1
|
Korsbæk NJ, Landt EM, Marott SCW, Nordestgaard BG, Vinding GR, Jemec GBE, Dahl M. Alpha-1 antitrypsin deficiency associated with increased risks of skin cancer, leukemia, and hepatic cancer: A nationwide cohort study. J Intern Med 2024; 296:460-467. [PMID: 39352697 DOI: 10.1111/joim.20016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
BACKGROUND α1-Antitrypsin deficiency is characterized by elevated elastase activity and excessive elastin degradation, which may impact cancer development and progression. We tested the hypothesis that individuals with α1-antitrypsin deficiency have increased susceptibility to cancer in the Danish population. METHODS In a nationwide nested study, we identified 2702 individuals with α1-antitrypsin deficiency and 26,750 control subjects without α1-antitrypsin deficiency matched on age, sex, and municipality. We recorded admissions due to cancer as outcomes during a median follow-up of 62 years. RESULTS Individuals with α1-antitrypsin deficiency versus control subjects had an increased hazard of skin cancer (2.18, 95%CI: 1.81-2.63), leukemia (1.76, 1.12-2.79), liver cancer (3.91, 2.23-6.85), and cancer overall (1.25, 1.13-1.38). Corresponding hazard ratios when the entire Danish population was used as control group were 3.02 (2.55-3.58), 1.83 (1.19-2.81), 4.46 (2.74-7.28), and 1.45 (1.31-1.59). When the analysis was stratified according to comorbidities, the hazard for skin cancer was higher in those with chronic obstructive pulmonary disease (COPD) (3.59, 2.60-4.95) and skin disease (2.93, 2.19-3.92) but remained elevated in those without any of these diseases. Hazards for skin cancer in individuals with α1-antitrypsin deficiency were similar when stratified by liver cirrhosis and ischemic heart disease (ps for interaction: ≥0.76). Hazards for liver cancer in individuals with α1-antitrypsin deficiency versus control subjects were similar when stratified according to liver cirrhosis, COPD, skin disease, and ischemic heart disease (ps for interaction: ≥0.13). CONCLUSION Individuals with α1-antitrypsin deficiency have increased risks of skin cancer, leukemia, and liver cancer in the Danish population.
Collapse
Affiliation(s)
- Nanna J Korsbæk
- Department of Clinical Biochemistry, Zealand University Hospital, Køge, Denmark
- Department of Clinical Medicine, Faculty of Health & Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Eskild M Landt
- Department of Clinical Biochemistry, Zealand University Hospital, Køge, Denmark
| | - Sarah C W Marott
- Department of Clinical Biochemistry, Zealand University Hospital, Køge, Denmark
| | - Børge G Nordestgaard
- Department of Clinical Medicine, Faculty of Health & Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Copenhagen University Hospital, Herlev Gentofte Hospital, Herlev, Denmark
- Copenhagen General Population Study, Copenhagen University Hospital, Herlev Gentofte Hospital, Herlev, Denmark
| | - Gabrielle R Vinding
- Department of Clinical Medicine, Faculty of Health & Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Dermatology, Zealand University Hospital, Roskilde, Denmark
| | - Gregor B E Jemec
- Department of Clinical Medicine, Faculty of Health & Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Dermatology, Zealand University Hospital, Roskilde, Denmark
| | - Morten Dahl
- Department of Clinical Biochemistry, Zealand University Hospital, Køge, Denmark
- Department of Clinical Medicine, Faculty of Health & Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Copenhagen General Population Study, Copenhagen University Hospital, Herlev Gentofte Hospital, Herlev, Denmark
| |
Collapse
|
2
|
Clark VC, Strange C, Strnad P, Sanchez AJ, Kwo P, Pereira VM, van Hoek B, Barjaktarevic I, Corsico AG, Pons M, Goldklang M, Gray M, Kuhn B, Vargas HE, Vierling JM, Vuppalanchi R, Brantly M, Kappe N, Chang T, Schluep T, Zhou R, Hamilton J, San Martin J, Loomba R. Fazirsiran for Adults With Alpha-1 Antitrypsin Deficiency Liver Disease: A Phase 2 Placebo Controlled Trial (SEQUOIA). Gastroenterology 2024; 167:1008-1018.e5. [PMID: 38964420 DOI: 10.1053/j.gastro.2024.06.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/07/2024] [Accepted: 06/24/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND & AIMS Homozygous ZZ alpha-1 antitrypsin (AAT) deficiency produces mutant AAT (Z-AAT) proteins in hepatocytes, leading to progressive liver fibrosis. We evaluated the safety and efficacy of an investigational RNA interference therapeutic, fazirsiran, that degrades Z-AAT messenger RNA, reducing deleterious protein synthesis. METHODS This ongoing, phase 2 study randomized 40 patients to subcutaneous placebo or fazirsiran 25, 100, or 200 mg. The primary endpoint was percent change in serum Z-AAT concentration from baseline to week 16. Patients with fibrosis on baseline liver biopsy received treatment on day 1, at week 4, and then every 12 weeks and had a second liver biopsy at or after weeks 48, 72, or 96. Patients without fibrosis received 2 doses on day 1 and at week 4. RESULTS At week 16, least-squares mean percent declines in serum Z-AAT concentration were -61%, -83%, and -94% with fazirsiran 25, 100, and 200 mg, respectively, vs placebo (all P < .0001). Efficacy was sustained through week 52. At postdose liver biopsy, fazirsiran reduced median liver Z-AAT concentration by 93% compared with an increase of 26% with placebo. All fazirsiran-treated patients had histologic reduction from baseline in hepatic globule burden. Portal inflammation improved in 5 of 12 and 0 of 8 patients with a baseline score of >0 in the fazirsiran and placebo groups, respectively. Histologic meta-analysis of histologic data in viral hepatitis score improved by >1 point in 7 of 14 and 3 of 8 patients with fibrosis of >F0 at baseline in the fazirsiran and placebo groups, respectively. No adverse events led to discontinuation, and pulmonary function tests remained stable. CONCLUSIONS Fazirsiran reduced serum and liver concentrations of Z-AAT in a dose-dependent manner and reduced hepatic globule burden. (ClinicalTrials.gov, Number NCT03945292).
Collapse
Affiliation(s)
- Virginia C Clark
- Division of Gastroenterology, Hepatology and Nutrition, University of Florida, Gainesville, Florida.
| | - Charlie Strange
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Pavel Strnad
- Department of Internal Medicine III, University Hospital, Rheinisch-Westfälische Technische Hochschule, Aachen University, Health Care Provider of the European Reference Network on Rare Liver Disorders, Aachen, Germany
| | - Antonio J Sanchez
- Division of Gastroenterology and Hepatology, University of Iowa Hospital and Clinics, Iowa City, Iowa
| | - Paul Kwo
- School of Medicine, Stanford University, Redwood City, California
| | - Vitor Magno Pereira
- Hospital Central do Funchal, Madeira, Portugal; Universidade da Madeira, Madeira, Portugal
| | - Bart van Hoek
- Department of Gastroenterology and Hepatology and LUMC Transplantation Center, Leiden University Medical Center, Leiden, the Netherlands
| | - Igor Barjaktarevic
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California
| | - Angelo Guido Corsico
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy; Division of Respiratory Diseases, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - Monica Pons
- Liver Unit, Department of Internal Medicine, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, CIBERehd, Barcelona, Spain
| | | | - Meagan Gray
- Division of Gastroenterology and Hepatology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Brooks Kuhn
- Division of Pulmonary and Critical Care and Sleep Medicine, University of California, Davis, Sacramento, California; University of California, Davis, Alpha-1 Deficiency Clinic, University of California, Davis, Sacramento, California
| | - Hugo E Vargas
- Division of Gastroenterology and Hepatology, Mayo Clinic Arizona, Phoenix, Arizona
| | - John M Vierling
- Departments of Medicine and Surgery, Baylor College of Medicine, Houston, Texas
| | - Raj Vuppalanchi
- Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Mark Brantly
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida, Gainesville, Florida
| | - Naomi Kappe
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Ting Chang
- Arrowhead Pharmaceuticals, Inc, Pasadena, California
| | | | - Rong Zhou
- Arrowhead Pharmaceuticals, Inc, Pasadena, California
| | | | | | - Rohit Loomba
- Division of Gastroenterology and Hepatology, University of California, University of California San Diego School of Medicine, La Jolla, California
| |
Collapse
|
3
|
Ferrarotti I, Wencker M, Chorostowska-Wynimko J. Rare variants in alpha 1 antitrypsin deficiency: a systematic literature review. Orphanet J Rare Dis 2024; 19:82. [PMID: 38388492 PMCID: PMC10885523 DOI: 10.1186/s13023-024-03069-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/03/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Alpha 1 Antitrypsin Deficiency (AATD) is a largely underrecognized genetic condition characterized by low Alpha 1 Antitrypsin (AAT) serum levels, resulting from variations in SERPINA1. Many individuals affected by AATD are thought to be undiagnosed, leading to poor patient outcomes. The Z (c.1096G > A; p.Glu366Lys) and S (c.863A > T; p.Glu288Val) deficiency variants are the most frequently found variants in AATD, with the Z variant present in most individuals diagnosed with AATD. However, there are many other less frequent variants known to contribute to lung and/or liver disease in AATD. To identify the most common rare variants associated with AATD, we conducted a systematic literature review with the aim of assessing AATD variation patterns across the world. METHODS A systematic literature search was performed to identify published studies reporting AATD/SERPINA1 variants. Study eligibility was assessed for the potential to contain relevant information, with quality assessment and data extraction performed on studies meeting all eligibility criteria. AATD variants were grouped by variant type and linked to the geographical region identified from the reporting article. RESULTS Of the 4945 articles identified by the search string, 864 contained useful information for this study. Most articles came from the United States, followed by the United Kingdom, Germany, Spain, and Italy. Collectively, the articles identified a total of 7631 rare variants and 216 types of rare variant across 80 counties. The F (c.739C > T; p.Arg247Cys) variant was identified 1,281 times and was the most reported known rare variant worldwide, followed by the I (c.187C > T; p.Arg63Cys) variant. Worldwide, there were 1492 Null/rare variants that were unidentified at the time of source article publication and 75 rare novel variants reported only once. CONCLUSION AATD goes far beyond the Z and S variants, suggesting there may be widespread underdiagnosis of patients with the condition. Each geographical region has its own distinctive variety of AATD variants and, therefore, comprehensive testing is needed to fully understand the true number and type of variants that exist. Comprehensive testing is also needed to ensure accurate diagnosis, optimize treatment strategies, and improve outcomes for patients with AATD.
