1
|
Das KP, Sharma D, Saha S, Satapathy BK. From outbreak of COVID-19 to launching of vaccination drive: invigorating single-use plastics, mitigation strategies, and way forward. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:55811-55845. [PMID: 34480299 PMCID: PMC8415439 DOI: 10.1007/s11356-021-16025-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/14/2021] [Indexed: 05/14/2023]
Abstract
The unforeseen outbreak of the COVID-19 epidemic has significantly stipulated the use of plastics to minimize the exposure and spread of the novel coronavirus. With the onset of the vaccination drive, the issue draws even more attention due to additional demand for vaccine packaging, transport, disposable syringes, and other allied devices scaling up to many million tonnes of plastic. Plastic materials in personal protective equipment (PPE), disposable pharmaceutical devices, and packaging for e-commerce facilities are perceived to be a lifesaver for the frontline healthcare personnel and the general public amidst recurring waves of the pandemic. However, the same material poses a threat as an evil environmental polluter when attributed to its indiscriminate and improper littering as well as mismanagement. The review not only highlights the environmental consequences due to the excessive use of disposable plastics amidst COVID-19 but also recommends mixed approaches to its management by adopting the combined and step-by-step methodology of adequate segregation, sterilization, sanitization activities, technological intervention, and process optimization measures. The overview finally concludes with some crucial way-forward measures and recommendations like the development of bioplastics and focusing on biodegradable/bio-compostable material alternatives to holistically deal with future pandemics.
Collapse
Affiliation(s)
- Krishna Priyadarshini Das
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Deepika Sharma
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Sampa Saha
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Bhabani K Satapathy
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
2
|
Barboza EP, dos Santos GO, Montez C, Sendra LA, Vieira EDO, Carvalho W, Ferreira VF. Evaluation of Surgical Gown Textiles for Resistance Against Aerosols: A Preclinical Double-Blind Study. FRONTIERS IN DENTAL MEDICINE 2021. [DOI: 10.3389/fdmed.2021.654911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Personal protective equipment is used to prevent healthcare workers from contaminants. With the advent of COVID-19 pandemic, the use of effective PPE becomes more critical to avoiding infection by SARS-CoV-2. This preclinical double-blind study evaluated the performance of surgical gown textiles for penetration resistance against aerosols. The different textiles were divided into seven groups: (1) SMS PP OE Phobic; (2) Laminated Phobic; (3) Medical Barrier; (4) Trilayer Fabric; (5) Impermeable gown; (6) Impermeable with heat sealing tape; and (7) Clean Wear. All groups were exposed to aerosol-generating procedure for 5 min, according to Barboza et al. 2020. All measurements were recorded and exported to a datasheet for analysis using SPSS software. The groups showed significant differences (p < 0.01). Groups 2, 3, 4, 5, and 6 proved to be effective barriers against aerosols and presented a constant behavior. Groups 1 and 7 showed pigmented areas of 13.05 and 48.23%, respectively, suggesting that, in the present test model, these water-repellent and antimicrobial fabrics were not effective barriers against 5-min aerosols generated by a high-speed dental handpiece. Polyethylene or polyurethane laminated fabrics were efficient against 5-min aerosols. The SMS textile, globally used for surgical gowns, and the cotton fabric, impregnated with nanoparticles, were not effective barriers. The breathability and comfort of these textiles should be tested in future studies. Healthcare workers should be aware of the exact specifications of their surgical gown textiles.
