1
|
The effect of COVID19 pandemic restrictions on an urban rodent population. Sci Rep 2021; 11:12957. [PMID: 34155237 PMCID: PMC8217515 DOI: 10.1038/s41598-021-92301-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 06/03/2021] [Indexed: 11/08/2022] Open
Abstract
Shortly after the enactment of restrictions aimed at limiting the spread of COVID-19, various local government and public health authorities around the world reported an increased sighting of rats. Such reports have yet to be empirically validated. Here we combined data from multi-catch rodent stations (providing data on rodent captures), rodent bait stations (providing data on rodent activity) and residents' complaints to explore the effects of a six week lockdown period on rodent populations within the City of Sydney, Australia. The sampling interval encompassed October 2019 to July 2020 with lockdown defined as the interval from April 1st to May 15th, 2020. Rodent captures and activity (visits to bait stations) were stable prior to lockdown. Captures showed a rapid increase and then decline during the lockdown, while rodent visits to bait stations declined throughout this period. There were no changes in the frequency of complaints during lockdown relative to before and after lockdown. There was a non-directional change in the geographical distribution of indices of rodent abundance suggesting that rodents redistributed in response to resource scarcity. We hypothesize that lockdown measures initially resulted in increased rodent captures due to sudden shortage of human-derived food resources. Rodent visits to bait stations might not show this pattern due to the nature of the binary data collected, namely the presence or absence of a visit. Relocation of bait stations driven by pest management goals may also have affected the detection of any directional spatial effect. We conclude that the onset of COVID-19 may have disrupted commensal rodent populations, with possible implications for the future management of these ubiquitous urban indicator species.
Collapse
|
2
|
Peterson AC, Ghersi BM, Riegel C, Wunder EA, Childs JE, Blum MJ. Amplification of pathogenic Leptospira infection with greater abundance and co-occurrence of rodent hosts across a counter-urbanizing landscape. Mol Ecol 2020; 30:2145-2161. [PMID: 33107122 DOI: 10.1111/mec.15710] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 10/12/2020] [Accepted: 10/15/2020] [Indexed: 01/20/2023]
Abstract
Land use change can elevate disease risk by creating conditions beneficial to species that carry zoonotic pathogens. Observations of concordant global trends in increased pathogen prevalence or disease incidence and landscape change have generated concerns that urbanization could increase transmission risk of some pathogens. Yet host-pathogen relationships underlying transmission risk have not been well characterized within cities, even where contact between humans and species capable of transmitting pathogens of concern occurs. We addressed this deficit by testing the hypothesis that areas in cities experiencing greater population loss and infrastructure decline (i.e., counter-urbanization) can support a greater diversity of host species and a larger and more diverse pool of pathogens. We did so by characterizing pathogenic Leptospira infection relative to rodent host richness and abundance across a mosaic of abandonment in post-Katrina New Orleans (Louisiana, USA). We found that Leptospira infection loads were highest in areas that harboured increased rodent species richness (which ranged from one to four rodent species detected). Areas with greater host co-occurrence also harboured a greater abundance of hosts, including the host species most likely to carry high infection loads, indicating that Leptospira infection can be amplified by increases in overall and relative host abundance. Evidence of shared infection among rodent host species indicates that cross-species transmission of Leptospira probably increases infection at sites with greater host richness. Additionally, evidence that rodent co-occurrence and abundance and Leptospira infection load parallel abandonment suggests that counter-urbanization can elevate zoonotic disease risk within cities, particularly in underserved communities that are burdened with disproportionate concentrations of derelict properties.
