1
|
Pardy RD, Wallbank BA, Striepen B, Hunter CA. Immunity to Cryptosporidium: insights into principles of enteric responses to infection. Nat Rev Immunol 2024; 24:142-155. [PMID: 37697084 DOI: 10.1038/s41577-023-00932-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2023] [Indexed: 09/13/2023]
Abstract
Cryptosporidium parasites replicate within intestinal epithelial cells and are an important cause of diarrhoeal disease in young children and in patients with primary and acquired defects in T cell function. This Review of immune-mediated control of Cryptosporidium highlights advances in understanding how intestinal epithelial cells detect this infection, the induction of innate resistance and the processes required for activation of T cell responses that promote parasite control. The development of a genetic tool set to modify Cryptosporidium combined with tractable mouse models provide new opportunities to understand the principles that govern the interface between intestinal epithelial cells and the immune system that mediate resistance to enteric pathogens.
Collapse
Affiliation(s)
- Ryan D Pardy
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bethan A Wallbank
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Boris Striepen
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Christopher A Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Liu X, Deng L, Li W, Zhong Z, Zhou Z, Peng G. Construction of a recombinant food-grade Lactococcus lactis expressing P23 protein of Cryptosporidium parvum. Folia Microbiol (Praha) 2022; 67:625-631. [PMID: 35325408 DOI: 10.1007/s12223-021-00923-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 09/21/2021] [Indexed: 11/30/2022]
Abstract
Cryptosporidium parvum infects enterocytes in diverse vertebrates, including humans, and causes diarrheal illness. However, no effective drugs are available for this protozoan infection. The P23 protein of C. parvum is a protective antigen, considered a potential candidate for developing an effective vaccine against cryptosporidiosis. In this study, the complementary DNA (cDNA) of the p23 gene was subcloned to Escherichia coli DH5α, with one nucleotide difference. The constructed plasmid pNZ8149-P23 was transferred by electroporation to Lactococcus lactis NZ3900, and the recombinant L. lactis NZ3900/pNZ8149-P23 strain was screened in Elliker-medium by adding bromocresolpurple indicator. A 23-kDa protein was detected by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) after nisin induction in LM17 broth medium, suggesting that P23 protein was in the form of glycosylation. Simultaneously, an optimal induction time of 9 h was determined, and the density of OD600 = 2.7 was tested. Through western blot and indirect immunofluorescence (IIF) analysis, the immunocompetence of expressed P23 antigen was identified, and its location of release to the cell interior of recombinant L. lactis was manifested. The first report of a food-grade genetically engineered L. lactis strain expressing a P23 antigen of C. parvum is herein presented. This result provides a novel and safe utilization method of P23 against C. parvum infection.
Collapse
Affiliation(s)
- Xuehan Liu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China. .,College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Lei Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wei Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhijun Zhong
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ziyao Zhou
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guangneng Peng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
3
|
Jaskiewicz JJ, Tremblay JM, Tzipori S, Shoemaker CB. Identification and characterization of a new 34 kDa MORN motif-containing sporozoite surface-exposed protein, Cp-P34, unique to Cryptosporidium. Int J Parasitol 2021; 51:761-775. [PMID: 33774040 DOI: 10.1016/j.ijpara.2021.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 01/28/2021] [Indexed: 10/21/2022]
Abstract
Despite the public health impact of childhood diarrhea caused by Cryptosporidium, effective drugs and vaccines against this parasite are unavailable. Efforts to identify vaccine targets have focused on critical externally exposed virulence factors expressed in the parasite s invasive stages. However, no single surface antigen has yet been found that can elicit a significant protective immune response and it is likely that pooling multiple immune targets will be necessary. Discovery of surface proteins on Cryptosporidium sporozoites is therefore vital to this effort to develop a multi-antigenic vaccine. In this study we applied a novel single-domain camelid antibody (VHH) selection method to identify immunogenic proteins expressed on the surface of Cryptosporidium parvum sporozoites. By this approach, VHHs were identified that recognize two sporozoite surface-exposed antigens, the previously identified gp900 and an unrecognized immunogenic protein, Cp-P34. This Cp-P34 antigen, which contains multiple Membrane Occupation and Recognition Nexus (MORN) repeats, is found in excysted sporozoites as well as in the parasite s intracellular stages. Cp-P34 appears to accumulate inside the parasite and transiently appears on the surface of sporozoites to be shed in trails. Identical or nearly identical orthologs of Cp-P34 are found in the Cryptosporidium hominis and Cryptosporidium tyzzeri genomes. Except for the conserved MORN motifs, the Cp-P34 gene shares no significant homology with genes of other protozoans and thus appears to be unique to Cryptosporidium spp. Cp-P34 elicits immune responses in naturally exposed alpacas and warrants further investigation as a potential vaccine candidate.
Collapse
Affiliation(s)
- Justyna J Jaskiewicz
- Department of Infectious Disease and Global Health, Tufts Cummings School of Veterinary Medicine, North Grafton, Massachusetts, USA
| | - Jacqueline M Tremblay
- Department of Infectious Disease and Global Health, Tufts Cummings School of Veterinary Medicine, North Grafton, Massachusetts, USA
| | - Saul Tzipori
- Department of Infectious Disease and Global Health, Tufts Cummings School of Veterinary Medicine, North Grafton, Massachusetts, USA
| | - Charles B Shoemaker
- Department of Infectious Disease and Global Health, Tufts Cummings School of Veterinary Medicine, North Grafton, Massachusetts, USA.
