1
|
Mazzotta GM, Conte C. Alpha Synuclein Toxicity and Non-Motor Parkinson's. Cells 2024; 13:1265. [PMID: 39120295 PMCID: PMC11311369 DOI: 10.3390/cells13151265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/12/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Parkinson's disease (PD) is a common multisystem neurodegenerative disorder affecting 1% of the population over the age of 60 years. The main neuropathological features of PD are the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and the presence of alpha synuclein (αSyn)-rich Lewy bodies both manifesting with classical motor signs. αSyn has emerged as a key protein in PD pathology as it can spread through synaptic networks to reach several anatomical regions of the body contributing to the appearance of non-motor symptoms (NMS) considered prevalent among individuals prior to PD diagnosis and persisting throughout the patient's life. NMS mainly includes loss of taste and smell, constipation, psychiatric disorders, dementia, impaired rapid eye movement (REM) sleep, urogenital dysfunction, and cardiovascular impairment. This review summarizes the more recent findings on the impact of αSyn deposits on several prodromal NMS and emphasizes the importance of early detection of αSyn toxic species in biofluids and peripheral biopsies as prospective biomarkers in PD.
Collapse
Affiliation(s)
| | - Carmela Conte
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy
| |
Collapse
|
2
|
Schreiber CS, Wiesweg I, Stanelle-Bertram S, Beck S, Kouassi NM, Schaumburg B, Gabriel G, Richter F, Käufer C. Sex-specific biphasic alpha-synuclein response and alterations of interneurons in a COVID-19 hamster model. EBioMedicine 2024; 105:105191. [PMID: 38865747 PMCID: PMC11293593 DOI: 10.1016/j.ebiom.2024.105191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/02/2024] [Accepted: 05/25/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) frequently leads to neurological complications after recovery from acute infection, with higher prevalence in women. However, mechanisms by which SARS-CoV-2 disrupts brain function remain unclear and treatment strategies are lacking. We previously demonstrated neuroinflammation in the olfactory bulb of intranasally infected hamsters, followed by alpha-synuclein and tau accumulation in cortex, thus mirroring pathogenesis of neurodegenerative diseases such as Parkinson's or Alzheimer's disease. METHODS To uncover the sex-specific spatiotemporal profiles of neuroinflammation and neuronal dysfunction following intranasal SARS-CoV-2 infection, we quantified microglia cell density, alpha-synuclein immunoreactivity and inhibitory interneurons in cortical regions, limbic system and basal ganglia at acute and late post-recovery time points. FINDINGS Unexpectedly, microglia cell density and alpha-synuclein immunoreactivity decreased at 6 days post-infection, then rebounded to overt accumulation at 21 days post-infection. This biphasic response was most pronounced in amygdala and striatum, regions affected early in Parkinson's disease. Several brain regions showed altered densities of parvalbumin and calretinin interneurons which are involved in cognition and motor control. Of note, females appeared more affected. INTERPRETATION Our results demonstrate that SARS-CoV-2 profoundly disrupts brain homeostasis without neuroinvasion, via neuroinflammatory and protein regulation mechanisms that persist beyond viral clearance. The regional patterns and sex differences are in line with neurological deficits observed after SARS-CoV-2 infection. FUNDING Federal Ministry of Health, Germany (BMG; ZMV I 1-2520COR501 to G.G.), Federal Ministry of Education and Research, Germany (BMBF; 03COV06B to G.G.), Ministry of Science and Culture of Lower Saxony in Germany (14-76403-184, to G.G. and F.R.).
Collapse
Affiliation(s)
- Cara Sophie Schreiber
- Department of Pharmacology, Toxicology, and Pharmacy; University of Veterinary Medicine Hannover, Hannover, Germany; Center for Systems Neuroscience Hannover (ZSN), Germany
| | - Ivo Wiesweg
- Department of Pharmacology, Toxicology, and Pharmacy; University of Veterinary Medicine Hannover, Hannover, Germany
| | | | - Sebastian Beck
- Department for Viral Zoonoses-One Health, Leibniz Institute of Virology, Hamburg, Germany
| | - Nancy Mounogou Kouassi
- Department for Viral Zoonoses-One Health, Leibniz Institute of Virology, Hamburg, Germany
| | - Berfin Schaumburg
- Department for Viral Zoonoses-One Health, Leibniz Institute of Virology, Hamburg, Germany
| | - Gülsah Gabriel
- Department for Viral Zoonoses-One Health, Leibniz Institute of Virology, Hamburg, Germany; Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Franziska Richter
- Department of Pharmacology, Toxicology, and Pharmacy; University of Veterinary Medicine Hannover, Hannover, Germany; Center for Systems Neuroscience Hannover (ZSN), Germany.
| | - Christopher Käufer
- Department of Pharmacology, Toxicology, and Pharmacy; University of Veterinary Medicine Hannover, Hannover, Germany; Center for Systems Neuroscience Hannover (ZSN), Germany.