Collapse
Affiliation(s)
- Ilaria Ferrarotti
- Centre for Diagnosis of Inherited Alpha-1 Antitrypsin Deficiency, Department of Internal Medicine and Therapeutics, Pneumology Unit, University of Pavia, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
| | | | - Joanna Chorostowska-Wynimko
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| |
Collapse
|
4
|
Udomsinprasert W. Interleukin-1 family cytokines in liver cell death: a new therapeutic target for liver diseases. Expert Opin Ther Targets 2023; 27:1125-1143. [PMID: 37975716 DOI: 10.1080/14728222.2023.2285763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/16/2023] [Indexed: 11/19/2023]
Abstract
INTRODUCTION Liver cell death represents a basic biological process regulating the progression of liver diseases via distinct mechanisms. Accumulating evidence has uncovered participation of interleukin (IL)-1 family cytokines in liver cell death. Upon activation of cell death induced by hepatotoxic stimuli, IL1 family cytokines released by hepatic dead cells stimulate recruitment of immune cells, which in turn influence inflammation and subsequent liver injury, thus highlighting their potential as therapeutic targets in liver diseases. Enhancing our comprehension of mechanisms underlying IL1 family cytokine signaling in cell death responses could pave the way for novel therapeutic interventions aimed at addressing liver cell death-related liver pathologies. AREAS COVERED This review summarizes the recent findings reported in preclinical and clinical studies on mechanisms of liver cell death, alongside participation of IL1 family members consisting of IL1α, ILβ, IL18, and IL33 in liver cell death and their significant implications in liver diseases. EXPERT OPINION Discovery of new and innovative therapeutic approaches for liver diseases will need close cooperation between fundamental and clinical scientists to better understand the multi-step processes behind IL1 family cytokines' contributions to liver cell death.
Collapse
|
5
|
T A S, Narayan M, Krishnan R, Thayalan D, Gunasekaran N, S P. Quantitative Proteomic Analysis of Non-Tobacco Associated Oral Squamous Cell Carcinoma Reveals Deregulation of Cytoskeletal and Apoptotic Proteins. Asian Pac J Cancer Prev 2022; 23:4285-4292. [PMID: 36580011 PMCID: PMC9971460 DOI: 10.31557/apjcp.2022.23.12.4285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 12/15/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The exact etiology of non-tobacco associated oral squamous cell carcinoma (NT-OSCC) is still unknown. The lack of established biomarkers for oral NT-OSCC has resulted in less effective management and poor prognosis. Here, we report for the first time a panel of potential markers identified from the quantitative proteomic analysis of NT-OSCC using two-dimensional gel-electrophoresis (2D-GE) using matrix-assisted laser desorption/ionization - time of flight (MALDI-TOF) coupled with mass spectrometry (MS) and further analysis using protein analysis through evolutionary relationships (PANTHER) database. OBJECTIVE To quantitatively analyze the proteomic profile of non-tobacco associated oral squamous cell carcinoma. METHODS Twenty fresh tissue samples were collected from healthy controls and NT-OSCC, ten each, and were subjected to proteomic analysis. Sample quantification for the presence of protein was done using Bradford assay and bovine serum albumin was used as a standard protein to obtain the standard graph. Fractionation of protein was done using sodium dodecyl sulphate - polyacrylamide gel electrophoresis (SDS-PAGE) and they were separated based on their molecular weight. MS analysis was done and the purified peptides were analysed using MALDI-TOF. PANTHER database for functional classification and pathway analysis was done for identification of protein expression. RESULTS Our approach of combining 2D-GE with MS identified four candidate proteins including keratin, alpha-1-antitrypsin (AAT), S100 and serpin B5 with significant differential expression in NT-OSCC as compared with healthy controls. The results showed that the levels of these proteins were significantly upregulated in NT-OSCC when compared to the healthy controls that suggests that these proteins can be used as candidate targets for NT-OSCC therapeutics. CONCLUSION The differentially expressed proteins are found to be involved in apoptotic signalling pathways, cytoskeletal dynamics and are known to play a critical role in oral tumorigenesis. Put together, the results provide available baseline information for understanding the development and progression of NT-OSCC. These identified proteins on further validation may be used as potential biomarkers in future for early detection and predicting therapeutic outcome of patients with NT-OSCC.
Collapse
Affiliation(s)
| | - Madhu Narayan
- Department of Oral and Maxillofacial Pathology and Microbiology, S.R.M Dental College, Ramapuram, Campus, SRM Institute of Science and Technology, Chennai, India.
| | | | | | | | | |
Collapse
|
6
|
Lu Y, Wang LR, Lee J, Mohammad NS, Aranyos AM, Gould C, Khodayari N, Oshins RA, Moneypenny CG, Brantly ML. The unfolded protein response to PI*Z alpha-1 antitrypsin in human hepatocellular and murine models. Hepatol Commun 2022; 6:2354-2367. [PMID: 35621045 PMCID: PMC9426387 DOI: 10.1002/hep4.1997] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/16/2022] [Accepted: 04/26/2022] [Indexed: 12/18/2022] Open
Abstract
Alpha-1 antitrypsin (AAT) deficiency (AATD) is an inherited disease caused by mutations in the serpin family A member 1 (SERPINA1, also known as AAT) gene. The most common variant, PI*Z (Glu342Lys), causes accumulation of aberrantly folded AAT in the endoplasmic reticulum (ER) of hepatocytes that is associated with a toxic gain of function, hepatocellular injury, liver fibrosis, and hepatocellular carcinoma. The unfolded protein response (UPR) is a cellular response to improperly folded proteins meant to alleviate ER stress. It has been unclear whether PI*Z AAT elicits liver cell UPR, due in part to limitations of current cellular and animal models. This study investigates whether UPR is activated in a novel human PI*Z AAT cell line and a new PI*Z human AAT (hAAT) mouse model. A PI*Z AAT hepatocyte cell line (Huh7.5Z) was established using clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 gene editing of the normal ATT (PI*MM) gene in the Huh7.5 cell line. Additionally, novel full-length genomic DNA PI*Z hAAT and PI*M hAAT transgenic mouse models were established. Using these new models, UPR in Huh7.5Z cells and PI*Z mice were comprehensively determined. Robust activation of UPR was observed in Huh7.5Z cells compared to Huh7.5 cells. Activated caspase cascade and apoptosis markers, increased chaperones, and autophagy markers were also detected in Z hepatocytes. Selective attenuation of UPR signaling branches was observed in PI*Z hAAT mice in which the protein kinase R-like ER kinase and inositol-requiring enzyme1α branches were suppressed while the activating transcription factor 6α branch remained active. This study provides direct evidence that PI*Z AAT triggers canonical UPR and that hepatocytes survive pro-apoptotic UPR by selective suppression of UPR branches. Our data improve understanding of underlying pathological molecular mechanisms of PI*Z AATD liver disease.
Collapse
Affiliation(s)
- Yuanqing Lu
- Division of Pulmonary, Critical Care and Sleep MedicineDepartment of MedicineUniversity of FloridaFloridaUSA
| | - Liqun R. Wang
- Division of Pulmonary, Critical Care and Sleep MedicineDepartment of MedicineUniversity of FloridaFloridaUSA
| | - Jungnam Lee
- Division of Pulmonary, Critical Care and Sleep MedicineDepartment of MedicineUniversity of FloridaFloridaUSA
| | - Naweed S. Mohammad
- Division of Pulmonary, Critical Care and Sleep MedicineDepartment of MedicineUniversity of FloridaFloridaUSA
| | - Alek M. Aranyos
- Division of Pulmonary, Critical Care and Sleep MedicineDepartment of MedicineUniversity of FloridaFloridaUSA
| | - Calvin Gould
- Division of Pulmonary, Critical Care and Sleep MedicineDepartment of MedicineUniversity of FloridaFloridaUSA
| | - Nazli Khodayari
- Division of Pulmonary, Critical Care and Sleep MedicineDepartment of MedicineUniversity of FloridaFloridaUSA
| | - Regina A. Oshins
- Division of Pulmonary, Critical Care and Sleep MedicineDepartment of MedicineUniversity of FloridaFloridaUSA
| | - Craig G. Moneypenny
- Division of Pulmonary, Critical Care and Sleep MedicineDepartment of MedicineUniversity of FloridaFloridaUSA
| | - Mark L. Brantly
- Division of Pulmonary, Critical Care and Sleep MedicineDepartment of MedicineUniversity of FloridaFloridaUSA
| |
Collapse
|
7
|
Novel Gene-Correction-Based Therapeutic Modalities for Monogenic Liver Disorders. Bioengineering (Basel) 2022; 9:bioengineering9080392. [PMID: 36004917 PMCID: PMC9404740 DOI: 10.3390/bioengineering9080392] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/04/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
The majority of monogenic liver diseases are autosomal recessive disorders, with few being sex-related or co-dominant. Although orthotopic liver transplantation (LT) is currently the sole therapeutic option for end-stage patients, such an invasive surgical approach is severely restricted by the lack of donors and post-transplant complications, mainly associated with life-long immunosuppressive regimens. Therefore, the last decade has witnessed efforts for innovative cellular or gene-based therapeutic strategies. Gene therapy is a promising approach for treatment of many hereditary disorders, such as monogenic inborn errors. The liver is an organ characterized by unique features, making it an attractive target for in vivo and ex vivo gene transfer. The current genetic approaches for hereditary liver diseases are mediated by viral or non-viral vectors, with promising results generated by gene-editing tools, such as CRISPR-Cas9 technology. Despite massive progress in experimental gene-correction technologies, limitations in validated approaches for monogenic liver disorders have encouraged researchers to refine promising gene therapy protocols. Herein, we highlighted the most common monogenetic liver disorders, followed by proposed genetic engineering approaches, offered as promising therapeutic modalities.