| |
Collapse
|
4
|
Zaheer T, Imran M, Abbas RZ, Zaheer I, Malik MA. Avian cryptosporidiosis and its zoonotic significance in Asia. WORLD POULTRY SCI J 2021. [DOI: 10.1080/00439339.2020.1866961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Tean Zaheer
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Imran
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan
| | - Rao Zahid Abbas
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan
| | - Iqra Zaheer
- Department of Pathology, University of Agriculture, Faisalabad, Pakistan
| | | |
Collapse
|
5
|
Robertson LJ, Johansen ØH, Kifleyohannes T, Efunshile AM, Terefe G. Cryptosporidium Infections in Africa-How Important Is Zoonotic Transmission? A Review of the Evidence. Front Vet Sci 2020; 7:575881. [PMID: 33195574 PMCID: PMC7580383 DOI: 10.3389/fvets.2020.575881] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/27/2020] [Indexed: 01/25/2023] Open
Abstract
Cryptosporidium, a protozoan parasite in the phylum Apicomplexa, is the etiological agent of cryptosporidiosis, an intestinal infection characterized by profuse watery diarrhea. Over 30 species of Cryptosporidium are recognized, some host specific whereas others infect a broader host range. Cryptosporidium hominis and Cryptosporidium parvum are the species most commonly associated with human infection; C. hominis is largely associated only with human infections, but C. parvum is also associated with infection in animals, especially young ruminants. In some regions, cryptosporidiosis is a serious veterinary problem, particularly for calves, and lambs. Many outbreaks of human cryptosporidiosis have been associated with zoonotic transmission following contact with infected animals. In Africa, where cryptosporidiosis is a major contributor to pediatric morbidity and mortality, evidence suggests transmission is principally anthroponotic. Given the frequent close contact between humans and animals in Africa, the apparent predominance of human-to-human transmission is both interesting and puzzling. In this article, after a brief "text book" introduction to the parasite, we consider in separate sections the different aspects of relevance to Cryptosporidium transmission in African countries, describing different aspects of the various species and subtypes in human and animal infections, considering livestock management practices in different African countries, and looking for any characteristic "hot spots" where zoonotic transmission has apparently occurred. Studies where transmission networks have been investigated are particularly relevant. Finally, in a separate section, we try to gather these different strands of evidence together in order to assess the reasons behind the apparent predominance of anthroponotic transmission in Africa. Reviewing the available evidence provides an opportunity to re-think transmission pathways, not only in Africa but also elsewhere, and also to pose questions. Does the predominance of human-to-human transmission in Africa reflect a relative absence of zoonotic C. parvum in African livestock? Are Africans less susceptible to zoonotic Cryptosporidium infection, perhaps resulting from early immunostimulation by C. hominis or due to inherent genetic traits? Is the African environment-in all its variety-simply more detrimental to oocyst survival? Will the so-called hypertransmissible subtypes, currently relatively rare in Africa, be introduced from Europe or elsewhere, and, if so, will they fade out or establish and spread? Our intention with this manuscript is not only to summarize and consolidate diverse data, thereby providing an overview of data gaps, but also to provide food for thought regarding transmission of a parasite that continues to have a considerable impact on both human and animal health.
Collapse
Affiliation(s)
- Lucy J. Robertson
- Parasitology Laboratory, Department of Paraclinical Science, Faculty of Veterinary Medicine Norwegian University of Life Sciences, Oslo, Norway
| | - Øystein Haarklau Johansen
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Microbiology, Vestfold Hospital Trust, Tønsberg, Norway
| | - Tsegabirhan Kifleyohannes
- Parasitology Laboratory, Department of Paraclinical Science, Faculty of Veterinary Medicine Norwegian University of Life Sciences, Oslo, Norway
- Department of Veterinary Basic and Diagnostic Sciences, College of Veterinary Medicine, Mekelle University, Mekelle, Ethiopia
| | - Akinwale Michael Efunshile
- Department of Medical Microbiology, Alex Ekwueme Federal University Teaching Hospital, Abakaliki, Nigeria
- Department of Medical Microbiology, Ebonyi State University, Abakaliki, Nigeria
| | - Getachew Terefe
- College of Veterinary Medicine and Agriculture, Department of Pathology and Parasitology, Addis Ababa University, Bishoftu, Ethiopia
| |
Collapse
|
6
|
El-Alfy ES, Nishikawa Y. Cryptosporidium species and cryptosporidiosis in Japan: a literature review and insights into the role played by animals in its transmission. J Vet Med Sci 2020; 82:1051-1067. [PMID: 32536636 PMCID: PMC7468066 DOI: 10.1292/jvms.20-0151] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Cryptosporidium species infect domestic animals, livestock, and humans.
These protozoan parasites are frequently reported as major environmental contaminants in
many countries despite their differing climatic, socioeconomic, and demographic factors.
This review focuses on the research findings that relate to
Cryptosporidium epidemiology, genetic diversity, and associated risk
factors relating to animals, contaminated water sources, and humans in Japan. Adequate
knowledge of these factors is essential for understanding the economic and public health
importance of cryptosporidiosis in Japan so that effective control strategies against it
are implemented. Cryptosporidium infections are highly prevalent in
animals in Japan. Among the different animal species, cattle infections stand out because
of their economic importance and zoonotic potential. Living circumstances in Japan
restrain Cryptosporidium transmission between humans, but there is
evidence to suggest that animals, especially those in close contact with humans, can be
potential sources of human infections. Water sampling studies have provided clues about
how environmental contamination with Cryptosporidium oocysts can cause
infections in livestock and wild animals. There is some evidence of person-to-person
transmission of cryptosporidiosis, but only occasionally and under certain circumstances.
By identifying the major role played by animals in Cryptosporidium
transmission to people in Japan, we highlight the urgent need for disease control against
this pathogen.
Collapse
Affiliation(s)
- El-Sayed El-Alfy
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan.,Department of Parasitology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Yoshifumi Nishikawa
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| |
Collapse
|
7
|
Innes EA, Chalmers RM, Wells B, Pawlowic MC. A One Health Approach to Tackle Cryptosporidiosis. Trends Parasitol 2020; 36:290-303. [PMID: 31983609 PMCID: PMC7106497 DOI: 10.1016/j.pt.2019.12.016] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/03/2019] [Accepted: 12/25/2019] [Indexed: 12/16/2022]
Abstract
Cryptosporidiosis is a significant diarrhoeal disease in both people and animals across the world and is caused by several species of the protozoan parasite Cryptosporidium. Recent research has highlighted the longer-term consequences of the disease for malnourished children, involving growth stunting and cognitive deficits, and significant growth and production losses for livestock. There are no vaccines currently available to prevent the disease and few treatment options in either humans or animals, which has been a significant limiting factor in disease control to date. A One Health approach to tackle zoonotic cryptosporidiosis looking at new advances in veterinary, public, and environmental health research may offer several advantages and new options to help control the disease.
