1
|
Elmardi KA, Adam I, Malik EM, Kafy HT, Abdin MS, Kleinschmidt I, Kremers S, Gubbels JS. Impact of malaria control interventions on malaria infection and anaemia in low malaria transmission settings: a cross-sectional population-based study in Sudan. BMC Infect Dis 2022; 22:927. [PMID: 36496398 PMCID: PMC9737986 DOI: 10.1186/s12879-022-07926-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The past two decades were associated with innovation and strengthening of malaria control interventions, which have been increasingly adopted at large scale. Impact evaluations of these interventions were mostly performed in moderate or high malaria transmission areas. This study aimed to evaluate the use and performance of malaria interventions in low transmission areas on malaria infections and anaemia. METHODS Data from the 2016 Sudan malaria indicator survey was used. Multi-level logistic regression analysis was used to assess the strength of association between real-life community-level utilization of malaria interventions [diagnosis, artemisinin-based combination therapies (ACTs) and long-lasting insecticidal nets (LLINs)] and the study outcomes: malaria infections and anaemia (both overall and moderate-to-severe anaemia). RESULTS The study analysis involved 26,469 individuals over 242 clusters. Malaria infection rate was 7.6%, overall anaemia prevalence was 47.5% and moderate-to-severe anaemia prevalence was 4.5%. The average community-level utilization was 31.5% for malaria diagnosis, 29.9% for ACTs and 35.7% for LLINs. The odds of malaria infection was significantly reduced by 14% for each 10% increase in the utilization of malaria diagnosis (adjusted odds ratio (aOR) per 10% utilization 0.86, 95% CI 0.78-0.95, p = 0.004). However, the odds of infection was positively associated with the utilization of LLINs at community-level (aOR per 10% utilization 1.20, 95% CI 1.11-1.29, p < 0.001). No association between malaria infection and utilization of ACTs was identified (aOR per 10% utilization 0.97, 95% CI 0.91-1.04, p = 0.413). None of the interventions was associated with overall anaemia nor moderate-to-severe anaemia. CONCLUSION There was strong evidence that utilization of malaria diagnosis at the community level was highly protective against malaria infection. No protective effect was seen for community utilization of ACTs or LLINs. No association was established between any of the interventions and overall anaemia or moderate-to-severe anaemia. This lack of effectiveness could be due to the low utilization of interventions or the low level of malaria transmission in the study area. Identification and response to barriers of access and low utilization of malaria interventions are crucial. It is crucial to ensure that every suspected malaria case is tested in a timely way, notably in low transmission settings.
Collapse
Affiliation(s)
- Khalid Abdelmutalab Elmardi
- grid.414827.cHealth Information, Monitoring and Evaluation and Evidence Department, Federal Ministry of Health, Khartoum, Sudan ,grid.5012.60000 0001 0481 6099Department of Health Promotion, Faculty of Health, Medicine and Life Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht, The Netherlands
| | - Ishag Adam
- grid.412602.30000 0000 9421 8094Department of Obstetrics and Gynecology, Unaizah College of Medicine and Medical Sciences, Qassim University, Unaizah, Saudi Arabia
| | - Elfatih Mohamed Malik
- grid.9763.b0000 0001 0674 6207Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Hmooda Toto Kafy
- grid.414827.cDirectorate General of Primary Health Care, Federal Ministry of Health, Khartoum, Sudan
| | - Mogahid Sheikheldien Abdin
- grid.414827.cHealth Information, Monitoring and Evaluation and Evidence Department, Federal Ministry of Health, Khartoum, Sudan
| | - Immo Kleinschmidt
- grid.8991.90000 0004 0425 469XMRC International Statistics and Epidemiology Group, Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK ,grid.11951.3d0000 0004 1937 1135Faculty of Health Sciences, School of Pathology, Wits Research Institute for Malaria, University of the Witwatersrand, Johannesburg, South Africa ,Southern African Development Community Malaria Elimination Eight Secretariat, Windhoek, Namibia
| | - Stef Kremers
- grid.5012.60000 0001 0481 6099Department of Health Promotion, Faculty of Health, Medicine and Life Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht, The Netherlands
| | - Jessica Sophia Gubbels
- grid.5012.60000 0001 0481 6099Department of Health Promotion, Faculty of Health, Medicine and Life Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht, The Netherlands
| |
Collapse
|
2
|
Masserey T, Lee T, Golumbeanu M, Shattock AJ, Kelly SL, Hastings IM, Penny MA. The influence of biological, epidemiological, and treatment factors on the establishment and spread of drug-resistant Plasmodium falciparum. eLife 2022; 11:e77634. [PMID: 35796430 PMCID: PMC9262398 DOI: 10.7554/elife.77634] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
The effectiveness of artemisinin-based combination therapies (ACTs) to treat Plasmodium falciparum malaria is threatened by resistance. The complex interplay between sources of selective pressure-treatment properties, biological factors, transmission intensity, and access to treatment-obscures understanding how, when, and why resistance establishes and spreads across different locations. We developed a disease modelling approach with emulator-based global sensitivity analysis to systematically quantify which of these factors drive establishment and spread of drug resistance. Drug resistance was more likely to evolve in low transmission settings due to the lower levels of (i) immunity and (ii) within-host competition between genotypes. Spread of parasites resistant to artemisinin partner drugs depended on the period of low drug concentration (known as the selection window). Spread of partial artemisinin resistance was slowed with prolonged parasite exposure to artemisinin derivatives and accelerated when the parasite was also resistant to the partner drug. Thus, to slow the spread of partial artemisinin resistance, molecular surveillance should be supported to detect resistance to partner drugs and to change ACTs accordingly. Furthermore, implementing more sustainable artemisinin-based therapies will require extending parasite exposure to artemisinin derivatives, and mitigating the selection windows of partner drugs, which could be achieved by including an additional long-acting drug.
Collapse
Affiliation(s)
- Thiery Masserey
- Swiss Tropical and Public Health InstituteAllschwilSwitzerland
- University of BaselBaselSwitzerland
| | - Tamsin Lee
- Swiss Tropical and Public Health InstituteAllschwilSwitzerland
- University of BaselBaselSwitzerland
| | - Monica Golumbeanu
- Swiss Tropical and Public Health InstituteAllschwilSwitzerland
- University of BaselBaselSwitzerland
| | - Andrew J Shattock
- Swiss Tropical and Public Health InstituteAllschwilSwitzerland
- University of BaselBaselSwitzerland
| | - Sherrie L Kelly
- Swiss Tropical and Public Health InstituteAllschwilSwitzerland
- University of BaselBaselSwitzerland
| | - Ian M Hastings
- Liverpool School of Tropical MedicineLiverpoolUnited Kingdom
| | - Melissa A Penny
- Swiss Tropical and Public Health InstituteAllschwilSwitzerland
- University of BaselBaselSwitzerland
| |
Collapse
|
3
|
Runge M, Thawer SG, Molteni F, Chacky F, Mkude S, Mandike R, Snow RW, Lengeler C, Mohamed A, Pothin E. Sub-national tailoring of malaria interventions in Mainland Tanzania: simulation of the impact of strata-specific intervention combinations using modelling. Malar J 2022; 21:92. [PMID: 35300707 PMCID: PMC8929286 DOI: 10.1186/s12936-022-04099-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/23/2022] [Indexed: 11/21/2022] Open
Abstract
Background To accelerate progress against malaria in high burden countries, a strategic reorientation of resources at the sub-national level is needed. This paper describes how mathematical modelling was used in mainland Tanzania to support the strategic revision that followed the mid-term review of the 2015–2020 national malaria strategic plan (NMSP) and the epidemiological risk stratification at the council level in 2018. Methods Intervention mixes, selected by the National Malaria Control Programme, were simulated for each malaria risk strata per council. Intervention mixes included combinations of insecticide-treated bed nets (ITN), indoor residual spraying, larval source management, and intermittent preventive therapies for school children (IPTsc). Effective case management was either based on estimates from the malaria indicator survey in 2016 or set to a hypothetical target of 85%. A previously calibrated mathematical model in OpenMalaria was used to compare intervention impact predictions for prevalence and incidence between 2016 and 2020, or 2022. Results For each malaria risk stratum four to ten intervention mixes were explored. In the low-risk and urban strata, the scenario without a ITN mass campaign in 2019, predicted high increase in prevalence by 2020 and 2022, while in the very-low strata the target prevalence of less than 1% was maintained at low pre-intervention transmission intensity and high case management. In the moderate and high strata, IPTsc in addition to existing vector control was predicted to reduce the incidence by an additional 15% and prevalence by 22%. In the high-risk strata, all interventions together reached a maximum reduction of 76%, with around 70% of that reduction attributable to high case management and ITNs. Overall, the simulated revised NMSP was predicted to achieve a slightly lower prevalence in 2020 compared to the 2015–2020 NMSP (5.3% vs 6.3%). Conclusion Modelling supported the choice of intervention per malaria risk strata by providing impact comparisons of various alternative intervention mixes to address specific questions relevant to the country. The use of a council-calibrated model, that reproduces local malaria trends, represents a useful tool for compiling available evidence into a single analytical platform, that complement other evidence, to aid national programmes with decision-making processes. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-022-04099-5.
Collapse
Affiliation(s)
- Manuela Runge
- Swiss Tropical and Public Health Institute, Basel, Switzerland. .,University of Basel, Basel, Switzerland.
| | - Sumaiyya G Thawer
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Fabrizio Molteni
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Frank Chacky
- National Malaria Control Programme, Dodoma, Tanzania.,Ministry of Health, Community Development, Gender, Elderly, and Children, Dodoma, Tanzania
| | - Sigsbert Mkude
- National Malaria Control Programme, Dodoma, Tanzania.,Ministry of Health, Community Development, Gender, Elderly, and Children, Dodoma, Tanzania
| | - Renata Mandike
- National Malaria Control Programme, Dodoma, Tanzania.,Ministry of Health, Community Development, Gender, Elderly, and Children, Dodoma, Tanzania
| | - Robert W Snow
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.,Population Health Unit, Kenya Medical Research Institute-Wellcome Trust Research Programme, Nairobi, Kenya
| | - Christian Lengeler
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Ally Mohamed
- National Malaria Control Programme, Dodoma, Tanzania.,Ministry of Health, Community Development, Gender, Elderly, and Children, Dodoma, Tanzania
| | - Emilie Pothin
- Swiss Tropical and Public Health Institute, Basel, Switzerland. .,University of Basel, Basel, Switzerland. .,CHAI, Clinton Health Access Initiative, New York, USA.
| |
Collapse
|
4
|
Burgert L, Reiker T, Golumbeanu M, Möhrle JJ, Penny MA. Model-informed target product profiles of long-acting-injectables for use as seasonal malaria prevention. PLOS GLOBAL PUBLIC HEALTH 2022; 2:e0000211. [PMID: 36962305 PMCID: PMC10021282 DOI: 10.1371/journal.pgph.0000211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 01/23/2022] [Indexed: 12/17/2022]
Abstract
Seasonal malaria chemoprevention (SMC) has proven highly efficacious in reducing malaria incidence. However, the continued success of SMC is threatened by the spread of resistance against one of its main preventive ingredients, Sulfadoxine-Pyrimethamine (SP), operational challenges in delivery, and incomplete adherence to the regimens. Via a simulation study with an individual-based model of malaria dynamics, we provide quantitative evidence to assess long-acting injectables (LAIs) as potential alternatives to SMC. We explored the predicted impact of a range of novel preventive LAIs as a seasonal prevention tool in children aged three months to five years old during late-stage clinical trials and at implementation. LAIs were co-administered with a blood-stage clearing drug once at the beginning of the transmission season. We found the establishment of non-inferiority of LAIs to standard 3 or 4 rounds of SMC with SP-amodiaquine was challenging in clinical trial stages due to high intervention deployment coverage. However, our analysis of implementation settings where the achievable SMC coverage was much lower, show LAIs with fewer visits per season are potential suitable replacements to SMC. Suitability as a replacement with higher impact is possible if the duration of protection of LAIs covered the duration of the transmission season. Furthermore, optimising LAIs coverage and protective efficacy half-life via simulation analysis in settings with an SMC coverage of 60% revealed important trade-offs between protective efficacy decay and deployment coverage. Our analysis additionally highlights that for seasonal deployment for LAIs, it will be necessary to investigate the protective efficacy decay as early as possible during clinical development to ensure a well-informed candidate selection process.
Collapse
Affiliation(s)
- Lydia Burgert
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Theresa Reiker
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Monica Golumbeanu
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Jörg J Möhrle
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- Medicines for Malaria Venture, Geneva, Switzerland
| | - Melissa A Penny
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
5
|
Ozawa S, Evans DR, Higgins CR, Laing SK, Awor P. Development of an agent-based model to assess the impact of substandard and falsified anti-malarials: Uganda case study. Malar J 2019; 18:5. [PMID: 30626380 PMCID: PMC6327614 DOI: 10.1186/s12936-018-2628-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 12/13/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Global efforts to address the burden of malaria have stagnated in recent years with malaria cases beginning to rise. Substandard and falsified anti-malarial treatments contribute to this stagnation. Poor quality anti-malarials directly affect health outcomes by increasing malaria morbidity and mortality, as well as threaten the effectiveness of treatment by contributing to artemisinin resistance. Research to assess the scope and impact of poor quality anti-malarials is essential to raise awareness and allocate resources to improve the quality of treatment. A probabilistic agent-based model was developed to provide country-specific estimates of the health and economic impact of poor quality anti-malarials on paediatric malaria. This paper presents the methodology and case study of the Substandard and Falsified Antimalarial Research Impact (SAFARI) model developed and applied to Uganda. RESULTS The total annual economic impact of malaria in Ugandan children under age five was estimated at US$614 million. Among children who sought medical care, the total economic impact was estimated at $403 million, including $57.7 million in direct costs. Substandard and falsified anti-malarials were a significant contributor to this annual burden, accounting for $31 million (8% of care-seeking children) in total economic impact involving $5.2 million in direct costs. Further, 9% of malaria deaths relating to cases seeking treatment were attributable to poor quality anti-malarials. In the event of widespread artemisinin resistance in Uganda, we simulated a 12% yearly increase in costs associated with paediatric malaria cases that sought care, inflicting $48.5 million in additional economic impact annually. CONCLUSIONS Improving the quality of treatment is essential to combat the burden of malaria and prevent the development of drug resistance. The SAFARI model provides country-specific estimates of the health and economic impact of substandard and falsified anti-malarials to inform governments, policy makers, donors and the malaria community about the threat posed by poor quality medicines. The model findings are useful to illustrate the significance of the issue and inform policy and interventions to improve medicinal quality.
