1
|
Chatterjee G, Saha AK, Khurshid S, Saha A. A Comprehensive Review of the Antioxidant, Antimicrobial, and Therapeutic Efficacies of Black Cumin ( Nigella sativa L.) Seed Oil and Its Thymoquinone. J Med Food 2025; 28:325-339. [PMID: 39807848 DOI: 10.1089/jmf.2024.k.0149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025] Open
Abstract
Black cumin (Nigella sativa L.) (family Ranunculaceae) is a largely utilized therapeutic herb worldwide. This comprehensive review discusses the pharmacological benefits of black cumin seed oil, focusing on its bioactive component thymoquinone (TQ). The review is structured as follows: First, we examine the antimicrobial properties of black cumin oil, followed by an analysis of its antioxidant capabilities. Finally, we explore its therapeutic potential, particularly in neurodegenerative diseases and COVID-19. Phytochemicals from N. sativa have exhibited potential for developing novel preventive and therapeutic strategies against jaundice, gastrointestinal disorders, skin diseases, anorexia, conjunctivitis, dyspepsia, intrinsic hemorrhage, amenorrhea, paralysis, anorexia, rheumatism, diabetes, hypertension, fever, influenza, eczema, asthma, cough, bronchitis, and headache. The broader spectrum of application for N. sativa and its essential bioactives have certainly enhanced the commercial value of this seed oil. TQ, a major constituent of black cumin seed oil, has numerous beneficial properties. Researchers have extensively studied black cumin seed oil and its major component, TQ. These studies have revealed a wide range of pharmacological properties, including anticancer, immunomodulatory, analgesic, antimicrobial, antidiabetic, and anti-inflammatory effects. Additionally, TQ has shown neuroprotective, spasmolytic, bronchodilatory, hepatoprotective, renoprotective, gastroprotective, and antioxidant activities.
Collapse
Affiliation(s)
- Gourab Chatterjee
- Department of Food Technology, Haldia Institute of Technology, Haldia, India
| | - Asit Kumar Saha
- Department of Chemical Engineering, Haldia Institute of Technology, Haldia, India
| | - Shamama Khurshid
- Department of Food Technology, Haldia Institute of Technology, Haldia, India
| | - Achintya Saha
- Department of Chemical Technology, University of Calcutta, Kolkata, India
| |
Collapse
|
2
|
El Alaa R, Al-Jaber H, Chokor FAZ, Shaito AA, Al-Mansoori L. Ethnobotanical survey of medicinal plants used in management of breast cancers in Qatar. Heliyon 2025; 11:e42541. [PMID: 40028611 PMCID: PMC11869100 DOI: 10.1016/j.heliyon.2025.e42541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 02/03/2025] [Accepted: 02/06/2025] [Indexed: 03/05/2025] Open
Abstract
Breast cancer is a global health concern, including in Qatar, where it impacts women significantly. The complexity of breast cancer requires diverse treatment approaches influenced by tumor characteristics and biology. Despite advancements, current treatments still fall short of providing definitive solutions, particularly for triple-negative breast cancer. Complementary and Alternative Medicine (CAM), including herbal remedies, is increasingly popular among cancer patients, including those in Qatar. In Qatar, herbal medicine is widely used by the population, including breast cancer patients, yet preserving this knowledge faces significant challenges. This study aimed to document herbalists' ethnobotanical practices concerning breast cancer treatment in Qatar and corroborate any identified plant remedies' anticancer use with the literature. Thirteen herbalists were identified in Doha, Qatar, and surveyed using an ethnobotanical questionnaire between October and November 2022. Herbalists' demographic data and their herbal recommendations for breast cancer treatment were collected through structured interviews. Descriptive statistics and the Relative Frequency Citation (RFC) were employed for data analysis. The current study aimed to document herbalists' practices for breast cancer management in Qatar and validate the anticancer potential of the identified plants through existing literature. The present study documented the ethnobotanical knowledge of 13 herbalists in Qatar regarding breast cancer treatment, revealing the use of various plant species from ten different families. Saussurea costus (Falc.) Lipsch. (Al Qist Al Hindi), Zingiber officinale Roscoe (Ginger) (zanjabel) and Nigella sativa L. (Black seeds) (habit elbaraka) were the most recommended plants. Literature searches revealed that many of these plants possess compounds with potential anticancer properties as sesquiterpenes, flavonoids, thymoquinone, volatile terpenic compounds and anthocyanin. The sources of these plants were primarily India and Iran due to their historical trade relations with Qatar. Herbalists predominantly use plant underground parts but could consider integrating leaves with proven anticancer properties. Each reported plant was scrutinized for its anticancer potential, by collecting the published research about its anticancer uses, revealing significant cytotoxicity against breast cancer cells. The literature survey also uncovered that most plants are reported to induce apoptosis through specific pathways, while others showed chemo-sensitization effects and cancer-induced mutation prevention. Moreover, some of the recommended plants have advanced to clinical studies. Beyond cancer, these plants displayed promise in addressing diabetes and inflammation. In conclusion, our study on herbalists' recommendations for breast cancer documents the traditional practices for patient therapy in Qatar. Saussurea costus (Falc.) Lipsch. (Al Qist Al Hindi) emerged as a commonly prescribed plant, with the roots being predominantly used. Overall, our findings describe the current traditional practices for handling breast cancer in Qatar and offer insights into integrating traditional practices with modern medicine for enhanced breast cancer management.
