1
|
Zakari FO, Omontese BO. Comparison of axillary and inguinal temperature with rectal temperature in dogs at a veterinary teaching hospital. J Small Anim Pract 2023; 64:330-336. [PMID: 36747342 DOI: 10.1111/jsap.13589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 10/22/2022] [Accepted: 12/15/2022] [Indexed: 02/08/2023]
Abstract
OBJECTIVES The objective of the study was to determine the agreement between rectal, axillary and inguinal temperatures and to estimate the accuracy of these measurements in detecting hyperthermia and hypothermia in dogs presented at a veterinary teaching hospital in the tropical Guinea Savannah zone. MATERIALS AND METHODS Prospectively, body temperature was measured in 610 dogs, using digital thermometry in the axillary, inguinal and rectal regions. RESULTS Overall, axillary and inguinal temperatures significantly underestimated rectal temperature, with a mean difference of -0.39 ± 0.02°C (95% confidence interval: -0.43 to -0.35; limit of agreement: -1.27 to 0.49) and - 0.34 ± 0.02°C (95% confidence interval, -0.37 to -0.30; limit of agreement: -1.15 to 0.47), respectively. The limits of agreement of axillary and inguinal temperatures were wide and above the pre-determined maximal acceptable difference of ±0.50°C recommended for clinical significance of rectal temperature in dogs. Bland-Altman plots showed that the confidence intervals of the mean differences of axillary and inguinal temperatures did not include the value zero, thereby indicating that the tested methods lack agreement with rectal temperature. Sensitivity and specificity for the detection of hyperthermia with axillary temperature were 72.1% and 30.5%, respectively. In contrast, sensitivity and specificity for the detection of hyperthermia with inguinal temperature were 77.9% and 26.2%, respectively. The magnitude of disagreement between axillary, inguinal and rectal temperatures was affected by age, breed and sex being slightly lower in mature, non-native breed and female dogs. CLINICAL SIGNIFICANCE Axillary and inguinal temperature measurements in dogs significantly underestimated rectal temperature measurements by -0.39 ± 0.02°C and -0.34 ± 0.02°C, respectively. The results indicate that axillary and inguinal temperatures should not be used as a replacement for rectal temperature due to the wide limits of agreement. In addition, axillary and inguinal temperatures may not be suitable in detecting hyperthermia because the sensitivity were lower than the required set-point of 90.0% for clinical identification of hyperthermia.
Collapse
Affiliation(s)
- F O Zakari
- Department of Veterinary Physiology, Biochemistry and Pharmacology, Faculty of Veterinary Medicine, University of Jos, Jos, Nigeria.,Winfred Thomas Agricultural Research Station, Alabama A & M University, Normal, AL, 35762, USA
| | | |
Collapse
|
2
|
Lai F, Li X, Liu T, Wang X, Wang Q, Chen S, Wei S, Xiong Y, Hou Q, Zeng X, Yang Y, Li Y, Lin Y, Yang X. Optimal diagnostic fever thresholds using non-contact infrared thermometers under COVID-19. Front Public Health 2022; 10:985553. [PMID: 36504995 PMCID: PMC9730337 DOI: 10.3389/fpubh.2022.985553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/08/2022] [Indexed: 11/25/2022] Open
Abstract
Fever screening is an effective method to detect infectors associated with different variants of coronavirus disease 2019 (COVID-19) based on the fact that most infectors with COVID-19 have fever symptoms. Non-contact infrared thermometers (NCITs) are widely used in fever screening. Nevertheless, authoritative data is lacking in defining "fever" at different body surface sites when using NCITs. The purpose of this study was to determine the optimal diagnostic threshold for fever screening using NICTs at different body surface sites, to improve the accuracy of fever screening and provide theoretical reference for healthcare policy. Participants (n = 1860) who were outpatients or emergency patients at Chengdu Women's and Children's Central Hospital were recruited for this prospective investigation from March 1 to June 30, 2021. NCITs and mercury axillary thermometers were used to measure neck, temple, forehead and wrist temperatures of all participants. Receiver operating characteristic curves were used to reflect the accuracy of NCITs. Linear correlation analysis was used to show the effect of age on body temperature. Multilinear regression analysis was used to explore the association between non-febrile participant's covariates and neck temperature. The mean age of participants was 3.45 ± 2.85 years for children and 28.56 ± 7.25 years for adults. In addition 1,304 (70.1%) participants were children (≤12), and 683 (36.7%) were male. The neck temperature exhibited the highest accuracy among the four sites. Further the optimal fever diagnostic thresholds of NCITs at the four body surface measurement sites were neck (36.75 °C, sensitivity: 0.993, specificity: 0.858); temple (36.55 °C, sensitivity: 0.974, specificity: 0.874); forehead (36.45 °C, sensitivity: 0.961, specificity: 0.813); and wrist (36.15 °C, sensitivity: 0.951, specificity: 0.434). Based on the findings of our study, we recommend 36.15, 36.45, 36.55, and 36.75 °C as the diagnostic thresholds of fever at the wrist, forehead, temple and neck, respectively. Among the four surface sites, neck temperature exhibited the highest accuracy.
Collapse
Affiliation(s)
- Fan Lai
- Obstetrics Department, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xin Li
- Obstetrics Department, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Tianjiao Liu
- Obstetrics Department, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xin Wang
- Obstetrics Department, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Qi Wang
- Obstetrics Department, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Shan Chen
- Obstetrics Department, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Sumei Wei
- Obstetrics Department, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Ying Xiong
- Obstetrics Department, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Qiannan Hou
- Obstetrics Department, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoyan Zeng
- Obstetrics Department, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yang Yang
- Obstetrics Department, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yalan Li
- Psychiatry Department, The Fourth People's Hospital of Chengdu, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China,*Correspondence: Yalan Li
| | - Yonghong Lin
- Obstetrics Department, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China,Yonghong Lin
| | - Xiao Yang
- Obstetrics Department, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China,Xiao Yang
| |
Collapse
|