. Limited information is available on WNV epidemiology in Turkey, located in the endemic zone of the agent around the Mediterranean Sea. This study was performed to reveal WNV activity in potential hosts and vector mosquitoes, involving 11 provinces in Turkey and the Turkish Republic of Northern Cyprus during 2011–2013. Our findings indicate virus exposure in humans and various animals in previously unexplored regions as well as a high rate of virus circulation in equine blood samples during the mosquito season. Field-captured mosquito specimens demonstrated the presence of major WNV vectors among 15 species identified. WNV infection was detected in 1.9% of the pooled mosquito specimens. Molecular characterization of the individual mosquitoes of the infected pools revealed Culex quinquefasciatus and Cx. perexiguus species, important WNV vectors where Culex quinquefasciatus not previously known to exist in Turkey. Partial viral genome sequences obtained from infected hosts were characterized as lineage 1, the predominant pathogenic WNV strain circulating in Europe as well as the American Continent.
Collapse
Affiliation(s)
- Koray Ergunay
- Faculty of Medicine, Department of Medical Microbiology, Virology Unit, Hacettepe University, Ankara, Turkey
| | - Filiz Gunay
- Faculty of Sciences, Department of Biology, Division of Ecology, Hacettepe University, Ankara, Turkey
| | - Ozge Erisoz Kasap
- Faculty of Sciences, Department of Biology, Division of Ecology, Hacettepe University, Ankara, Turkey
| | - Kerem Oter
- Faculty of Veterinary Medicine, Department of Parasitology, Istanbul University, Istanbul, Turkey
| | - Sepandar Gargari
- Faculty of Veterinary Medicine, Department of Virology, Ankara University, Ankara, Turkey
| | - Taner Karaoglu
- Faculty of Veterinary Medicine, Department of Virology, Ankara University, Ankara, Turkey
| | - Seda Tezcan
- Faculty of Medicine, Department of Medical Microbiology, Mersin University, Mersin, Turkey
| | - Mehmet Cabalar
- Faculty of Veterinary Medicine, Department of Virology, Harran University, Ankara, Turkey
| | - Yakup Yildirim
- Faculty of Veterinary Medicine, Department of Virology, Kafkas University, Ankara, Turkey
| | - Gürol Emekdas
- Faculty of Medicine, Department of Medical Microbiology, Mersin University, Mersin, Turkey
| | - Bulent Alten
- Faculty of Sciences, Department of Biology, Division of Ecology, Hacettepe University, Ankara, Turkey
| | - Aykut Ozkul
- Faculty of Veterinary Medicine, Department of Virology, Ankara University, Ankara, Turkey
- * E-mail:
| |
Collapse
|