| |
Collapse
|
3
|
Usenko T, Bezrukova A, Basharova K, Baydakova G, Shagimardanova E, Blatt N, Rizvanov A, Limankin O, Novitskiy M, Shnayder N, Izyumchenko A, Nikolaev M, Zabotina A, Lavrinova A, Kulabukhova D, Nasyrova R, Palchikova E, Zalutskaya N, Miliukhina I, Barbitoff Y, Glotov O, Glotov A, Taraskina A, Neznanov N, Zakharova E, Pchelina S. Altered Sphingolipid Hydrolase Activities and Alpha-Synuclein Level in Late-Onset Schizophrenia. Metabolites 2023; 14:30. [PMID: 38248833 PMCID: PMC10819534 DOI: 10.3390/metabo14010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
Recent data described that patients with lysosomal storage disorders (LSDs) may have clinical schizophrenia (SCZ) features. Disruption of lipid metabolism in SCZ pathogenesis was found. Clinical features of schizophrenia (SCZ) have been demonstrated in patients with several lysosomal storage disorders (LSDs). Taking into account the critical role of lysosomal function for neuronal cells' lysosomal dysfunction could be proposed in SCZ pathogenesis. The current study analyzed lysosomal enzyme activities and the alpha-synuclein level in the blood of patients with late-onset SCZ. In total, 52 SCZ patients with late-onset SCZ, 180 sporadic Parkinson's disease (sPD) patients, and 176 controls were recruited. The enzymatic activity of enzymes associated with mucopolysaccharidosis (alpha-L-Iduronidase (IDUA)), glycogenosis (acid alpha-glucosidase (GAA)) and sphingolipidosis (galactosylceramidase (GALC), glucocerebrosidase (GCase), alpha-galactosidase (GLA), acid sphingomyelinase (ASMase)) and concentration of lysosphingolipids (hexosylsphingosine (HexSph), globotriaosylsphingosine (LysoGb3), and lysosphingomyelin (LysoSM)) were measured using LC-MS/MS. The alpha-synuclein level was estimated in magnetically separated CD45+ blood cells using the enzyme-linked immunosorbent assay (ELISA). Additionally, NGS analysis of 11 LSDs genes was conducted in 21 early-onset SCZ patients and 23 controls using the gene panel PGRNseq-NDD. Decreased ASMase, increased GLA activities, and increased HexSpn, LysoGb3, and LysoSM concentrations along with an accumulation of the alpha-synuclein level were observed in late-onset SCZ patients in comparison to the controls (p < 0.05). Four rare deleterious variants among LSDs genes causing mucopolysaccharidosis type I (IDUA (rs532731688, rs74385837) and type III (HGSNAT (rs766835582)) and sphingolipidosis (metachromatic leukodystrophy (ARSA (rs201251634)) were identified in five patients from the group of early-onset SCZ patients but not in the controls. Our findings supported the role of sphingolipid metabolism in SCZ pathogenesis. Aberrant enzyme activities and compounds of sphingolipids associated with ceramide metabolism may lead to accumulation of alpha-synuclein and may be critical in SCZ pathogenesis.
Collapse
Affiliation(s)
- Tatiana Usenko
- Department of Molecular Genetic and Nanobiological Technologies Research Center, Pavlov First Saint-Petersburg State Medical University, 197022 Saint Petersburg, Russia; (T.U.); (A.B.); (A.I.); (M.N.); (A.Z.); (D.K.); (I.M.); (A.T.); (S.P.)
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre Kurchatov Institute, 188300 Gatchina, Russia (G.B.); (A.L.)
| | - Anastasia Bezrukova
- Department of Molecular Genetic and Nanobiological Technologies Research Center, Pavlov First Saint-Petersburg State Medical University, 197022 Saint Petersburg, Russia; (T.U.); (A.B.); (A.I.); (M.N.); (A.Z.); (D.K.); (I.M.); (A.T.); (S.P.)
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre Kurchatov Institute, 188300 Gatchina, Russia (G.B.); (A.L.)
| | - Katerina Basharova
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre Kurchatov Institute, 188300 Gatchina, Russia (G.B.); (A.L.)
| | - Galina Baydakova
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre Kurchatov Institute, 188300 Gatchina, Russia (G.B.); (A.L.)
- Research Center for Medical Genetics, 115478 Moscow, Russia
| | - Elena Shagimardanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (E.S.); (N.B.); (A.R.)
| | - Nataliya Blatt
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (E.S.); (N.B.); (A.R.)
| | - Albert Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (E.S.); (N.B.); (A.R.)