Collapse
Affiliation(s)
- Sachiko Ozawa
- Division of Practice Advancement and Clinical Education, UNC Eshelman School of Pharmacy, University of North Carolina, CB#7574, Beard Hall 115H, Chapel Hill, NC 27599 USA
- Department of Maternal and Child Health, UNC Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC USA
| | | | - Colleen R. Higgins
- Division of Practice Advancement and Clinical Education, UNC Eshelman School of Pharmacy, University of North Carolina, CB#7574, Beard Hall 115H, Chapel Hill, NC 27599 USA
| | - Sarah K. Laing
- Division of Practice Advancement and Clinical Education, UNC Eshelman School of Pharmacy, University of North Carolina, CB#7574, Beard Hall 115H, Chapel Hill, NC 27599 USA
| | - Phyllis Awor
- Department of Community Health and Behavioural Sciences, Makarere University School of Public Health, Kampala, Uganda
| |
Collapse
|
6
|
Smith NR, Trauer JM, Gambhir M, Richards JS, Maude RJ, Keith JM, Flegg JA. Agent-based models of malaria transmission: a systematic review. Malar J 2018; 17:299. [PMID: 30119664 PMCID: PMC6098619 DOI: 10.1186/s12936-018-2442-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 08/04/2018] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Much of the extensive research regarding transmission of malaria is underpinned by mathematical modelling. Compartmental models, which focus on interactions and transitions between population strata, have been a mainstay of such modelling for more than a century. However, modellers are increasingly adopting agent-based approaches, which model hosts, vectors and/or their interactions on an individual level. One reason for the increasing popularity of such models is their potential to provide enhanced realism by allowing system-level behaviours to emerge as a consequence of accumulated individual-level interactions, as occurs in real populations. METHODS A systematic review of 90 articles published between 1998 and May 2018 was performed, characterizing agent-based models (ABMs) relevant to malaria transmission. The review provides an overview of approaches used to date, determines the advantages of these approaches, and proposes ideas for progressing the field. RESULTS The rationale for ABM use over other modelling approaches centres around three points: the need to accurately represent increased stochasticity in low-transmission settings; the benefits of high-resolution spatial simulations; and heterogeneities in drug and vaccine efficacies due to individual patient characteristics. The success of these approaches provides avenues for further exploration of agent-based techniques for modelling malaria transmission. Potential extensions include varying elimination strategies across spatial landscapes, extending the size of spatial models, incorporating human movement dynamics, and developing increasingly comprehensive parameter estimation and optimization techniques. CONCLUSION Collectively, the literature covers an extensive array of topics, including the full spectrum of transmission and intervention regimes. Bringing these elements together under a common framework may enhance knowledge of, and guide policies towards, malaria elimination. However, because of the diversity of available models, endorsing a standardized approach to ABM implementation may not be possible. Instead it is recommended that model frameworks be contextually appropriate and sufficiently described. One key recommendation is to develop enhanced parameter estimation and optimization techniques. Extensions of current techniques will provide the robust results required to enhance current elimination efforts.
Collapse
Affiliation(s)
- Neal R Smith
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia.
| | - James M Trauer
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Manoj Gambhir
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
- IBM Research Australia, Melbourne, Australia
| | - Jack S Richards
- Life Sciences, Burnet Institute, Melbourne, Australia
- Department of Medicine, University of Melbourne, Parkville, Australia
- Department of Infectious Diseases, Monash University, Melbourne, Australia
| | - Richard J Maude
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Harvard TH Chan School of Public Health, Harvard University, Boston, USA
| | - Jonathan M Keith
- School of Mathematical Sciences, Monash University, Clayton, Australia
| | - Jennifer A Flegg
- School of Mathematics and Statistics, University of Melbourne, Parkville, Australia
| |
Collapse
|
7
|
Kim HS, Kang G, Lee S, Yoon CG, Kim M. Cost-Benefit Analysis of Malaria Chemoprophylaxis and Early Diagnosis for Korean Soldiers in Malaria Risk Regions. J Korean Med Sci 2018; 33:e59. [PMID: 29495139 PMCID: PMC5832939 DOI: 10.3346/jkms.2018.33.e59] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 12/07/2017] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Chemoprophylaxis has been used to prevent malaria among soldiers and secondary transmission, as it effectively facilitates a decline in disease occurrence and secondary prevention. However, poor compliance and decreased risk of exposure to malaria necessitate that control strategies be reestablished. METHODS To predict the incidence of malaria according to a control strategy, we proposed a mathematical model for its transmission using epidemiological data from 2010 to 2012. The benefit component included in the analyses was the averted cost with each control strategy, and the cost components were the cost of implementing chemoprophylaxis and early diagnosis. RESULTS The chemoprophylaxis regimen with hydroxychloroquine sulfate and primaquine was Intervention 1, the regimen with primaquine only was Intervention 2, and diagnosis with a rapid diagnostic test (RDT) kit within 5 days of fever was Intervention 3. The simulation indicated that the combined control program with chemoprophylaxis and early diagnosis would be the most effective strategy, whereas sole early diagnosis would be the least effective strategy. However, the cost-benefit ratio of chemoprophylaxis was less than Intervention 1, irrespective of the varying range of chemoprophylaxis compliance, and that of early diagnosis was more than Intervention 1, regardless of the varying early diagnosis rate and demand for the RDT kit. Although chemoprophylaxis would be more effective at reducing the incidence of malaria than early diagnosis, it is less economical due to the higher cost. CONCLUSION Our results support the introduction of early diagnosis with a RDT kit to control malaria in the Republic of Korea Army.
Collapse
Affiliation(s)
- Hee Sung Kim
- Department of Internal Medicine, Cheongju Medical Center, Cheongju, Korea
- Department of Health Informatics and Management, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Gilwon Kang
- Department of Internal Medicine, Cheongju Medical Center, Cheongju, Korea
- Department of Health Informatics and Management, College of Medicine, Chungbuk National University, Cheongju, Korea.
| | - Sunmi Lee
- Department of Applied Mathematics, Kyung Hee University, Yongin, Korea
| | | | - Minyoung Kim
- Armed Forces Gangneung Hospital, Gangneung, Korea
| |
Collapse
|
8
|
Korenromp E, Hamilton M, Sanders R, Mahiané G, Briët OJT, Smith T, Winfrey W, Walker N, Stover J. Impact of malaria interventions on child mortality in endemic African settings: comparison and alignment between LiST and Spectrum-Malaria model. BMC Public Health 2017; 17:781. [PMID: 29143637 PMCID: PMC5688465 DOI: 10.1186/s12889-017-4739-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Background In malaria-endemic countries, malaria prevention and treatment are critical for child health. In the context of intervention scale-up and rapid changes in endemicity, projections of intervention impact and optimized program scale-up strategies need to take into account the consequent dynamics of transmission and immunity. Methods The new Spectrum-Malaria program planning tool was used to project health impacts of Insecticide-Treated mosquito Nets (ITNs) and effective management of uncomplicated malaria cases (CMU), among other interventions, on malaria infection prevalence, case incidence and mortality in children 0–4 years, 5–14 years of age and adults. Spectrum-Malaria uses statistical models fitted to simulations of the dynamic effects of increasing intervention coverage on these burdens as a function of baseline malaria endemicity, seasonality in transmission and malaria intervention coverage levels (estimated for years 2000 to 2015 by the World Health Organization and Malaria Atlas Project). Spectrum-Malaria projections of proportional reductions in under-five malaria mortality were compared with those of the Lives Saved Tool (LiST) for the Democratic Republic of the Congo and Zambia, for given (standardized) scenarios of ITN and/or CMU scale-up over 2016–2030. Results Proportional mortality reductions over the first two years following scale-up of ITNs from near-zero baselines to moderately higher coverages align well between LiST and Spectrum-Malaria —as expected since both models were fitted to cluster-randomized ITN trials in moderate-to-high-endemic settings with 2-year durations. For further scale-up from moderately high ITN coverage to near-universal coverage (as currently relevant for strategic planning for many countries), Spectrum-Malaria predicts smaller additional ITN impacts than LiST, reflecting progressive saturation. For CMU, especially in the longer term (over 2022–2030) and for lower-endemic settings (like Zambia), Spectrum-Malaria projects larger proportional impacts, reflecting onward dynamic effects not fully captured by LiST. Conclusions Spectrum-Malaria complements LiST by extending the scope of malaria interventions, program packages and health outcomes that can be evaluated for policy making and strategic planning within and beyond the perspective of child survival. Electronic supplementary material The online version of this article (10.1186/s12889-017-4739-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Matthew Hamilton
- Avenir Health, 655 Winding Brook Drive, Glastonbury, CT-06033, USA
| | - Rachel Sanders
- Avenir Health, 655 Winding Brook Drive, Glastonbury, CT-06033, USA
| | - Guy Mahiané
- Avenir Health, 655 Winding Brook Drive, Glastonbury, CT-06033, USA
| | - Olivier J T Briët
- Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051, Basel, Switzerland.,Epidemiology and Public Health, University of Basel, Basel, Switzerland
| | - Thomas Smith
- Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051, Basel, Switzerland.,Epidemiology and Public Health, University of Basel, Basel, Switzerland
| | - William Winfrey
- Avenir Health, 655 Winding Brook Drive, Glastonbury, CT-06033, USA
| | - Neff Walker
- Department of International Health, Institute for International Programs, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe St., Baltimore, MD, 21205, USA
| | - John Stover
- Avenir Health, 655 Winding Brook Drive, Glastonbury, CT-06033, USA
| |
Collapse
|
9
|
Bretscher MT, Griffin JT, Ghani AC, Okell LC. Modelling the benefits of long-acting or transmission-blocking drugs for reducing Plasmodium falciparum transmission by case management or by mass treatment. Malar J 2017; 16:341. [PMID: 28814310 PMCID: PMC5559805 DOI: 10.1186/s12936-017-1988-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 08/09/2017] [Indexed: 11/16/2022] Open
Abstract
Background Anti-malarial drugs are an important tool for malaria control and elimination. Alongside their direct benefit in the treatment of disease, drug use has a community-level effect, clearing the reservoir of infection and reducing onward transmission of the parasite. Different compounds potentially have different impacts on transmission—with some providing periods of prolonged chemoprophylaxis whilst others have greater transmission-blocking potential. The aim was to quantify the relative benefit of such properties for transmission reduction to inform target product profiles in the drug development process and choice of first-line anti-malarial treatment in different endemic settings. Methods A mathematical model of Plasmodium falciparum epidemiology was used to estimate the transmission reduction that can be achieved by using drugs of varying chemoprophylactic (protection for 3, 30 or 60 days) or transmission-blocking activity (blocking 79, 92 or 100% of total onward transmission). Simulations were conducted at low, medium or high transmission intensity (slide-prevalence in 2–10 year olds being 1, 10 or 40%, respectively), with drugs administered either via case management or mass drug administration (MDA). Results Transmission reductions depend strongly on deployment strategy, treatment coverage and endemicity level. Transmission-blocking was most effective at low endemicity, whereas chemoprophylaxis was most useful at high endemicity levels. Increasing the duration of protection as much as possible was beneficial. Increasing transmission-blocking activity from the level of ACT to a 100% transmission-blocking drug (close to the effect estimated for ACT combined with primaquine) produced moderate impact but was not as effective as increasing the duration of protection in medium-to-high transmission settings (slide prevalence 10–40%). Combining both good transmission-blocking activity (e.g. as achieved by ACT or ACT + primaquine) and a long duration of protection (30 days or more, such as provided by piperaquine or mefloquine) within a drug regimen can substantially increase impact compared with drug regimens with only one of these properties in medium to high transmission areas (slide-prevalence in 2–10 year olds ~10 to 40%). These results applied whether the anti-malarials were used for case management or for MDA. Discussion These results emphasise the importance of increasing access to treatment for routine case management, and the potential value of choosing first-line anti-malarial treatment policies according to local malaria epidemiology to maximise impact on transmission. There is no indication that the optimal drug choice should differ between delivery via case management or MDA. Electronic supplementary material The online version of this article (doi:10.1186/s12936-017-1988-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michael T Bretscher
- Department of Infectious Disease Epidemiology, MRC Centre for Outbreak Analysis & Modelling, Imperial College, London, UK.,F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Jamie T Griffin
- School of Mathematical Sciences, Queen Mary University of London, London, UK
| | - Azra C Ghani
- Department of Infectious Disease Epidemiology, MRC Centre for Outbreak Analysis & Modelling, Imperial College, London, UK
| | - Lucy C Okell
- Department of Infectious Disease Epidemiology, MRC Centre for Outbreak Analysis & Modelling, Imperial College, London, UK.
| |
Collapse
|
10
|
Gunda R, Chimbari MJ. Cost-effectiveness analysis of malaria interventions using disability adjusted life years: a systematic review. COST EFFECTIVENESS AND RESOURCE ALLOCATION 2017; 15:10. [PMID: 28680367 PMCID: PMC5494144 DOI: 10.1186/s12962-017-0072-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 06/24/2017] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Malaria continues to be a public health problem despite past and on-going control efforts. For sustenance of control efforts to achieve the malaria elimination goal, it is important that the most cost-effective interventions are employed. This paper reviews studies on cost-effectiveness of malaria interventions using disability-adjusted life years. METHODS A review of literature was conducted through a literature search of international peer-reviewed journals as well as grey literature. Searches were conducted through Medline (PubMed), EMBASE and Google Scholar search engines. The searches included articles published in English for the period from 1996 to 2016. The inclusion criteria for the study were type of malaria intervention, year of publication and cost-effectiveness ratio in terms of cost per DALY averted. We included 40 studies which specifically used the DALY metric in cost-effectiveness analysis (CEA) of malaria interventions. RESULTS The majority of the reviewed studies (75%) were done using data from African settings with the majority of the interventions (60.0%) targeting all age categories. Interventions included case treatment, prophylaxis, vector control, insecticide treated nets, early detection, environmental management, diagnosis and educational programmes. Sulfadoxine-pyrimethamine was the most common drug of choice in malaria prophylaxis, while artemisinin-based combination therapies were the most common drugs for case treatment. Based on guidelines for CEA, most interventions proved cost-effective in terms of cost per DALYs averted for each intervention. CONCLUSION The DALY metric is a useful tool for determining the cost-effectiveness of malaria interventions. This paper demonstrates the importance of CEA in informing decisions made by policy makers.