Collapse
Affiliation(s)
- Elisabeth A Innes
- Moredun Research Institute, Pentlands Science Park, Edinburgh EH26 OPZ, UK.
| | - Rachel M Chalmers
- National Cryptosporidium Reference Unit, Public Health Wales, Microbiology and Health Protection, Singleton Hospital, Swansea SA2 8QA, UK; Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, UK
| | - Beth Wells
- Moredun Research Institute, Pentlands Science Park, Edinburgh EH26 OPZ, UK
| | - Mattie C Pawlowic
- Biological Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, DD1 5EH, UK
| |
Collapse
|
8
|
Steiner KL, Kabir M, Priest JW, Hossain B, Gilchrist CA, Cook H, Ma JZ, Korpe PS, Ahmed T, Faruque ASG, Haque R, Petri WA. Fecal Immunoglobulin A Against a Sporozoite Antigen at 12 Months Is Associated With Delayed Time to Subsequent Cryptosporidiosis in Urban Bangladesh: A Prospective Cohort Study. Clin Infect Dis 2020; 70:323-326. [PMID: 31131855 PMCID: PMC6938969 DOI: 10.1093/cid/ciz430] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 05/24/2019] [Indexed: 11/20/2022] Open
Abstract
In this prospective cohort study of Bangladeshi children, greater fecal immunoglobulin A, but not plasma immunoglobulin G, directed against the Cryptosporidium sporozoite-expressed antigen Cp23 at 12 months of age was associated with delayed time to subsequent cryptosporidiosis. This finding suggests a protective role for mucosal antibody-mediated immunity in naturally exposed children.
Collapse
Affiliation(s)
- Kevin L Steiner
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville
| | | | - Jeffrey W Priest
- Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | - Carol A Gilchrist
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville
| | - Heather Cook
- Department of Statistics, School of Medicine, University of Virginia, Charlottesville
| | - Jennie Z Ma
- Division of Biostatistics, Department of Public Health Sciences, School of Medicine, University of Virginia, Charlottesville
| | - Poonum S Korpe
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | | | | | | | - William A Petri
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville,Correspondence: W. A. Petri, Jr, University of Virginia, Department of Medicine, PO Box 801340, Charlottesville, VA 22908-1340 ()
| |
Collapse
|
9
|
Lemieux MW, Sonzogni-Desautels K, Ndao M. Lessons Learned from Protective Immune Responses to Optimize Vaccines against Cryptosporidiosis. Pathogens 2017; 7:pathogens7010002. [PMID: 29295550 PMCID: PMC5874728 DOI: 10.3390/pathogens7010002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 12/16/2017] [Accepted: 12/22/2017] [Indexed: 02/06/2023] Open
Abstract
In developing countries, cryptosporidiosis causes moderate-to-severe diarrhea and kills thousands of infants and toddlers annually. Drinking and recreational water contaminated with Cryptosporidium spp. oocysts has led to waterborne outbreaks in developed countries. A competent immune system is necessary to clear this parasitic infection. A better understanding of the immune responses required to prevent or limit infection by this protozoan parasite is the cornerstone of development of an effective vaccine. In this light, lessons learned from previously developed vaccines against Cryptosporidium spp. are at the foundation for development of better next-generation vaccines. In this review, we summarize the immune responses elicited by naturally and experimentally-induced Cryptosporidium spp. infection and by several experimental vaccines in various animal models. Our aim is to increase awareness about the immune responses that underlie protection against cryptosporidiosis and to encourage promotion of these immune responses as a key strategy for vaccine development. Innate and mucosal immunity will be addressed as well as adaptive immunity, with an emphasis on the balance between TH1/TH2 immune responses. Development of more effective vaccines against cryptosporidiosis is needed to prevent Cryptosporidium spp.-related deaths in infants and toddlers in developing countries.
Collapse
Affiliation(s)
- Maxime W Lemieux
- National Reference Centre for Parasitology, Research Institute of the McGill University Health Centre, McGill University, Montreal, QC H4A 3J1, Canada.
- Department of Medicine, Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, QC H4A 3J1, Canada.
| | - Karine Sonzogni-Desautels
- National Reference Centre for Parasitology, Research Institute of the McGill University Health Centre, McGill University, Montreal, QC H4A 3J1, Canada.
- Faculty of Agricultural and Environmental Sciences, Institute of Parasitology, McGill University, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada.
| | - Momar Ndao
- National Reference Centre for Parasitology, Research Institute of the McGill University Health Centre, McGill University, Montreal, QC H4A 3J1, Canada.
- Department of Medicine, Division of Infectious Diseases, Faculty of Medicine, McGill University, Montreal, QC H4A 3J1, Canada.
| |
Collapse
|
10
|
Haserick JR, Klein JA, Costello CE, Samuelson J. Cryptosporidium parvum vaccine candidates are incompletely modified with O-linked-N-acetylgalactosamine or contain N-terminal N-myristate and S-palmitate. PLoS One 2017; 12:e0182395. [PMID: 28792526 PMCID: PMC5549699 DOI: 10.1371/journal.pone.0182395] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 07/17/2017] [Indexed: 12/29/2022] Open
Abstract
Cryptosporidium parvum (studied here) and Cryptosporidium hominis are important causes of diarrhea in infants and immunosuppressed persons. C. parvum vaccine candidates, which are on the surface of sporozoites, include glycoproteins with Ser- and Thr-rich domains (Gp15, Gp40, and Gp900) and a low complexity, acidic protein (Cp23). Here we used mass spectrometry to determine that O-linked GalNAc is present in dense arrays on a glycopeptide with consecutive Ser derived from Gp40 and on glycopeptides with consecutive Thr derived from Gp20, a novel C. parvum glycoprotein with a formula weight of ~20 kDa. In contrast, the occupied Ser or Thr residues in glycopeptides from Gp15 and Gp900 are isolated from one another. Gly at the N-terminus of Cp23 is N-myristoylated, while Cys, the second amino acid, is S-palmitoylated. In summary, C. parvum O-GalNAc transferases, which are homologs of host enzymes, densely modify arrays of Ser or Thr, as well as isolated Ser and Thr residues on C. parvum vaccine candidates. The N-terminus of an immunodominant antigen has lipid modifications similar to those of host cells and other apicomplexan parasites. Mass spectrometric demonstration here of glycopeptides with O-glycans complements previous identification C. parvum O-GalNAc transferases, lectin binding to vaccine candidates, and human and mouse antibodies binding to glycopeptides. The significance of these post-translational modifications is discussed with regards to the function of these proteins and the design of serological tests and vaccines.