- Division of Medical and Biological Sciences, Tatarstan Academy of Sciences, 420111 Kazan, Russia
| | - Oleg Limankin
- Psychiatric Hospital No. 1 Named after P. P. Kashchenko, 195009 Saint Petersburg, Russia;
- North-Western Medical University Named after P. I.I. Mechnikov of the Ministry of Health of the Russian Federation, 191015 Saint Petersburg, Russia
| | - Maxim Novitskiy
- Center for Personalized Psychiatry and Neurology of the N.N. V.M. Bekhtereva, 192019 Saint Petersburg, Russia; (M.N.); (N.S.); (R.N.); (N.N.)
| | - Natalia Shnayder
- Center for Personalized Psychiatry and Neurology of the N.N. V.M. Bekhtereva, 192019 Saint Petersburg, Russia; (M.N.); (N.S.); (R.N.); (N.N.)
| | - Artem Izyumchenko
- Department of Molecular Genetic and Nanobiological Technologies Research Center, Pavlov First Saint-Petersburg State Medical University, 197022 Saint Petersburg, Russia; (T.U.); (A.B.); (A.I.); (M.N.); (A.Z.); (D.K.); (I.M.); (A.T.); (S.P.)
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre Kurchatov Institute, 188300 Gatchina, Russia (G.B.); (A.L.)
| | - Mikhail Nikolaev
- Department of Molecular Genetic and Nanobiological Technologies Research Center, Pavlov First Saint-Petersburg State Medical University, 197022 Saint Petersburg, Russia; (T.U.); (A.B.); (A.I.); (M.N.); (A.Z.); (D.K.); (I.M.); (A.T.); (S.P.)
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre Kurchatov Institute, 188300 Gatchina, Russia (G.B.); (A.L.)
| | - Anna Zabotina
- Department of Molecular Genetic and Nanobiological Technologies Research Center, Pavlov First Saint-Petersburg State Medical University, 197022 Saint Petersburg, Russia; (T.U.); (A.B.); (A.I.); (M.N.); (A.Z.); (D.K.); (I.M.); (A.T.); (S.P.)
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre Kurchatov Institute, 188300 Gatchina, Russia (G.B.); (A.L.)
| | - Anna Lavrinova
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre Kurchatov Institute, 188300 Gatchina, Russia (G.B.); (A.L.)
| | - Darya Kulabukhova
- Department of Molecular Genetic and Nanobiological Technologies Research Center, Pavlov First Saint-Petersburg State Medical University, 197022 Saint Petersburg, Russia; (T.U.); (A.B.); (A.I.); (M.N.); (A.Z.); (D.K.); (I.M.); (A.T.); (S.P.)
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre Kurchatov Institute, 188300 Gatchina, Russia (G.B.); (A.L.)
| | - Regina Nasyrova
- Center for Personalized Psychiatry and Neurology of the N.N. V.M. Bekhtereva, 192019 Saint Petersburg, Russia; (M.N.); (N.S.); (R.N.); (N.N.)
| | - Ekaterina Palchikova
- V.M. Bekhterev National Medical Research Center Psychiatry and Neurology, 192019 Saint Petersburg, Russia; (E.P.); (N.Z.)
| | - Natalia Zalutskaya
- V.M. Bekhterev National Medical Research Center Psychiatry and Neurology, 192019 Saint Petersburg, Russia; (E.P.); (N.Z.)
| | - Irina Miliukhina
- Department of Molecular Genetic and Nanobiological Technologies Research Center, Pavlov First Saint-Petersburg State Medical University, 197022 Saint Petersburg, Russia; (T.U.); (A.B.); (A.I.); (M.N.); (A.Z.); (D.K.); (I.M.); (A.T.); (S.P.)
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre Kurchatov Institute, 188300 Gatchina, Russia (G.B.); (A.L.)
- Institute of the Human Brain of RAS, 197022 Saint Petersburg, Russia
| | - Yury Barbitoff
- D.O. Ott Research Institute for Obstetrics, Gynecology, and Reproductology, 199034 Saint Petersburg, Russia; (Y.B.); (O.G.); (A.G.)
- Cerbalab Ltd., 197136 Saint Petersburg, Russia
- Bioinformatics Institute, 197342 Saint Petersburg, Russia
| | - Oleg Glotov
- D.O. Ott Research Institute for Obstetrics, Gynecology, and Reproductology, 199034 Saint Petersburg, Russia; (Y.B.); (O.G.); (A.G.)
- Cerbalab Ltd., 197136 Saint Petersburg, Russia
- Pediatric Research and Clinical Center of Infectious Diseases, 197022 Saint Petersburg, Russia
| | - Andrey Glotov
- D.O. Ott Research Institute for Obstetrics, Gynecology, and Reproductology, 199034 Saint Petersburg, Russia; (Y.B.); (O.G.); (A.G.)
- School of Medicine, St. Petersburg State University, 199034 Saint Petersburg, Russia
| | - Anastasia Taraskina
- Department of Molecular Genetic and Nanobiological Technologies Research Center, Pavlov First Saint-Petersburg State Medical University, 197022 Saint Petersburg, Russia; (T.U.); (A.B.); (A.I.); (M.N.); (A.Z.); (D.K.); (I.M.); (A.T.); (S.P.)