Collapse
|
8
|
Lee J, Mohammad N, Lu Y, Kang K, Han K, Brantly M. Alu RNA induces NLRP3 expression through TLR7 activation in α-1-antitrypsin-deficient macrophages. JCI Insight 2022; 7:158791. [PMID: 35730566 DOI: 10.1172/jci.insight.158791] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/29/2022] [Indexed: 11/17/2022] Open
Abstract
α-1 antitrypsin (AAT) is a serine protease inhibitor that plays a pivotal role in maintaining lung homeostasis. The most common AAT allele associated with AAT deficiency (AATD) is PiZ. Z-AAT accumulates in cells due to misfolding, causing severe AATD. The major function of AAT is to neutralize neutrophil elastase in the lung. It is generally accepted that loss of antiprotease function is a major cause of COPD in individuals with AATD. However, it is now being recognized that the toxic gain-of-function effect of Z-AAT in macrophage likely contributes to lung disease. In the present study, we determined that TLR7 signaling is activated in Z-MDMs, and the expression level of NLRP3, one of the targets of TLR7 signaling, is significantly higher in Z- compared with M-MDMs. We also determined that the level of endosomal Alu RNA is significantly higher in Z-compared with M-MDMs. Alu RNA is a known endogenous ligand that activates TLR7 signaling. Z-AAT likely induces the expression of Alu elements in MDMs and accelerates monocyte death, leading to the higher level of endosomal Alu RNA in Z-MDMs. Taken together,this study identifies a mechanism responsible for the toxic gain of function of Z-AAT macrophages.
Collapse
Affiliation(s)
- Jungnam Lee
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, Florida, USA
| | - Naweed Mohammad
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, Florida, USA
| | - Yuanqing Lu
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, Florida, USA
| | - Keunsoo Kang
- Department of Microbiology, Dankook University College of Natural Science, Cheonan, Republic of Korea
| | - Kyudong Han
- Department of Microbiology, Dankook University College of Natural Science, Cheonan, Republic of Korea.,Center for Bio-Medical Engineering Core Facility, Dankook University, Cheonan, Republic of Korea
| | - Mark Brantly
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
9
|
Khodayari N, Wang RL, Oshins R, Lu Y, Millett M, Aranyos AM, Mostofizadeh S, Scindia Y, Flagg TO, Brantly M. The Mechanism of Mitochondrial Injury in Alpha-1 Antitrypsin Deficiency Mediated Liver Disease. Int J Mol Sci 2021; 22:13255. [PMID: 34948056 PMCID: PMC8704552 DOI: 10.3390/ijms222413255] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 12/13/2022] Open
Abstract
Alpha-1 antitrypsin deficiency (AATD) is caused by a single mutation in the SERPINA1 gene, which culminates in the accumulation of misfolded alpha-1 antitrypsin (ZAAT) within the endoplasmic reticulum (ER) of hepatocytes. AATD is associated with liver disease resulting from hepatocyte injury due to ZAAT-mediated toxic gain-of-function and ER stress. There is evidence of mitochondrial damage in AATD-mediated liver disease; however, the mechanism by which hepatocyte retention of aggregated ZAAT leads to mitochondrial injury is unknown. Previous studies have shown that ER stress is associated with both high concentrations of fatty acids and mitochondrial dysfunction in hepatocytes. Using a human AAT transgenic mouse model and hepatocyte cell lines, we show abnormal mitochondrial morphology and function, and dysregulated lipid metabolism, which are associated with hepatic expression and accumulation of ZAAT. We also describe a novel mechanism of ZAAT-mediated mitochondrial dysfunction. We provide evidence that misfolded ZAAT translocates to the mitochondria for degradation. Furthermore, inhibition of ZAAT expression restores the mitochondrial function in ZAAT-expressing hepatocytes. Altogether, our results show that ZAAT aggregation in hepatocytes leads to mitochondrial dysfunction. Our findings suggest a plausible model for AATD liver injury and the possibility of mechanism-based therapeutic interventions for AATD liver disease.
Collapse
Affiliation(s)
- Nazli Khodayari
- Division of Pulmonary, Department of Medicine, University of Florida, Gainesville, FL 32610, USA; (R.L.W.); (R.O.); (Y.L.); (M.M.); (A.M.A.); (Y.S.); (T.O.F.)
| | - Rejean L. Wang
- Division of Pulmonary, Department of Medicine, University of Florida, Gainesville, FL 32610, USA; (R.L.W.); (R.O.); (Y.L.); (M.M.); (A.M.A.); (Y.S.); (T.O.F.)
| | - Regina Oshins
- Division of Pulmonary, Department of Medicine, University of Florida, Gainesville, FL 32610, USA; (R.L.W.); (R.O.); (Y.L.); (M.M.); (A.M.A.); (Y.S.); (T.O.F.)
| | - Yuanqing Lu
- Division of Pulmonary, Department of Medicine, University of Florida, Gainesville, FL 32610, USA; (R.L.W.); (R.O.); (Y.L.); (M.M.); (A.M.A.); (Y.S.); (T.O.F.)
| | - Michael Millett
- Division of Pulmonary, Department of Medicine, University of Florida, Gainesville, FL 32610, USA; (R.L.W.); (R.O.); (Y.L.); (M.M.); (A.M.A.); (Y.S.); (T.O.F.)
| | - Alek M. Aranyos
- Division of Pulmonary, Department of Medicine, University of Florida, Gainesville, FL 32610, USA; (R.L.W.); (R.O.); (Y.L.); (M.M.); (A.M.A.); (Y.S.); (T.O.F.)
| | - Sayedamin Mostofizadeh
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA;
| | - Yogesh Scindia
- Division of Pulmonary, Department of Medicine, University of Florida, Gainesville, FL 32610, USA; (R.L.W.); (R.O.); (Y.L.); (M.M.); (A.M.A.); (Y.S.); (T.O.F.)
| | - Tammy O. Flagg
- Division of Pulmonary, Department of Medicine, University of Florida, Gainesville, FL 32610, USA; (R.L.W.); (R.O.); (Y.L.); (M.M.); (A.M.A.); (Y.S.); (T.O.F.)
| | - Mark Brantly
- Division of Pulmonary, Department of Medicine, University of Florida, Gainesville, FL 32610, USA; (R.L.W.); (R.O.); (Y.L.); (M.M.); (A.M.A.); (Y.S.); (T.O.F.)
| |
Collapse
|
10
|
Padilla-Godínez FJ, Ramos-Acevedo R, Martínez-Becerril HA, Bernal-Conde LD, Garrido-Figueroa JF, Hiriart M, Hernández-López A, Argüero-Sánchez R, Callea F, Guerra-Crespo M. Protein Misfolding and Aggregation: The Relatedness between Parkinson's Disease and Hepatic Endoplasmic Reticulum Storage Disorders. Int J Mol Sci 2021; 22:ijms222212467. [PMID: 34830348 PMCID: PMC8619695 DOI: 10.3390/ijms222212467] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 12/21/2022] Open
Abstract
Dysfunction of cellular homeostasis can lead to misfolding of proteins thus acquiring conformations prone to polymerization into pathological aggregates. This process is associated with several disorders, including neurodegenerative diseases, such as Parkinson’s disease (PD), and endoplasmic reticulum storage disorders (ERSDs), like alpha-1-antitrypsin deficiency (AATD) and hereditary hypofibrinogenemia with hepatic storage (HHHS). Given the shared pathophysiological mechanisms involved in such conditions, it is necessary to deepen our understanding of the basic principles of misfolding and aggregation akin to these diseases which, although heterogeneous in symptomatology, present similarities that could lead to potential mutual treatments. Here, we review: (i) the pathological bases leading to misfolding and aggregation of proteins involved in PD, AATD, and HHHS: alpha-synuclein, alpha-1-antitrypsin, and fibrinogen, respectively, (ii) the evidence linking each protein aggregation to the stress mechanisms occurring in the endoplasmic reticulum (ER) of each pathology, (iii) a comparison of the mechanisms related to dysfunction of proteostasis and regulation of homeostasis between the diseases (such as the unfolded protein response and/or autophagy), (iv) and clinical perspectives regarding possible common treatments focused on improving the defensive responses to protein aggregation for diseases as different as PD, and ERSDs.