Collapse
Affiliation(s)
| | - Hend Al-Jaber
- Biomedical Research Center (BRC), QU Health, Qatar University, Qatar
| | | | | | - Layla Al-Mansoori
- Biomedical Research Center (BRC), QU Health, Qatar University, Qatar
| |
Collapse
|
3
|
Abbas M, Gururani MA, Ali A, Bajwa S, Hassan R, Batool SW, Imam M, Wei D. Antimicrobial Properties and Therapeutic Potential of Bioactive Compounds in Nigella sativa: A Review. Molecules 2024; 29:4914. [PMID: 39459282 PMCID: PMC11510594 DOI: 10.3390/molecules29204914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Nigella sativa (N. sativa; Ranunculaceae), commonly referred to as black cumin, is one of the most widely used medicinal plants worldwide, with its seeds having numerous applications in the pharmaceutical and food industries. With the emergence of antibiotic resistance in pathogens as an important health challenge, the need for alternative microbe-inhibitory agents is on the rise, whereby black cumin has gained considerable attention from researchers for its strong antimicrobial characteristics owing to its high content in a wide range of bioactive compounds, including thymoquinone, nigellimine, nigellidine, quercetin, and O-cymene. Particularly, thymoquinone increases the levels of antioxidant enzymes that counter oxidative stress in the liver. Additionally, the essential oil in N. sativa seeds effectively inhibits intestinal parasites and shows moderate activity against some bacteria, including Bacillus subtilis and Staphylococcus aureus. Thymoquinone exhibits minimum inhibitory concentrations (MICs) of 8-16 μg/mL against methicillin-resistant Staphylococcus aureus (MRSA) and exhibits MIC 0.25 µg/mL against drug-resistant mycobacteria. Similarly, quercetin shows a MIC of 2 mg/mL against oral pathogens, such as Streptococcus mutans and Lactobacillus acidophilus. Furthermore, endophytic fungi isolated from N. sativa have demonstrated antibacterial activity. Therefore, N. sativa is a valuable medicinal plant with potential for medicinal and food-related applications. In-depth exploration of the corresponding therapeutic potential and scope of industrial application warrants further research.
Collapse
Affiliation(s)
- Munawar Abbas
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China;
| | - Mayank Anand Gururani
- Biology Department, College of Science, UAE University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Amjad Ali
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy;
| | - Sakeena Bajwa
- Department of Medical Laboratory Technology, Riphah International University, Faisalabad 44000, Pakistan
| | - Rafia Hassan
- Department of Biological Sciences, Pakistan Institute of Engineering and Applied Sciences, Islamabad 45650, Pakistan;
| | - Syeda Wajiha Batool
- Department of Biotechnology, National Institute for Biotechnology and Genetic Engineering, Faisalabad 38000, Pakistan
| | - Mahreen Imam
- Department of Biotechnology, Government College University, Faisalabad 38000, Pakistan
| | - Dongqing Wei
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China;
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, and Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education, Shanghai Jiao Tong University, 800 Dongchuan Road Shanghai, Minhang District, Shanghai 200240, China
- Zhongjing Research and Industrialization Institute of Chinese Medicine, Zhongguancun Scientific Park, Meixi, Nanyang 473006, China
- Henan Biological Industry Group, 41, Nongye East Rd, Jinshui, Zhengzhou 450008, China
- Peng Cheng National Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nashan District, Shenzhen 518055, China
| |
Collapse
|
4
|
Almehmadi AH, Aljohani K. An Assessment of the Clinical Efficacy of a Topical Application of 5% Thymoquinone Gel for Plaque-Induced Gingivitis Patients: A Randomized Controlled Clinical Trial. Healthcare (Basel) 2024; 12:1898. [PMID: 39337239 PMCID: PMC11431027 DOI: 10.3390/healthcare12181898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/08/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Gingival diseases, encompassing a spectrum of oral health concerns, represent a prevalent issue within the global population. Despite their widespread occurrence, the research landscape concerning effective interventions, particularly those rooted in herbal products, remains somewhat limited. Addressing this knowledge gap, the current study undertook a comprehensive evaluation aimed at assessing the clinical efficacy of a novel intervention: a 5% thymoquinone (TQ) gel. This investigation specifically focused on the application of TQ gel as an adjunctive measure to the standard protocol of scaling (SC) in individuals afflicted with plaque-induced gingivitis. Through rigorous examination and analysis, this study seeks to provide valuable insights into the potential utility and therapeutic benefits of this herbal-based intervention in managing gingival diseases. OBJECTIVE To evaluate the efficacy of 5% TQ gel using a novel liposome drug delivery as a topical application following SC in gingivitis patients. METHODS A double-blinded, parallel, randomized controlled clinical trial. The study was performed at the Faculty of Dentistry, King Abdulaziz University, and Qassim University, Saudi Arabia. This trial enrolled 63 participants in an age group between 18 and 40 years attending the outpatient clinics of the Faculty of Dentistry, Qassim University, Saudi Arabia, and a clinical diagnosis of gingivitis was made. The enrolled subjects were categorized into three groups: Group I-TQ gel with SC, Group II-Placebo with SC, and Group III-SC alone, and clinical outcomes were measured at baseline and two-week follow-up visits. Plaque index (PI), papillary bleeding index (PBI), and any adverse events with TQ gel are categorized as mild, moderate, and severe. 63 patients. Group I (n = 21); Group II (n = 21); Group III (n = 21). RESULTS The paired t-test compared the mean differences in PI and PBI at two time points and it was observed that there were significant differences in Group I with p-values of 0.04 and 0.05, respectively. A one-way ANOVA test was performed and it showed significant differences in the mean scores between the three groups for PI (p-value-0.01) and PBI (p-value-0.05). The post hoc Tukey's test compared the mean differences in PI and PBI between the groups and the results were in favor of Group I which used TQ gel with SC. CONCLUSIONS The clinical trial concluded that the plaque and gingival bleeding scores were significantly reduced in the group of patients who intervened with TQ gel following SC when compared to SC-alone and placebo groups. Also, there were significant reductions in the scores from the baseline to the two-week follow-up visit in patients treated with TQ gel and SC.