Collapse
Affiliation(s)
- Anna C Peterson
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, USA
| | - Bruno M Ghersi
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, USA
| | - Claudia Riegel
- City of New Orleans Mosquito, Termite, Rodent Control Board, New Orleans, LA, USA
| | - Elsio A Wunder
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA.,Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Brazilian Ministry of Health, Salvador, Brazil
| | - James E Childs
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Michael J Blum
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
3
|
Medical Management and Diagnostic Approaches. THE LABORATORY RAT 2020. [PMCID: PMC7153319 DOI: 10.1016/b978-0-12-814338-4.00011-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This chapter reviews the basic principles of medical management of rat colonies and diagnostic approaches to detect infectious diseases of rats. As is the case with all other species, rats are susceptible to a variety of injuries and diseases that can cause distress, morbidity, or mortality. Any facility that houses rats must develop monitoring programs designed to rapidly identify health-related problems so they can be communicated to appropriate veterinary or animal care personnel to be resolved. These programs generally consist of multiple components, some of which are directed toward individual animals and others that assess the health status of rat populations as a whole. Topics include individual animal monitoring and care, signs of illness and distress, colony health management, components of microbiological monitoring programs, including agents commonly targeted and sentinel programs, quarantine, biological material screening, diagnostic testing methodologies, including culture, serology, molecular diagnostic and histopathology, test profiles and interpretation, management of disease outbreaks, and treatment and prevention strategies for infectious agents.
Collapse
|
4
|
Wild Rats, Laboratory Rats, Pet Rats: Global Seoul Hantavirus Disease Revisited. Viruses 2019; 11:v11070652. [PMID: 31319534 PMCID: PMC6669632 DOI: 10.3390/v11070652] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/28/2019] [Accepted: 06/28/2019] [Indexed: 12/16/2022] Open
Abstract
Recent reports from Europe and the USA described Seoul orthohantavirus infection in pet rats and their breeders/owners, suggesting the potential emergence of a “new” public health problem. Wild and laboratory rat-induced Seoul infections have, however, been described since the early eighties, due to the omnipresence of the rodent reservoir, the brown rat Rattus norvegicus. Recent studies showed no fundamental differences between the pathogenicity and phylogeny of pet rat-induced Seoul orthohantaviruses and their formerly described wild or laboratory rat counterparts. The paucity of diagnosed Seoul virus-induced disease in the West is in striking contrast to the thousands of cases recorded since the 1980s in the Far East, particularly in China. This review of four continents (Asia, Europe, America, and Africa) puts this “emerging infection” into a historical perspective, concluding there is an urgent need for greater medical awareness of Seoul virus-induced human pathology in many parts of the world. Given the mostly milder and atypical clinical presentation, sometimes even with preserved normal kidney function, the importance of simple but repeated urine examination is stressed, since initial but transient proteinuria and microhematuria are rarely lacking.
Collapse
|
5
|
Milholland MT, Castro-Arellano I, Suzán G, Garcia-Peña GE, Lee TE, Rohde RE, Alonso Aguirre A, Mills JN. Global Diversity and Distribution of Hantaviruses and Their Hosts. ECOHEALTH 2018; 15:163-208. [PMID: 29713899 DOI: 10.1007/s10393-017-1305-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 11/13/2017] [Accepted: 11/24/2017] [Indexed: 06/08/2023]
Abstract
Rodents represent 42% of the world's mammalian biodiversity encompassing 2,277 species populating every continent (except Antarctica) and are reservoir hosts for a wide diversity of disease agents. Thus, knowing the identity, diversity, host-pathogen relationships, and geographic distribution of rodent-borne zoonotic pathogens, is essential for predicting and mitigating zoonotic disease outbreaks. Hantaviruses are hosted by numerous rodent reservoirs. However, the diversity of rodents harboring hantaviruses is likely unknown because research is biased toward specific reservoir hosts and viruses. An up-to-date, systematic review covering all known rodent hosts is lacking. Herein, we document gaps in our knowledge of the diversity and distribution of rodent species that host hantaviruses. Of the currently recognized 681 cricetid, 730 murid, 61 nesomyid, and 278 sciurid species, we determined that 11.3, 2.1, 1.6, and 1.1%, respectively, have known associations with hantaviruses. The diversity of hantaviruses hosted by rodents and their distribution among host species supports a reassessment of the paradigm that each virus is associated with a single-host species. We examine these host-virus associations on a global taxonomic and geographical scale with emphasis on the rodent host diversity and distribution. Previous reviews have been centered on the viruses and not the mammalian hosts. Thus, we provide a perspective not previously addressed.