Collapse
Affiliation(s)
- Resign Gunda
- School of Nursing and Public Health, College of Health Sciences, University of KwaZulu-Natal, Howard Campus, Durban, 4001 South Africa
| | - Moses John Chimbari
- School of Nursing and Public Health, College of Health Sciences, University of KwaZulu-Natal, Howard Campus, Durban, 4001 South Africa
| |
Collapse
|
11
|
Hamilton M, Mahiane G, Werst E, Sanders R, Briët O, Smith T, Cibulskis R, Cameron E, Bhatt S, Weiss DJ, Gething PW, Pretorius C, Korenromp EL. Spectrum-Malaria: a user-friendly projection tool for health impact assessment and strategic planning by malaria control programmes in sub-Saharan Africa. Malar J 2017; 16:68. [PMID: 28183343 PMCID: PMC5301449 DOI: 10.1186/s12936-017-1705-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 01/19/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Scale-up of malaria prevention and treatment needs to continue but national strategies and budget allocations are not always evidence-based. This article presents a new modelling tool projecting malaria infection, cases and deaths to support impact evaluation, target setting and strategic planning. METHODS Nested in the Spectrum suite of programme planning tools, the model includes historic estimates of case incidence and deaths in groups aged up to 4, 5-14, and 15+ years, and prevalence of Plasmodium falciparum infection (PfPR) among children 2-9 years, for 43 sub-Saharan African countries and their 602 provinces, from the WHO and malaria atlas project. Impacts over 2016-2030 are projected for insecticide-treated nets (ITNs), indoor residual spraying (IRS), seasonal malaria chemoprevention (SMC), and effective management of uncomplicated cases (CMU) and severe cases (CMS), using statistical functions fitted to proportional burden reductions simulated in the P. falciparum dynamic transmission model OpenMalaria. RESULTS In projections for Nigeria, ITNs, IRS, CMU, and CMS scale-up reduced health burdens in all age groups, with largest proportional and especially absolute reductions in children up to 4 years old. Impacts increased from 8 to 10 years following scale-up, reflecting dynamic effects. For scale-up of each intervention to 80% effective coverage, CMU had the largest impacts across all health outcomes, followed by ITNs and IRS; CMS and SMC conferred additional small but rapid mortality impacts. DISCUSSION Spectrum-Malaria's user-friendly interface and intuitive display of baseline data and scenario projections holds promise to facilitate capacity building and policy dialogue in malaria programme prioritization. The module's linking to the OneHealth Tool for costing will support use of the software for strategic budget allocation. In settings with moderately low coverage levels, such as Nigeria, improving case management and achieving universal coverage with ITNs could achieve considerable burden reductions. Projections remain to be refined and validated with local expert input data and actual policy scenarios.
Collapse
Affiliation(s)
- Matthew Hamilton
- Avenir Health, Geneva, 1 route de Morillons/150 Route de Ferney (WCC, office 164), PO box 2100, 1211 Geneva 2, Switzerland
- Avenir Health, Glastonbury, USA
| | - Guy Mahiane
- Avenir Health, Geneva, 1 route de Morillons/150 Route de Ferney (WCC, office 164), PO box 2100, 1211 Geneva 2, Switzerland
- Avenir Health, Glastonbury, USA
| | - Elric Werst
- Avenir Health, Geneva, 1 route de Morillons/150 Route de Ferney (WCC, office 164), PO box 2100, 1211 Geneva 2, Switzerland
- Avenir Health, Glastonbury, USA
| | - Rachel Sanders
- Avenir Health, Geneva, 1 route de Morillons/150 Route de Ferney (WCC, office 164), PO box 2100, 1211 Geneva 2, Switzerland
- Avenir Health, Glastonbury, USA
| | - Olivier Briët
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Thomas Smith
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Richard Cibulskis
- World Health Organization Global Malaria Programme, Geneva, Switzerland
| | - Ewan Cameron
- Oxford Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Samir Bhatt
- Oxford Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
- Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Daniel J. Weiss
- Oxford Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Peter W. Gething
- Oxford Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Carel Pretorius
- Avenir Health, Geneva, 1 route de Morillons/150 Route de Ferney (WCC, office 164), PO box 2100, 1211 Geneva 2, Switzerland
- Avenir Health, Glastonbury, USA
| | - Eline L. Korenromp
- Avenir Health, Geneva, 1 route de Morillons/150 Route de Ferney (WCC, office 164), PO box 2100, 1211 Geneva 2, Switzerland
- Avenir Health, Glastonbury, USA
| |
Collapse
|
12
|
Korenromp E, Mahiané G, Hamilton M, Pretorius C, Cibulskis R, Lauer J, Smith TA, Briët OJT. Malaria intervention scale-up in Africa: effectiveness predictions for health programme planning tools, based on dynamic transmission modelling. Malar J 2016; 15:417. [PMID: 27538889 PMCID: PMC4991118 DOI: 10.1186/s12936-016-1461-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 07/29/2016] [Indexed: 12/22/2022] Open
Abstract
Background Scale-up of malaria prevention and treatment needs to continue to further important gains made in the past decade, but national strategies and budget allocations are not always evidence-based. Statistical models were developed summarizing dynamically simulated relations between increases in coverage and intervention impact, to inform a malaria module in the Spectrum health programme planning tool. Methods The dynamic Plasmodiumfalciparum transmission model OpenMalaria was used to simulate health effects of scale-up of insecticide-treated net (ITN) usage, indoor residual spraying (IRS), management of uncomplicated malaria cases (CM) and seasonal malaria chemoprophylaxis (SMC) over a 10-year horizon, over a range of settings with stable endemic malaria. Generalized linear regression models (GLMs) were used to summarize determinants of impact across a range of sub-Sahara African settings. Results Selected (best) GLMs explained 94–97 % of variation in simulated post-intervention parasite infection prevalence, 86–97 % of variation in case incidence (three age groups, three 3-year horizons), and 74–95 % of variation in malaria mortality. For any given effective population coverage, CM and ITNs were predicted to avert most prevalent infections, cases and deaths, with lower impacts for IRS, and impacts of SMC limited to young children reached. Proportional impacts were larger at lower endemicity, and (except for SMC) largest in low-endemic settings with little seasonality. Incremental health impacts for a given coverage increase started to diminish noticeably at above ~40 % coverage, while in high-endemic settings, CM and ITNs acted in synergy by lowering endemicity. Vector control and CM, by reducing endemicity and acquired immunity, entail a partial rebound in malaria mortality among people above 5 years of age from around 5–7 years following scale-up. SMC does not reduce endemicity, but slightly shifts malaria to older ages by reducing immunity in child cohorts reached. Conclusion Health improvements following malaria intervention scale-up vary with endemicity, seasonality, age and time. Statistical models can emulate epidemiological dynamics and inform strategic planning and target setting for malaria control. Electronic supplementary material The online version of this article (doi:10.1186/s12936-016-1461-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | - Richard Cibulskis
- World Health Organization Global Malaria Programme, Geneva, Switzerland
| | - Jeremy Lauer
- World Health Organization Health Systems Governance and Financing dept., Geneva, Switzerland
| | - Thomas A Smith
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Olivier J T Briët
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| |
Collapse
|
13
|
Klein EY, Smith DL, Cohen JM, Laxminarayan R. Bioeconomic analysis of child-targeted subsidies for artemisinin combination therapies: a cost-effectiveness analysis. J R Soc Interface 2016; 12:rsif.2014.1356. [PMID: 25994293 PMCID: PMC4590492 DOI: 10.1098/rsif.2014.1356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The Affordable Medicines Facility for malaria (AMFm) was conceived as a global market-based mechanism to increase access to effective malaria treatment and prolong effectiveness of artemisinin. Although results from a pilot implementation suggested that the subsidy was effective in increasing access to high-quality artemisinin combination therapies (ACTs), the Global Fund has converted AMFm into a country-driven mechanism whereby individual countries could choose to fund the subsidy from within their country envelopes. Because the initial costs of the subsidy in the pilot countries was higher than expected, countries are also exploring alternatives to a universal subsidy, such as subsidizing only child doses. We examined the incremental cost-effectiveness of a child-targeted policy using an age-structured bioeconomic model of malaria from the provider perspective. Because the vast majority of malaria deaths occur in children, targeting children could potentially improve the cost-effectiveness of the subsidy, though it would avert significantly fewer deaths. However, the benefits of a child-targeted subsidy (i.e. deaths averted) are eroded as leakage (i.e. older individuals taking young child-targeted doses) increases, with few of the benefits of a universal subsidy gained (i.e. reductions in overall prevalence). Although potentially more cost-effective, a child-targeted subsidy must contain measures to reduce the possibility of leakage.
Collapse
Affiliation(s)
- Eili Y Klein
- Center for Disease Dynamics, Economics and Policy, Washington, DC, USA Department of Emergency Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - David L Smith
- Department of Zoology, University of Oxford, Oxford, UK Sanaria Institute for Global Health & Tropical Medicine, Rockville, MD, USA
| | | | - Ramanan Laxminarayan
- Center for Disease Dynamics, Economics and Policy, Washington, DC, USA Princeton Environmental Institute, Princeton University, Princeton, NJ, USA Public Health Foundation of India, New Delhi, India
| |
Collapse
|
14
|
Sauboin CJ, Van Bellinghen LA, Van De Velde N, Van Vlaenderen I. Potential public health impact of RTS,S malaria candidate vaccine in sub-Saharan Africa: a modelling study. Malar J 2015; 14:524. [PMID: 26702637 PMCID: PMC4690265 DOI: 10.1186/s12936-015-1046-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 12/09/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Adding malaria vaccination to existing interventions could help to reduce the health burden due to malaria. This study modelled the potential public health impact of the RTS,S candidate malaria vaccine in 42 malaria-endemic countries in sub-Saharan Africa. METHODS An individual-based Markov cohort model was constructed with three categories of malaria transmission intensity and six successive malaria immunity levels. The cycle time was 5 days. Vaccination was assumed to reduce the risk of infection, with no other effects. Vaccine efficacy was assumed to wane exponentially over time. Malaria incidence and vaccine efficacy data were taken from a Phase III trial of the RTS,S vaccine with 18 months of follow-up (NCT00866619). The model was calibrated to reproduce the malaria incidence in the control arm of the trial in each transmission category and published age distribution data. Individual-level heterogeneity in malaria exposure and vaccine protection was accounted for. Parameter uncertainty and variability were captured by using stochastic model transitions. The model followed a cohort from birth to 10 years of age without malaria vaccination, or with RTS,S malaria vaccination administered at age 6, 10 and 14 weeks or at age 6, 7-and-a-half and 9 months. Median and 95% confidence intervals were calculated for the number of clinical malaria cases, severe cases, malaria hospitalizations and malaria deaths expected to be averted by each vaccination strategy. Univariate sensitivity analysis was conducted by varying the values of key input parameters. RESULTS Vaccination assuming the coverage of diphtheria-tetanus-pertussis (DTP3) at age 6, 10 and 14 weeks is estimated to avert over five million clinical malaria cases, 119,000 severe malaria cases, 98,600 malaria hospitalizations and 31,000 malaria deaths in the 42 countries over the 10-year period. Vaccination at age 6, 7-and-a-half and 9 months with 75% of DTP3 coverage is estimated to avert almost 12.5 million clinical malaria cases, 250,000 severe malaria cases, 208,000 malaria hospitalizations and 65,400 malaria deaths in the 42 countries. Univariate sensitivity analysis indicated that for both vaccination strategies, the parameters with the largest impact on the malaria mortality estimates were waning of vaccine efficacy and malaria case-fatality rate. CONCLUSIONS Addition of RTS,S malaria vaccination to existing malaria interventions is estimated to reduce substantially the incidence of clinical malaria, severe malaria, malaria hospitalizations and malaria deaths across 42 countries in sub-Saharan Africa.
Collapse
|
15
|
Sun DW, Du JW, Wang GZ, Li YC, He CH, Xue RD, Wang SQ, Hu XM. A Cost-Effectiveness Analysis of Plasmodium falciparum Malaria Elimination in Hainan Province, 2002-2012. Am J Trop Med Hyg 2015; 93:1240-8. [PMID: 26438030 PMCID: PMC4674241 DOI: 10.4269/ajtmh.14-0486] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 08/06/2015] [Indexed: 01/01/2023] Open
Abstract
In Hainan Province, China, great achievements in elimination of falciparum malaria have been made since 2010. There have been no locally acquired falciparum malaria cases since that time. The cost-effectiveness of elimination of falciparum malaria has been analyzed in Hainan Province. There were 4,422 falciparum malaria cases reported from 2002 to 2012, more cases occurred in males than in females. From 2002 to 2012, a total of 98.5 disability-adjusted life years (DALYs) were reported because of falciparum malaria. Populations in the age ranges of 15-25 and 30-44 years had higher incidences and DALYs than other age groups. From 2002 to 2012, malaria-related costs for salaries of staff, funds from the provincial government, national government, and the GFATM were US$3.02, US$2.24, US$1.44, and US$5.08 million, respectively. An estimated 9,504 falciparum malaria cases were averted during the period 2003-2012. The estimated cost per falciparum malaria case averted was US$116.5. The falciparum malaria elimination program in Hainan was highly effective and successful. However, funding for maintenance is still needed because of imported cases.