Collapse
Affiliation(s)
- Ahmad H Almehmadi
- Department of Oral Biology, Faculty of Dentistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Khalid Aljohani
- Department of Oral Diagnostic Sciences, Faculty of Dentistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
5
|
Çınar İ, Gıdık B, Dirican E. Determination of anti-cancer effects of Nigella sativa seed oil on MCF7 breast and AGS gastric cancer cells. Mol Biol Rep 2024; 51:491. [PMID: 38578469 DOI: 10.1007/s11033-024-09453-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/15/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND This study aimed to investigate the cytotoxic, apoptotic, invasion, metastasis, and heat shock proteins (HSPs) effects of N. sativa oil on breast and gastric cancer cells. METHODS We assessed the cytotoxic and apoptotic effects of various concentrations of N. sativa oil (10-50-100-200 µg/mL) on MCF7 breast cancer and AGS, an adenocarcinoma of the gastric cell line, at 24, 48 and 72 h using the MTT test. Additionally, the expression of the Caspase-3, BCL2/Bax, MMP2-9 and HSP60-70 gene was examined using RT-PCR in cell lines treating with N. sativa. RESULTS The MTT experiments demonstrate that N. sativa has a time and dose-dependent inhibitory effect on the proliferation of MCF7 and AGS cancer cells. The vitality rates of MCF7 and AGS cells treated with N. sativa were 77.04-67.50% at 24 h, 65.28-39.14% at 48 h, and 48.95-32.31% at 72 h. The doses of 100 and 200 µg/mL were shown to be the most effective on both cancer cells. RT-PCR analysis revealed that N. sativa oil extract increased caspase-3 levels in both cell lines at higher concentrations and suppressed BCL2/Bax levels. Exposure of MCF7 and AGS cell lines to N. sativa caused a significant decrease in the expression of MMP2-9 and HSP60-70 genes over time, particularly at a dosage of 200 µg/mL compared to the control group (p < 0.05). CONCLUSIONS Our findings indicate that N. sativa oil has a dose-dependent effect on cytotoxicity and the expression of apoptotic, heat shock proteins, and matrix metalloproteinases genes in breast and gastric cancer.
Collapse
Affiliation(s)
- İrfan Çınar
- Department of Pharmacology, Faculty of Medicine, Kastamonu University, Kastamonu, Turkey
| | - Betül Gıdık
- Department of Organic Farming Management, Bayburt University, Bayburt, 69000, Turkey
| | - Ebubekir Dirican
- Department of Medical Biology, Faculty of Medicine, Bilecik Şeyh Edabali University, Bilecik, Turkey.
| |
Collapse
|
6
|
Khan MT, Ali A, Wei X, Nadeem T, Muhammad S, Al-Sehemi AG, Wei D. Inhibitory effect of thymoquinone from Nigella sativa against SARS-CoV-2 main protease. An in-silico study. BRAZ J BIOL 2024; 84:e250667. [DOI: 10.1590/1519-6984.25066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 01/24/2022] [Indexed: 11/21/2022] Open
Abstract
Abstract Nigella sativa is known for the safety profile, containing a wealth of useful antiviral compounds. The main protease (Mpro, 3CLpro) of severe acute respiratory syndrome 2 (SARS-CoV-2) is being considered as one of the most attractive viral target, processing the polyproteins during viral pathogenesis and replication. In the current investigation we analyzed the potency of active component, thymoquinone (TQ) of Nigella sativa against SARS-CoV-2 Mpro. The structures of TQ and Mpro was retrieved from PubChem (CID10281) and Protein Data Bank (PDB ID 6MO3) respectively. The Mpro and TQ were docked and the complex was subjected to molecular dynamic (MD) simulations for a period 50ns. Protein folding effect was analyzed using radius of gyration (Rg) while stability and flexibility was measured, using root means square deviations (RMSD) and root means square fluctuation (RMSF) respectively. The simulation results shows that TQ is exhibiting good binding activity against SARS-CoV-2 Mpro, interacting many residues, present in the active site (His41, Cys145) and also the Glu166, facilitating the pocket shape. Further, experimental approaches are needed to validate the role of TQ against virus infection. The TQ is interfering with pocket maintaining residues as well as active site of virus Mpro which may be used as a potential inhibitor against SARS-CoV-2 for better management of COVID-19.