Collapse
Affiliation(s)
- Matthew T Milholland
- Department of Biology, Texas State University, 601 University Drive, San Marcos, TX, 78666, USA
| | - Iván Castro-Arellano
- Department of Biology, Texas State University, 601 University Drive, San Marcos, TX, 78666, USA.
| | - Gerardo Suzán
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, 04510, México City, Mexico
| | - Gabriel E Garcia-Peña
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, 04510, México City, Mexico
- Centro de Ciencias de la Complejidad C3, Universidad Nacional Autónoma de México, 04510, México City, Mexico
- UMR MIVEGEC, Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle, UMR 5290, CNRS-IRD-Université de Montpellier, Centre de Recherche IRD, Montpellier Cedex 5, France
| | - Thomas E Lee
- Department of Biology, Abilene Christian University, ACU Box 27868, Abilene, TX, 79699, USA
| | - Rodney E Rohde
- College of Health Professions, Clinical Laboratory Science Program, Texas State University, 601 University Drive, San Marcos, TX, 78666, USA
| | - A Alonso Aguirre
- Department of Environmental Science and Policy, George Mason University, Fairfax, VA, 22030, USA
| | - James N Mills
- Population Biology, Ecology, and Evolution Program, Emory University, Atlanta, GA, 30322, USA
| |
Collapse
|
6
|
Peterson AC, Ghersi BM, Alda F, Firth C, Frye MJ, Bai Y, Osikowicz LM, Riegel C, Lipkin WI, Kosoy MY, Blum MJ. Rodent-Borne Bartonella Infection Varies According to Host Species Within and Among Cities. ECOHEALTH 2017; 14:771-782. [PMID: 29164472 DOI: 10.1007/s10393-017-1291-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 10/04/2017] [Accepted: 10/19/2017] [Indexed: 06/07/2023]
Abstract
It is becoming increasingly likely that rodents will drive future disease epidemics with the continued expansion of cities worldwide. Though transmission risk is a growing concern, relatively little is known about pathogens carried by urban rats. Here, we assess whether the diversity and prevalence of Bartonella bacteria differ according to the (co)occurrence of rat hosts across New Orleans, LA (NO), where both Norway (Rattus norvegicus) and roof rats (Rattus rattus) are found, relative to New York City (NYC) which only harbors Norway rats. We detected human pathogenic Bartonella species in both NYC and New Orleans rodents. We found that Norway rats in New Orleans harbored a more diverse assemblage of Bartonella than Norway rats in NYC and that Norway rats harbored a more diverse and distinct assemblage of Bartonella compared to roof rats in New Orleans. Additionally, Norway rats were more likely to be infected with Bartonella than roof rats in New Orleans. Flea infestation appears to be an important predictor of Bartonella infection in Norway rats across both cities. These findings illustrate that pathogen infections can be heterogeneous in urban rodents and indicate that further study of host species interactions could clarify variation in spillover risk across cities.
Collapse
Affiliation(s)
- Anna C Peterson
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA, USA.
| | - Bruno M Ghersi
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA, USA
| | - Fernando Alda
- Museum of Natural Science, Louisiana State University, Baton Rouge, LA, USA
| | - Cadhla Firth
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - Matthew J Frye
- New York State IPM Program, Cornell University, Geneva, NY, USA
| | - Ying Bai
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
| | - Lynn M Osikowicz
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
| | - Claudia Riegel
- City of New Orleans Mosquito, Termite and Rodent Control Board, New Orleans, LA, USA
| | - W Ian Lipkin
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Michael Y Kosoy
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
| | - Michael J Blum
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA, USA
- Bywater Institute, Tulane University, New Orleans, LA, USA
| |
Collapse
|
7
|
Murray KO, Fischer RSB, Chavarria D, Duttmann C, Garcia MN, Gorchakov R, Hotez PJ, Jiron W, Leibler JH, Lopez JE, Mandayam S, Marin A, Sheleby J. Mesoamerican nephropathy: a neglected tropical disease with an infectious etiology? Microbes Infect 2015; 17:671-5. [PMID: 26320026 DOI: 10.1016/j.micinf.2015.08.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 08/20/2015] [Indexed: 01/05/2023]
Abstract
An outbreak of unexplained and severe kidney disease, "Mesoamerican Nephropathy," in mostly young, male sugar cane workers emerged in Central America in the late 1990's. As a result, an estimated 20,000 individuals have died, to date. Unfortunately, and with great consequence to human life, the etiology of the outbreak has yet to be identified. The sugarcane fields in Chichigalpa, Chinandega, Nicaragua, have been involved in the outbreak, and during our initial investigation, we interviewed case patients who experienced fever, nausea and vomiting, arthralgia, myalgia, headache, neck and back pain, weakness, and paresthesia at the onset of acute kidney disease. We also observed a heavy infestation of rodents, particularly of Sigmodon species, in the sugarcane fields. We hypothesize that infectious pathogens are being shed through the urine and feces of these rodents, and workers are exposed to these pathogens during the process of cultivating and harvesting sugarcane. In this paper, we will discuss the epidemic in the Chichigalpa area, potential pathogens responsible for Mesoamerican Nephropathy, and steps needed in order to diagnose, treat, and prevent future cases from occurring.