Collapse
Affiliation(s)
- John R. Haserick
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts, United States of America
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Joshua A. Klein
- Program for Bioinformatics, Boston University, Boston, Massachusetts, United States of America
| | - Catherine E. Costello
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - John Samuelson
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
11
|
Murugesan M, Ganesan SK, Ajjampur SS. Cryptosporidiosis in children in the Indian subcontinent. Trop Parasitol 2017; 7:18-28. [PMID: 28459011 PMCID: PMC5369269 DOI: 10.4103/tp.tp_2_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cryptosporidiosis is a leading cause of diarrheal disease among children under two in developing countries. Previous estimates have shown a high burden of cryptosporidial diarrhea in children from Sub-Saharan Africa and South Asia. Asymptomatic cryptosporidial infections which go undetected and untreated have been shown to result in significant malnutrition. In this review, we carried out a literature search of studies published on cryptosporidiosis in children in the Indian subcontinent from 1983 to 2016. Of the 154 publications identified, 54 were included for final analysis with both hospital-based and community-based studies. There were wide variations in reported prevalence rates from hospital studies and highlight the need to be carry out these studies with uniform sampling and molecular tools for detection, especially in countries with a dearth of information. Community-based studies, however, showed similarities in spite of differences in when (the late 1990s up until recently) and where (South India or Bangladesh) they were conducted. When more sensitive detection methods were used, cryptosporidial diarrhea accounted for 7%–9% of all diarrhea episodes and 20%–30% of children in these cohorts experienced at least one cryptosporidial diarrheal episode. High rates of asymptomatic infections with increased detection by serology and multiple infections (symptomatic and asymptomatic) were also documented in all cohorts. This overview brings to light the high burden of disease associated with cryptosporidiosis in children in the subcontinent and the gaps in knowledge to be addressed.
Collapse
Affiliation(s)
- Malathi Murugesan
- Division of Gastrointestinal Sciences, Wellcome Trust Research Laboratory, Christian Medical College, Vellore, Tamil Nadu, India
| | - Santhosh Kumar Ganesan
- Division of Gastrointestinal Sciences, Wellcome Trust Research Laboratory, Christian Medical College, Vellore, Tamil Nadu, India
| | - Sitara Sr Ajjampur
- Division of Gastrointestinal Sciences, Wellcome Trust Research Laboratory, Christian Medical College, Vellore, Tamil Nadu, India
| |
Collapse
|
12
|
Sow SO, Muhsen K, Nasrin D, Blackwelder WC, Wu Y, Farag TH, Panchalingam S, Sur D, Zaidi AKM, Faruque ASG, Saha D, Adegbola R, Alonso PL, Breiman RF, Bassat Q, Tamboura B, Sanogo D, Onwuchekwa U, Manna B, Ramamurthy T, Kanungo S, Ahmed S, Qureshi S, Quadri F, Hossain A, Das SK, Antonio M, Hossain MJ, Mandomando I, Nhampossa T, Acácio S, Omore R, Oundo JO, Ochieng JB, Mintz ED, O’Reilly CE, Berkeley LY, Livio S, Tennant SM, Sommerfelt H, Nataro JP, Ziv-Baran T, Robins-Browne RM, Mishcherkin V, Zhang J, Liu J, Houpt ER, Kotloff KL, Levine MM. The Burden of Cryptosporidium Diarrheal Disease among Children < 24 Months of Age in Moderate/High Mortality Regions of Sub-Saharan Africa and South Asia, Utilizing Data from the Global Enteric Multicenter Study (GEMS). PLoS Negl Trop Dis 2016; 10:e0004729. [PMID: 27219054 PMCID: PMC4878811 DOI: 10.1371/journal.pntd.0004729] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 05/02/2016] [Indexed: 11/18/2022] Open
Abstract
Background The importance of Cryptosporidium as a pediatric enteropathogen in developing countries is recognized. Methods Data from the Global Enteric Multicenter Study (GEMS), a 3-year, 7-site, case-control study of moderate-to-severe diarrhea (MSD) and GEMS-1A (1-year study of MSD and less-severe diarrhea [LSD]) were analyzed. Stools from 12,110 MSD and 3,174 LSD cases among children aged <60 months and from 21,527 randomly-selected controls matched by age, sex and community were immunoassay-tested for Cryptosporidium. Species of a subset of Cryptosporidium-positive specimens were identified by PCR; GP60 sequencing identified anthroponotic C. parvum. Combined annual Cryptosporidium-attributable diarrhea incidences among children aged <24 months for African and Asian GEMS sites were extrapolated to sub-Saharan Africa and South Asian regions to estimate region-wide MSD and LSD burdens. Attributable and excess mortality due to Cryptosporidium diarrhea were estimated. Findings Cryptosporidium was significantly associated with MSD and LSD below age 24 months. Among Cryptosporidium-positive MSD cases, C. hominis was detected in 77.8% (95% CI, 73.0%-81.9%) and C. parvum in 9.9% (95% CI, 7.1%-13.6%); 92% of C. parvum tested were anthroponotic genotypes. Annual Cryptosporidium-attributable MSD incidence was 3.48 (95% CI, 2.27–4.67) and 3.18 (95% CI, 1.85–4.52) per 100 child-years in African and Asian infants, respectively, and 1.41 (95% CI, 0.73–2.08) and 1.36 (95% CI, 0.66–2.05) per 100 child-years in toddlers. Corresponding Cryptosporidium-attributable LSD incidences per 100 child-years were 2.52 (95% CI, 0.33–5.01) and 4.88 (95% CI, 0.82–8.92) in infants and 4.04 (95% CI, 0.56–7.51) and 4.71 (95% CI, 0.24–9.18) in toddlers. We estimate 2.9 and 4.7 million Cryptosporidium-attributable cases annually in children aged <24 months in the sub-Saharan Africa and India/Pakistan/Bangladesh/Nepal/Afghanistan regions, respectively, and ~202,000 Cryptosporidium-attributable deaths (regions combined). ~59,000 excess deaths occurred among Cryptosporidium-attributable diarrhea cases over expected if cases had been Cryptosporidium-negative. Conclusions The enormous African/Asian Cryptosporidium disease burden warrants investments to develop vaccines, diagnostics and therapies. Cryptosporidium is a protozoan that causes diarrhea and malnutrition in young children in developing countries, and is associated with diarrhea cases and outbreaks in developed countries. To date, limited information exists on the burden of Cryptosporidium diarrheal disease in sub-Saharan Africa and South Asia, where most diarrheal disease deaths occur. We estimated the burden of Cryptosporidium-diarrhea and associated deaths in these regions using data from the Global Enteric Multicenter Study (GEMS). Cryptosporidium was associated with diarrhea mainly in children aged <24 months. Infections began in the first few months of life but clinical episodes of Cryptosporidium-associated diarrhea illness peaked at age 6–11 months. The annual number of Cryptosporidium-attributable diarrhea episodes was estimated at 2.9 and 4.7 million in children aged <24 months in sub-Saharan Africa and in the India/Pakistan/Bangladesh/Afghanistan/Nepal region of South Asia, respectively. In both regions combined, Cryptosporidium is estimated to contribute to approximately 202,000 deaths per year, and to ~59,000 more deaths in Cryptosporidium-attributable cases than if those cases had been negative for Cryptosporidium. Our study highlights the enormous burden attributable to Cryptosporidium in Africa and Asia, which underscores the need for developing vaccines and treatments to reduce this burden.