Collapse
Affiliation(s)
| | - A. Ali
- Shanghai Jiao Tong University, China
| | - X. Wei
- Shanghai Jiao Tong University, China
| | | | | | | | - Dongqing Wei
- Shanghai Jiao Tong University, China; Peng Cheng Laboratory, China
| |
Collapse
|
7
|
Elghareeb MM, Elshopakey GE, Rezk S, Ateya A, El-Ashry ES, Shukry M, Ghamry HI, Alotaibi BS, Hashem NMA. Nigella sativa oil restores hormonal levels, and endocrine signals among thyroid, ovarian, and uterine tissues of female Wistar rats following sodium fluoride toxicity. Biomed Pharmacother 2024; 170:116080. [PMID: 38147737 DOI: 10.1016/j.biopha.2023.116080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/11/2023] [Accepted: 12/21/2023] [Indexed: 12/28/2023] Open
Abstract
The current study aimed to explore the possible prophylactic and therapeutic effect of Nigella sativa L. oil (NSO) against disruption of endocrine signals and injuries in the thyroid gland, ovary, and uterine tissues induced by sodium fluoride (NaF). Twenty-eight mature female Wistar rats were randomly allocated into four experimental groups (n = 7/group) as follows: control group; NaF group, orally received NaF (20 mg/kg b.wt.) daily; NSO/NaF, orally received NSO (300 mg/kg b.wt.) two weeks before being given NaF and continued throughout the experiment; and NSO+NaF group orally received NSO concurrently with NaF. Our results indicated that NSO restored hormonal balance and suppressed oxidative damage and inflammation. Moreover, the levels of triiodothyronine, thyroxine, thyroid peroxidase, estrogen (E2), progesterone, follicle-stimulating hormone, and luteinizing hormone were elevated, while prostaglandins F2-α and cortisol levels were decreased in NSO treated groups compared to NaF-intoxicated rats. As well, NSO significantly boosted levels of antioxidant molecules, and lowered lipid peroxidation of examined tissues, unlike NaF-treated group. NSO also up-regulated antioxidant enzymes, anti-apoptotic protein, zona pellucida sperm-binding protein, bone morphogenetic protein, and thyroid stimulating hormone, conversely down-regulated inflammatory cytokines, apoptotic proteins, estrogen receptor-α, estrogen receptor-β, and thyroid stimulating hormone receptors compared to NaF-intoxicated group. Additionally, NSO ameliorated tissue damage of the thyroid gland, ovary, and uterus induced by NaF. -Overall, the prophylactic group (NSO/NaF) performed better antioxidant and anti-inflammatory activities than the treated group almost in all examined tissues, which is reflected by the improvement in the structure of the thyroid, ovarian, and uterine tissues.
Collapse
Affiliation(s)
- Mona M Elghareeb
- Department of Physiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Gehad E Elshopakey
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt.
| | - Shaymaa Rezk
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Ahmed Ateya
- Department of Husbandry and Development of Animal Wealth, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Eman S El-Ashry
- Department of Pharmacology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt.
| | - Heba I Ghamry
- Nutrition and Food Science, Department of Home Economics, Faculty of Home Economics, King Khalid University, P.O. Box 960, Abha 61421, Saudi Arabia.
| | - Badriyah S Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Nada M A Hashem
- Department of Physiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
8
|
Tiwari G, Gupta M, Devhare LD, Tiwari R. Therapeutic and Phytochemical Properties of Thymoquinone Derived from Nigella sativa. Curr Drug Res Rev 2024; 16:145-156. [PMID: 37605475 DOI: 10.2174/2589977515666230811092410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 04/13/2023] [Accepted: 05/04/2023] [Indexed: 08/23/2023]
Abstract
BACKGROUND Nigella sativa (N. sativa), commonly known as black seed or black cumin, belongs to the family Ranunculaceae. It contains several phytoconstituents, Thymoquinone (TQ), thymol, thymohydroquinone, carvacrol, and dithymoquinone. TQ is the main phytoconstituent present in N. sativa that is used as an herbal compound, and it is widely used as an antihypertensive, liver tonic, diuretic, digestive, anti-diarrheal, appetite stimulant, analgesic, and antibacterial agent, and in skin disorders. OBJECTIVE The study focused on collecting data on the therapeutic or pharmacological activities of TQ present in N. sativa seed. METHODS Antidiabetic, anticancer, immunomodulator, analgesic, antimicrobial, anti-inflammatory, hepato-protective, renal protective, and antioxidant properties of TQ have been studied by various scientists. CONCLUSION TQ seems to have a variety of consequences on how infected cells behave at the cellular level.
Collapse
Affiliation(s)
- Gaurav Tiwari
- Department of Pharmaceutics, PSIT-Pranveer Singh Institute of Technology (Pharmacy), Kanpur - Agra - Delhi, NH2, Bhauti, Kanpur, Uttar Pradesh, 209305, India
| | - Monisha Gupta
- Department of Pharmaceutics, PSIT-Pranveer Singh Institute of Technology (Pharmacy), Kanpur - Agra - Delhi, NH2, Bhauti, Kanpur, Uttar Pradesh, 209305, India
| | - Lalchand D Devhare
- School of Pharmacy, G H Raisoni University, Saikheda, Chhindwara, Maharashtra, 480337, India
| | - Ruchi Tiwari
- Department of Pharmaceutics, PSIT-Pranveer Singh Institute of Technology (Pharmacy), Kanpur - Agra - Delhi, NH2, Bhauti, Kanpur, Uttar Pradesh, 209305, India
| |
Collapse
|
9
|
Shekar N, Vuong P, Kaur P. Analysing potent biomarkers along phytochemicals for breast cancer therapy: an in silico approach. Breast Cancer Res Treat 2024; 203:29-47. [PMID: 37726449 PMCID: PMC10771382 DOI: 10.1007/s10549-023-07107-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/23/2023] [Indexed: 09/21/2023]
Abstract
PURPOSE This research focused on the identification of herbal compounds as potential anti-cancer drugs, especially for breast cancer, that involved the recognition of Notch downstream targets NOTCH proteins (1-4) specifically expressed in breast tumours as biomarkers for prognosis, along with P53 tumour antigens, that were used as comparisons to check the sensitivity of the herbal bio-compounds. METHODS After investigating phytochemical candidates, we employed an approach for computer-aided drug design and analysis to find strong breast cancer inhibitors. The present study utilized in silico analyses and protein docking techniques to characterize and rank selected bio-compounds for their efficiency in oncogenic inhibition for use in precise carcinomic cell growth control. RESULTS Several of the identified phytocompounds found in herbs followed Lipinski's Rule of Five and could be further investigated as potential medicinal molecules. Based on the Vina score obtained after the docking process, the active compound Epigallocatechin gallate in green tea with NOTCH (1-4) and P53 proteins showed promising results for future drug repurposing. The stiffness and binding stability of green tea pharmacological complexes were further elucidated by the molecular dynamic simulations carried out for the highest scoring phytochemical ligand complex. CONCLUSION The target-ligand complex of green tea active compound Epigallocatechin gallate with NOTCH (1-4) had the potential to become potent anti-breast cancer therapeutic candidates following further research involving wet-lab experiments.