Collapse
Affiliation(s)
- Francisco J. Padilla-Godínez
- Neurosciences Division, Cell Physiology Institute, National Autonomous University of Mexico, Mexico City 04510, Mexico; (F.J.P.-G.); (R.R.-A.); (H.A.M.-B.); (L.D.B.-C.); (J.F.G.-F.); (M.H.)
- Regenerative Medicine Laboratory, Department of Surgery, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (A.H.-L.); (R.A.-S.)
| | - Rodrigo Ramos-Acevedo
- Neurosciences Division, Cell Physiology Institute, National Autonomous University of Mexico, Mexico City 04510, Mexico; (F.J.P.-G.); (R.R.-A.); (H.A.M.-B.); (L.D.B.-C.); (J.F.G.-F.); (M.H.)
- Regenerative Medicine Laboratory, Department of Surgery, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (A.H.-L.); (R.A.-S.)
| | - Hilda Angélica Martínez-Becerril
- Neurosciences Division, Cell Physiology Institute, National Autonomous University of Mexico, Mexico City 04510, Mexico; (F.J.P.-G.); (R.R.-A.); (H.A.M.-B.); (L.D.B.-C.); (J.F.G.-F.); (M.H.)
- Regenerative Medicine Laboratory, Department of Surgery, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (A.H.-L.); (R.A.-S.)
| | - Luis D. Bernal-Conde
- Neurosciences Division, Cell Physiology Institute, National Autonomous University of Mexico, Mexico City 04510, Mexico; (F.J.P.-G.); (R.R.-A.); (H.A.M.-B.); (L.D.B.-C.); (J.F.G.-F.); (M.H.)
- Regenerative Medicine Laboratory, Department of Surgery, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (A.H.-L.); (R.A.-S.)
| | - Jerónimo F. Garrido-Figueroa
- Neurosciences Division, Cell Physiology Institute, National Autonomous University of Mexico, Mexico City 04510, Mexico; (F.J.P.-G.); (R.R.-A.); (H.A.M.-B.); (L.D.B.-C.); (J.F.G.-F.); (M.H.)
- Regenerative Medicine Laboratory, Department of Surgery, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (A.H.-L.); (R.A.-S.)
| | - Marcia Hiriart
- Neurosciences Division, Cell Physiology Institute, National Autonomous University of Mexico, Mexico City 04510, Mexico; (F.J.P.-G.); (R.R.-A.); (H.A.M.-B.); (L.D.B.-C.); (J.F.G.-F.); (M.H.)
| | - Adriana Hernández-López
- Regenerative Medicine Laboratory, Department of Surgery, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (A.H.-L.); (R.A.-S.)
| | - Rubén Argüero-Sánchez
- Regenerative Medicine Laboratory, Department of Surgery, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (A.H.-L.); (R.A.-S.)
| | - Francesco Callea
- Department of Histopathology, Bugando Medical Centre, Catholic University of Healthy and Allied Sciences, Mwanza 1464, Tanzania;
| | - Magdalena Guerra-Crespo
- Neurosciences Division, Cell Physiology Institute, National Autonomous University of Mexico, Mexico City 04510, Mexico; (F.J.P.-G.); (R.R.-A.); (H.A.M.-B.); (L.D.B.-C.); (J.F.G.-F.); (M.H.)
- Regenerative Medicine Laboratory, Department of Surgery, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (A.H.-L.); (R.A.-S.)
- Correspondence:
| |
Collapse
|
11
|
Park SM, Kang TI, So JS. Roles of XBP1s in Transcriptional Regulation of Target Genes. Biomedicines 2021; 9:biomedicines9070791. [PMID: 34356855 PMCID: PMC8301375 DOI: 10.3390/biomedicines9070791] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/03/2021] [Accepted: 07/05/2021] [Indexed: 12/17/2022] Open
Abstract
The spliced form of X-box binding protein 1 (XBP1s) is an active transcription factor that plays a vital role in the unfolded protein response (UPR). Under endoplasmic reticulum (ER) stress, unspliced Xbp1 mRNA is cleaved by the activated stress sensor IRE1α and converted to the mature form encoding spliced XBP1 (XBP1s). Translated XBP1s migrates to the nucleus and regulates the transcriptional programs of UPR target genes encoding ER molecular chaperones, folding enzymes, and ER-associated protein degradation (ERAD) components to decrease ER stress. Moreover, studies have shown that XBP1s regulates the transcription of diverse genes that are involved in lipid and glucose metabolism and immune responses. Therefore, XBP1s has been considered an important therapeutic target in studying various diseases, including cancer, diabetes, and autoimmune and inflammatory diseases. XBP1s is involved in several unique mechanisms to regulate the transcription of different target genes by interacting with other proteins to modulate their activity. Although recent studies discovered numerous target genes of XBP1s via genome-wide analyses, how XBP1s regulates their transcription remains unclear. This review discusses the roles of XBP1s in target genes transcriptional regulation. More in-depth knowledge of XBP1s target genes and transcriptional regulatory mechanisms in the future will help develop new therapeutic targets for each disease.
Collapse
|
12
|
Sazonova MA, Sinyov VV, Ryzhkova AI, Sazonova MD, Kirichenko TV, Khotina VA, Khasanova ZB, Doroschuk NA, Karagodin VP, Orekhov AN, Sobenin IA. Some Molecular and Cellular Stress Mechanisms Associated with Neurodegenerative Diseases and Atherosclerosis. Int J Mol Sci 2021; 22:E699. [PMID: 33445687 PMCID: PMC7828120 DOI: 10.3390/ijms22020699] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 12/14/2022] Open
Abstract
Chronic stress is a combination of nonspecific adaptive reactions of the body to the influence of various adverse stress factors which disrupt its homeostasis, and it is also a corresponding state of the organism's nervous system (or the body in general). We hypothesized that chronic stress may be one of the causes occurence of several molecular and cellular types of stress. We analyzed literary sources and considered most of these types of stress in our review article. We examined genes and mutations of nuclear and mitochondrial genomes and also molecular variants which lead to various types of stress. The end result of chronic stress can be metabolic disturbance in humans and animals, leading to accumulation of reactive oxygen species (ROS), oxidative stress, energy deficiency in cells (due to a decrease in ATP synthesis) and mitochondrial dysfunction. These changes can last for the lifetime and lead to severe pathologies, including neurodegenerative diseases and atherosclerosis. The analysis of literature allowed us to conclude that under the influence of chronic stress, metabolism in the human body can be disrupted, mutations of the mitochondrial and nuclear genome and dysfunction of cells and their compartments can occur. As a result of these processes, oxidative, genotoxic, and cellular stress can occur. Therefore, chronic stress can be one of the causes forthe occurrence and development of neurodegenerative diseases and atherosclerosis. In particular, chronic stress can play a large role in the occurrence and development of oxidative, genotoxic, and cellular types of stress.
Collapse
Affiliation(s)
- Margarita A. Sazonova
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia; (V.V.S.); (A.I.R.); (M.D.S.); (T.V.K.); (V.A.K.); (V.P.K.); (A.N.O.); (I.A.S.)
- Laboratory of Medical Genetics, National Medical Research Center of Cardiology, 121552 Moscow, Russia; (Z.B.K.); (N.A.D.)
| | - Vasily V. Sinyov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia; (V.V.S.); (A.I.R.); (M.D.S.); (T.V.K.); (V.A.K.); (V.P.K.); (A.N.O.); (I.A.S.)
- Laboratory of Medical Genetics, National Medical Research Center of Cardiology, 121552 Moscow, Russia; (Z.B.K.); (N.A.D.)
| | - Anastasia I. Ryzhkova
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia; (V.V.S.); (A.I.R.); (M.D.S.); (T.V.K.); (V.A.K.); (V.P.K.); (A.N.O.); (I.A.S.)
| | - Marina D. Sazonova
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia; (V.V.S.); (A.I.R.); (M.D.S.); (T.V.K.); (V.A.K.); (V.P.K.); (A.N.O.); (I.A.S.)
| | - Tatiana V. Kirichenko
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia; (V.V.S.); (A.I.R.); (M.D.S.); (T.V.K.); (V.A.K.); (V.P.K.); (A.N.O.); (I.A.S.)
- Laboratory of Medical Genetics, National Medical Research Center of Cardiology, 121552 Moscow, Russia; (Z.B.K.); (N.A.D.)
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Research Institute of Human Morphology, 117418 Moscow, Russia
| | - Victoria A. Khotina
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia; (V.V.S.); (A.I.R.); (M.D.S.); (T.V.K.); (V.A.K.); (V.P.K.); (A.N.O.); (I.A.S.)
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Research Institute of Human Morphology, 117418 Moscow, Russia
| | - Zukhra B. Khasanova
- Laboratory of Medical Genetics, National Medical Research Center of Cardiology, 121552 Moscow, Russia; (Z.B.K.); (N.A.D.)
| | - Natalya A. Doroschuk
- Laboratory of Medical Genetics, National Medical Research Center of Cardiology, 121552 Moscow, Russia; (Z.B.K.); (N.A.D.)
| | - Vasily P. Karagodin
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia; (V.V.S.); (A.I.R.); (M.D.S.); (T.V.K.); (V.A.K.); (V.P.K.); (A.N.O.); (I.A.S.)