Collapse
Affiliation(s)
- Samba O. Sow
- Centre pour le Développement des Vaccins, Bamako, Mali
| | - Khitam Muhsen
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Dilruba Nasrin
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - William C. Blackwelder
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Yukun Wu
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Emergent Biosolutions, Gaithersburg, Maryland, United States of America
| | - Tamer H. Farag
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Sandra Panchalingam
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Dipika Sur
- National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Anita K. M. Zaidi
- Department of Paediatrics and Child Health, the Aga Khan University, Karachi, Pakistan
| | - Abu S. G. Faruque
- International Centre for Diarrhoeal Disease Research, Mohakhali, Dhaka, Bangladesh
| | - Debasish Saha
- Medical Research Council (United Kingdom) Unit, Fajara, Gambia
- GSK Vaccines, Wavre, Belgium
| | - Richard Adegbola
- Medical Research Council (United Kingdom) Unit, Fajara, Gambia
- GSK Vaccines, Wavre, Belgium
| | - Pedro L. Alonso
- Centro de Investigação em Saúde da Manhiça, Maputo, Mozambique
- Instituto Nacional de Saúde, Ministério de Saúde, Maputo, Mozambique
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic—Universitat de Barcelona, Barcelona, Spain
| | - Robert F. Breiman
- Global Disease Detection Division, Kenya Office of the US Centers for Disease Control and Prevention, Nairobi, Kenya
| | - Quique Bassat
- Centro de Investigação em Saúde da Manhiça, Maputo, Mozambique
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic—Universitat de Barcelona, Barcelona, Spain
| | | | - Doh Sanogo
- Centre pour le Développement des Vaccins, Bamako, Mali
| | | | - Byomkesh Manna
- National Institute of Cholera and Enteric Diseases, Kolkata, India
| | | | - Suman Kanungo
- National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Shahnawaz Ahmed
- International Centre for Diarrhoeal Disease Research, Mohakhali, Dhaka, Bangladesh
| | - Shahida Qureshi
- Department of Paediatrics and Child Health, the Aga Khan University, Karachi, Pakistan
| | - Farheen Quadri
- Department of Paediatrics and Child Health, the Aga Khan University, Karachi, Pakistan
| | - Anowar Hossain
- International Centre for Diarrhoeal Disease Research, Mohakhali, Dhaka, Bangladesh
| | - Sumon K. Das
- International Centre for Diarrhoeal Disease Research, Mohakhali, Dhaka, Bangladesh
| | - Martin Antonio
- Medical Research Council (United Kingdom) Unit, Fajara, Gambia
| | | | - Inacio Mandomando
- Centro de Investigação em Saúde da Manhiça, Maputo, Mozambique
- Instituto Nacional de Saúde, Ministério de Saúde, Maputo, Mozambique
| | - Tacilta Nhampossa
- Centro de Investigação em Saúde da Manhiça, Maputo, Mozambique
- Instituto Nacional de Saúde, Ministério de Saúde, Maputo, Mozambique
| | - Sozinho Acácio
- Centro de Investigação em Saúde da Manhiça, Maputo, Mozambique
- Instituto Nacional de Saúde, Ministério de Saúde, Maputo, Mozambique
| | - Richard Omore
- Kenya Medical Research Institute/Centers for Disease Control and Prevention, Kisumu, Kenya
| | - Joseph O. Oundo
- Kenya Medical Research Institute/Centers for Disease Control and Prevention, Kisumu, Kenya
| | - John B. Ochieng
- Kenya Medical Research Institute/Centers for Disease Control and Prevention, Kisumu, Kenya
| | - Eric D. Mintz
- Division of Foodborne, Waterborne and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Ciara E. O’Reilly
- Division of Foodborne, Waterborne and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Lynette Y. Berkeley
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Sofie Livio
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Sharon M. Tennant
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Halvor Sommerfelt
- Centre of Intervention Science in Maternal and Child Health, Centre for International Health, University of Bergen, Bergen, and Department of International Public Health, Norwegian Institute of Public Health, Oslo, Norway
| | - James P. Nataro
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Tomer Ziv-Baran
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Israel
| | - Roy M. Robins-Browne
- Department of Microbiology and Immunology, The University of Melbourne, Murdoch Children’s Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Vladimir Mishcherkin
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Jixian Zhang
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
| | - Jie Liu
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
| | - Eric R. Houpt
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
| | - Karen L. Kotloff
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Myron M. Levine
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
13
|
Yang Y, Xue X, Yang Y, Chen X, Du A. Efficacy of a potential DNA vaccine encoding Cryptosporidium baileyi rhomboid protein against homologous challenge in chickens. Vet Parasitol 2016; 225:5-11. [PMID: 27369569 DOI: 10.1016/j.vetpar.2016.05.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 04/09/2016] [Accepted: 05/17/2016] [Indexed: 11/26/2022]
Abstract
The parasite Cryptosporidium baileyi can infect the larynx, trachea, bursa and cloaca of poultry, causing high mortality during severe infection and leading to substantial economic losses of the poultry industry. The rhomboid protein is very important in Cryptosporidium infection. In this study, a nucleic acid based vaccine candidate pEGFP-CbROM was constructed. After orally challenging with C. baileyi oocysts, the corresponding immune responses induced were analyzed and the immunoprotective effect evaluated in chickens. Obtained results revealed that this nucleic acid based vaccine could induce antibody responses and peripheral blood T lymphocytes proliferation significantly (P<0.05), while the peripheral blood B lymphocyte proliferation increased significantly (P<0.05) only at a high dose of 100μg of pEGFP-CbROM, compared with the PBS control group. After C. baileyi infection, the duration of oocysts shedding was shortened by 2days in the 100μg pEGFP-CbROM group, and the rate of reduction could reach to around 71.3%. While no significant difference in body weight gain was observed among the immunized groups (P>0.05), the differences between the immunized and the non-immunized groups were found to be significant (P<0.05). Our data provides a useful basis for further work in cryptosporidiosis prevention and treatment.