Collapse
Affiliation(s)
- Nivruthi Shekar
- UWA School of Agriculture and Environment, University of Western Australia, 35-Stirling Highway, Perth, WA, 6009, Australia
| | - Paton Vuong
- UWA School of Agriculture and Environment, University of Western Australia, 35-Stirling Highway, Perth, WA, 6009, Australia
| | - Parwinder Kaur
- UWA School of Agriculture and Environment, University of Western Australia, 35-Stirling Highway, Perth, WA, 6009, Australia.
| |
Collapse
|
10
|
Aftab A, Yousaf Z, Rashid M, Younas A, Yasin H, Riaz N, Mansoor Q. Vegetative part of Nigella sativa L. potential antineoplastic sources against Hep2 and MCF7 human cancer cell lines. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2023. [DOI: 10.1080/16583655.2022.2161294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
- Arusa Aftab
- Department of Botany, Lahore College for Women University, Lahore, Pakistan
| | - Zubaida Yousaf
- Department of Botany, Lahore College for Women University, Lahore, Pakistan
| | - Madiha Rashid
- Department of Botany, Lahore College for Women University, Lahore, Pakistan
| | - Afifa Younas
- Department of Botany, Lahore College for Women University, Lahore, Pakistan
| | - Hamna Yasin
- Department of Botany, Lahore College for Women University, Lahore, Pakistan
| | - Nadia Riaz
- Department of Botany, Lahore College for Women University, Lahore, Pakistan
| | - Qaisar Mansoor
- Institute of Biomedical and Genetic Engineering, Islamabad, Pakistan
| |
Collapse
|
11
|
Bashir KMI, Kim JK, Chun YS, Choi JS, Ku SK. In Vitro Assessment of Anti-Adipogenic and Anti-Inflammatory Properties of Black Cumin ( Nigella sativa L.) Seeds Extract on 3T3-L1 Adipocytes and Raw264.7 Macrophages. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:2028. [PMID: 38004077 PMCID: PMC10673321 DOI: 10.3390/medicina59112028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023]
Abstract
Background and Objectives: This study evaluated the in vitro anti-adipogenic and anti-inflammatory properties of black cumin (Nigella sativa L.) seed extract (BCS extract) as a potential candidate for developing herbal formulations targeting metabolic disorders. Materials and Methods: We evaluated the BCS extract by assessing its 2,2-diphenyl-1-picrohydrazyl (DPPH) radical scavenging activity, levels of prostaglandin E2 (PGE2) and nitric oxide (NO), and mRNA expression levels of key pro-inflammatory mediators. We also quantified the phosphorylation of nuclear factor kappa light chain enhancer of activated B cells (NF-κB) and mitogen-activated protein kinases (MAPK) signaling molecules. To assess anti-adipogenic effects, we used differentiated 3T3-L1 cells and BCS extract in doses from 10 to 100 μg/mL. We also determined mRNA levels of key adipogenic genes, including peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer binding protein α (C/BEPα), adipocyte protein 2 (aP2), lipoprotein lipase (LPL), fatty acid synthase (FAS), and sterol-regulated element-binding protein 1c (SREBP-1c) using real-time quantitative polymerase chain reaction (qPCR). Results: This study showed a concentration-dependent DPPH radical scavenging activity and no toxicity at concentrations up to 30 μg/mL in Raw264.7 cells. BCS extract showed an IC50 of 328.77 ± 20.52 μg/mL. Notably, pre-treatment with BCS extract (30 μg/mL) significantly enhanced cell viability in lipopolysaccharide (LPS)-treated Raw264.7 cells. BCS extract treatment effectively inhibited LPS-induced production of PGE2 and NO, as well as the expression of monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor-α (TNF-α), cyclooxygenase-2 (COX-2), inducible NO synthase (iNOS), interleukin (IL)-1β and IL-6, possibly by limiting the phosphorylation of p38, p65, inhibitory κBα (I-κBα), and c-Jun N-terminal kinase (JNK). It also significantly attenuated lipid accumulation and key adipogenic genes in 3T3-L1 cells. Conclusions: This study highlights the in vitro anti-adipogenic and anti-inflammatory potential of BCS extract, underscoring its potential as a promising candidate for managing metabolic disorders.