Collapse
Affiliation(s)
- Ding-Wei Sun
- Department of Parasitic Control and Prevention, Hainan Provincial Center for Disease Control and Prevention, Haikou, People's Republic of China; Anastasia Mosquito Control District, St. Augustine, Florida
| | - Jian-Wei Du
- Department of Parasitic Control and Prevention, Hainan Provincial Center for Disease Control and Prevention, Haikou, People's Republic of China; Anastasia Mosquito Control District, St. Augustine, Florida
| | - Guang-Ze Wang
- Department of Parasitic Control and Prevention, Hainan Provincial Center for Disease Control and Prevention, Haikou, People's Republic of China; Anastasia Mosquito Control District, St. Augustine, Florida
| | - Yu-Chun Li
- Department of Parasitic Control and Prevention, Hainan Provincial Center for Disease Control and Prevention, Haikou, People's Republic of China; Anastasia Mosquito Control District, St. Augustine, Florida
| | - Chang-Hua He
- Department of Parasitic Control and Prevention, Hainan Provincial Center for Disease Control and Prevention, Haikou, People's Republic of China; Anastasia Mosquito Control District, St. Augustine, Florida
| | - Rui-De Xue
- Department of Parasitic Control and Prevention, Hainan Provincial Center for Disease Control and Prevention, Haikou, People's Republic of China; Anastasia Mosquito Control District, St. Augustine, Florida
| | - Shan-Qing Wang
- Department of Parasitic Control and Prevention, Hainan Provincial Center for Disease Control and Prevention, Haikou, People's Republic of China; Anastasia Mosquito Control District, St. Augustine, Florida
| | - Xi-Min Hu
- Department of Parasitic Control and Prevention, Hainan Provincial Center for Disease Control and Prevention, Haikou, People's Republic of China; Anastasia Mosquito Control District, St. Augustine, Florida
| |
Collapse
|
16
|
Parham PE, Hughes DA. Climate influences on the cost-effectiveness of vector-based interventions against malaria in elimination scenarios. Philos Trans R Soc Lond B Biol Sci 2015; 370:rstb.2013.0557. [PMID: 25688017 DOI: 10.1098/rstb.2013.0557] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Despite the dependence of mosquito population dynamics on environmental conditions, the associated impact of climate and climate change on present and future malaria remains an area of ongoing debate and uncertainty. Here, we develop a novel integration of mosquito, transmission and economic modelling to assess whether the cost-effectiveness of indoor residual spraying (IRS) and long-lasting insecticidal nets (LLINs) against Plasmodium falciparum transmission by Anopheles gambiae s.s. mosquitoes depends on climatic conditions in low endemicity scenarios. We find that although temperature and rainfall affect the cost-effectiveness of IRS and/or LLIN scale-up, whether this is sufficient to influence policy depends on local endemicity, existing interventions, host immune response to infection and the emergence rate of insecticide resistance. For the scenarios considered, IRS is found to be more cost-effective than LLINs for the same level of scale-up, and both are more cost-effective at lower mean precipitation and higher variability in precipitation and temperature. We also find that the dependence of peak transmission on mean temperature translates into optimal temperatures for vector-based intervention cost-effectiveness. Further cost-effectiveness analysis that accounts for country-specific epidemiological and environmental heterogeneities is required to assess optimal intervention scale-up for elimination and better understand future transmission trends under climate change.
Collapse
Affiliation(s)
- Paul E Parham
- Department of Public Health and Policy, University of Liverpool, London, EC2A 1AG, UK
| | - Dyfrig A Hughes
- Centre for Health Economics and Medicines Evaluation, Bangor University, Bangor, LL57 2PZ, UK
| |
Collapse
|
17
|
Distribution of malaria exposure in endemic countries in Africa considering country levels of effective treatment. Malar J 2015; 14:384. [PMID: 26437798 PMCID: PMC4595196 DOI: 10.1186/s12936-015-0864-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 08/23/2015] [Indexed: 11/10/2022] Open
Abstract
Background Malaria prevalence, clinical incidence, treatment, and transmission rates are dynamically interrelated. Prevalence is often considered a measure of malaria transmission, but treatment of clinical malaria reduces prevalence, and consequently also infectiousness to the mosquito vector and onward transmission. The impact of the frequency of treatment on prevalence in a population is generally not considered. This can lead to potential underestimation of malaria exposure in settings with good health systems. Furthermore, these dynamical relationships between prevalence, treatment, and transmission have not generally been taken into account in estimates of burden. Methods Using prevalence as an input, estimates of disease incidence and transmission [as the distribution of the entomological inoculation rate (EIR)] for Plasmodium falciparum have now been made for 43 countries in Africa using both empirical relationships (that do not allow for treatment) and OpenMalaria dynamic micro-simulation models (that explicitly include the effects of treatment). For each estimate, prevalence inputs were taken from geo-statistical models fitted for the year 2010 by the Malaria Atlas Project to all available observed prevalence data. National level estimates of the effectiveness of case management in treating clinical attacks were used as inputs to the estimation of both EIR and disease incidence by the dynamic models. Results and conclusions When coverage of effective treatment is taken into account, higher country level estimates of average EIR and thus higher disease burden, are obtained for a given prevalence level, especially where access to treatment is high, and prevalence relatively low. These methods provide a unified framework for comparison of both the immediate and longer-term impacts of case management and of preventive interventions. Electronic supplementary material The online version of this article (doi:10.1186/s12936-015-0864-3) contains supplementary material, which is available to authorized users.
Collapse
|
18
|
Pemberton-Ross P, Smith TA, Hodel EM, Kay K, Penny MA. Age-shifting in malaria incidence as a result of induced immunological deficit: a simulation study. Malar J 2015; 14:287. [PMID: 26206255 PMCID: PMC4513612 DOI: 10.1186/s12936-015-0805-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 07/10/2015] [Indexed: 11/10/2022] Open
Abstract
Effective population-level interventions against Plasmodium falciparum malaria lead to age-shifts, delayed morbidity or rebounds in morbidity and mortality whenever they are deployed in ways that do not permanently interrupt transmission. When long-term intervention programmes target specific age-groups of human hosts, the age-specific morbidity rates ultimately adjust to new steady-states, but it is very difficult to study these rates and the temporal dynamics leading up to them empirically because the changes occur over very long time periods. This study investigates the age and magnitude of age- and time- shifting of incidence induced by either pre-erythrocytic vaccination (PEV) programmes or seasonal malaria chemo-prevention (SMC), using an ensemble of individual-based stochastic simulation models of P. falciparum dynamics. The models made various assumptions about immunity decay, transmission heterogeneity and were parameterized with data on both age-specific infection and disease incidence at different levels of exposure, on the durations of different stages of the parasite life-cycle and on human demography. Effects of transmission intensity, and of levels of access to malaria treatment were considered. While both PEV and SMC programmes are predicted to have overall strongly positive health effects, a shift of morbidity into older children is predicted to be induced by either programme if transmission levels remain static and not reduced by other interventions. Predicted shifting of burden continue into the second decade of the programme. Even if long-term surveillance is maintained it will be difficult to avoid mis-attribution of such long-term changes in age-specific morbidity patterns to other factors. Conversely, short-lived transient changes in incidence measured soon after introduction of a new intervention may give over-positive views of future impacts. Complementary intervention strategies could be designed to specifically protect those age-groups at risk from burden shift.
Collapse
Affiliation(s)
- Peter Pemberton-Ross
- Swiss Tropical and Public Health Institute, 4002, Basel, Switzerland.
- Universität Basel, 4003, Basel, Switzerland.
| | - Thomas A Smith
- Swiss Tropical and Public Health Institute, 4002, Basel, Switzerland.
- Universität Basel, 4003, Basel, Switzerland.
| | - Eva Maria Hodel
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK.
| | - Katherine Kay
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK.
| | - Melissa A Penny
- Swiss Tropical and Public Health Institute, 4002, Basel, Switzerland.
- Universität Basel, 4003, Basel, Switzerland.
| |
Collapse
|
19
|
Galactionova K, Tediosi F, de Savigny D, Smith T, Tanner M. Effective coverage and systems effectiveness for malaria case management in sub-Saharan African countries. PLoS One 2015; 10:e0127818. [PMID: 26000856 PMCID: PMC4441512 DOI: 10.1371/journal.pone.0127818] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 04/18/2015] [Indexed: 11/29/2022] Open
Abstract
Scale-up of malaria preventive and control interventions over the last decade resulted in substantial declines in mortality and morbidity from the disease in sub-Saharan Africa and many other parts of the world. Sustaining these gains will depend on the health system performance. Treatment provides individual benefits by curing infection and preventing progression to severe disease as well as community-level benefits by reducing the infectious reservoir and averting emergence and spread of drug resistance. However many patients with malaria do not access care, providers do not comply with treatment guidelines, and hence, patients do not necessarily receive the correct regimen. Even when the correct regimen is administered some patients will not adhere and others will be treated with counterfeit or substandard medication leading to treatment failures and spread of drug resistance. We apply systems effectiveness concepts that explicitly consider implications of health system factors such as treatment seeking, provider compliance, adherence, and quality of medication to estimate treatment outcomes for malaria case management. We compile data for these indicators to derive estimates of effective coverage for 43 high-burden Sub-Saharan African countries. Parameters are populated from the Demographic and Health Surveys and other published sources. We assess the relative importance of these factors on the level of effective coverage and consider variation in these health systems indicators across countries. Our findings suggest that effective coverage for malaria case management ranges from 8% to 72% in the region. Different factors account for health system inefficiencies in different countries. Significant losses in effectiveness of treatment are estimated in all countries. The patterns of inter-country variation suggest that these are system failures that are amenable to change. Identifying the reasons for the poor health system performance and intervening to tackle them become key priority areas for malaria control and elimination policies in the region.
Collapse
Affiliation(s)
- Katya Galactionova
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Fabrizio Tediosi
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Don de Savigny
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Thomas Smith
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Marcel Tanner
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
20
|
Peak CM, Thuan PD, Britton A, Nguyen TD, Wolbers M, Thanh NV, Buckee CO, Boni MF. Measuring the association between artemisinin-based case management and malaria incidence in southern Vietnam, 1991-2010. Am J Trop Med Hyg 2015; 92:811-817. [PMID: 25667053 PMCID: PMC4385779 DOI: 10.4269/ajtmh.14-0461] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 12/26/2014] [Indexed: 11/07/2022] Open
Abstract
In addition to being effective, fast-acting, and well tolerated, artemisinin-based combination therapies (ACTs) are able to kill certain transmission stages of the malaria parasite. However, the population-level impacts of ACTs on reducing malaria transmission have been difficult to assess. In this study on the history of malaria control in Vietnam, we assemble annual reporting on malaria case counts, coverage with insecticide-treated nets (ITN) and indoor residual spraying (IRS), and drug purchases by provincial malaria control programs from 1991 to 2010 in Vietnam's 20 southern provinces. We observe a significant negative association between artemisinin use and malaria incidence, with a 10% absolute increase in the purchase proportion of artemisinin-containing regimens being associated with a 29.1% (95% confidence interval: 14.8–41.0%) reduction in slide-confirmed malaria incidence, after accounting for changes in urbanization, ITN/IRS coverage, and two indicators of health system capacity. One budget-related indicator of health system capacity was found to have a smaller association with malaria incidence, and no other significant factors were found. Our findings suggest that including an artemisinin component in malaria drug regimens was strongly associated with reduced malaria incidence in southern Vietnam, whereas changes in urbanization and coverage with ITN or IRS were not.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Maciej F. Boni
- *Address correspondence to Maciej F. Boni, Oxford University Clinical Research Unit, Hospital for Tropical Diseases, 764 Vo Van Kiet Street, District 5, Ho Chi Minh City, Vietnam. E-mail:
| |
Collapse
|
21
|
Stuckey EM, Stevenson J, Galactionova K, Baidjoe AY, Bousema T, Odongo W, Kariuki S, Drakeley C, Smith TA, Cox J, Chitnis N. Modeling the cost effectiveness of malaria control interventions in the highlands of western Kenya. PLoS One 2014; 9:e107700. [PMID: 25290939 PMCID: PMC4188563 DOI: 10.1371/journal.pone.0107700] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 08/22/2014] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION Tools that allow for in silico optimization of available malaria control strategies can assist the decision-making process for prioritizing interventions. The OpenMalaria stochastic simulation modeling platform can be applied to simulate the impact of interventions singly and in combination as implemented in Rachuonyo South District, western Kenya, to support this goal. METHODS Combinations of malaria interventions were simulated using a previously-published, validated model of malaria epidemiology and control in the study area. An economic model of the costs of case management and malaria control interventions in Kenya was applied to simulation results and cost-effectiveness of each intervention combination compared to the corresponding simulated outputs of a scenario without interventions. Uncertainty was evaluated by varying health system and intervention delivery parameters. RESULTS The intervention strategy with the greatest simulated health impact employed long lasting insecticide treated net (LLIN) use by 80% of the population, 90% of households covered by indoor residual spraying (IRS) with deployment starting in April, and intermittent screen and treat (IST) of school children using Artemether lumefantrine (AL) with 80% coverage twice per term. However, the current malaria control strategy in the study area including LLIN use of 56% and IRS coverage of 70% was the most cost effective at reducing disability-adjusted life years (DALYs) over a five year period. CONCLUSIONS All the simulated intervention combinations can be considered cost effective in the context of available resources for health in Kenya. Increasing coverage of vector control interventions has a larger simulated impact compared to adding IST to the current implementation strategy, suggesting that transmission in the study area is not at a level to warrant replacing vector control to a school-based screen and treat program. These results have the potential to assist malaria control program managers in the study area in adding new or changing implementation of current interventions.