Collapse
Affiliation(s)
- Yimin Yang
- Institute of Preventive Veterinary Medicine & Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xue Xue
- Institute of Preventive Veterinary Medicine & Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yi Yang
- Institute of Preventive Veterinary Medicine & Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xueqiu Chen
- Institute of Preventive Veterinary Medicine & Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Aifang Du
- Institute of Preventive Veterinary Medicine & Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
14
|
Ludington JG, Ward HD. Systemic and Mucosal Immune Responses to Cryptosporidium-Vaccine Development. CURRENT TROPICAL MEDICINE REPORTS 2015; 2:171-180. [PMID: 26279971 PMCID: PMC4535728 DOI: 10.1007/s40475-015-0054-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Cryptosporidium spp is a major cause of diarrheal disease worldwide, particularly in malnourished children and untreated AIDS patients in developing countries in whom it can cause severe, chronic and debilitating disease. Unfortunately, there is no consistently effective drug for these vulnerable populations and no vaccine, partly due to a limited understanding of both the parasite and the host immune response. In this review, we will discuss our current understanding of the systemic and mucosal immune responses to Cryptosporidium infection, discuss the feasibility of developing a Cryptosporidium vaccine and evaluate recent advances in Cryptosporidium vaccine development strategies.
Collapse
Affiliation(s)
- Jacob G. Ludington
- Tufts University Sackler School of Graduate Biomedical Sciences and Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center
| | - Honorine D. Ward
- Tufts University Sackler School of Graduate Biomedical Sciences and Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center
| |
Collapse
|
15
|
Lazarus RP, Ajjampur SSR, Sarkar R, Geetha JC, Prabakaran AD, Velusamy V, Naumova EN, Ward HD, Kang G. Serum Anti-Cryptosporidial gp15 Antibodies in Mothers and Children Less than 2 Years of Age in India. Am J Trop Med Hyg 2015; 93:931-938. [PMID: 26304924 PMCID: PMC4703283 DOI: 10.4269/ajtmh.15-0044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 06/22/2015] [Indexed: 11/27/2022] Open
Abstract
Little is known about the type and longevity of the humoral response to cryptosporidial infections in developing countries. We evaluated serum antibody response to Cryptosporidium gp15 in 150 sets of maternal, preweaning and postinfection/end-of-follow-up sera from children followed up to 2 years of age to determine the influence of maternal and preweaning serological status on childhood cryptosporidiosis. Fifty two percent (N = 78) of mothers and 20% (N = 30) of children were seropositive preweaning. However, most positive preweaning samples from children were collected early in life indicating transplacental transfer and subsequent rapid waning of antibodies. Although 62% (N = 94) of children had a parasitologically confirmed cryptosporidial infection (detected by stool polymerase chain reaction) during the follow-up, only 54% (N = 51) of children were seropositive postinfection. Given there were striking differences in seropositivity depending on when the sample was collected, even though Cryptosporidium was detected in the stool of the majority of the children, this study indicates that antibodies wane rapidly. During follow-up, the acquisition or severity of cryptosporidial infections was not influenced by maternal (P = 0.331 and 0.720, respectively) as well as the preweaning serological status of the child (P = 0.076 and 0.196, respectively).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Gagandeep Kang
- *Address correspondence to Gagandeep Kang, Division of Gastrointestinal Sciences, Christian Medical College, Vellore 632004, Tamil Nadu, India. E-mail:
| |
Collapse
|
16
|
Zhang L, Fu Y, Jing W, Xu Q, Zhao W, Feng M, Tachibana H, Sui G, Cheng X. Rapid microfluidic immunoassay for surveillance and diagnosis of Cryptosporidium infection in human immunodeficiency virus-infected patients. BIOMICROFLUIDICS 2015; 9:024114. [PMID: 25945140 PMCID: PMC4401809 DOI: 10.1063/1.4916229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 03/15/2015] [Indexed: 05/04/2023]
Abstract
Cryptosporidiosis has been reported to be associated with HIV/acquired immune deficiency syndrome, which greatly reduces the quality of life and shortens the life expectancy of HIV-infected patients. In order to properly treat the infected patients, accurate and automatic diagnostic tools need to be developed. In this study, a novel microfluidic immunochip system was presented for the surveillance and the rapid detection of Cryptosporidium infection in 190 HIV-infected patients from Guangxi, China, using the P23 antigen of Cryptosporidium. The procedure of detection can be completed within 10 min with 2 μl sample consumption. The system also was evaluated using the standard ELISA method. Among 190 HIV-infected individuals, the rate of P23 positivity was 13.7%. Seropositivity in HIV-infected individuals was higher in female patients. The seropositivity to P23 was higher in HIV-infected individuals with high viral load, although the difference was statistically insignificant. Significantly higher Cryptosporidium seropositivity was observed in HIV-infected individuals with a CD4(+) T-cell count of <200 cells/μl than in those with ≥200 cells/μl. Our results also demonstrate that a lower CD4(+) T-cell count may reflect an increased accumulated risk for cryptosporidiosis. The detection system was further validated using the standard ELISA method and good correlation between the two methods was found (r = 0.80). Under the same sensitivity, this new microfluidic chip device had a specificity of 98.2%. This developed system may provide a powerful platform for the fast screening of Cryptospordium infection in HIV-infected patients.