Collapse
Affiliation(s)
- Kristy O Murray
- Baylor College of Medicine and Texas Children's Hospital, Section of Pediatric Tropical Medicine, Houston, TX, USA.
| | - Rebecca S B Fischer
- Baylor College of Medicine and Texas Children's Hospital, Section of Pediatric Tropical Medicine, Houston, TX, USA
| | | | - Christiane Duttmann
- Universidad Nacional Autonoma de Nicaragua, León, (UNAN León), College of Veterinary Medicine, León, Nicaragua
| | - Melissa N Garcia
- Baylor College of Medicine and Texas Children's Hospital, Section of Pediatric Tropical Medicine, Houston, TX, USA
| | - Rodion Gorchakov
- Baylor College of Medicine and Texas Children's Hospital, Section of Pediatric Tropical Medicine, Houston, TX, USA
| | - Peter J Hotez
- Baylor College of Medicine and Texas Children's Hospital, Section of Pediatric Tropical Medicine, Houston, TX, USA
| | - William Jiron
- Universidad Nacional Autonoma de Nicaragua, León, (UNAN León), College of Veterinary Medicine, León, Nicaragua
| | | | - Job E Lopez
- Baylor College of Medicine and Texas Children's Hospital, Section of Pediatric Tropical Medicine, Houston, TX, USA
| | - Sreedhar Mandayam
- Baylor College of Medicine, Department of Medicine, Houston, TX, USA
| | | | - Jessica Sheleby
- Universidad Nacional Autonoma de Nicaragua León (UNAN León), College of Veterinary Medicine, León, Nicaragua
| |
Collapse
|
8
|
Animal Models for the Study of Rodent-Borne Hemorrhagic Fever Viruses: Arenaviruses and Hantaviruses. BIOMED RESEARCH INTERNATIONAL 2015; 2015:793257. [PMID: 26266264 PMCID: PMC4523679 DOI: 10.1155/2015/793257] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 06/14/2015] [Indexed: 11/20/2022]
Abstract
Human pathogenic hantaviruses and arenaviruses are maintained in nature by persistent infection of rodent carrier populations. Several members of these virus groups can cause significant disease in humans that is generically termed viral hemorrhagic fever (HF) and is characterized as a febrile illness with an increased propensity to cause acute inflammation. Human interaction with rodent carrier populations leads to infection. Arenaviruses are also viewed as potential biological weapons threat agents. There is an increased interest in studying these viruses in animal models to gain a deeper understating not only of viral pathogenesis, but also for the evaluation of medical countermeasures (MCM) to mitigate disease threats. In this review, we examine current knowledge regarding animal models employed in the study of these viruses. We include analysis of infection models in natural reservoirs and also discuss the impact of strain heterogeneity on the susceptibility of animals to infection. This information should provide a comprehensive reference for those interested in the study of arenaviruses and hantaviruses not only for MCM development but also in the study of viral pathogenesis and the biology of these viruses in their natural reservoirs.
Collapse
|