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre Kurchatov Institute, 188300 Gatchina, Russia (G.B.); (A.L.)
| | - Nikolai Neznanov
- Center for Personalized Psychiatry and Neurology of the N.N. V.M. Bekhtereva, 192019 Saint Petersburg, Russia; (M.N.); (N.S.); (R.N.); (N.N.)
- V.M. Bekhterev National Medical Research Center Psychiatry and Neurology, 192019 Saint Petersburg, Russia; (E.P.); (N.Z.)
| | | | - Sofya Pchelina
- Department of Molecular Genetic and Nanobiological Technologies Research Center, Pavlov First Saint-Petersburg State Medical University, 197022 Saint Petersburg, Russia; (T.U.); (A.B.); (A.I.); (M.N.); (A.Z.); (D.K.); (I.M.); (A.T.); (S.P.)
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre Kurchatov Institute, 188300 Gatchina, Russia (G.B.); (A.L.)
| |
Collapse
|
4
|
Göverti D, Büyüklüoğlu N, Nazik Yüksel R, Kaya H, Yücel Ç, Göka E. Decreased serum levels of α-synuclein in patients with schizophrenia and their unaffected siblings. Early Interv Psychiatry 2023; 17:1079-1086. [PMID: 36707089 DOI: 10.1111/eip.13398] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 11/12/2022] [Accepted: 01/01/2023] [Indexed: 01/29/2023]
Abstract
AIM The final common pathway in the etiopathogenesis of schizophrenia is suggested that there is a defect in the presynaptic terminal in dopaminergic transmission, in which α-synuclein has an important role. Peripheral biomarker studies in schizophrenia have become crucial for better diagnoses, early interventions, and personalized therapies. This study aims to compare α-synuclein levels in patients with schizophrenia and their unaffected siblings with healthy controls, as a potential peripheral biomarker for schizophrenia. METHODS The quantifications of α-synuclein serum concentrations were conducted by the ELISA method. PANSS and CGI-S were used to analyse the severity of the symptoms of the subjects. Data were analysed by nonparametric tests and the Receiver Operating Curve (ROC) analysis. RESULTS Sixty-two patients with schizophrenia (mean age: 34,8 ± 9,9, %64,5 male), their 56 unaffected siblings (mean age: 39,4 ± 11,5, %55,4 male) and 56 healthy controls (mean age: 36,2 ± 9,8, %64,3 male) were included. α-synuclein levels were significantly lower in the patient (27,65 (12,61-46,09) pg/ml) and the unaffected sibling groups (24,62 (15,60-57,87) pg/ml) compared with healthy controls (45,58 (11,25-108,30) pg/ml) (p < .001). According to the ROC analysis, the optimal cut-off value for α-synuclein levels in distinguishing the schizophrenia group from the control group was 42.20. The sensitivity of the measurement of serum α-synuclein at this point was 93.5%, and the specificity was 60.7%. CONCLUSION Our study demonstrates that decreased levels of serum α-synuclein may be utilized as a possible peripheral biomarker of familial risk for schizophrenia in both patients and their siblings.
Collapse
Affiliation(s)
- Diğdem Göverti
- Department of Psychiatry, Istanbul Erenkoy Training and Research Hospital for Psychiatric and Neurological Diseases, Istanbul, Turkey
| | - Nihan Büyüklüoğlu
- University of Health Sciences, Ankara City Hospital, Department of Psychiatry, Ankara, Turkey
| | - Rabia Nazik Yüksel
- University of Health Sciences, Ankara City Hospital, Department of Psychiatry, Ankara, Turkey
| | - Hasan Kaya
- University of Health Sciences, Ankara City Hospital, Department of Psychiatry, Ankara, Turkey
| | - Çiğdem Yücel
- University of Health Sciences, Gulhane Training and Research Hospital, Department of Biochemistry, Ankara, Turkey
| | - Erol Göka
- University of Health Sciences, Ankara City Hospital, Department of Psychiatry, Ankara, Turkey
| |
Collapse
|
5
|
Jiménez-Jiménez FJ, Alonso-Navarro H, García-Martín E, Santos-García D, Martínez-Valbuena I, Agúndez JAG. Alpha-Synuclein in Peripheral Tissues as a Possible Marker for Neurological Diseases and Other Medical Conditions. Biomolecules 2023; 13:1263. [PMID: 37627328 PMCID: PMC10452242 DOI: 10.3390/biom13081263] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
The possible usefulness of alpha-synuclein (aSyn) determinations in peripheral tissues (blood cells, salivary gland biopsies, olfactory mucosa, digestive tract, skin) and in biological fluids, except for cerebrospinal fluid (serum, plasma, saliva, feces, urine), as a marker of several diseases, has been the subject of numerous publications. This narrative review summarizes data from studies trying to determine the role of total, oligomeric, and phosphorylated aSyn determinations as a marker of various diseases, especially PD and other alpha-synucleinopathies. In summary, the results of studies addressing the determinations of aSyn in its different forms in peripheral tissues (especially in platelets, skin, and digestive tract, but also salivary glands and olfactory mucosa), in combination with other potential biomarkers, could be a useful tool to discriminate PD from controls and from other causes of parkinsonisms, including synucleinopathies.