Collapse
Affiliation(s)
- Erin M. Stuckey
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Jennifer Stevenson
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Centre for Global Health Research, Kenya Medical Research Institute/Centers for Disease Control and Prevention, Kisumu, Kenya
- Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Katya Galactionova
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Amrish Y. Baidjoe
- Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Teun Bousema
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Wycliffe Odongo
- Centre for Global Health Research, Kenya Medical Research Institute/Centers for Disease Control and Prevention, Kisumu, Kenya
| | - Simon Kariuki
- Centre for Global Health Research, Kenya Medical Research Institute/Centers for Disease Control and Prevention, Kisumu, Kenya
| | - Chris Drakeley
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Thomas A. Smith
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Jonathan Cox
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Nakul Chitnis
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
22
|
Stuckey EM, Smith T, Chitnis N. Seasonally dependent relationships between indicators of malaria transmission and disease provided by mathematical model simulations. PLoS Comput Biol 2014; 10:e1003812. [PMID: 25187979 PMCID: PMC4154642 DOI: 10.1371/journal.pcbi.1003812] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 07/17/2014] [Indexed: 11/24/2022] Open
Abstract
Evaluating the effectiveness of malaria control interventions on the basis of their impact on transmission as well as impact on morbidity and mortality is becoming increasingly important as countries consider pre-elimination and elimination as well as disease control. Data on prevalence and transmission are traditionally obtained through resource-intensive epidemiological and entomological surveys that become difficult as transmission decreases. This work employs mathematical modeling to examine the relationships between malaria indicators allowing more easily measured data, such as routine health systems data on case incidence, to be translated into measures of transmission and other malaria indicators. Simulations of scenarios with different levels of malaria transmission, patterns of seasonality and access to treatment were run with an ensemble of models of malaria epidemiology and within-host dynamics, as part of the OpenMalaria modeling platform. For a given seasonality profile, regression analysis mapped simulation results of malaria indicators, such as annual average entomological inoculation rate, prevalence, incidence of uncomplicated and severe episodes, and mortality, to an expected range of values of any of the other indicators. Results were validated by comparing simulated relationships between indicators with previously published data on these same indicators as observed in malaria endemic areas. These results allow for direct comparisons of malaria transmission intensity estimates made using data collected with different methods on different indicators. They also address key concerns with traditional methods of quantifying transmission in areas of differing transmission intensity and sparse data. Although seasonality of transmission is often ignored in data compilations, the models suggest it can be critically important in determining the relationship between transmission and disease. Application of these models could help public health officials detect changes of disease dynamics in a population and plan and assess the impact of malaria control interventions. While malaria is still a major public health problem in many parts of the world, control programs have greatly reduced the burden of disease in recent years and many countries are now considering the goal of elimination. Unfortunately, malaria transmission becomes more difficult to measure when it is low because traditional methods involve capturing mosquitoes; an expensive and time-consuming technique. To measure transmission in areas without adequate field data, we run simulations of a mathematical model of malaria over a range of transmission intensities and seasonal patterns to examine how different measurements of malaria (prevalence, clinical disease, and death) relate to each other, how they relate to transmission, and if the relationships are likely to vary by seasonal pattern of transmission. These simulated relationships allow us to translate easily measured data, such as clinical case incidence seen at health facilities, into estimates of transmission. This technique can help public health officials plan and assess the impact of malaria control interventions, even in areas without intensive research activities.
Collapse
Affiliation(s)
- Erin M. Stuckey
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- * E-mail:
| | - Thomas Smith
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Nakul Chitnis
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
23
|
Briët OJ, Penny MA. Repeated mass distributions and continuous distribution of long-lasting insecticidal nets: modelling sustainability of health benefits from mosquito nets, depending on case management. Malar J 2013; 12:401. [PMID: 24200296 PMCID: PMC4228503 DOI: 10.1186/1475-2875-12-401] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 11/04/2013] [Indexed: 11/10/2022] Open
Abstract
Background Stagnating funds for malaria control have spurred interest in the question of how to sustain the gains of recent successes with long-lasting insecticidal nets (LLINs) and improved case management (CM). This simulation study examined the malaria transmission and disease dynamics in scenarios with sustained LLINs and CM interventions and tried to determine optimal LLIN distribution rates. The effects of abruptly halting LLIN distribution were also examined. Methods Dynamic simulations of malaria in humans and mosquitoes were run on the OpenMalaria platform, using stochastic individual-based simulation models. LLINs were distributed in a range of transmission settings, with varying CM coverage levels. Results In the short-term, LLINs were beneficial over the entire transmission spectrum, reducing both transmission and disease burden. In the long-term, repeated distributions sustainably reduced transmission in all settings. However, because of the resulting reduction in acquired immunity in the population, the malaria disease burden, after initially being reduced, gradually increased and eventually stabilized at a new level. This new level was higher than the pre-intervention level in previously high transmission settings, if there is a maximum disease burden in the relationship between transmission and disease burden at intermediate transmission levels. This result could lead one to conclude that sustained LLIN distribution might not be cost-effective in high transmission settings in the long term. However, improved CM rendered LLINs more cost-effective in higher transmission settings than in those without improved CM and the majority of the African population lives in areas where CM and LLINs are sustainably combined. The effects of changes in LLIN distribution rate on cost-effectiveness were relatively small compared to the effects of changes in transmission setting and CM. Abruptly halting LLIN distribution led to temporary morbidity peaks, which were particularly large in low to intermediate transmission settings. Conclusions This study reaffirms the importance of context specific intervention planning. Intervention planning must include combinations of malaria vector control and CM, and must consider both the pre-intervention transmission level and the intervention history to account for the loss of immunity and the potential for rebounds in disease burden.
Collapse
Affiliation(s)
- Olivier Jt Briët
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland.
| | | |
Collapse
|
24
|
Sicuri E, Vieta A, Lindner L, Constenla D, Sauboin C. The economic costs of malaria in children in three sub-Saharan countries: Ghana, Tanzania and Kenya. Malar J 2013; 12:307. [PMID: 24004482 PMCID: PMC3844618 DOI: 10.1186/1475-2875-12-307] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 08/21/2013] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Malaria causes significant mortality and morbidity in sub-Saharan Africa (SSA), especially among children less than five years of age (U5 children). Although the economic burden of malaria in this region has been assessed previously, the extent and variation of this burden remains unclear. This study aimed to estimate the economic costs of malaria in U5 children in three countries (Ghana, Tanzania and Kenya). METHODS Health system and household costs previously estimated were integrated with costs associated with co-morbidities, complications and productivity losses due to death. Several models were developed to estimate the expected treatment cost per episode per child, across different age groups, by level of severity and with or without controlling for treatment-seeking behaviour. Total annual costs (2009) were calculated by multiplying the treatment cost per episode according to severity by the number of episodes. Annual health system prevention costs were added to this estimate. RESULTS Household and health system costs per malaria episode ranged from approximately US$ 5 for non-complicated malaria in Tanzania to US$ 288 for cerebral malaria with neurological sequelae in Kenya. On average, up to 55% of these costs in Ghana and Tanzania and 70% in Kenya were assumed by the household, and of these costs 46% in Ghana and 85% in Tanzania and Kenya were indirect costs. Expected values of potential future earnings (in thousands) lost due to premature death of children aged 0-1 and 1-4 years were US$ 11.8 and US$ 13.8 in Ghana, US$ 6.9 and US$ 8.1 in Tanzania, and US$ 7.6 and US$ 8.9 in Kenya, respectively. The expected treatment costs per episode per child ranged from a minimum of US$ 1.29 for children aged 2-11 months in Tanzania to a maximum of US$ 22.9 for children aged 0-24 months in Kenya. The total annual costs (in millions) were estimated at US$ 37.8, US$ 131.9 and US$ 109.0 nationwide in Ghana, Tanzania and Kenya and included average treatment costs per case of US$ 11.99, US$ 6.79 and US$ 20.54, respectively. CONCLUSION This study provides important insight into the economic burden of malaria in SSA that may assist policy makers when designing future malaria control interventions.
Collapse
Affiliation(s)
- Elisa Sicuri
- Barcelona Centre for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Ana Vieta
- Health Economics and Outcome Research - IMS Health, Barcelona, Spain
| | - Leandro Lindner
- Health Economics and Outcome Research - IMS Health, Barcelona, Spain
| | - Dagna Constenla
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | | |
Collapse
|
25
|
Nunes JK, Cárdenas V, Loucq C, Maire N, Smith T, Shaffer C, Måseide K, Brooks A. Modeling the public health impact of malaria vaccines for developers and policymakers. BMC Infect Dis 2013; 13:295. [PMID: 23815273 PMCID: PMC3711926 DOI: 10.1186/1471-2334-13-295] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 06/17/2013] [Indexed: 11/15/2022] Open
Abstract
Background Efforts to develop malaria vaccines show promise. Mathematical model-based estimates of the potential demand, public health impact, and cost and financing requirements can be used to inform investment and adoption decisions by vaccine developers and policymakers on the use of malaria vaccines as complements to existing interventions. However, the complexity of such models may make their outputs inaccessible to non-modeling specialists. This paper describes a Malaria Vaccine Model (MVM) developed to address the specific needs of developers and policymakers, who need to access sophisticated modeling results and to test various scenarios in a user-friendly interface. The model’s functionality is demonstrated through a hypothetical vaccine. Methods The MVM has three modules: supply and demand forecast; public health impact; and implementation cost and financing requirements. These modules include pre-entered reference data and also allow for user-defined inputs. The model includes an integrated sensitivity analysis function. Model functionality was demonstrated by estimating the public health impact of a hypothetical pre-erythrocytic malaria vaccine with 85% efficacy against uncomplicated disease and a vaccine efficacy decay rate of four years, based on internationally-established targets. Demand for this hypothetical vaccine was estimated based on historical vaccine implementation rates for routine infant immunization in 40 African countries over a 10-year period. Assumed purchase price was $5 per dose and injection equipment and delivery costs were $0.40 per dose. Results The model projects the number of doses needed, uncomplicated and severe cases averted, deaths and disability-adjusted life years (DALYs) averted, and cost to avert each. In the demonstration scenario, based on a projected demand of 532 million doses, the MVM estimated that 150 million uncomplicated cases of malaria and 1.1 million deaths would be averted over 10 years. This is equivalent to 943 uncomplicated cases and 7 deaths averted per 1,000 vaccinees. In discounted 2011 US dollars, this represents $11 per uncomplicated case averted and $1,482 per death averted. If vaccine efficacy were reduced to 75%, the estimated uncomplicated cases and deaths averted over 10 years would decrease by 14% and 19%, respectively. Conclusions The MVM can provide valuable information to assist decision-making by vaccine developers and policymakers, information which will be refined and strengthened as field studies progress allowing further validation of modeling assumptions.
Collapse
|
26
|
Hansen E, Buckee CO. Modeling the human infectious reservoir for malaria control: does heterogeneity matter? Trends Parasitol 2013; 29:270-5. [PMID: 23597499 DOI: 10.1016/j.pt.2013.03.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Revised: 02/22/2013] [Accepted: 03/18/2013] [Indexed: 12/19/2022]
Abstract
The complex biological relationships underlying malaria transmission make it difficult to predict the impact of interventions. Mathematical models simplify these relationships and capture essential components of malaria transmission and epidemiology. Models designed to predict the impact of control programs generally infer a relationship between transmission intensity and human infectiousness to the mosquito, requiring assumptions about how infectiousness varies between individuals. A lack of understanding of human infectiousness precludes a standard approach to this inference, however, and field data reveal no obvious correlation between transmission intensity and human population infectiousness. We argue that model assumptions will have important consequences for predicting the impact of control programs.
Collapse
Affiliation(s)
- Elsa Hansen
- Center for Communicable Disease Dynamics, Harvard School of Public Health, Boston, MA, USA
| | | |
Collapse
|
27
|
Crowell V, Yukich JO, Briët OJT, Ross A, Smith TA. A novel approach for measuring the burden of uncomplicated Plasmodium falciparum malaria: application to data from Zambia. PLoS One 2013; 8:e57297. [PMID: 23468961 PMCID: PMC3585385 DOI: 10.1371/journal.pone.0057297] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 01/21/2013] [Indexed: 11/18/2022] Open
Abstract
Measurement of malaria burden is fraught with complexity, due to the natural history of the disease, delays in seeking treatment or failure of case management. Attempts to establish an appropriate case definition for a malaria episode has often resulted in ambiguities and challenges because of poor information about treatment seeking, patterns of infection, recurrence of fever and asymptomatic infection. While the primary reason for treating malaria is to reduce disease burden, the effects of treatment are generally ignored in estimates of the burden of malaria morbidity, which are usually presented in terms of numbers of clinical cases or episodes, with the main data sources being reports from health facilities and parasite prevalence surveys. The use of burden estimates that do not consider effects of treatment, leads to under-estimation of the impact of improvements in case management. Official estimates of burden very likely massively underestimate the impact of the roll-out of ACT as first-line therapy across Africa. This paper proposes a novel approach for estimating burden of disease based on the point prevalence of malaria attributable disease, or equivalently, the days with malaria fever in unit time. The technique makes use of data available from standard community surveys, analyses of fever patterns in malaria therapy patients, and data on recall bias. Application of this approach to data from Zambia for 2009–2010 gave an estimate of 2.6 (95% credible interval: 1.5–3.7) malaria attributable fever days per child-year. The estimates of recall bias, and of the numbers of days with illness contributing to single illness recalls, could be applied more generally. To obtain valid estimates of the overall malaria burden using these methods, there remains a need for surveys to include the whole range of ages of hosts in the population and for data on seasonality patterns in confirmed case series.