Collapse
|
3
|
Karim N, Afroj S, Lloyd K, Oaten LC, Andreeva DV, Carr C, Farmery AD, Kim ID, Novoselov KS. Sustainable Personal Protective Clothing for Healthcare Applications: A Review. ACS NANO 2020; 14:12313-12340. [PMID: 32866368 PMCID: PMC7518242 DOI: 10.1021/acsnano.0c05537] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 08/31/2020] [Indexed: 05/19/2023]
Abstract
Personal protective equipment (PPE) is critical to protect healthcare workers (HCWs) from highly infectious diseases such as COVID-19. However, hospitals have been at risk of running out of the safe and effective PPE including personal protective clothing needed to treat patients with COVID-19, due to unprecedented global demand. In addition, there are only limited manufacturing facilities of such clothing available worldwide, due to a lack of available knowledge about relevant technologies, ineffective supply chains, and stringent regulatory requirements. Therefore, there remains a clear unmet need for coordinating the actions and efforts from scientists, engineers, manufacturers, suppliers, and regulatory bodies to develop and produce safe and effective protective clothing using the technologies that are locally available around the world. In this review, we discuss currently used PPE, their quality, and the associated regulatory standards. We survey the current state-of-the-art antimicrobial functional finishes on fabrics to protect the wearer against viruses and bacteria and provide an overview of protective medical fabric manufacturing techniques, their supply chains, and the environmental impacts of current single-use synthetic fiber-based protective clothing. Finally, we discuss future research directions, which include increasing efficiency, safety, and availability of personal protective clothing worldwide without conferring environmental problems.
Collapse
Affiliation(s)
- Nazmul Karim
- Centre
for Fine Print Research, The University
of West of England, Bower Ashton, Bristol BS3 2JT, United
Kingdom
| | - Shaila Afroj
- Centre
for Fine Print Research, The University
of West of England, Bower Ashton, Bristol BS3 2JT, United
Kingdom
| | - Kate Lloyd
- Textiles
Intelligence, Village Way, Wilmslow, Cheshire SK9 2GH, United
Kingdom
| | - Laura Clarke Oaten
- Centre
for Fine Print Research, The University
of West of England, Bower Ashton, Bristol BS3 2JT, United
Kingdom
| | - Daria V. Andreeva
- Department
of Materials Science and Engineering, National
University of Singapore, 9 Engineering Drive 1, Singapore 117575
| | - Chris Carr
- Clothworkers’
Centre for Textile Materials Innovation for Healthcare, School of
Design, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Andrew D. Farmery
- Nuffield
Department of Clinical Neurosciences, The
University of Oxford, Oxford OX1 3PN, United Kingdom
| | - Il-Doo Kim
- Department
of Materials Science and Engineering, Korea
Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro,
Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Kostya S. Novoselov
- Department
of Materials Science and Engineering, National
University of Singapore, 9 Engineering Drive 1, Singapore 117575
- Chongqing
2D Materials Institute, Liangjiang New
Area, Chongqing, 400714, China
| |
Collapse
|
4
|
Otto DP, de Villiers MM. Layer-By-Layer Nanocoating of Antiviral Polysaccharides on Surfaces to Prevent Coronavirus Infections. Molecules 2020; 25:E3415. [PMID: 32731428 PMCID: PMC7435837 DOI: 10.3390/molecules25153415] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/24/2020] [Accepted: 07/26/2020] [Indexed: 12/28/2022] Open
Abstract
In 2020, the world is being ravaged by the coronavirus, SARS-CoV-2, which causes a severe respiratory disease, Covid-19. Hundreds of thousands of people have succumbed to the disease. Efforts at curing the disease are aimed at finding a vaccine and/or developing antiviral drugs. Despite these efforts, the WHO warned that the virus might never be eradicated. Countries around the world have instated non-pharmaceutical interventions such as social distancing and wearing of masks in public to curb the spreading of the disease. Antiviral polysaccharides provide the ideal opportunity to combat the pathogen via pharmacotherapeutic applications. However, a layer-by-layer nanocoating approach is also envisioned to coat surfaces to which humans are exposed that could harbor pathogenic coronaviruses. By coating masks, clothing, and work surfaces in wet markets among others, these antiviral polysaccharides can ensure passive prevention of the spreading of the virus. It poses a so-called "eradicate-in-place" measure against the virus. Antiviral polysaccharides also provide a green chemistry pathway to virus eradication since these molecules are primarily of biological origin and can be modified by minimal synthetic approaches. They are biocompatible as well as biodegradable. This surface passivation approach could provide a powerful measure against the spreading of coronaviruses.