Collapse
Affiliation(s)
- Khawaja Muhammad Imran Bashir
- Department of Seafood Science and Technology, The Institute of Marine Industry, Gyeongsang National University, Tongyeong 53064, Republic of Korea;
- German Engineering Research and Development Center for Life Science Technologies in Medicine and Environment, Busan 46742, Republic of Korea
| | | | | | - Jae-Suk Choi
- Department of Seafood Science and Technology, The Institute of Marine Industry, Gyeongsang National University, Tongyeong 53064, Republic of Korea;
| | - Sae-Kwang Ku
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Republic of Korea
| |
Collapse
|
12
|
Khamwut A, Klomkliew P, Jumpathong W, Kaewsapsak P, Chanchaem P, Sivapornnukul P, Chantanakat K, T-Thienprasert NP, Payungporn S. In vitro evaluation of the anti‑breast cancer properties and gene expression profiles of Thai traditional formulary medicine extracts. Biomed Rep 2023; 19:70. [PMID: 37719681 PMCID: PMC10502604 DOI: 10.3892/br.2023.1652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/02/2023] [Indexed: 09/19/2023] Open
Abstract
Breast cancer is a leading cause of cancer-related deaths worldwide. Moreover, standard treatments are limited, so new alternative treatments are required. Thai traditional formulary medicine (TTFM) utilizes certain herbs to treat different diseases due to their dominant properties including anti-fungal, anti-bacterial, antigenotoxic, anti-inflammatory and anti-cancer actions. However, very little is known about the anti-cancer properties of TTFM against breast cancer cells and the underlying molecular mechanism has not been elucidated. Therefore, the present study, evaluated the metabolite profiles of TTFM extracts, the anti-cancer activities of TTFM extracts, their effects on the apoptosis pathway and associated gene expression profiles. Liquid chromatography with tandem mass spectroscopy analysis identified a total of 226 compounds within the TTFM extracts. Several of these compounds have been previously shown to have an anti-cancer effect in certain cancer types. The MTT results demonstrated that the TTFM extracts significantly reduced the cell viability of the breast cancer 4T1 and MDA-MB-231 cell lines. Moreover, an apoptosis assay, demonstrated that the TTFM extracts significantly increased the proportion of apoptotic cells. Furthermore, the RNA-sequencing results demonstrated that 25 known genes were affected by TTFM treatment in 4T1 cells. TTFM treatment significantly up-regulated Slc5a8 and Arhgap9 expression compared with untreated cells. Moreover, Cybb, and Bach2os were significantly downregulated after TTFM treatment compared with untreated cells. Reverse transcription-quantitative PCR demonstrated that TTFM extract treatment significantly increased Slc5a8 and Arhgap9 mRNA expression levels and significantly decreased Cybb mRNA expression levels. Moreover, the mRNA expression levels of Bax and Casp9 were significantly increased after TTFM treatment in 4T1 cells compared with EpH4-Ev cells. These findings indicated anti-breast cancer activity via induction of the apoptotic process. However, further experiments are required to elucidate how TTFM specifically regulates genes and proteins. This study supports the potential usage of TTFM extracts for the development of anti-cancer drugs.
Collapse
Affiliation(s)
- Ariya Khamwut
- Program in Medical Sciences, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pavit Klomkliew
- Center of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | | | - Pornchai Kaewsapsak
- Center of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Prangwalai Chanchaem
- Center of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pavaret Sivapornnukul
- Center of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kridsana Chantanakat
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | | | - Sunchai Payungporn
- Center of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
13
|
Shaukat A, Zaidi A, Anwar H, Kizilbash N. Mechanism of the antidiabetic action of Nigella sativa and Thymoquinone: a review. Front Nutr 2023; 10:1126272. [PMID: 37818339 PMCID: PMC10561288 DOI: 10.3389/fnut.2023.1126272] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 07/27/2023] [Indexed: 10/12/2023] Open
Abstract
Introduction Long used in traditional medicine, Nigella sativa (NS; Ranunculaceae) has shown significant efficacy as an adjuvant therapy for diabetes mellitus (DM) management by improving glucose tolerance, decreasing hepatic gluconeogenesis, normalizing blood sugar and lipid imbalance, and stimulating insulin secretion from pancreatic cells. In this review, the pharmacological and pharmacokinetic properties of NS as a herbal diabetes medication are examined in depth, demonstrating how it counteracts oxidative stress and the onset and progression of DM. Methods This literature review drew on databases such as Google Scholar and PubMed and various gray literature sources using search terms like the etiology of diabetes, conventional versus herbal therapy, subclinical pharmacology, pharmacokinetics, physiology, behavior, and clinical outcomes. Results The efficiency and safety of NS in diabetes, notably its thymoquinone (TQ) rich volatile oil, have drawn great attention from researchers in recent years; the specific therapeutic dose has eluded determination so far. TQ has anti-diabetic, anti-inflammatory, antioxidant, and immunomodulatory properties but has not proved druggable. DM's intimate link with oxidative stress, makes NS therapy relevant since it is a potent antioxidant that energizes the cell's endogenous arsenal of antioxidant enzymes. NS attenuates insulin resistance, enhances insulin signaling, suppresses cyclooxygenase-2, upregulates insulin-like growth factor-1, and prevents endothelial dysfunction in DM. Conclusion The interaction of NS with mainstream drugs, gut microbiota, and probiotics opens new possibilities for innovative therapies. Despite its strong potential to treat DM, NS and TQ must be examined in more inclusive clinical studies targeting underrepresented patient populations.
Collapse
Affiliation(s)
- Arslan Shaukat
- Department of Physiology, Government College University - GCU, Faisalabad, Punjab, Pakistan
| | - Arsalan Zaidi
- National Probiotic Laboratory, National Institute for Biotechnology and Genetic Engineering College - NIBGE-C, Faisalabad, Punjab, Pakistan
- Pakistan Institute of Engineering and Applied Sciences - PIEAS, Nilore, Islamabad, Pakistan
| | - Haseeb Anwar
- Department of Physiology, Government College University - GCU, Faisalabad, Punjab, Pakistan
| | - Nadeem Kizilbash
- Department Medical Laboratory Technology, Faculty of Applied Medical Sciences, Northern Border University, Arar, Saudi Arabia
| |
Collapse
|
14
|
Adam SH, Abu IF, Kamal DAM, Febriza A, Kashim MIAM, Mokhtar MH. A Review of the Potential Health Benefits of Nigella sativa on Obesity and Its Associated Complications. PLANTS (BASEL, SWITZERLAND) 2023; 12:3210. [PMID: 37765374 PMCID: PMC10536791 DOI: 10.3390/plants12183210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023]
Abstract
Obesity has become a worldwide epidemic and its prevalence continues to increase at an alarming rate. It is considered a major risk factor for the development of several comorbidities, including type 2 diabetes, stroke, other cardiovascular diseases and even cancer. Conventional treatments for obesity, such as dietary interventions, exercise and pharmacotherapy, have proven to have limited effectiveness and are often associated with undesirable side effects. Therefore, there is a growing interest in exploring alternative therapeutic approaches. Nigella sativa (NS), a medicinal plant with multiple pharmacological properties, has gained attention due to its potential role in the treatment of obesity and its associated complications. The aim of this review is therefore to assess the effects of NS on obesity and its complications and to provide insights into the underlying mechanisms. From this review, NS appears to play a complementary or supportive role in the treatment of obesity and its complications. However, future studies are needed to verify the efficacy of NS in the treatment of obesity and its complications and to prove its safety so that it can be introduced in patients with obesity.