Collapse
Affiliation(s)
- Valerie Crowell
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Joshua O. Yukich
- Department of Global Health Systems and Development, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana, United States of America
| | - Olivier J. T. Briët
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Amanda Ross
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Thomas A. Smith
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- * E-mail:
| |
Collapse
|
28
|
Crowell V, Briët OJT, Hardy D, Chitnis N, Maire N, Di Pasquale A, Smith TA. Modelling the cost-effectiveness of mass screening and treatment for reducing Plasmodium falciparum malaria burden. Malar J 2013; 12:4. [PMID: 23286228 PMCID: PMC3544609 DOI: 10.1186/1475-2875-12-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 12/19/2012] [Indexed: 12/31/2022] Open
Abstract
Background Past experience and modelling suggest that, in most cases, mass treatment strategies are not likely to succeed in interrupting Plasmodium falciparum malaria transmission. However, this does not preclude their use to reduce disease burden. Mass screening and treatment (MSAT) is preferred to mass drug administration (MDA), as the latter involves massive over-use of drugs. This paper reports simulations of the incremental cost-effectiveness of well-conducted MSAT campaigns as a strategy for P. falciparum malaria disease-burden reduction in settings with varying receptivity (ability of the combined vector population in a setting to transmit disease) and access to case management. Methods MSAT incremental cost-effectiveness ratios (ICERs) were estimated in different sub-Saharan African settings using simulation models of the dynamics of malaria and a literature-based MSAT cost estimate. Imported infections were simulated at a rate of two per 1,000 population per annum. These estimates were compared to the ICERs of scaling up case management or insecticide-treated net (ITN) coverage in each baseline health system, in the absence of MSAT. Results MSAT averted most episodes, and resulted in the lowest ICERs, in settings with a moderate level of disease burden. At a low pre-intervention entomological inoculation rate (EIR) of two infectious bites per adult per annum (IBPAPA) MSAT was never more cost-effective than scaling up ITNs or case management coverage. However, at pre-intervention entomological inoculation rates (EIRs) of 20 and 50 IBPAPA and ITN coverage levels of 40 or 60%, respectively, the ICER of MSAT was similar to that of scaling up ITN coverage further. Conclusions In all the transmission settings considered, achieving a minimal level of ITN coverage is a “best buy”. At low transmission, MSAT probably is not worth considering. Instead, MSAT may be suitable at medium to high levels of transmission and at moderate ITN coverage. If undertaken as a burden-reducing intervention, MSAT should be continued indefinitely and should complement, not replace, case management and vector control interventions.
Collapse
Affiliation(s)
- Valerie Crowell
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Socinstrasse 57, Basel, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
29
|
Gavaza P, Rascati KL, Oladapo AO, Khoza S. The state of health economic research in South Africa: a systematic review. PHARMACOECONOMICS 2012; 30:925-40. [PMID: 22809450 DOI: 10.2165/11589450-000000000-00000] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
BACKGROUND Economic factors are a limiting factor toward the implementation of many health programmes and interventions. Economic evaluation has a great potential to contribute toward cost-effective healthcare delivery in South Africa. Little is known about the characteristics and quality of health economic (including pharmacoeconomic) research in South Africa. OBJECTIVE AND METHODS This study assessed the state of health economic (including pharmacoeconomic) research in South Africa. PUBMED, MEDLINE, HealthSTAR, EconLit and PsycINFO databases were searched to identify health economic articles pertaining to South Africa published between 1 January 1977 and 30 April 2010. The searches used the following Medical Subject Headings (MeSH) terms and text words alone and in combination: 'costs', 'health' and 'South Africa'. Our study included only original economic studies/analyses that pertained to South Africa, addressed a health-related topic, and had a statement or word in the title, abstract or keywords that indicated that an economic (including cost) analysis had been conducted. The study only included complete peer-reviewed publications (e.g. abstracts were excluded) that were reported in the English language. Two reviewers independently scored each article in the final sample using the data collection form designed for the study. RESULTS In total, 108 studies investigating a wide variety of diseases were included in the study. These articles were published in 39 different journals mostly based outside of South Africa between 1977 and 2010. On average, each article was written by three authors. Most first authors had medical/clinical training and resided in South Africa at the time of publication of their study. Based on a 1-10 scale, with 10 indicating the highest quality, the mean quality score for all studies was 7.59 (SD 1.42) and half of the articles were of good quality (score 8-10) The quality of studies was related to the country in which the journal publishing the article was based (outside South Africa = higher); current residence of the primary author (outside South Africa = higher); method of economic analysis (economic evaluations higher than cost studies); type of data used (secondary higher than primary); primary training of the first author (health economics/pharmacoeconomics = higher); type of medical function (diagnosis = higher); study perspective (societal = higher); primary health intervention (pharmaceuticals = higher); study design (modelling = higher); number of authors (more = higher); and year of publication (more recent = higher) [p ≤ 0.05]. CONCLUSION Half of the articles were of poor or fair quality. Measures are needed to promote the commissioning of more and better quality health economic and pharmacoeconomic studies in South Africa.
Collapse
Affiliation(s)
- Paul Gavaza
- Appalachian College of Pharmacy, Oakwood, VA 24631, USA.
| | | | | | | |
Collapse
|
30
|
Eckhoff P. P. falciparum infection durations and infectiousness are shaped by antigenic variation and innate and adaptive host immunity in a mathematical model. PLoS One 2012; 7:e44950. [PMID: 23028698 PMCID: PMC3446976 DOI: 10.1371/journal.pone.0044950] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 08/14/2012] [Indexed: 11/29/2022] Open
Abstract
Many questions remain about P. falciparum within-host dynamics, immunity, and transmission–issues that may affect public health campaign planning. These gaps in knowledge concern the distribution of durations of malaria infections, determination of peak parasitemia during acute infection, the relationships among gametocytes and immune responses and infectiousness to mosquitoes, and the effect of antigenic structure on reinfection outcomes. The present model of intra-host dynamics of P. falciparum implements detailed representations of parasite and immune dynamics, with structures based on minimal extrapolations from first-principles biology in its foundations. The model is designed to quickly and readily accommodate gains in mechanistic understanding and to evaluate effects of alternative biological hypothesis through in silico experiments. Simulations follow the parasite from the liver-stage through the detailed asexual cycle to clearance while tracking gametocyte populations. The modeled immune system includes innate inflammatory and specific antibody responses to a repertoire of antigens. The mechanistic focus provides clear explanations for the structure of the distribution of infection durations through the interaction of antigenic variation and innate and adaptive immunity. Infectiousness to mosquitoes appears to be determined not only by the density of gametocytes but also by the level of inflammatory cytokines, which harmonizes an extensive series of study results. Finally, pre-existing immunity can either decrease or increase the duration of infections upon reinfection, depending on the degree of overlap in antigenic repertoires and the strength of the pre-existing immunity.
Collapse
Affiliation(s)
- Philip Eckhoff
- Intellectual Ventures, Bellevue, Washington, United States of America.
| |
Collapse
|
31
|
Chalwe V, van Geertruyden JP. HIV-malaria co-infection: effects of malaria on the prevalence of HIV in East sub-Saharan Africa. Int J Epidemiol 2012; 41:890-1; author reply 891-2. [PMID: 22617688 DOI: 10.1093/ije/dys079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
32
|
Brooks A, Briët OJT, Hardy D, Steketee R, Smith TA. Simulated impact of RTS,S/AS01 vaccination programs in the context of changing malaria transmission. PLoS One 2012; 7:e32587. [PMID: 22412892 PMCID: PMC3295753 DOI: 10.1371/journal.pone.0032587] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 02/01/2012] [Indexed: 12/29/2022] Open
Abstract
Introduction The RTS,S/AS01 pre-erythrocytic malaria vaccine is in phase III clinical trials. It is critical to anticipate where and how it should be implemented if trials are successful. Such planning may be complicated by changing levels of malaria transmission. Methods/results Computer simulations were used to examine RTS,S/AS01 impact, using a vaccine profile based on phase II trial results, and assuming that protection decays only slowly. Settings were simulated in which baseline transmission (in the absence of vaccine) was fixed or varied between 2 and 20 infectious mosquito bites per person per annum (ibpa) over ten years. Four delivery strategies were studied: routine infant immunization (EPI), EPI plus infant catch-up, EPI plus school-based campaigns, and EPI plus mass campaigns. Impacts in changing transmission settings were similar to those in fixed settings. Assuming a persistent effect of vaccination, at 2 ibpa, the vaccine averted approximately 5–7 deaths per 1000 doses of vaccine when delivered via mass campaigns, but the benefit was less at higher transmission levels. EPI, catch-up and school-based strategies averted 2–3 deaths per 1000 doses in settings with 2 ibpa. In settings where transmission was decreasing or increasing, EPI, catch-up and school-based strategies averted approximately 3–4 deaths per 1000 doses. Discussion Where transmission is changing, it appears to be sufficient to consider simulations of pre-erythrocytic vaccine impact at a range of initial transmission levels. At 2 ibpa, mass campaigns averted the most deaths and reduced transmission, but this requires further study. If delivered via EPI, RTS,S/AS01 could avert approximately 6–11 deaths per 1000 vaccinees in all examined settings, similar to estimates for pneumococcal conjugate vaccine in African infants. These results support RTS,S/AS01 implementation via EPI, for example alongside vector control interventions, providing that the phase III trials provide support for our assumptions about efficacy.
Collapse
Affiliation(s)
- Alan Brooks
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland.
| | | | | | | | | |
Collapse
|
33
|
Importance of factors determining the effective lifetime of a mass, long-lasting, insecticidal net distribution: a sensitivity analysis. Malar J 2012; 11:20. [PMID: 22244509 PMCID: PMC3273435 DOI: 10.1186/1475-2875-11-20] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 01/13/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Long-lasting insecticidal nets (LLINs) reduce malaria transmission by protecting individuals from infectious bites, and by reducing mosquito survival. In recent years, millions of LLINs have been distributed across sub-Saharan Africa (SSA). Over time, LLINs decay physically and chemically and are destroyed, making repeated interventions necessary to prevent a resurgence of malaria. Because its effects on transmission are important (more so than the effects of individual protection), estimates of the lifetime of mass distribution rounds should be based on the effective length of epidemiological protection. METHODS Simulation models, parameterised using available field data, were used to analyse how the distribution's effective lifetime depends on the transmission setting and on LLIN characteristics. Factors considered were the pre-intervention transmission level, initial coverage, net attrition, and both physical and chemical decay. An ensemble of 14 stochastic individual-based model variants for malaria in humans was used, combined with a deterministic model for malaria in mosquitoes. RESULTS The effective lifetime was most sensitive to the pre-intervention transmission level, with a lifetime of almost 10 years at an entomological inoculation rate of two infectious bites per adult per annum (ibpapa), but of little more than 2 years at 256 ibpapa. The LLIN attrition rate and the insecticide decay rate were the next most important parameters. The lifetime was surprisingly insensitive to physical decay parameters, but this could change as physical integrity gains importance with the emergence and spread of pyrethroid resistance. CONCLUSIONS The strong dependency of the effective lifetime on the pre-intervention transmission level indicated that the required distribution frequency may vary more with the local entomological situation than with LLIN quality or the characteristics of the distribution system. This highlights the need for malaria monitoring both before and during intervention programmes, particularly since there are likely to be strong variations between years and over short distances. The majority of SSA's population falls into exposure categories where the lifetime is relatively long, but because exposure estimates are highly uncertain, it is necessary to consider subsequent interventions before the end of the expected effective lifetime based on an imprecise transmission measure.
Collapse
|
34
|
Smith T, Ross A, Maire N, Chitnis N, Studer A, Hardy D, Brooks A, Penny M, Tanner M. Ensemble modeling of the likely public health impact of a pre-erythrocytic malaria vaccine. PLoS Med 2012; 9:e1001157. [PMID: 22272189 PMCID: PMC3260300 DOI: 10.1371/journal.pmed.1001157] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 11/30/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The RTS,S malaria vaccine may soon be licensed. Models of impact of such vaccines have mainly considered deployment via the World Health Organization's Expanded Programme on Immunization (EPI) in areas of stable endemic transmission of Plasmodium falciparum, and have been calibrated for such settings. Their applicability to low transmission settings is unclear. Evaluations of the efficiency of different deployment strategies in diverse settings should consider uncertainties in model structure. METHODS AND FINDINGS An ensemble of 14 individual-based stochastic simulation models of P. falciparum dynamics, with differing assumptions about immune decay, transmission heterogeneity, and treatment access, was constructed. After fitting to an extensive library of field data, each model was used to predict the likely health benefits of RTS,S deployment, via EPI (with or without catch-up vaccinations), supplementary vaccination of school-age children, or mass vaccination every 5 y. Settings with seasonally varying transmission, with overall pre-intervention entomological inoculation rates (EIRs) of two, 11, and 20 infectious bites per person per annum, were considered. Predicted benefits of EPI vaccination programs over the simulated 14-y time horizon were dependent on duration of protection. Nevertheless, EPI strategies (with an initial catch-up phase) averted the most deaths per dose at the higher EIRs, although model uncertainty increased with EIR. At two infectious bites per person per annum, mass vaccination strategies substantially reduced transmission, leading to much greater health effects per dose, even at modest coverage. CONCLUSIONS In higher transmission settings, EPI strategies will be most efficient, but vaccination additional to the EPI in targeted low transmission settings, even at modest coverage, might be more efficient than national-level vaccination of infants. The feasibility and economics of mass vaccination, and the circumstances under which vaccination will avert epidemics, remain unclear. The approach of using an ensemble of models provides more secure conclusions than a single-model approach, and suggests greater confidence in predictions of health effects for lower transmission settings than for higher ones.