Collapse
Affiliation(s)
- Li Zhang
- Department of Medical Microbiology and Parasitology, Shanghai Medical College of Fudan University , Shanghai, China
| | - Yongfeng Fu
- Department of Medical Microbiology and Parasitology, Shanghai Medical College of Fudan University , Shanghai, China
| | - Wenwen Jing
- Department of Medical Microbiology and Parasitology, Shanghai Medical College of Fudan University , Shanghai, China
| | - Qing Xu
- Department of Medical Microbiology and Parasitology, Shanghai Medical College of Fudan University , Shanghai, China
| | - Wang Zhao
- Shanghai Key Laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environment Science and Engineering, Fudan University , Shanghai, China
| | - Meng Feng
- Department of Medical Microbiology and Parasitology, Shanghai Medical College of Fudan University , Shanghai, China
| | - Hiroshi Tachibana
- Department of Infectious Diseases, Tokai University School of Medicine , Isehara, Kanagawa, Japan
| | | | | |
Collapse
|
17
|
Checkley W, White AC, Jaganath D, Arrowood MJ, Chalmers RM, Chen XM, Fayer R, Griffiths JK, Guerrant RL, Hedstrom L, Huston CD, Kotloff KL, Kang G, Mead JR, Miller M, Petri WA, Priest JW, Roos DS, Striepen B, Thompson RCA, Ward HD, Van Voorhis WA, Xiao L, Zhu G, Houpt ER. A review of the global burden, novel diagnostics, therapeutics, and vaccine targets for cryptosporidium. THE LANCET. INFECTIOUS DISEASES 2014; 15:85-94. [PMID: 25278220 DOI: 10.1016/s1473-3099(14)70772-8] [Citation(s) in RCA: 627] [Impact Index Per Article: 62.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cryptosporidium spp are well recognised as causes of diarrhoeal disease during waterborne epidemics and in immunocompromised hosts. Studies have also drawn attention to an underestimated global burden and suggest major gaps in optimum diagnosis, treatment, and immunisation. Cryptosporidiosis is increasingly identified as an important cause of morbidity and mortality worldwide. Studies in low-resource settings and high-income countries have confirmed the importance of cryptosporidium as a cause of diarrhoea and childhood malnutrition. Diagnostic tests for cryptosporidium infection are suboptimum, necessitating specialised tests that are often insensitive. Antigen-detection and PCR improve sensitivity, and multiplexed antigen detection and molecular assays are underused. Therapy has some effect in healthy hosts and no proven efficacy in patients with AIDS. Use of cryptosporidium genomes has helped to identify promising therapeutic targets, and drugs are in development, but methods to assess the efficacy in vitro and in animals are not well standardised. Partial immunity after exposure suggests the potential for successful vaccines, and several are in development; however, surrogates of protection are not well defined. Improved methods for propagation and genetic manipulation of the organism would be significant advances.
Collapse
Affiliation(s)
- William Checkley
- Program in Global Disease Epidemiology and Control, Department of International Health, Johns Hopkins University, Baltimore, MD, USA; Fogarty International Center, National Institutes of Health, Bethesda, MD, USA.
| | - A Clinton White
- Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX, USA
| | - Devan Jaganath
- Program in Global Disease Epidemiology and Control, Department of International Health, Johns Hopkins University, Baltimore, MD, USA
| | | | - Rachel M Chalmers
- National Cryptosporidium Reference Unit, Public Health Wales, Swansea, UK
| | - Xian-Ming Chen
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE, USA
| | - Ronald Fayer
- Environmental Microbial Food Safety Laboratory, USDA, Beltsville, MD, USA
| | - Jeffrey K Griffiths
- Department of Public Health and Community Medicine, Tufts University, Boston, MA, USA
| | - Richard L Guerrant
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | - Lizbeth Hedstrom
- Department of Biology and Department of Chemistry, Brandeis University, Waltham, MA, USA
| | | | - Karen L Kotloff
- Division of Infectious Disease and Tropical Pediatrics, Department of Pediatrics, Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Gagandeep Kang
- Division of Gastrointestinal Sciences, Christian Medical College, Vellore, India
| | - Jan R Mead
- Department of Pediatrics, Emory University, Atlanta, GA, USA; Atlanta VA Medical Center, Decatur, GA, USA
| | - Mark Miller
- Fogarty International Center, National Institutes of Health, Bethesda, MD, USA
| | - William A Petri
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | | | - David S Roos
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Boris Striepen
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
| | - R C Andrew Thompson
- School of Veterinary and Life Sciences, Murdoch University, Perth, WA, Australia
| | - Honorine D Ward
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center Boston, MA, USA
| | - Wesley A Van Voorhis
- Allergy and Infectious Diseases Division, Departments of Medicine, Global Health, and Microbiology, University of Washington, Seattle, WA, USA
| | - Lihua Xiao
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Guan Zhu
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, USA
| | - Eric R Houpt
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
18
|
Wanyiri JW, Kanyi H, Maina S, Wang DE, Steen A, Ngugi P, Kamau T, Waithera T, O'Connor R, Gachuhi K, Wamae CN, Mwamburi M, Ward HD. Cryptosporidiosis in HIV/AIDS patients in Kenya: clinical features, epidemiology, molecular characterization and antibody responses. Am J Trop Med Hyg 2014; 91:319-28. [PMID: 24865675 DOI: 10.4269/ajtmh.13-0254] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We investigated the epidemiological and clinical features of cryptosporidiosis, the molecular characteristics of infecting species and serum antibody responses to three Cryptosporidium-specific antigens in human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome (AIDS) patients in Kenya. Cryptosporidium was the most prevalent enteric pathogen and was identified in 56 of 164 (34%) of HIV/AIDS patients, including 25 of 70 (36%) with diarrhea and 31 of 94 (33%) without diarrhea. Diarrhea in patients exclusively infected with Cryptosporidium was significantly associated with the number of children per household, contact with animals, and water treatment. Cryptosporidium hominis was the most prevalent species and the most prevalent subtype family was Ib. Patients without diarrhea had significantly higher serum IgG levels to Chgp15, Chgp40 and Cp23, and higher fecal IgA levels to Chgp15 and Chgp40 than those with diarrhea suggesting that antibody responses to these antigens may be associated with protection from diarrhea and supporting further investigation of these antigens as vaccine candidates.