Collapse
Affiliation(s)
- Siti Hajar Adam
- Preclinical Department, Faculty of Medicine & Defence Health, Universiti Pertahanan Nasional Malaysia, Kuala Lumpur 57000, Malaysia
| | - Izuddin Fahmy Abu
- Institute of Medical Science Technology, Universiti Kuala Lumpur, Jalan Sultan Ismail, Kuala Lumpur 50250, Malaysia
| | - Datu Agasi Mohd Kamal
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | - Ami Febriza
- Department of Physiology, Faculty of Medicine and Health Sciences, Universitas Muhammadiyah Makassar, Kota Makassar 90221, Indonesia
| | - Mohd Izhar Ariff Mohd Kashim
- Centre of Shariah, Faculty of Islamic Studies, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
- Insitute of Islam Hadhari, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Mohd Helmy Mokhtar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
15
|
Eid EEM, Almaiman AA, Alshehade SA, Alsalemi W, Kamran S, Suliman FO, Alshawsh MA. Characterization of Thymoquinone-Sulfobutylether-β-Cyclodextrin Inclusion Complex for Anticancer Applications. Molecules 2023; 28:molecules28104096. [PMID: 37241838 DOI: 10.3390/molecules28104096] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Thymoquinone (TQ) is a quinone derived from the black seed Nigella sativa and has been extensively studied in pharmaceutical and nutraceutical research due to its therapeutic potential and pharmacological properties. Although the chemopreventive and potential anticancer effects of TQ have been reported, its limited solubility and poor delivery remain the major limitations. In this study, we aimed to characterize the inclusion complexes of TQ with Sulfobutylether-β-cyclodextrin (SBE-β-CD) at four different temperatures (293-318 K). Additionally, we compared the antiproliferative activity of TQ alone to TQ complexed with SBE-β-CD on six different cancer cell lines, including colon, breast, and liver cancer cells (HCT-116, HT-29, MDA-MB-231, MCF-7, SK-BR-3, and HepG2), using an MTT assay. We calculated the thermodynamic parameters (ΔH, ΔS, and ΔG) using the van't Holf equation. The inclusion complexes were characterized by X-ray diffraction (XRD), Fourier transforms infrared (FT-IR), and molecular dynamics using the PM6 model. Our findings revealed that the solubility of TQ was improved by ≥60 folds, allowing TQ to penetrate completely into the cavity of SBE-β-CD. The IC50 values of TQ/SBE-β-CD ranged from 0.1 ± 0.01 µg/mL against SK-BR-3 human breast cancer cells to 1.2 ± 0.16 µg/mL against HCT-116 human colorectal cancer cells, depending on the cell line. In comparison, the IC50 values of TQ alone ranged from 0.2 ± 0.01 µg/mL to 4.7 ± 0.21 µg/mL. Overall, our results suggest that SBE-β-CD can enhance the anticancer effect of TQ by increasing its solubility and bioavailability and cellular uptake. However, further studies are necessary to fully understand the underlying mechanisms and potential side effects of using SBE-β-CD as a drug delivery system for TQ.
Collapse
Affiliation(s)
- Eltayeb E M Eid
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Unaizah 51911, Saudi Arabia
| | - Amer A Almaiman
- Unit of Scientific Research, Applied College, Qassim University, Unaizah 51911, Saudi Arabia
| | | | - Wardah Alsalemi
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Sareh Kamran
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - FakhrEldin O Suliman
- Department of Chemistry, College of Science, Sultan Qaboos University, P.O. Box 36, Muscat 123, Oman
| | | |
Collapse
|
16
|
Oral Bioactive Self-Nanoemulsifying Drug Delivery Systems of Remdesivir and Baricitinib: A Paradigmatic Case of Drug Repositioning for Cancer Management. Molecules 2023; 28:molecules28052237. [PMID: 36903483 PMCID: PMC10005540 DOI: 10.3390/molecules28052237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/04/2023] Open
Abstract
Oral anticancer therapy mostly faces the challenges of low aqueous solubility, poor and irregular absorption from the gastrointestinal tract, food-influenced absorption, high first-pass metabolism, non-targeted delivery, and severe systemic and local adverse effects. Interest has been growing in bioactive self-nanoemulsifying drug delivery systems (bio-SNEDDSs) using lipid-based excipients within nanomedicine. This study aimed to develop novel bio-SNEDDS to deliver antiviral remdesivir and baricitinib for the treatment of breast and lung cancers. Pure natural oils used in bio-SNEDDS were analyzed using GC-MS to examine bioactive constituents. The initial evaluation of bio-SNEDDSs were performed based on self-emulsification assessment, particle size analysis, zeta potential, viscosity measurement, and transmission electron microscopy (TEM). The single and combined anticancer effects of remdesivir and baricitinib in different bio-SNEDDS formulations were investigated in MDA-MB-231 (breast cancer) and A549 (lung cancer) cell lines. The results from the GC-MS analysis of bioactive oils BSO and FSO showed pharmacologically active constituents, such as thymoquinone, isoborneol, paeonol and p-cymenene, and squalene, respectively. The representative F5 bio-SNEDDSs showed relatively uniform, nanosized (247 nm) droplet along with acceptable zeta potential values (+29 mV). The viscosity of the F5 bio-SNEDDS was recorded within 0.69 Cp. The TEM suggested uniform spherical droplets upon aqueous dispersions. Drug-free, remdesivir and baricitinib-loaded bio-SNEDDSs (combined) showed superior anticancer effects with IC50 value that ranged from 1.9-4.2 µg/mL (for breast cancer), 2.4-5.8 µg/mL (for lung cancer), and 3.05-5.44 µg/mL (human fibroblasts cell line). In conclusion, the representative F5 bio-SNEDDS could be a promising candidate for improving the anticancer effect of remdesivir and baricitinib along with their existing antiviral performance in combined dosage form.