Collapse
Affiliation(s)
| | | | - Elena García-Martín
- Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, 10071 Cáceres, Spain; (E.G.-M.); (J.A.G.A.)
| | - Diego Santos-García
- Department of Neurology, CHUAC—Complejo Hospitalario Universitario de A Coruña, 15006 A Coruña, Spain;
| | - Iván Martínez-Valbuena
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON M5T 2S8, Canada;
| | - José A. G. Agúndez
- Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, 10071 Cáceres, Spain; (E.G.-M.); (J.A.G.A.)
| |
Collapse
|
6
|
Improper Proteostasis: Can It Serve as Biomarkers for Neurodegenerative Diseases? Mol Neurobiol 2022; 59:3382-3401. [PMID: 35305242 DOI: 10.1007/s12035-022-02775-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/19/2022] [Indexed: 10/18/2022]
Abstract
Cells synthesize new proteins after multiple molecular decisions. Damage of existing proteins, accumulation of abnormal proteins, and basic requirement of new proteins trigger protein quality control (PQC)-based alternative strategies to cope against proteostasis imbalance. Accumulation of misfolded proteins is linked with various neurodegenerative disorders. However, how deregulated components of this quality control system and their lack of general mechanism-based long-term changes can serve as biomarkers for neurodegeneration remains largely unexplored. Here, our article summarizes the chief findings, which may facilitate the search of novel and relevant proteostasis mechanism-based biomarkers associated with neuronal disorders. Understanding the abnormalities of PQC coupled molecules as possible biomarkers can help to determine neuronal fate and their contribution to the aetiology of several nervous system disorders.
Collapse
|
7
|
Kulczyńska-Przybik A, Dulewicz M, Słowik A, Borawska R, Kułakowska A, Kochanowicz J, Mroczko B. The Clinical Significance of Cerebrospinal Fluid Reticulon 4 (RTN4) Levels in the Differential Diagnosis of Neurodegenerative Diseases. J Clin Med 2021; 10:jcm10225281. [PMID: 34830564 PMCID: PMC8622503 DOI: 10.3390/jcm10225281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 11/16/2022] Open
Abstract
Neurodegenerative diseases (NDs) belong to the top global causes of mortality. Diagnostic approaches to improve early diagnosis and differentiation of these diseases are constantly being sought. Therefore, we aimed to assess the cerebrospinal fluid (CSF) concentrations of Reticulon 4 (RTN4) in patients with neurodegenerative diseases and evaluate the potential clinical usefulness of this protein. RTNs are transmembrane proteins mediating neuroanatomical plasticity and functional recovery after central nervous system injury or diseases. According to our best knowledge, this is the first investigation providing the data concerning the dynamic of CSF RTN4 protein levels in patients with different NDs. Methods: Overall, 77 newly diagnosed patients with neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD), and multiple sclerosis (MS), as well as 21 controls, were enrolled in the study. The CSF concentrations of tested proteins were assessed using immunological assays. Results: We revealed significantly higher CSF RTN4A levels in patients with AD, PD, and MS in comparison to the controls. Moreover, the comparative analysis of RTN4 concentration between different neurodegenerative diseases revealed the highest concentration of RTN4A in AD patients and a statistically significant difference between AD vs. PD, and AD vs. MS groups. The increased CSF level of the protein correlated with Tau, and pTau181 proteins in AD as well as in PD patients. Conclusions: Our study presents a previously not identified clinical utility of RTN4 in the differential diagnosis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Agnieszka Kulczyńska-Przybik
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland; (M.D.); (R.B.); (B.M.)
- Correspondence:
| | - Maciej Dulewicz
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland; (M.D.); (R.B.); (B.M.)
| | - Agnieszka Słowik
- Department of Neurology, Jagiellonian University, 30-688 Kraków, Poland;
| | - Renata Borawska
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland; (M.D.); (R.B.); (B.M.)
| | - Alina Kułakowska
- Department of Neurology, Medical University of Bialystok, 15-269 Bialystok, Poland; (A.K.); (J.K.)
| | - Jan Kochanowicz
- Department of Neurology, Medical University of Bialystok, 15-269 Bialystok, Poland; (A.K.); (J.K.)
| | - Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland; (M.D.); (R.B.); (B.M.)