- Department of Commodity Science and Expertise, Plekhanov Russian University of Economics, 125993 Moscow, Russia
| | - Alexander N. Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia; (V.V.S.); (A.I.R.); (M.D.S.); (T.V.K.); (V.A.K.); (V.P.K.); (A.N.O.); (I.A.S.)
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Research Institute of Human Morphology, 117418 Moscow, Russia
- Institute for Atherosclerosis Research, Skolkovo Innovative Centre, 143024 Moscow, Russia
| | - Igor A. Sobenin
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia; (V.V.S.); (A.I.R.); (M.D.S.); (T.V.K.); (V.A.K.); (V.P.K.); (A.N.O.); (I.A.S.)
- Laboratory of Medical Genetics, National Medical Research Center of Cardiology, 121552 Moscow, Russia; (Z.B.K.); (N.A.D.)
| |
Collapse
|
13
|
Brecker M, Khakhina S, Schubert TJ, Thompson Z, Rubenstein RC. The Probable, Possible, and Novel Functions of ERp29. Front Physiol 2020; 11:574339. [PMID: 33013490 PMCID: PMC7506106 DOI: 10.3389/fphys.2020.574339] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/14/2020] [Indexed: 12/16/2022] Open
Abstract
The luminal endoplasmic reticulum (ER) protein of 29 kDa (ERp29) is a ubiquitously expressed cellular agent with multiple critical roles. ERp29 regulates the biosynthesis and trafficking of several transmembrane and secretory proteins, including the cystic fibrosis transmembrane conductance regulator (CFTR), the epithelial sodium channel (ENaC), thyroglobulin, connexin 43 hemichannels, and proinsulin. ERp29 is hypothesized to promote ER to cis-Golgi cargo protein transport via COP II machinery through its interactions with the KDEL receptor; this interaction may facilitate the loading of ERp29 clients into COP II vesicles. ERp29 also plays a role in ER stress (ERS) and the unfolded protein response (UPR) and is implicated in oncogenesis. Here, we review the vast array of ERp29’s clients, its role as an ER to Golgi escort protein, and further suggest ERp29 as a potential target for therapies related to diseases of protein misfolding and mistrafficking.
Collapse
Affiliation(s)
- Margaret Brecker
- Cystic Fibrosis Center, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Svetlana Khakhina
- Cystic Fibrosis Center, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Tyler J. Schubert
- Cystic Fibrosis Center, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Zachary Thompson
- Cystic Fibrosis Center, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Ronald C. Rubenstein
- Cystic Fibrosis Center, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
- Division of Allergy and Pulmonary Medicine, Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
- *Correspondence: Ronald C. Rubenstein, ;
| |
Collapse
|
14
|
Calcium signalling in mammalian cell lines expressing wild type and mutant human α1-Antitrypsin. Sci Rep 2019; 9:17293. [PMID: 31754242 PMCID: PMC6872872 DOI: 10.1038/s41598-019-53535-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 10/28/2019] [Indexed: 11/08/2022] Open
Abstract
A possible role for calcium signalling in the autosomal dominant form of dementia, familial encephalopathy with neuroserpin inclusion bodies (FENIB), has been proposed, which may point towards a mechanism by which cells could sense and respond to the accumulation of mutant serpin polymers in the endoplasmic reticulum (ER). We therefore explored possible defects in Ca2+-signalling, which may contribute to the pathology associated with another serpinopathy, α1-antitrypsin (AAT) deficiency. Using CHO K1 cell lines stably expressing a wild type human AAT (MAAT) and a disease-causing polymer-forming variant (ZAAT) and the truncated variant (NHK AAT), we measured basal intracellular free Ca2+, its responses to thapsigargin (TG), an ER Ca2+-ATPase blocker, and store-operated Ca2+-entry (SOCE). Our fura2 based Ca2+ measurements detected no differences between these 3 parameters in cell lines expressing MAAT and cell lines expressing ZAAT and NHK AAT mutants. Thus, in our cell-based models of α1-antitrypsin (AAT) deficiency, unlike the case for FENIB, we were unable to detect defects in calcium signalling.
Collapse
|
15
|
Sicari D, Igbaria A, Chevet E. Control of Protein Homeostasis in the Early Secretory Pathway: Current Status and Challenges. Cells 2019; 8:E1347. [PMID: 31671908 PMCID: PMC6912474 DOI: 10.3390/cells8111347] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/21/2019] [Accepted: 10/23/2019] [Indexed: 12/20/2022] Open
Abstract
: Discrimination between properly folded proteins and those that do not reach this state is necessary for cells to achieve functionality. Eukaryotic cells have evolved several mechanisms to ensure secretory protein quality control, which allows efficiency and fidelity in protein production. Among the actors involved in such process, both endoplasmic reticulum (ER) and the Golgi complex play prominent roles in protein synthesis, biogenesis and secretion. ER and Golgi functions ensure that only properly folded proteins are allowed to flow through the secretory pathway while improperly folded proteins have to be eliminated to not impinge on cellular functions. Thus, complex quality control and degradation machineries are crucial to prevent the toxic accumulation of improperly folded proteins. However, in some instances, improperly folded proteins can escape the quality control systems thereby contributing to several human diseases. Herein, we summarize how the early secretory pathways copes with the accumulation of improperly folded proteins, and how insufficient handling can cause the development of several human diseases. Finally, we detail the genetic and pharmacologic approaches that could be used as potential therapeutic tools to treat these diseases.
Collapse
Affiliation(s)
- Daria Sicari
- Proteostasis & Cancer Team INSERM U1242 « Chemistry, Oncogenesis Stress Signaling », Université de Rennes, CEDEX, 35042 Rennes, France.
- Centre de Lutte contre le Cancer Eugène Marquis, CEDEX, 35042 Rennes, France.
| | - Aeid Igbaria
- Proteostasis & Cancer Team INSERM U1242 « Chemistry, Oncogenesis Stress Signaling », Université de Rennes, CEDEX, 35042 Rennes, France.
- Centre de Lutte contre le Cancer Eugène Marquis, CEDEX, 35042 Rennes, France.
| | - Eric Chevet
- Proteostasis & Cancer Team INSERM U1242 « Chemistry, Oncogenesis Stress Signaling », Université de Rennes, CEDEX, 35042 Rennes, France.
- Centre de Lutte contre le Cancer Eugène Marquis, CEDEX, 35042 Rennes, France.
| |
Collapse
|
16
|
Khodayari N, Oshins R, Alli AA, Tuna KM, Holliday LS, Krotova K, Brantly M. Modulation of calreticulin expression reveals a novel exosome-mediated mechanism of Z variant α 1-antitrypsin disposal. J Biol Chem 2019; 294:6240-6252. [PMID: 30833329 DOI: 10.1074/jbc.ra118.006142] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 02/26/2019] [Indexed: 01/08/2023] Open
Abstract
α1-Antitrypsin deficiency (AATD) is an inherited disease characterized by emphysema and liver disease. AATD is most often caused by a single amino acid substitution at position 342 in the mature protein, resulting in the Z mutation of the AAT gene (ZAAT). This substitution is associated with misfolding and accumulation of ZAAT in the endoplasmic reticulum (ER) of hepatocytes, causing a toxic gain of function. ERdj3 is an ER luminal DnaJ homologue, which, along with calreticulin, directly interacts with misfolded ZAAT. We hypothesize that depletion of each of these chaperones will change the fate of ZAAT polymers. Our study demonstrates that calreticulin modulation reveals a novel ZAAT degradation mechanism mediated by exosomes. Using human PiZZ hepatocytes and K42, a mouse calreticulin-deficient fibroblast cell line, our results show ERdj3 and calreticulin directly interact with ZAAT in PiZZ hepatocytes. Silencing calreticulin induces calcium independent ZAAT-ERdj3 secretion through the exosome pathway. This co-secretion decreases ZAAT aggregates within the ER of hepatocytes. We demonstrate that calreticulin has an inhibitory effect on exosome-mediated ZAAT-ERdj3 secretion. This is a novel ZAAT degradation process that involves a DnaJ homologue chaperone bound to ZAAT. In this context, calreticulin modulation may eliminate the toxic gain of function associated with aggregation of ZAAT in lung and liver, thus providing a potential new therapeutic approach to the treatment of AATD-related liver disease.