Collapse
Affiliation(s)
- Thomas Smith
- Swiss Tropical and Public Health Institute, Basel, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Maire N, Shillcutt SD, Walker DG, Tediosi F, Smith TA. Cost-effectiveness of the introduction of a pre-erythrocytic malaria vaccine into the expanded program on immunization in sub-Saharan Africa: analysis of uncertainties using a stochastic individual-based simulation model of Plasmodium falciparum malaria. VALUE IN HEALTH : THE JOURNAL OF THE INTERNATIONAL SOCIETY FOR PHARMACOECONOMICS AND OUTCOMES RESEARCH 2011; 14:1028-1038. [PMID: 22152171 DOI: 10.1016/j.jval.2011.06.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 06/10/2011] [Accepted: 06/13/2011] [Indexed: 05/31/2023]
Abstract
OBJECTIVE To evaluate the cost-effectiveness of introducing the RTS,S malaria vaccine into the Expanded Programme on Immunization (EPI) in Sub-Saharan Africa (SSA), the contributions of different sources of uncertainty, and the associated expected value of perfect information (EVPI). METHODS Vaccination was simulated in populations of 100,000 people at 10 different entomological inoculation rates (EIRs), using an existing stochastic model and a 10-year time horizon. Incremental cost-effectiveness ratios (ICERs) and EVPI were computed from weighted averages of outputs using two different assignments of the EIR distribution in 2007. Uncertainty was evaluated by resampling of epidemiological, vaccination, and health systems model parameters. RESULTS Health benefits were predicted consistently only at low transmission, and program costs always substantially exceeded case management savings. Optimal cost-effectiveness was at EIR of about 10 infectious bites per annum (ibpa). Main contributors to ICER uncertainty were uncertainty in transmission intensity, price per vaccine dose, decay rate of the vaccine effect, degree of homogeneity in host response, and some epidemiological model parameters. Other health system costs were unimportant. With a ceiling ratio of 207 international dollars per disability-adjusted life-year averted, 52.4% of parameterizations predicted cost-effectiveness in the primary analysis. CONCLUSIONS Cost-effectiveness of RTS,S will be maximal in low endemicity settings (EIR 2-20 ibpa). Widespread deployment of other transmission-reducing interventions will thus improve cost-effectiveness, suggesting a selective introduction strategy. EVPI is substantial. Accrual of up-to-date information on local endemicity to guide deployment decisions would be highly efficient.
Collapse
Affiliation(s)
- Nicolas Maire
- Swiss Tropical and Public Health Institute, Basel, Switzerland
| | | | | | | | | |
Collapse
|
36
|
Crowell V, Hardy D, Briët O, Chitnis N, Maire N, Smith T. Can we depend on case management to prevent re-establishment of P. falciparum malaria, after local interruption of transmission? Epidemics 2011; 4:1-8. [PMID: 22325009 DOI: 10.1016/j.epidem.2011.10.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 09/01/2011] [Accepted: 10/31/2011] [Indexed: 10/15/2022] Open
Abstract
Recent declines in malaria burden in many parts of the world have prompted consideration of how interruption of Plasmodium falciparum transmission could be maintained, if achieved, and notably whether large-scale vector control could be replaced with surveillance. This information is essential for elimination feasibility assessments and planning. The risk of re-establishment of transmission depends mainly on vectorial capacity (receptivity), likely to rebound once vector control is removed, the rate of importation of infections (vulnerability), the capacity to detect and treat infections and the level of immunity in infected individuals. Timely detection and removal of new infections is likely to be critical to prevent re-establishment of transmission. We assess, through mathematical modeling and simulation, which levels of case detection and treatment (case management) are required to prevent re-establishment of transmission of P. falciparum after local interruption of transmission has been achieved, in settings with varying receptivity and vulnerability. We find that, even at rather low levels of receptivity, case management alone cannot reliably prevent re-establishment of P. falciparum malaria transmission in the face of medium to high importation rates. Thus, if vector control is to be discontinued, preventing the importations by controlling transmission in source areas will generally be necessary for preventing reintroduction in such settings, and cannot be substituted by very high levels of case management coverage.
Collapse
Affiliation(s)
- Valerie Crowell
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland.
| | | | | | | | | | | |
Collapse
|
37
|
White MT, Conteh L, Cibulskis R, Ghani AC. Costs and cost-effectiveness of malaria control interventions--a systematic review. Malar J 2011; 10:337. [PMID: 22050911 PMCID: PMC3229472 DOI: 10.1186/1475-2875-10-337] [Citation(s) in RCA: 179] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 11/03/2011] [Indexed: 11/10/2022] Open
Abstract
Background The control and elimination of malaria requires expanded coverage of and access to effective malaria control interventions such as insecticide-treated nets (ITNs), indoor residual spraying (IRS), intermittent preventive treatment (IPT), diagnostic testing and appropriate treatment. Decisions on how to scale up the coverage of these interventions need to be based on evidence of programme effectiveness, equity and cost-effectiveness. Methods A systematic review of the published literature on the costs and cost-effectiveness of malaria interventions was undertaken. All costs and cost-effectiveness ratios were inflated to 2009 USD to allow comparison of the costs and benefits of several different interventions through various delivery channels, across different geographical regions and from varying costing perspectives. Results Fifty-five studies of the costs and forty three studies of the cost-effectiveness of malaria interventions were identified, 78% of which were undertaken in sub-Saharan Africa, 18% in Asia and 4% in South America. The median financial cost of protecting one person for one year was $2.20 (range $0.88-$9.54) for ITNs, $6.70 (range $2.22-$12.85) for IRS, $0.60 (range $0.48-$1.08) for IPT in infants, $4.03 (range $1.25-$11.80) for IPT in children, and $2.06 (range $0.47-$3.36) for IPT in pregnant women. The median financial cost of diagnosing a case of malaria was $4.32 (range $0.34-$9.34). The median financial cost of treating an episode of uncomplicated malaria was $5.84 (range $2.36-$23.65) and the median financial cost of treating an episode of severe malaria was $30.26 (range $15.64-$137.87). Economies of scale were observed in the implementation of ITNs, IRS and IPT, with lower unit costs reported in studies with larger numbers of beneficiaries. From a provider perspective, the median incremental cost effectiveness ratio per disability adjusted life year averted was $27 (range $8.15-$110) for ITNs, $143 (range $135-$150) for IRS, and $24 (range $1.08-$44.24) for IPT. Conclusions A transparent evidence base on the costs and cost-effectiveness of malaria control interventions is provided to inform rational resource allocation by donors and domestic health budgets and the selection of optimal packages of interventions by malaria control programmes.
Collapse
Affiliation(s)
- Michael T White
- MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Faculty of Medicine, Imperial College London, London, UK.
| | | | | | | |
Collapse
|
38
|
Gosling R, Okell L, Mosha J, Chandramohan D. The role of antimalarial treatment in the elimination of malaria. Clin Microbiol Infect 2011; 17:1617-23. [DOI: 10.1111/j.1469-0691.2011.03660.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
39
|
Ross A, Maire N, Sicuri E, Smith T, Conteh L. Determinants of the cost-effectiveness of intermittent preventive treatment for malaria in infants and children. PLoS One 2011; 6:e18391. [PMID: 21490967 PMCID: PMC3072385 DOI: 10.1371/journal.pone.0018391] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 02/28/2011] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Trials of intermittent preventive treatment in infants (IPTi) and children (IPTc) have shown promising results in reducing malaria episodes but with varying efficacy and cost-effectiveness. The effects of different intervention and setting characteristics are not well known. We simulate the effects of the different target age groups and delivery channels, seasonal or year-round delivery, transmission intensity, seasonality, proportions of malaria fevers treated and drug characteristics. METHODS We use a dynamic, individual-based simulation model of Plasmodium falciparum malaria epidemiology, antimalarial drug action and case management to simulate DALYs averted and the cost per DALY averted by IPTi and IPTc. IPT cost components were estimated from economic studies alongside trials. RESULTS IPTi and IPTc were predicted to be cost-effective in most of the scenarios modelled. The cost-effectiveness is driven by the impact on DALYs, particularly for IPTc, and the low costs, particularly for IPTi which uses the existing delivery strategy, EPI. Cost-effectiveness was predicted to decrease with low transmission, badly timed seasonal delivery in a seasonal setting, short-acting and more expensive drugs, high frequencies of drug resistance and high levels of treatment of malaria fevers. Seasonal delivery was more cost-effective in seasonal settings, and year-round in constant transmission settings. The difference was more pronounced for IPTc than IPTi due to the different proportions of fixed costs and also different assumed drug spacing during the transmission season. The number of DALYs averted was predicted to decrease as a target five-year age-band for IPTc was shifted from children under 5 years into older ages, except at low transmission intensities. CONCLUSIONS Modelling can extend the information available by predicting impact and cost-effectiveness for scenarios, for outcomes and for multiple strategies where, for practical reasons, trials cannot be carried out. Both IPTi and IPTc are generally cost-effective but could be rendered cost-ineffective by characteristics of the setting, drug or implementation.
Collapse
Affiliation(s)
- Amanda Ross
- Swiss Tropical and Public Health Institute, Basel, Switzerland.
| | | | | | | | | |
Collapse
|
40
|
Gatton ML, Cheng Q. Interrupting malaria transmission: quantifying the impact of interventions in regions of low to moderate transmission. PLoS One 2010; 5:e15149. [PMID: 21152042 PMCID: PMC2996295 DOI: 10.1371/journal.pone.0015149] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 10/26/2010] [Indexed: 11/19/2022] Open
Abstract
Malaria has been eliminated from over 40 countries with an additional 39 currently planning for, or committed to, elimination. Information on the likely impact of available interventions, and the required time, is urgently needed to help plan resource allocation. Mathematical modelling has been used to investigate the impact of various interventions; the strength of the conclusions is boosted when several models with differing formulation produce similar data. Here we predict by using an individual-based stochastic simulation model of seasonal Plasmodium falciparum transmission that transmission can be interrupted and parasite reintroductions controlled in villages of 1,000 individuals where the entomological inoculation rate is <7 infectious bites per person per year using chemotherapy and bed net strategies. Above this transmission intensity bed nets and symptomatic treatment alone were not sufficient to interrupt transmission and control the importation of malaria for at least 150 days. Our model results suggest that 1) stochastic events impact the likelihood of successfully interrupting transmission with large variability in the times required, 2) the relative reduction in morbidity caused by the interventions were age-group specific, changing over time, and 3) the post-intervention changes in morbidity were larger than the corresponding impact on transmission. These results generally agree with the conclusions from previously published models. However the model also predicted changes in parasite population structure as a result of improved treatment of symptomatic individuals; the survival probability of introduced parasites reduced leading to an increase in the prevalence of sub-patent infections in semi-immune individuals. This novel finding requires further investigation in the field because, if confirmed, such a change would have a negative impact on attempts to eliminate the disease from areas of moderate transmission.
Collapse
Affiliation(s)
- Michelle L Gatton
- Malaria Drug Resistance and Chemotherapy Laboratory, Queensland Institute of Medical Research, Brisbane, Queensland, Australia.
| | | |
Collapse
|
41
|
Ross A, Smith T. Interpreting malaria age-prevalence and incidence curves: a simulation study of the effects of different types of heterogeneity. Malar J 2010; 9:132. [PMID: 20478060 PMCID: PMC2888834 DOI: 10.1186/1475-2875-9-132] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Accepted: 05/17/2010] [Indexed: 11/18/2022] Open
Abstract
Background Individuals in a malaria endemic community differ from one another. Many of these differences, such as heterogeneities in transmission or treatment-seeking behaviour, affect malaria epidemiology. The different kinds of heterogeneity are likely to be correlated. Little is known about their impact on the shape of age-prevalence and incidence curves. In this study, the effects of heterogeneity in transmission, treatment-seeking and risk of co-morbidity were simulated. Methods Simple patterns of heterogeneity were incorporated into a comprehensive individual-based model of Plasmodium falciparum malaria epidemiology. The different types of heterogeneity were systematically simulated individually, and in independent and co-varying pairs. The effects on age-curves for parasite prevalence, uncomplicated and severe episodes, direct and indirect mortality and first-line treatments and hospital admissions were examined. Results Different heterogeneities affected different outcomes with large effects reserved for outcomes which are directly affected by the action of the heterogeneity rather than via feedback on acquired immunity or fever thresholds. Transmission heterogeneity affected the age-curves for all outcomes. The peak parasite prevalence was reduced and all age-incidence curves crossed those of the reference scenario with a lower incidence in younger children and higher in older age-groups. Heterogeneity in the probability of seeking treatment reduced the peak incidence of first-line treatment and hospital admissions. Heterogeneity in co-morbidity risk showed little overall effect, but high and low values cancelled out for outcomes directly affected by its action. Independently varying pairs of heterogeneities produced additive effects. More variable results were produced for co-varying heterogeneities, with striking differences compared to independent pairs for some outcomes which were affected by both heterogeneities individually. Conclusions Different kinds of heterogeneity both have different effects and affect different outcomes. Patterns of co-variation are also important. Alongside the absolute levels of different factors affecting age-curves, patterns of heterogeneity should be considered when parameterizing or validating models, interpreting data and inferring from one outcome to another.
Collapse
Affiliation(s)
- Amanda Ross
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland.
| | | |
Collapse
|
42
|
Tediosi F, Maire N, Penny M, Studer A, Smith TA. Simulation of the cost-effectiveness of malaria vaccines. Malar J 2009; 8:127. [PMID: 19505328 PMCID: PMC2701956 DOI: 10.1186/1475-2875-8-127] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Accepted: 06/08/2009] [Indexed: 11/20/2022] Open
Abstract
Background A wide range of possible malaria vaccines is being considered and there is a need to identify which vaccines should be prioritized for clinical development. An important element of the information needed for this prioritization is a prediction of the cost-effectiveness of potential vaccines in the transmission settings in which they are likely to be deployed. This analysis needs to consider a range of delivery modalities to ensure that clinical development plans can be aligned with the most appropriate deployment strategies. Methods The simulations are based on a previously published individual-based stochastic model for the natural history and epidemiology of Plasmodium falciparum malaria. Three different vaccine types: pre-erythrocytic vaccines (PEV), blood stage vaccines (BSV), mosquito-stage transmission-blocking vaccines (MSTBV), and combinations of these, are considered each delivered via a range of delivery modalities (Expanded Programme of Immunization – EPI-, EPI with booster, and mass vaccination combined with EPI). The cost-effectiveness ratios presented are calculated for four health outcomes, for assumed vaccine prices of US$ 2 or US$ 10 per dose, projected over a 10-year period. Results The simulations suggest that PEV will be more cost-effective in low transmission settings, while BSV at higher transmission settings. Combinations of BSV and PEV are more efficient than PEV, especially in moderate to high transmission settings, while compared to BSV they are more cost-effective in moderate to low transmission settings. Combinations of MSTBV and PEV or PEV and BSV improve the effectiveness and the cost-effectiveness compared to PEV and BSV alone only when applied with EPI and mass vaccinations. Adding booster doses to the EPI is unlikely to be a cost-effective alternative to delivering vaccines via the EPI for any vaccine, while mass vaccination improves effectiveness, especially in low transmission settings, and is often a more efficient alternative to the EPI. However, the costs of increasing the coverage of mass vaccination over 50% often exceed the benefits. Conclusion The simulations indicate malaria vaccines might be efficient malaria control interventions, and that both transmission setting and vaccine delivery modality are important to their cost-effectiveness. Alternative vaccine delivery modalities to the EPI may be more efficient than the EPI. Mass vaccination is predicted to provide substantial health benefits at low additional costs, although achieving high coverage rates can lead to substantial incremental costs.