Collapse
Affiliation(s)
- Jane W Wanyiri
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Boston, Massachusetts; Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, Massachusetts; Center of Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya; Center of Biotechnology Research and Development, Kenya Medical Research Institute, Nairobi, Kenya; Kenyatta National Hospital, Nairobi, Kenya
| | - Henry Kanyi
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Boston, Massachusetts; Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, Massachusetts; Center of Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya; Center of Biotechnology Research and Development, Kenya Medical Research Institute, Nairobi, Kenya; Kenyatta National Hospital, Nairobi, Kenya
| | - Samuel Maina
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Boston, Massachusetts; Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, Massachusetts; Center of Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya; Center of Biotechnology Research and Development, Kenya Medical Research Institute, Nairobi, Kenya; Kenyatta National Hospital, Nairobi, Kenya
| | - David E Wang
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Boston, Massachusetts; Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, Massachusetts; Center of Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya; Center of Biotechnology Research and Development, Kenya Medical Research Institute, Nairobi, Kenya; Kenyatta National Hospital, Nairobi, Kenya
| | - Aaron Steen
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Boston, Massachusetts; Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, Massachusetts; Center of Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya; Center of Biotechnology Research and Development, Kenya Medical Research Institute, Nairobi, Kenya; Kenyatta National Hospital, Nairobi, Kenya
| | - Paul Ngugi
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Boston, Massachusetts; Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, Massachusetts; Center of Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya; Center of Biotechnology Research and Development, Kenya Medical Research Institute, Nairobi, Kenya; Kenyatta National Hospital, Nairobi, Kenya
| | - Timothy Kamau
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Boston, Massachusetts; Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, Massachusetts; Center of Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya; Center of Biotechnology Research and Development, Kenya Medical Research Institute, Nairobi, Kenya; Kenyatta National Hospital, Nairobi, Kenya
| | - Tabitha Waithera
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Boston, Massachusetts; Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, Massachusetts; Center of Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya; Center of Biotechnology Research and Development, Kenya Medical Research Institute, Nairobi, Kenya; Kenyatta National Hospital, Nairobi, Kenya
| | - Roberta O'Connor
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Boston, Massachusetts; Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, Massachusetts; Center of Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya; Center of Biotechnology Research and Development, Kenya Medical Research Institute, Nairobi, Kenya; Kenyatta National Hospital, Nairobi, Kenya
| | - Kimani Gachuhi
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Boston, Massachusetts; Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, Massachusetts; Center of Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya; Center of Biotechnology Research and Development, Kenya Medical Research Institute, Nairobi, Kenya; Kenyatta National Hospital, Nairobi, Kenya
| | - Claire N Wamae
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Boston, Massachusetts; Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, Massachusetts; Center of Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya; Center of Biotechnology Research and Development, Kenya Medical Research Institute, Nairobi, Kenya; Kenyatta National Hospital, Nairobi, Kenya
| | - Mkaya Mwamburi
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Boston, Massachusetts; Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, Massachusetts; Center of Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya; Center of Biotechnology Research and Development, Kenya Medical Research Institute, Nairobi, Kenya; Kenyatta National Hospital, Nairobi, Kenya
| | - Honorine D Ward
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Boston, Massachusetts; Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, Massachusetts; Center of Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya; Center of Biotechnology Research and Development, Kenya Medical Research Institute, Nairobi, Kenya; Kenyatta National Hospital, Nairobi, Kenya
| |
Collapse
|
19
|
Abstract
Cryptosporidium spp is a ubiquitous parasite that has long been recognized as a frequent cause of protozoal diarrhea in humans. While infections in immunocompetent hosts are usually self-limiting, immunocompromised individuals can develop severe, chronic, and life-threatening illness. Vaccine development or immunotherapy that prevents disease or reduces the severity of infection is a relevant option since efficacious drug treatments are lacking. In particular, children in developing countries might benefit the most from a vaccine since cryptosporidiosis in early childhood has been reported to be associated with subsequent impairment in growth, physical fitness, and intellectual capacity. In this review, immunotherapies that have been used clinically are described as well as experimental vaccines and their evaluation in vivo.
Collapse
Affiliation(s)
- Jan R Mead
- Atlanta Veterans Affairs Medical Center; Decatur, GA USA; Department of Pediatrics; Emory University; Atlanta, GA USA
| |
Collapse
|
20
|
Paiva PRSO, Grego KF, Lima VMF, Nakamura AA, da Silva DC, Meireles MV. Clinical, serological, and parasitological analysis of snakes naturally infected with Cryptosporidium serpentis. Vet Parasitol 2013; 198:54-61. [PMID: 24041484 DOI: 10.1016/j.vetpar.2013.08.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/13/2013] [Accepted: 08/16/2013] [Indexed: 11/17/2022]
Abstract
Infection by Cryptosporidium serpentis is one of the most important diseases in reptiles and is characterized by chronic clinical or subclinical infection and the presence of hypertrophic gastritis, food regurgitation, progressive weight loss, mortality, and intermittent or continuous shedding of oocysts in the feces. The objectives of this study were to standardize an indirect enzyme-linked immunosorbent assay (ELISA) to detect antibodies against C. serpentis and to evaluate the clinical, parasitological, and humoral immune response in snakes naturally infected with C. serpentis. Twenty-one snakes naturally infected with C. serpentis and housed at the Butantan Institute, São Paulo, Brazil, underwent clinical and parasitological analyses for C. serpentis infection through daily records of clinical signs and a monthly survey of fecal shedding of oocysts using the Kinyoun's acid-fast staining. The serological evaluation was performed monthly by indirect ELISA using crude total antigen from oocysts of C. serpentis to detect anti-C. serpentis antibodies. Clinical symptoms consisted of food regurgitation, inappetence, and progressive weight loss. The parasitological analysis revealed intermittent fecal shedding of a variable number of oocysts in all snakes, with positivity in 85.32% (157/184) of the samples. The indirect ELISA was positive in 68.25% (86/126) of the samples. A humoral immune response was observed in most animals; however, fluctuating antibodies levels, leading to alternating positive and negative results, were observed in most snakes.
Collapse
Affiliation(s)
- Philipp Ricardo S O Paiva
- Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, USP, Avenida Prof. Dr. Orlando Marques de Paiva, 87, São Paulo, Brazil; Laboratório de Herpetologia, Instituto Butantan, Avenida Vital Brazil, 1500 São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW The global significance of cryptosporidiosis is widespread and far-reaching. In this review, we present recent data about strain diversity and the burden of disease, along with developments in therapeutic and preventive strategies. RECENT FINDINGS Cryptosporidium is an emerging pathogen that disproportionately affects children in developing countries and immunocompromised individuals. Without a diagnostic tool amenable for use in developing countries, the burden of infection and its relationship to growth faltering, malnutrition, and diarrheal mortality remain underappreciated. Disease incidence is also increasing in industrialized countries largely as a result of outbreaks in recreational water facilities. Advances in molecular methods, including subtyping analysis, have yielded new insights into the epidemiology of cryptosporidiosis. However, without practical point-of-care diagnostics, an effective treatment for immunocompromised patients, and a promising vaccine candidate, the ability to reduce the burden of disease in the near future is limited. This is compounded by inadequate coverage with antiretroviral therapy in developing countries, the only current means of managing HIV-infected patients with cryptosporidiosis. SUMMARY Cryptosporidiosis is one of the most important diarrheal pathogens affecting people worldwide. Effective methods to control and treat cryptosporidiosis among high-risk groups present an ongoing problem in need of attention.
Collapse
|