Collapse
Affiliation(s)
- Nazli Khodayari
- From the Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine
| | - Regina Oshins
- From the Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine
| | - Abdel A Alli
- the Department of Physiology and Functional Genomics, College of Medicine, and
| | - Kubra M Tuna
- the Department of Physiology and Functional Genomics, College of Medicine, and
| | - L Shannon Holliday
- the Department of Orthodontics, College of Dentistry, University of Florida, Gainesville, Florida 32610 and
| | - Karina Krotova
- the Hormel Institute, University of Minnesota, Austin, Minnesota 55912
| | - Mark Brantly
- From the Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine,
| |
Collapse
|
17
|
Baligar P, Kochat V, Arindkar SK, Equbal Z, Mukherjee S, Patel S, Nagarajan P, Mohanty S, Teckman JH, Mukhopadhyay A. Bone marrow stem cell therapy partially ameliorates pathological consequences in livers of mice expressing mutant human α1-antitrypsin. Hepatology 2017; 65:1319-1335. [PMID: 28056498 DOI: 10.1002/hep.29027] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 10/20/2016] [Accepted: 12/22/2016] [Indexed: 12/30/2022]
Abstract
UNLABELLED Alpha-1-antitrypsin (AAT) deficiency (AATD) is a genetic disease, caused by mutation of the AAT gene. Accumulation of mutated AAT protein aggregates in hepatocytes leads to endoplasmic reticulum stress, resulting in impairment of liver functions and, in some cases, hepatocellular carcinoma, whereas decline of AAT levels in sera is responsible for pulmonary emphysema. In advanced liver disease, the only option for treatment is liver transplantation, whereas AAT replacement therapy is therapeutic for emphysema. Given that hepatocytes are the primary affected cells in AATD, we investigated whether transplantation of bone marrow (BM)-derived stem cells in transgenic mice expressing human AATZ (the Z variant of AAT) confers any competitive advantages compared to host cells that could lead to pathological improvement. Mouse BM progenitors and human mesenchymal stem cells (MSCs) appeared to contribute in replacement of 40% and 13% host hepatocytes, respectively. Transplantation of cells resulted in decline of globule-containing hepatocytes, improvement in proliferation of globule-devoid hepatocytes from the host-derived hepatocytes, and apparently, donor-derived cells. Further analyses revealed that transplantation partially improves liver pathology as reflected by inflammatory response, fibrosis, and apoptotic death of hepatocytes. Cell therapy was also found to improve liver glycogen storage and sera glucose level in mice expressing human AATZ mice. These overall improvements in liver pathology were not restricted to transplantation of mouse BM cells. Preliminary results also showed that following transplantation of human BM-derived MSCs, globule-containing hepatocytes declined and donor-derived cells expressed human AAT protein. CONCLUSION These results suggest that BM stem cell transplantation may be a promising therapy for AATD-related liver disease. (Hepatology 2017;65:1319-1335).
Collapse
Affiliation(s)
- Prakash Baligar
- Stem Cell Biology, Laboratory, National Institute of Immunology, New Delhi, India
| | - Veena Kochat
- Stem Cell Biology, Laboratory, National Institute of Immunology, New Delhi, India
| | | | - Zaffar Equbal
- Stem Cell Biology, Laboratory, National Institute of Immunology, New Delhi, India
| | - Snehashish Mukherjee
- Stem Cell Biology, Laboratory, National Institute of Immunology, New Delhi, India
| | - Swati Patel
- Stem Cell Biology, Laboratory, National Institute of Immunology, New Delhi, India
| | - Perumal Nagarajan
- Experimental Animal Facility, National Institute of Immunology, New Delhi, India
| | - Sujata Mohanty
- Stem Cell Facility, All Indian Institute of Medical Sciences, New Delhi, India
| | - Jeffrey H Teckman
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO
| | - Asok Mukhopadhyay
- Stem Cell Biology, Laboratory, National Institute of Immunology, New Delhi, India
| |
Collapse
|
18
|
Joly P, Restier L, Bouchecareilh M, Lacan P, Cabet F, Chapuis-Cellier C, Francina A, Lachaux A. Cohorte DEFI-ALPHA et projet hospitalier de recherche clinique POLYGEN DEFI-ALPHA. Étude des facteurs cliniques, biologiques et génétiques associés à l’apparition et à l’évolution de complications hépatiques chez les enfants présentant un déficit en alpha-1 antitrypsine. Rev Mal Respir 2015; 32:759-67. [DOI: 10.1016/j.rmr.2015.06.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 11/02/2014] [Indexed: 10/23/2022]
|
19
|
Giovannoni I, Callea F, Stefanelli M, Mariani R, Santorelli FM, Francalanci P. Alpha-1-antitrypsin deficiency: from genoma to liver disease. PiZ mouse as model for the development of liver pathology in human. Liver Int 2015; 35:198-206. [PMID: 24529185 DOI: 10.1111/liv.12504] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 02/08/2014] [Indexed: 02/13/2023]
Abstract
BACKGROUND & AIMS Homozygous individuals with alpha-1-antitrypsin deficiency (AATD) type PiZ have an increased risk of chronic liver disease and hepatocellular carcinoma (HCC). It is noteworthy that HCCs are composed by hepatocytes without accumulation of AAT, but the reason for this remains unclear. The aim of this study was to determine liver pathology in PiZ mice, focusing the attention on the distribution of AAT globules in normal liver, regenerative foci and neoplastic nodules. METHODS Liver of 79 PiZ mice and 18 wild type (Wt) was histologically analysed for steatosis, clear cell foci, hyperplasia and neoplasia. The expression of human-AAT transgene and murine AAT, in non-neoplastic liver and in hyperplastic/neoplastic nodules was tested by qPCR and qRT-PCR. RT-PCR was used to study expression of hepatic markers: albumin, α-foetoprotein, transthyretin, AAT, glucose-6-phospate, tyrosine aminotransferase. RESULTS Liver pathology was seen more frequently in PiZ (47/79) than in Wt (5/18) and its development was age related. In older PiZ mice (18-24 m), livers showed malignant tumours (HCC and angiosarcoma) (17/50), hyperplastic nodules (28/50), non-specific changes (33/50), whereas only 9/50 were normal. Both human-AATZ DNA and mRNA showed no differences between tumours/nodules and normal liver, while murine-AAT mRNA was reduced in tumours/nodules. CONCLUSION Accumulation of AAT is associated with an increased risk of liver nodules. The presence of globule-devoid hepatocytes and the reduced expression of murine-AAT mRNA in hyperplastic and neoplastic nodules suggest that these hepatic lesions in AATD could originate from proliferating dedifferentiated cells, lacking AAT storage and becoming capable of AFP re-expression.
Collapse
Affiliation(s)
- Isabella Giovannoni
- Department of Pathology, Children's Hospital Bambino Gesù, IRCCS, Rome, Italy
| | | | | | | | | | | |
Collapse
|
20
|
Luedde T, Kaplowitz N, Schwabe RF. Cell death and cell death responses in liver disease: mechanisms and clinical relevance. Gastroenterology 2014; 147:765-783.e4. [PMID: 25046161 PMCID: PMC4531834 DOI: 10.1053/j.gastro.2014.07.018] [Citation(s) in RCA: 570] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 07/13/2014] [Accepted: 07/16/2014] [Indexed: 02/06/2023]
Abstract
Hepatocellular death is present in almost all types of human liver disease and is used as a sensitive parameter for the detection of acute and chronic liver disease of viral, toxic, metabolic, or autoimmune origin. Clinical data and animal models suggest that hepatocyte death is the key trigger of liver disease progression, manifested by the subsequent development of inflammation, fibrosis, cirrhosis, and hepatocellular carcinoma. Modes of hepatocellular death differ substantially between liver diseases. Different modes of cell death such as apoptosis, necrosis, and necroptosis trigger specific cell death responses and promote progression of liver disease through distinct mechanisms. In this review, we first discuss molecular mechanisms by which different modes of cell death, damage-associated molecular patterns, and specific cell death responses contribute to the development of liver disease. We then review the clinical relevance of cell death, focusing on biomarkers; the contribution of cell death to drug-induced, viral, and fatty liver disease and liver cancer; and evidence for cell death pathways as therapeutic targets.
Collapse
Affiliation(s)
- Tom Luedde
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany.
| | - Neil Kaplowitz
- Division of Gastrointestinal and Liver Diseases, Keck
School of Medicine, University of Southern California, Los Angeles, CA 90089,
USA
| | - Robert F. Schwabe
- Department of Medicine; Institute of Human Nutrition,
Columbia University, New York, NY 10032, USA,To whom correspondence should be addressed: Dr.
Tom Luedde, M.D., Ph.D. Department of Medicine III, Division of GI-
and Hepatobiliary Oncology University Hospital RWTH Aachen.
Pauwelsstrasse 30, D-52074 Aachen; Germany or
Dr. Robert F. Schwabe Columbia University Department of Medicine; Institute of
Human Nutrition Russ Berrie Pavilion, Room 415 1150 St. Nicholas Ave New York,
NY 10032; USA
| |
Collapse
|
21
|
Pini L, Tiberio L, Venkatesan N, Bezzi M, Corda L, Luisetti M, Ferrarotti I, Malerba M, Lomas DA, Janciauskiene S, Vizzardi E, Modina D, Schiaffonati L, Tantucci C. The role of bronchial epithelial cells in the pathogenesis of COPD in Z-alpha-1 antitrypsin deficiency. Respir Res 2014; 15:112. [PMID: 25218041 PMCID: PMC4177581 DOI: 10.1186/s12931-014-0112-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 09/02/2014] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Alpha-1 antitrypsin is the main inhibitor of neutrophil elastase in the lung. Although it is principally synthesized by hepatocytes, alpha-1 antitrypsin is also secreted by bronchial epithelial cells. Gene mutations can lead to alpha-1 antitrypsin deficiency, with the Z variant being the most clinically relevant due to its propensity to polymerize. The ability of bronchial epithelial cells to produce Z-variant protein and its polymers is unknown. METHODS Experiments using a conformation-specific antibody were carried out on M- and Z-variant-transfected 16HBE cells and on bronchial biopsies and ex vivo bronchial epithelial cells from Z and M homozygous patients. In addition, the effect of an inflammatory stimulus on Z-variant polymer formation, elicited by Oncostatin M, was investigated. Comparisons of groups were performed using t-test or ANOVA. Non-normally distributed data were assessed by Mann-Whitney U test or the Kruskal-Wallis test, where appropriate. A P value of < 0.05 was considered to be significant. RESULTS Alpha-1 antitrypsin polymers were found at a higher concentration in the culture medium of ex vivo bronchial epithelial cells from Z-variant homozygotes, compared with M-variant homozygotes (P < 0.01), and detected in the bronchial epithelial cells and submucosa of patient biopsies. Oncostatin M significantly increased the expression of alpha-1 antitrypsin mRNA and protein (P < 0.05), and the presence of Z-variant polymers in ex vivo cells (P < 0.01). CONCLUSIONS Polymers of Z-alpha-1 antitrypsin form in bronchial epithelial cells, suggesting that these cells may be involved in the pathogenesis of lung emphysema and in bronchial epithelial cell dysfunction.