Collapse
Affiliation(s)
- Fabrizio Tediosi
- Department of Public Health & Epidemiology, Swiss Tropical Institute, Basel, Switzerland.
| | | | | | | | | |
Collapse
|
43
|
Okell LC, Drakeley CJ, Bousema T, Whitty CJM, Ghani AC. Modelling the impact of artemisinin combination therapy and long-acting treatments on malaria transmission intensity. PLoS Med 2008; 5:e226; discussion e226. [PMID: 19067479 PMCID: PMC2586356 DOI: 10.1371/journal.pmed.0050226] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Accepted: 10/02/2008] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Artemisinin derivatives used in recently introduced combination therapies (ACTs) for Plasmodium falciparum malaria significantly lower patient infectiousness and have the potential to reduce population-level transmission of the parasite. With the increased interest in malaria elimination, understanding the impact on transmission of ACT and other antimalarial drugs with different pharmacodynamics becomes a key issue. This study estimates the reduction in transmission that may be achieved by introducing different types of treatment for symptomatic P. falciparum malaria in endemic areas. METHODS AND FINDINGS We developed a mathematical model to predict the potential impact on transmission outcomes of introducing ACT as first-line treatment for uncomplicated malaria in six areas of varying transmission intensity in Tanzania. We also estimated the impact that could be achieved by antimalarials with different efficacy, prophylactic time, and gametocytocidal effects. Rates of treatment, asymptomatic infection, and symptomatic infection in the six study areas were estimated using the model together with data from a cross-sectional survey of 5,667 individuals conducted prior to policy change from sulfadoxine-pyrimethamine to ACT. The effects of ACT and other drug types on gametocytaemia and infectiousness to mosquitoes were independently estimated from clinical trial data. Predicted percentage reductions in prevalence of infection and incidence of clinical episodes achieved by ACT were highest in the areas with low initial transmission. A 53% reduction in prevalence of infection was seen if 100% of current treatment was switched to ACT in the area where baseline slide-prevalence of parasitaemia was lowest (3.7%), compared to an 11% reduction in the highest-transmission setting (baseline slide prevalence = 57.1%). Estimated percentage reductions in incidence of clinical episodes were similar. The absolute size of the public health impact, however, was greater in the highest-transmission area, with 54 clinical episodes per 100 persons per year averted compared to five per 100 persons per year in the lowest-transmission area. High coverage was important. Reducing presumptive treatment through improved diagnosis substantially reduced the number of treatment courses required per clinical episode averted in the lower-transmission settings although there was some loss of overall impact on transmission. An efficacious antimalarial regimen with no specific gametocytocidal properties but a long prophylactic time was estimated to be more effective at reducing transmission than a short-acting ACT in the highest-transmission setting. CONCLUSIONS Our results suggest that ACTs have the potential for transmission reductions approaching those achieved by insecticide-treated nets in lower-transmission settings. ACT partner drugs and nonartemisinin regimens with longer prophylactic times could result in a larger impact in higher-transmission settings, although their long term benefit must be evaluated in relation to the risk of development of parasite resistance.
Collapse
Affiliation(s)
- Lucy C Okell
- Department of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK.
| | | | | | | | | |
Collapse
|
44
|
Penny MA, Maire N, Studer A, Schapira A, Smith TA. What should vaccine developers ask? Simulation of the effectiveness of malaria vaccines. PLoS One 2008; 3:e3193. [PMID: 18784833 PMCID: PMC2527129 DOI: 10.1371/journal.pone.0003193] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Accepted: 08/18/2008] [Indexed: 11/18/2022] Open
Abstract
Background A number of different malaria vaccine candidates are currently in pre-clinical or clinical development. Even though they vary greatly in their characteristics, it is unlikely that any of them will provide long-lasting sterilizing immunity against the malaria parasite. There is great uncertainty about what the minimal vaccine profile should be before registration is worthwhile; how to allocate resources between different candidates with different profiles; which candidates to consider combining; and what deployment strategies to consider. Methods and Findings We use previously published stochastic simulation models, calibrated against extensive epidemiological data, to make quantitative predictions of the population effects of malaria vaccines on malaria transmission, morbidity and mortality. The models are fitted and simulations obtained via volunteer computing. We consider a range of endemic malaria settings with deployment of vaccines via the Expanded program on immunization (EPI), with and without additional booster doses, and also via 5-yearly mass campaigns for a range of coverages. The simulation scenarios account for the dynamic effects of natural and vaccine induced immunity, for treatment of clinical episodes, and for births, ageing and deaths in the cohort. Simulated pre-erythrocytic vaccines have greatest benefits in low endemic settings (<EIR of 10.5) where between 12% and 14% of all deaths are averted when initial efficacy is 50%. In some high transmission scenarios (>EIR of 84) PEV may lead to increased incidence of severe disease in the long term, if efficacy is moderate to low (<70%). Blood stage vaccines (BSV) are most useful in high transmission settings, and are comparable to PEV for low transmission settings. Combinations of PEV and BSV generally perform little better than the best of the contributing components. A minimum half-life of protection of 2–3 years appears to be a precondition for substantial epidemiological effects. Herd immunity effects can be achieved with even moderately effective (>20%) malaria vaccines (either PEV or BSV) when deployed through mass campaigns targeting all age-groups as well as EPI, and especially if combined with highly efficacious transmission-blocking components. Conclusions We present for the first time a stochastic simulation approach to compare likely effects on morbidity, mortality and transmission of a range of malaria vaccines and vaccine combinations in realistic epidemiological and health systems settings. The results raise several issues for vaccine clinical development, in particular appropriateness of vaccine types for different transmission settings; the need to assess transmission to the vector and duration of protection; and the importance of deployment additional to the EPI, which again may make the issue of number of doses required more critical. To test the validity and robustness of our conclusions there is a need for further modeling (and, of course, field research) using alternative formulations for both natural and vaccine induced immunity. Evaluation of alternative deployment strategies outside EPI needs to consider the operational implications of different approaches to mass vaccination.
Collapse
Affiliation(s)
- Melissa A. Penny
- Swiss Tropical Institute, Basel, Switzerland
- Department of Public Health & Epidemiology, Swiss Tropical Institute, Basel, Switzerland
| | - Nicolas Maire
- Swiss Tropical Institute, Basel, Switzerland
- Department of Public Health & Epidemiology, Swiss Tropical Institute, Basel, Switzerland
| | - Alain Studer
- Swiss Tropical Institute, Basel, Switzerland
- Department of Public Health & Epidemiology, Swiss Tropical Institute, Basel, Switzerland
| | - Allan Schapira
- Swiss Tropical Institute, Basel, Switzerland
- Department of Public Health & Epidemiology, Swiss Tropical Institute, Basel, Switzerland
| | - Thomas A. Smith
- Swiss Tropical Institute, Basel, Switzerland
- Department of Public Health & Epidemiology, Swiss Tropical Institute, Basel, Switzerland
- * E-mail:
| |
Collapse
|
45
|
Abstract
Planning of the control of Plasmodium falciparum malaria leads to a need for models of malaria epidemiology that provide realistic quantitative prediction of likely epidemiological outcomes of a wide range of control strategies. Predictions of the effects of control often ignore medium- and long-term dynamics. The complexities of the Plasmodium life-cycle, and of within-host dynamics, limit the applicability of conventional deterministic malaria models. We use individual-based stochastic simulations of malaria epidemiology to predict the impacts of interventions on infection, morbidity, mortality, health services use and costs. Individual infections are simulated by stochastic series of parasite densities, and naturally acquired immunity acts by reducing densities. Morbidity and mortality risks, and infectiousness to vectors, depend on parasite densities. The simulated infections are nested within simulations of individuals in human populations, and linked to models of interventions and health systems. We use numerous field datasets to optimise parameter estimates. By using a volunteer computing system we obtain the enormous computational power required for model fitting, sensitivity analysis, and exploration of many different intervention strategies. The project thus provides a general platform for comparing, fitting, and evaluating different model structures, and for quantitative prediction of effects of different interventions and integrated control programmes.
Collapse
|
46
|
Smith T, Killeen GF, Maire N, Ross A, Molineaux L, Tediosi F, Hutton G, Utzinger J, Dietz K, Tanner M. Mathematical modeling of the impact of malaria vaccines on the clinical epidemiology and natural history of Plasmodium falciparum malaria: Overview. Am J Trop Med Hyg 2006; 75:1-10. [PMID: 16931810 DOI: 10.4269/ajtmh.2006.75.2_suppl.0750001] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
We report a major project to develop integrated mathematical models for predicting the epidemiologic and economic effects of malaria vaccines both at the individual and population level. The project has developed models of the within-host dynamics of Plasmodium falciparum that have been fitted to parasite density profiles from malaria therapy patients, and simulations of P. falciparum epidemiology fitted to field malariologic datasets from a large ensemble of settings across Africa. The models provide a unique platform for predicting both the short- and long-term effects of malaria vaccines on the burden of disease, allowing for the temporal dynamics of effects on immunity and transmission. We discuss how the models can be used to obtain robust cost-effectiveness estimates for a wide range of malaria vaccines and vaccination delivery strategies in different eco-epidemiologic settings. This paper outlines for a non-mathematical audience the approach we have taken and its underlying rationale.
Collapse
|
47
|
Ross A, Maire N, Molineaux L, Smith T. An epidemiologic model of severe morbidity and mortality caused by Plasmodium falciparum. Am J Trop Med Hyg 2006; 75:63-73. [PMID: 16931817 DOI: 10.4269/ajtmh.2006.75.63] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The intensity of Plasmodium falciparum transmission has multifarious and sometimes counter-intuitive effects on age-specific rates of severe morbidity and mortality in endemic areas. This has led to conflicting speculations about the likely impact of malaria control interventions. We propose a quantitative framework to reconcile the various apparently contradictory observations relating morbidity and mortality rates to malaria transmission. Our model considers two sub-categories of severe malaria episodes. These comprise episodes with extremely high parasite densities in hosts with little previous exposure, and acute malaria episodes accompanied by co-morbidity or other risk factors enhancing susceptibility. In addition to direct malaria mortality from severe malaria episodes, the model also considers the enhanced risk of indirect mortality following acute episodes accompanied by co-morbidity after the parasites have been cleared. We fit this model to summaries of field data from endemic areas of Africa, and show that it can account for the observed age- and exposure-specific patterns of pediatric severe malaria and malaria-associated mortality in children. This model will allow us to make predictions of the long-term impact of potential malaria interventions. Predictions for children will be more reliable than those for older people because there is a paucity of epidemiologic studies of adults and adolescents.
Collapse
Affiliation(s)
- Amanda Ross
- Swiss Tropical Institute, Basel, Switzerland.
| | | | | | | |
Collapse
|
48
|
Maire N, Tediosi F, Ross A, Smith T. Predictions of the epidemiologic impact of introducing a pre-erythrocytic vaccine into the expanded program on immunization in sub-Saharan Africa. Am J Trop Med Hyg 2006; 75:111-8. [PMID: 16931822 DOI: 10.4269/ajtmh.2006.75.111] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
We predict the effects of introduction of a pre-erythrocytic vaccine against Plasmodium falciparum into a malaria-endemic population in Africa. We use a stochastic simulation model that includes components of transmission, parasitology, and clinical epidemiology of malaria and was validated using the results of field trials of the RTS,S/AS02A vaccine. The results suggest that vaccines with efficacy similar to that of RTS,S/AS02A have a substantial impact on malaria morbidity and mortality during the first decade after their introduction, but have negligible effects on malaria transmission at levels of endemicity typical for sub-Saharan Africa. The main benefits result from prevention of morbidity and mortality in the first years of life. Vaccines with very short half-life or low efficacy may have little overall effect on incidence of severe malaria. A similar approach can be used to make predictions for other strategies for deployment of the vaccine and to other types of malaria vaccines and interventions.
Collapse
|
49
|
Tediosi F, Hutton G, Maire N, Smith TA, Ross A, Tanner M. PREDICTING THE COST-EFFECTIVENESS OF INTRODUCING A PRE-ERYTHROCYTIC MALARIA VACCINE INTO THE EXPANDED PROGRAM ON IMMUNIZATION IN TANZANIA. Am J Trop Med Hyg 2006; 75:131-43. [PMID: 16931824 DOI: 10.4269/ajtmh.2006.75.131] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
We model the cost-effectiveness of the introduction of a pre-erythrocytic malaria vaccine into the Expanded Program on Immunization. We use a dynamic stochastic simulation model of the epidemiology of Plasmodium falciparum in malaria-endemic areas and of case management in Tanzania. We consider a range of vaccine characteristics and a range of transmission settings. At low vaccine prices, the cost-effectiveness of such vaccines may be similar to that of other established preventative and curative interventions against malaria. The cost-effectiveness ratio increases rapidly and approximately linearly with vaccine cost per dose. The approach can be adopted for comparative analyses of the cost effectiveness of different vaccines and other intervention strategies.
Collapse
|