- Department of Biochemical Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| |
Collapse
|
8
|
Park HJ, Kang WS, Kim JW. Association between the promoter haplotype of RTN4 gene and schizophrenia in a Korean population. Psychiatry Res 2021; 299:113841. [PMID: 33721786 DOI: 10.1016/j.psychres.2021.113841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/25/2021] [Indexed: 11/15/2022]
Abstract
Previous studies have suggested the involvement of Nogo-A/RTN4 in the pathogenesis of schizophrenia. We investigated an association between the promoter haplotypes of RTN4 comprised of rs1348528-rs1822618-rs2241958 and schizophrenia. A significant association between the rare TGA haplotype and schizophrenia was shown (p < 0.0001). Additionally, the promoter activity was profoundly decreased by the TGA haplotype. These results suggested that the TGA haplotype of RTN4 may contribute to the susceptibility of schizophrenia.
Collapse
Affiliation(s)
- Hae Jeong Park
- Department of Pharmacology, School of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Won Sub Kang
- Department of Neuropsychiatry, School of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jong Woo Kim
- Department of Neuropsychiatry, School of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
9
|
The Implication of Reticulons (RTNs) in Neurodegenerative Diseases: From Molecular Mechanisms to Potential Diagnostic and Therapeutic Approaches. Int J Mol Sci 2021; 22:ijms22094630. [PMID: 33924890 PMCID: PMC8125174 DOI: 10.3390/ijms22094630] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 02/07/2023] Open
Abstract
Reticulons (RTNs) are crucial regulatory factors in the central nervous system (CNS) as well as immune system and play pleiotropic functions. In CNS, RTNs are transmembrane proteins mediating neuroanatomical plasticity and functional recovery after central nervous system injury or diseases. Moreover, RTNs, particularly RTN4 and RTN3, are involved in neurodegeneration and neuroinflammation processes. The crucial role of RTNs in the development of several neurodegenerative diseases, including Alzheimer's disease (AD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), or other neurological conditions such as brain injury or spinal cord injury, has attracted scientific interest. Reticulons, particularly RTN-4A (Nogo-A), could provide both an understanding of early pathogenesis of neurodegenerative disorders and be potential therapeutic targets which may offer effective treatment or inhibit disease progression. This review focuses on the molecular mechanisms and functions of RTNs and their potential usefulness in clinical practice as a diagnostic tool or therapeutic strategy.
Collapse
|
10
|
Espírito-Santo S, Coutinho VG, Dezonne RS, Stipursky J, Dos Santos-Rodrigues A, Batista C, Paes-de-Carvalho R, Fuss B, Gomes FCA. Astrocytes as a target for Nogo-A and implications for synapse formation in vitro and in a model of acute demyelination. Glia 2021; 69:1429-1443. [PMID: 33497496 DOI: 10.1002/glia.23971] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 12/21/2020] [Accepted: 01/14/2021] [Indexed: 12/20/2022]
Abstract
Central nervous system (CNS) function depends on precise synaptogenesis, which is shaped by environmental cues and cellular interactions. Astrocytes are outstanding regulators of synapse development and plasticity through contact-dependent signals and through the release of pro- and antisynaptogenic factors. Conversely, myelin and its associated proteins, including Nogo-A, affect synapses in a inhibitory fashion and contribute to neural circuitry stabilization. However, the roles of Nogo-A-astrocyte interactions and their implications in synapse development and plasticity have not been characterized. Therefore, we aimed to investigate whether Nogo-A affects the capacity of astrocytes to induce synaptogenesis. Additionally, we assessed whether downregulation of Nogo-A signaling in an in vivo demyelination model impacts the synaptogenic potential of astrocytes. Our in vitro data show that cortical astrocytes respond to Nogo-A through RhoA pathway activation, exhibiting stress fiber formation and decreased ramified morphology. This phenotype was associated with reduced levels of GLAST protein and aspartate uptake, decreased mRNA levels of the synaptogenesis-associated genes Hevin, glypican-4, TGF-β1 and BDNF, and decreased and increased protein levels of Hevin and SPARC, respectively. Corroborating these findings, conditioned medium from Nogo-A-treated astrocytes suppressed the formation of structurally and functionally mature synapses in cortical neuronal cultures. After cuprizone-induced acute demyelination, we observed reduced immunostaining for Nogo-A in the visual cortex accompanied by higher levels of Hevin expression in astrocytes and an increase in excitatory synapse density. Hence, we suggest that interactions between Nogo-A and astrocytes might represent an important pathway of plasticity regulation and could be a target for therapeutic intervention in demyelinating diseases in the future.