Collapse
Affiliation(s)
- Laura Pini
- />Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Laura Tiberio
- />Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | | - Michela Bezzi
- />Bronchoscopy Department of Spedali Civili di Brescia, Brescia, Italy
| | - Luciano Corda
- />Internal Medicine Department of Spedali Civili di Brescia, Brescia, Italy
| | - Maurizio Luisetti
- />Department of Respiratory Medicine, Policlinico S. Matteo, University of Pavia, Pavia, Italy
| | - Ilaria Ferrarotti
- />Department of Respiratory Medicine, Policlinico S. Matteo, University of Pavia, Pavia, Italy
| | - Mario Malerba
- />Internal Medicine Department of Spedali Civili di Brescia, Brescia, Italy
| | - David A Lomas
- />Faculty of Medical Sciences, University College London, London, UK
| | | | - Enrico Vizzardi
- />Unit of Cardiologic Medicine, Department of Medical and Surgical Sciences, University of Brescia, Brescia, Italy
| | - Denise Modina
- />Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Luisa Schiaffonati
- />Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Claudio Tantucci
- />Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| |
Collapse
|
22
|
Kaphalia L, Boroumand N, Hyunsu J, Kaphalia BS, Calhoun WJ. Ethanol metabolism, oxidative stress, and endoplasmic reticulum stress responses in the lungs of hepatic alcohol dehydrogenase deficient deer mice after chronic ethanol feeding. Toxicol Appl Pharmacol 2014; 277:109-17. [PMID: 24625836 PMCID: PMC4021019 DOI: 10.1016/j.taap.2014.02.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 02/17/2014] [Accepted: 02/24/2014] [Indexed: 01/09/2023]
Abstract
Consumption and over-consumption of alcoholic beverages are well-recognized contributors to a variety of pulmonary disorders, even in the absence of intoxication. The mechanisms by which alcohol (ethanol) may produce disease include oxidative stress and prolonged endoplasmic reticulum (ER) stress. Many aspects of these processes remain incompletely understood due to a lack of a suitable animal model. Chronic alcohol over-consumption reduces hepatic alcohol dehydrogenase (ADH), the principal canonical metabolic pathway of ethanol oxidation. We therefore modeled this situation using hepatic ADH-deficient deer mice fed 3.5% ethanol daily for 3 months. Blood ethanol concentration was 180 mg% in ethanol fed mice, compared to <1.0% in the controls. Acetaldehyde (oxidative metabolite of ethanol) was minimally, but significantly increased in ethanol-fed vs. pair-fed control mice. Total fatty acid ethyl esters (FAEEs, nonoxidative metabolites of ethanol) were 47.6 μg/g in the lungs of ethanol-fed mice as compared to 1.5 μg/g in pair-fed controls. Histological and immunohistological evaluation showed perivascular and peribronchiolar lymphocytic infiltration, and significant oxidative injury, in the lungs of ethanol-fed mice compared to pair-fed controls. Several fold increases for cytochrome P450 2E1, caspase 8 and caspase 3 found in the lungs of ethanol-fed mice as compared to pair-fed controls suggest role of oxidative stress in ethanol-induced lung injury. ER stress and unfolded protein response signaling were also significantly increased in the lungs of ethanol-fed mice. Surprisingly, no significant activation of inositol-requiring enzyme-1α and spliced XBP1 was observed indicating a lack of activation of corrective mechanisms to reinstate ER homeostasis. The data suggest that oxidative stress and prolonged ER stress, coupled with formation and accumulation of cytotoxic FAEEs may contribute to the pathogenesis of alcoholic lung disease.
Collapse
Affiliation(s)
- Lata Kaphalia
- Department of Internal Medicine, The University of Texas Medical Branch, Galveston, TX 775555, USA
| | - Nahal Boroumand
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 775555, USA
| | - Ju Hyunsu
- Department of Preventive Medicine & Community Health, The University of Texas Medical Branch, Galveston, TX 775555, USA
| | - Bhupendra S Kaphalia
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 775555, USA.
| | - William J Calhoun
- Department of Internal Medicine, The University of Texas Medical Branch, Galveston, TX 775555, USA
| |
Collapse
|
23
|
Pi*Z heterozygous alpha-1 antitrypsin states accelerate parenchymal but not biliary cirrhosis. Eur J Gastroenterol Hepatol 2014; 26:412-7. [PMID: 24518491 DOI: 10.1097/meg.0000000000000061] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE The degree to which heterozygous forms of alpha-1 antitrypsin (A1AT), principally MZ, causes liver disease is uncertain. If heterozygosity is a relevant cofactor, over-representation in patients with end-stage liver disease would be predicted. We therefore assessed the prevalence and disease-related distribution of A1AT heterozygosity in the largest cohort to date for this purpose. METHODS We retrospectively analysed 1036 patients assessed for liver transplantation at our unit between 2003 and 2010. A1AT heterozygotes were identified on the basis of isoelectric focusing and/or histology, showing A1AT globule deposition consistent with an abnormal phenotype. RESULTS Z-allele frequency was the highest in patients with nonalcoholic steatohepatitis (NASH) cirrhosis (20.3%), followed by patients with 'other parenchymal' diseases (11.9%), alcohol-related liver disease (9.9%), autoimmune disease (8.6%), hepatitis C (6.1%), hepatitis B (3.0%) and biliary disease (1.9%). Compared with the heterozygote frequency in the general European population of 9.0%, the heterozygote frequency was significantly higher among patients with NASH cirrhosis (P≤0.0001) and lower in the biliary subgroup (P=0.004). The prevalence of MZ heterozygosity was significantly increased in cirrhosis because of both alcohol (9.9%) and NASH (17.3%) compared with the general European population (2.8%; P<0.0001). CONCLUSION Accumulation of misfolded A1AT aggregates appears to accelerate progression, in which the hepatocyte is the key injured cell. Heterozygous A1AT states worsen prognosis, particularly in NASH and alcohol-related cirrhosis, and should be identified at presentation. In cases in which genetic screening is not readily available, a low threshold for isoelectric focusing and routine specific histochemical staining of liver biopsy specimens are warranted to identify these patients.
Collapse
|
24
|
Abstract
The unfolded protein response (UPR) is a protective cellular response activated under conditions of endoplasmic reticulum (ER) stress. The hepatic UPR is activated in several forms of liver disease including nonalcoholic fatty liver disease (NAFLD). Recent data defining the role of the UPR in hepatic lipid metabolism have identified molecular mechanisms that may underlie the association between UPR activation and NAFLD. It has become increasingly evident that the IRE1α/Xbp1 pathway of the UPR is critical for hepatic lipid homeostasis, and dysregulation of this evolutionarily conserved pathway is associated with human nonalcoholic steatohepatitis (NASH). Although increasing evidence has delineated the importance of UPR pathway signaling in fatty liver disorders, the regulation of the hepatic UPR in normal physiology and fatty liver disorders remains incompletely understood. Understanding the role of the UPR in hepatic lipid metabolism may lead to the identification of novel therapeutic targets for the treatment of NAFLD.
Collapse
Affiliation(s)
- Anne Henkel
- Assistant Professor of Medicine, Division of Gastroenterology and Hepatology, Section of Hepatology, Northwestern University Feinberg School of Medicine, Tarry Building 15-705, 303 East Chicago Avenue, Chicago, IL 60611, Tel: 312-503-3148, Fax: 312-908-9032
| | - Richard M. Green
- Professor of Medicine, Division of Gastroenterology and Hepatology, Section of Hepatology, Northwestern University Feinberg School of Medicine, Tarry Building 15-719, 303 East Chicago Avenue, Chicago, IL 60611, Tel: 312-503-1812, Fax: 312-908-9032
| |
Collapse
|
25
|
Kaphalia L, Calhoun WJ. Alcoholic lung injury: metabolic, biochemical and immunological aspects. Toxicol Lett 2013; 222:171-9. [PMID: 23892124 DOI: 10.1016/j.toxlet.2013.07.016] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 07/12/2013] [Accepted: 07/16/2013] [Indexed: 02/07/2023]
Abstract
Chronic alcohol abuse is a systemic disorder and a risk factor for acute respiratory distress syndrome (ARDS) and chronic obstructive pulmonary disease (COPD). A significant amount of ingested alcohol reaches airway passages in the lungs and can be metabolized via oxidative and non-oxidative pathways. About 90% of the ingested alcohol is metabolized via hepatic alcohol dehydrogenase (ADH)-catalyzed oxidative pathway. Alcohol can also be metabolized by cytochrome P450 2E1 (CYP2E1), particularly during chronic alcohol abuse. Both the oxidative pathways, however, are associated with oxidative stress due to the formation of acetaldehyde and/or reactive oxygen species (ROS). Alcohol ingestion is also known to cause endoplasmic reticulum (ER) stress, which can be mediated by oxidative and/or non-oxidative metabolites of ethanol. An acute as well as chronic alcohol ingestions impair protective antioxidants, oxidize reduced glutathione (GSH, cellular antioxidant against ROS and oxidative stress), and suppress innate and adaptive immunity in the lungs. Oxidative stress and suppressed immunity in the lungs of chronic alcohol abusers collectively are considered to be major risk factors for infection and development of pneumonia, and such diseases as ARDS and COPD. Prior human and experimental studies attempted to identify common mechanisms by which alcohol abuse directly causes toxicity to alveolar epithelium and respiratory tract, particularly lungs. In this review, the metabolic basis of lung injury, oxidative and ER stress and immunosuppression in experimental models and alcoholic patients, as well as potential immunomodulatory therapeutic strategies for improving host defenses against alcohol-induced pulmonary infections are discussed.