Collapse
Affiliation(s)
- Daniel P. Otto
- Research Focus Area for Chemical Resource Beneficiation, Laboratory for Analytical Services, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom 2531, South Africa
| | - Melgardt M. de Villiers
- Division of Pharmaceutical Sciences–Drug Delivery, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Ave, Madison, WI 53705, USA;
| |
Collapse
|
5
|
Nica IC, Stan MS, Dinischiotu A, Popa M, Chifiriuc MC, Lazar V, Pircalabioru GG, Bezirtzoglou E, Iordache OG, Varzaru E, Dumitrescu I, Feder M, Vasiliu F, Mercioniu I, Diamandescu L. Innovative Self-Cleaning and Biocompatible Polyester Textiles Nano-Decorated with Fe-N-Doped Titanium Dioxide. NANOMATERIALS 2016; 6:nano6110214. [PMID: 28335342 PMCID: PMC5245744 DOI: 10.3390/nano6110214] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/03/2016] [Accepted: 11/07/2016] [Indexed: 11/21/2022]
Abstract
The development of innovative technologies to modify natural textiles holds an important impact for medical applications, including the prevention of contamination with microorganisms, particularly in the hospital environment. In our study, Fe and N co-doped TiO2 nanoparticles have been obtained via the hydrothermal route, at moderate temperature, followed by short thermal annealing at 400 °C. These particles were used to impregnate polyester (PES) materials which have been evaluated for their morphology, photocatalytic performance, antimicrobial activity against bacterial reference strains, and in vitro biocompatibility on human skin fibroblasts. Microscopic examination and quantitative assays have been used to evaluate the cellular morphology and viability, cell membrane integrity, and inflammatory response. All treated PES materials specifically inhibited the growth of Gram-negative bacilli strains after 15 min of contact, being particularly active against Pseudomonas aeruginosa. PES fabrics treated with photocatalysts did not affect cell membrane integrity nor induce inflammatory processes, proving good biocompatibility. These results demonstrate that the treatment of PES materials with TiO2-1% Fe–N particles could provide novel biocompatible fabrics with short term protection against microbial colonization, demonstrating their potential for the development of innovative textiles that could be used in biomedical applications for preventing patients’ accidental contamination with microorganisms from the hospital environment.
Collapse
Affiliation(s)
- Ionela Cristina Nica
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania.
| | - Miruna Silvia Stan
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania.
| | - Anca Dinischiotu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania.
| | - Marcela Popa
- Department of Botanic-Microbiology, Faculty of Biology, University of Bucharest, 1-3 Aleea Portocalelor, 60101 Bucharest, Romania.
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania.
| | - Mariana Carmen Chifiriuc
- Department of Botanic-Microbiology, Faculty of Biology, University of Bucharest, 1-3 Aleea Portocalelor, 60101 Bucharest, Romania.
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania.
| | - Veronica Lazar
- Department of Botanic-Microbiology, Faculty of Biology, University of Bucharest, 1-3 Aleea Portocalelor, 60101 Bucharest, Romania.
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania.
| | - Gratiela G Pircalabioru
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania.
| | - Eugenia Bezirtzoglou
- Department of Agricultural Development, Democritus University of Thrace, 67100 Xanthi, Greece.
| | - Ovidiu G Iordache
- National R & D Institute for Textiles and Leather Bucharest (INCDTP), 16 Lucretiu Patrascanu, 030508 Bucharest, Romania.
| | - Elena Varzaru
- National R & D Institute for Textiles and Leather Bucharest (INCDTP), 16 Lucretiu Patrascanu, 030508 Bucharest, Romania.
| | - Iuliana Dumitrescu
- National R & D Institute for Textiles and Leather Bucharest (INCDTP), 16 Lucretiu Patrascanu, 030508 Bucharest, Romania.
| | - Marcel Feder
- National Institute of Materials Physics (NIMP), Atomistilor 405A, 077125 Bucharest-Magurele, Romania.
| | - Florin Vasiliu
- National Institute of Materials Physics (NIMP), Atomistilor 405A, 077125 Bucharest-Magurele, Romania.
| | - Ionel Mercioniu
- National Institute of Materials Physics (NIMP), Atomistilor 405A, 077125 Bucharest-Magurele, Romania.
| | - Lucian Diamandescu
- National Institute of Materials Physics (NIMP), Atomistilor 405A, 077125 Bucharest-Magurele, Romania.
| |
Collapse
|
6
|
Affiliation(s)
- James K Tumwine
- African Health Sciences, Makerere University, College of Health Sciences
| |
Collapse
|