Collapse
Affiliation(s)
- Sheila Espírito-Santo
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Departamento de Ciências Biológicas, Universidade do Estado de Minas Gerais, Minas Gerais, Brazil
| | - Vinícius G Coutinho
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rômulo S Dezonne
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Joice Stipursky
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Carolina Batista
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Roberto Paes-de-Carvalho
- Instituto de Biologia, Programa de Neurociências, Universidade Federal Fluminense, Niterói, Brazil
| | - Babette Fuss
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | | |
Collapse
|
11
|
Polissidis A, Koronaiou M, Kollia V, Koronaiou E, Nakos-Bimpos M, Bogiongko M, Vrettou S, Karali K, Casadei N, Riess O, Sardi SP, Xilouri M, Stefanis L. Psychosis-Like Behavior and Hyperdopaminergic Dysregulation in Human α-Synuclein BAC Transgenic Rats. Mov Disord 2020; 36:716-728. [PMID: 33200461 DOI: 10.1002/mds.28383] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/28/2020] [Accepted: 10/26/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Parkinson's disease psychosis is a prevalent yet underreported and understudied nonmotor manifestation of Parkinson's disease and, arguably, the most debilitating. It is unknown if α-synuclein plays a role in psychosis, and if so, this endophenotype may be crucial for elucidating the neurodegenerative process. OBJECTIVES We sought to dissect the underlying neurobiology of novelty-induced hyperactivity, reminiscent of psychosis-like behavior, in human α-synuclein BAC rats. RESULTS Herein, we demonstrate a prodromal psychosis-like phenotype, including late-onset sensorimotor gating disruption, striatal hyperdopaminergic signaling, and persistent novelty-induced hyperactivity (up to 18 months), albeit reduced baseline locomotor activity, that is augmented by d-amphetamine and reversed by classical and atypical antipsychotics. MicroRNA-mediated α-synuclein downregulation in the ventral midbrain rescues the hyperactive phenotype and restores striatal dopamine levels. This phenotype is accompanied by an abundance of age-, brain region- and gene dose-dependent aberrant α-synuclein, including hyperphosphorylation, C-terminal truncation, aggregation pathology, and mild nigral neurodegeneration (27%). CONCLUSIONS Our findings demonstrate a potential role of α-synuclein in Parkinson's disease psychosis and provide evidence of region-specific perturbations prior to neurodegeneration phenoconversion. The reported phenotype coincides with the latest clinical findings that suggest a premotor hyperdopaminergic state may occur, while at the same time, premotor psychotic symptoms are increasingly being recognized. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Alexia Polissidis
- Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | - Maria Koronaiou
- Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | - Vasia Kollia
- Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | - Effrosyni Koronaiou
- Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | - Modestos Nakos-Bimpos
- Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | - Marios Bogiongko
- Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | - Sofia Vrettou
- Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | - Katerina Karali
- Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | - Nicolas Casadei
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Sergio P Sardi
- Rare and Neurologic Diseases Research Therapeutic Area, Framingham, Massachusetts, USA
| | - Maria Xilouri
- Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | - Leonidas Stefanis
- Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece.,1st Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
12
|
Luza S, Opazo CM, Bousman CA, Pantelis C, Bush AI, Everall IP. The ubiquitin proteasome system and schizophrenia. Lancet Psychiatry 2020; 7:528-537. [PMID: 32061320 DOI: 10.1016/s2215-0366(19)30520-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/22/2019] [Accepted: 12/03/2019] [Indexed: 12/12/2022]
Abstract
The ubiquitin-proteasome system is a master regulator of neural development and the maintenance of brain structure and function. It influences neurogenesis, synaptogenesis, and neurotransmission by determining the localisation, interaction, and turnover of scaffolding, presynaptic, and postsynaptic proteins. Moreover, ubiquitin-proteasome system signalling transduces epigenetic changes in neurons independently of protein degradation and, as such, dysfunction of components and substrates of this system has been linked to a broad range of brain conditions. Although links between ubiquitin-proteasome system dysfunction and neurodegenerative disorders have been known for some time, only recently have similar links emerged for neurodevelopmental disorders, such as schizophrenia. Here, we review the components of the ubiquitin-proteasome system that are reported to be dysregulated in schizophrenia, and discuss specific molecular changes to these components that might, in part, explain the complex causes of this mental disorder.
Collapse
Affiliation(s)
- Sandra Luza
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Parkville, VIC, Australia; Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne & Melbourne Health, Parkville, VIC, Australia
| | - Carlos M Opazo
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Parkville, VIC, Australia; Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne & Melbourne Health, Parkville, VIC, Australia
| | - Chad A Bousman
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Parkville, VIC, Australia; The Cooperative Research Centre for Mental Health, Carlton South, VIC, Australia; Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Departments of Medical Genetics, Psychiatry, and Physiology & Pharmacology, University of Calgary, Calgary, AB, Canada; University of Calgary, Calgary, AB, Canada
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Parkville, VIC, Australia; Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne & Melbourne Health, Parkville, VIC, Australia; Centre for Neural Engineering, Department of Electrical and Electronic Engineering, The University of Melbourne & Melbourne Health, Parkville, VIC, Australia; The Cooperative Research Centre for Mental Health, Carlton South, VIC, Australia; Alberta Children's Hospital Research Institute, Calgary, AB, Canada; NorthWestern Mental Health, Melbourne, VIC, Australia
| | - Ashley I Bush
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne & Melbourne Health, Parkville, VIC, Australia.