Collapse
Affiliation(s)
- Lata Kaphalia
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | | |
Collapse
|
26
|
Brebner JA, Stockley RA. Recent advances in α-1-antitrypsin deficiency-related lung disease. Expert Rev Respir Med 2013; 7:213-230. [PMID: 23734645 DOI: 10.1586/ers.13.20] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
α-1-antitrypsin deficiency (A1ATD) is an under-recognized hereditary disorder associated with the premature onset of chronic obstructive pulmonary disease. There is considerable heterogeneity in the phenotypic expression of lung disease in A1ATD and the pathophysiology is complex, involving the interaction of multiple pathways. Other genetic factors that may contribute to emphysema risk in A1AT-deficient individuals are beginning to be identified. Methods of monitoring disease progression have evolved, including the use of computed tomography densitometry and biomarkers of disease activity. Progress in the development of novel treatment strategies continues, including the hope for a potential cure through the use of gene therapies. In this article, the authors review the recent advances in this field and outline potential future directions of research in A1ATD.
Collapse
Affiliation(s)
- Judith A Brebner
- The ADAPT Project, Lung Function and Sleep Department, University Hospital Birmingham, Mindelsohn Way, Edgbaston, Birmingham, B15 2WB, UK.
| | | |
Collapse
|
27
|
Potential for therapeutic manipulation of the UPR in disease. Semin Immunopathol 2013; 35:351-73. [PMID: 23572207 PMCID: PMC3641308 DOI: 10.1007/s00281-013-0370-z] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 03/13/2013] [Indexed: 12/16/2022]
Abstract
Increased endoplasmic reticulum (ER) stress and the activated unfolded protein response (UPR) signaling associated with it play key roles in physiological processes as well as under pathological conditions. The UPR normally protects cells and re-establishes cellular homeostasis, but prolonged UPR activation can lead to the development of various pathologies. These features make the UPR signaling pathway an attractive target for the treatment of diseases whose pathogenesis is characterized by chronic activation of this pathway. Here, we focus on the molecular signaling pathways of the UPR and suggest possible ways to target this response for therapeutic purposes.
Collapse
|
28
|
Wei J, Rahman S, Ayaub EA, Dickhout JG, Ask K. Protein Misfolding and Endoplasmic Reticulum Stress in Chronic Lung Disease. Chest 2013; 143:1098-1105. [DOI: 10.1378/chest.12-2133] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
29
|
Is there a therapeutic role for selenium in alpha-1 antitrypsin deficiency? Nutrients 2013; 5:758-70. [PMID: 23478569 PMCID: PMC3705318 DOI: 10.3390/nu5030758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 02/22/2013] [Accepted: 02/26/2013] [Indexed: 12/20/2022] Open
Abstract
Selenium is an essential trace mineral of fundamental importance to human health. Much of its beneficial influence is attributed to its presence within selenoproteins, a group of proteins containing the rare amino acid selenocysteine. There are 25 known human selenoproteins including glutathione peroxidases, thioredoxin reductases and selenoproteins. Selenoprotein S (SEPS1) is an endoplasmic reticulum (ER) resident selenoprotein involved in the removal of misfolded proteins from the ER. SEPS1 expression can be induced by ER stress, an event that is associated with conformational disorders and occurs due to accumulation of misfolded proteins within the ER. Alpha-1 antitrypsin (AAT) deficiency, also known as genetic emphysema, is a conformational disorder in which the roles of ER stress, SEPS1 and selenium have been investigated. SEPS1 can relieve ER stress in an in vitro model of AAT deficiency by reducing levels of active ATF6 and inhibiting grp78 promoter- and NFκB activity; some of these effects are enhanced in the presence of selenium supplementation. Other studies examining the molecular mechanisms by which selenium mediates its anti-inflammatory effects have identified a role for prostaglandin 15d-PGJ2 in targeting NFκB and PPARγ. Together these ER stress-relieving and anti-inflammatory properties suggest a therapeutic potential for selenium supplementation in genetic emphysema.
Collapse
|
30
|
Mueller C, Tang Q, Gruntman A, Blomenkamp K, Teckman J, Song L, Zamore PD, Flotte TR. Sustained miRNA-mediated knockdown of mutant AAT with simultaneous augmentation of wild-type AAT has minimal effect on global liver miRNA profiles. Mol Ther 2012; 20:590-600. [PMID: 22252449 PMCID: PMC3293602 DOI: 10.1038/mt.2011.292] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
α-1 antitrypsin (AAT) deficiency can exhibit two pathologic states: a lung disease that is primarily due to the loss of AAT's antiprotease function, and a liver disease resulting from a toxic gain-of-function of the PiZ-AAT (Z-AAT) mutant protein. We have developed several recombinant adeno-associated virus (rAAV) vectors that incorporate microRNA (miRNA) sequences targeting the AAT gene while also driving the expression of miRNA-resistant wild-type AAT-PiM (M-AAT) gene, thus achieving concomitant Z-AAT knockdown in the liver and increased expression of M-AAT. Transgenic mice expressing the human PiZ allele treated with dual-function rAAV9 vectors showed that serum PiZ was stably and persistently reduced by an average of 80%. Treated animals showed knockdown of Z-AAT in liver and serum with concomitant increased serum M-AAT as determined by allele-specific enzyme-linked immunosorbent assays (ELISAs). In addition, decreased globular accumulation of misfolded Z-AAT in hepatocytes and a reduction in inflammatory infiltrates in the liver was observed. Results from microarray studies demonstrate that endogenous miRNAs were minimally affected by this treatment. These data suggests that miRNA mediated knockdown does not saturate the miRNA pathway as has been seen with viral vector expression of short hairpin RNAs (shRNAs). This safe dual-therapy approach can be applied to other disorders such as amyotrophic lateral sclerosis, Huntington disease, cerebral ataxia, and optic atrophies.
Collapse
Affiliation(s)
- Christian Mueller
- Department of Pediatrics and Gene Therapy Center, UMass Medical School, Worcester, Massachusetts 01605, USA.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Greene CM, Hassan T, Molloy K, McElvaney NG. The role of proteases, endoplasmic reticulum stress and SERPINA1 heterozygosity in lung disease and α-1 anti-trypsin deficiency. Expert Rev Respir Med 2011; 5:395-411. [PMID: 21702661 DOI: 10.1586/ers.11.20] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The serine proteinase inhibitor α-1 anti-trypsin (AAT) provides an antiprotease protective screen throughout the body. Mutations in the AAT gene (SERPINA1) that lead to deficiency in AAT are associated with chronic obstructive pulmonary diseases. The Z mutation encodes a misfolded variant of AAT that is not secreted effectively and accumulates intracellularly in the endoplasmic reticulum of hepatocytes and other AAT-producing cells. Until recently, it was thought that loss of antiprotease function was the major cause of ZAAT-related lung disease. However, the contribution of gain-of-function effects is now being recognized. Here we describe how both loss- and gain-of-function effects can contribute to ZAAT-related lung disease. In addition, we explore how SERPINA1 heterozygosity could contribute to smoking-induced chronic obstructive pulmonary diseases and consider the consequences.
Collapse
Affiliation(s)
- Catherine M Greene
- Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland.
| | | | | | | |
Collapse
|
32
|
Performance of enhanced liver fibrosis plasma markers in asymptomatic individuals with ZZ α1-antitrypsin deficiency. Eur J Gastroenterol Hepatol 2011; 23:716-20. [PMID: 21617532 DOI: 10.1097/meg.0b013e328347daaf] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Alpha1-antitrypsin deficiency (AATD) is a common genetic cause of chronic liver disease. According to retrospective studies, up to 25% of those with homozygous ZZ (Glu 342 to Lys) AATD suffer from liver cirrhosis and/or liver cancer in late adulthood. We hypothesized that the plasma markers for liver fibrosis, necrosis, and apoptosis may identify AATD individuals at higher risk for liver diseases. METHODS The study cohort included 52 clinically healthy ZZ AATD individuals of 34 years of age, identified in the Swedish neonatal screening of 1972-1974, and 81 age-matched controls with normal MM AAT variant. We analyzed plasma levels of the enhanced liver fibrosis (ELF) panel, including plasma tissue inhibitor of metalloprotease-1, amino-terminal propeptide of type III collagen and hyaluronic acid (HA), and the M30 and M65 antigens, markers for apoptosis/necrosis. RESULTS Higher levels of tissue inhibitor of metalloprotease-1 (52%, P<0.001), amino-terminal propeptide of type III collagen (12%, P<0.05), HA (17% not significant), and M65 (13.4%, P=0.043) were found in ZZ than in MM patients. In the ZZ group, plasma levels of AAT correlated with M65 (P<0.01) and with HA (P<0.05). On the basis of the ELF panel, M30 and M65, a logistic regression model enabled us to correctly classify 81.2% of the originally grouped ZZ and MM cases with a sensitivity of 73.1% and a specificity of 86.4%. CONCLUSION The ELF markers are associated with ZZ AATD at early adulthood, and can be considered as a useful tool to identify ZZ cases at an increased risk of developing liver diseases later in life.
Collapse
|