| | - Ian P Everall
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Parkville, VIC, Australia; Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne & Melbourne Health, Parkville, VIC, Australia; Centre for Neural Engineering, Department of Electrical and Electronic Engineering, The University of Melbourne & Melbourne Health, Parkville, VIC, Australia; The Cooperative Research Centre for Mental Health, Carlton South, VIC, Australia; Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
13
|
Gupta AK, Pokhriyal R, Das U, Khan MI, Ratna Kumar D, Gupta R, Chadda RK, Ramachandran R, Goyal V, Tripathi M, Hariprasad G. Evaluation of α-synuclein and apolipoprotein E as potential biomarkers in cerebrospinal fluid to monitor pharmacotherapeutic efficacy in dopamine dictated disease states of Parkinson's disease and schizophrenia. Neuropsychiatr Dis Treat 2019; 15:2073-2085. [PMID: 31410011 PMCID: PMC6650621 DOI: 10.2147/ndt.s205550] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 06/05/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND AND OBJECTIVE Dopamine plays an important role in the disease pathology of Parkinson's disease and schizophrenia. These two neuropsychiatric disorders represent disease end points of the dopaminergic spectrum where Parkinson's disease represents dopamine deficit and schizophrenia represents dopamine hyperactivity in the mid-brain. Therefore, current treatment strategies aim to restore normal dopamine levels. However, during treatment patients develop adverse effects due to overshooting of physiological levels of dopamine leading to psychosis in Parkinson's disease, and extrapyramidal symptoms in schizophrenia. Absence of any laboratory tests hampers modulation of pharmacotherapy. Apolipoprotein E and α-synuclein have an important role in the neuropathology of these two diseases. The objective of this study was to evaluate cerebrospinal fluid (CSF) concentrations of apolipoprotein E and α-synuclein in patients with these two diseases so that they may serve as biomarkers to monitor therapy in Parkinson's disease and schizophrenia. METHODS Drug-naïve Parkinson's disease patients and Parkinson's disease patients treated with dopaminergic therapy, neurological controls, schizophrenic patients treated with antidopaminergic therapy, and drug-naïve schizophrenic patients were recruited for the study and CSF was collected. Enzyme-linked immunosorbent assays were carried out to estimate the concentrations of apolipoprotein E and α-synuclein. Pathway analysis was done to establish a possible role of these two proteins in various pathways in these two dopamine dictated diseases. RESULTS Apolipoprotein E and α-synuclein CSF concentrations have an inverse correlation along the entire dopaminergic clinical spectrum. Pathway analysis convincingly establishes a plausible hypothesis for their co-regulation in the pathogenesis of Parkinson's disease and schizophrenia. Each protein by itself or as a combination has encouraging sensitivity and specificity values of more than 55%. CONCLUSION The dynamic variation of these two proteins along the spectrum is ideal for them to be pursued as pharmacotherapeutic biomarkers in CSF to monitor pharmacological efficacy in Parkinson's disease and schizophrenia.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Vinay Goyal
- Department of Neurology, All India Institute of Medical Sciences, New Delhi110029, India
| | - Manjari Tripathi
- Department of Neurology, All India Institute of Medical Sciences, New Delhi110029, India
| | | |
Collapse
|
14
|
Gene expression changes related to immune processes associate with cognitive endophenotypes of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2019; 88:159-167. [PMID: 30030132 DOI: 10.1016/j.pnpbp.2018.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/15/2018] [Accepted: 07/04/2018] [Indexed: 12/12/2022]
Abstract
Schizophrenia is a heterogeneous disorder characterized by a spectrum of symptoms and many different underlying causes. Thus, instead of using the broad diagnosis, intermediate phenotypes can be used to possibly decrease the underlying complexity of the disorder. Alongside the classical symptoms of delusions and hallucinations, cognitive deficits are a core feature of schizophrenia. To increase our understanding of the biological processes related to these cognitive deficits, we performed a genome-wide gene expression analysis. A battery of 14 neuropsychological tests was administered to 844 individuals from a Finnish familial schizophrenia cohort. We grouped the applied neuropsychological tests into five factors for further analysis. Cognitive endophenotypes, whole blood mRNA, genotype, and medication use data were studied from 47 individuals. Expression level of several RNA probes were significantly associated with cognitive performance. The factor representing Verbal Working Memory was associated with altered expression levels of 11 probes, of which one probe was also associated with a specific sub-measure of this factor (WMS-R Digit span backward). While, the factor Processing speed was related to one probe, which additionally associated among 55 probes with a specific sub-measure of this factor (WAIS-R Digit symbol). Two probes were associated with the measure recognition memory performance. Enrichment analysis of these differentially expressed probes highlighted immunological processes. Our findings are in line with genome-wide genetic discoveries made in schizophrenia, suggesting that immunological processes may be of biological interest for future drug design towards schizophrenia and the cognitive dysfunctions that underlie it.
Collapse
|