Collapse
|
17
|
Lee SP, Kuo FY, Cheng JT, Wu MC. Thymoquinone activates imidazoline receptor to enhance glucagon-like peptide-1 secretion in diabetic rats. Arch Med Sci 2023; 19:209-215. [PMID: 36817688 PMCID: PMC9897103 DOI: 10.5114/aoms.2019.86938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 06/26/2019] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Thymoquinone (TQ) is one of the principal bioactive ingredients proven to exhibit anti-diabetic effects. Recently, glucagon-like peptide-1 (GLP-1) has been found to be involved in antidiabetic effects in rats. The aim of this study was to evaluate the mediation of GLP-1 in the antidiabetic effect of TQ and to understand the possible mechanisms. MATERIAL AND METHODS NCI-H716 cells and CHO-K1 cells were used to investigate the effects of TQ on GLP-1 secretion in vitro. In type 1 diabetic rats, the changes in plasma glucose and GLP-1 levels were evaluated with TQ treatment. RESULTS The direct effect of TQ on imidazoline receptors (I-Rs) was identified in CHO-K1 cells overexpressing I-Rs. Additionally, in the intestinal NCI-H716 cells that may secrete GLP-1, TQ treatment enhanced GLP-1 secretion in a dose-dependent manner. However, these effects of TQ were reduced by ablation of I-Rs with siRNA in NCI-H716 cells. Moreover, these effects were inhibited by BU224, the imidazoline I2 receptor (I-2R) antagonist. In diabetic rats, TQ increased plasma GLP-1 levels, which were inhibited by BU-224 treatment. Functionally, TQ-attenuated hyperglycemia is also evidenced through GLP-1 using pharmacological manipulations. CONCLUSIONS This report demonstrates that TQ may promote GLP-1 secretion through I-R activation to reduce hyperglycemia in type-1 diabetic rats.
Collapse
Affiliation(s)
- Shu Ping Lee
- Department of Food Science, College of Agriculture, National Pingtung University of Science and Technology, Neipu Township, Pingtung County, Taiwan
| | - Feng Yu Kuo
- Cardiovascular Center, Kaohsiung Veterans General Hospital, Kaohsiung City, Zuoying District, Taiwan
| | - Juei-Tang Cheng
- Department of Medical Research, Chi-Mei Medical Center, Tainan City, Yongkang District, Taiwan
| | - Ming Chang Wu
- Department of Food Science, College of Agriculture, National Pingtung University of Science and Technology, Neipu Township, Pingtung County, Taiwan
| |
Collapse
|
18
|
Alvi T, Khan MKI, Maan AA, Razzaq ZU. Date fruit as a promising source of functional carbohydrates and bioactive compounds: A review on its nutraceutical potential. J Food Biochem 2022; 46:e14325. [PMID: 35894233 DOI: 10.1111/jfbc.14325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/14/2022] [Indexed: 11/28/2022]
Abstract
From the past decade, consumption of ready-to-eat food and ease of access to fast food increased the onset of several diseases. Thus, there is a need to shift the trend from consumption of unhealthy food item to natural and healthy alternatives. In this context, fruits can be considered as functional food, which have ability to provide essential nutrients and bioactive compounds. These compounds when consume in adequate amount would have the potential to lower the onset of diseases. In this regard, Phoenix dactylifera or date fruit is an important source of functional carbohydrates and bioactive compounds for their use as functional foods. The major functional carbohydrate in date fruit are in the form of dietary fiber, such as β-glucan, cellulose and fructans along with other bioactive compounds. Additionally, it is also a good source of other important nutrients such as sugars, minerals, along with minor quantities of proteins and lipids. Due to these functional compounds, date fruit have shown a wide range of pharmaceutical properties such as antioxidant, anti-inflammatory, anti-diabetic, hepatoprotective and anticancer. This review provides latest information regarding functional and nutraceutical carbohydrates of date fruits along-with mechanism of action on different diseases reported in recent years. PRACTICAL APPLICATIONS: This will provide information to food industries for the development of innovative food products by using date fruit. Moreover, bioactive components from date fruit may prove to enhance global health and wellness. However, further research is needed on clinical trials for the development of functional food products by using date fruit for functional foods and pharmaceutical applications.
Collapse
Affiliation(s)
- Tayyaba Alvi
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Kashif Iqbal Khan
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan.,Department of Food Engineering, University of Agriculture, Faisalabad, Pakistan
| | - Abid Aslam Maan
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan.,Department of Food Engineering, University of Agriculture, Faisalabad, Pakistan
| | - Zafar Ullah Razzaq
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
19
|
Kia ZA, Sadati Bizaki ST, Ghareh Tapeh EA, Harijani SM, Katal N, Baziary RG. Recovering the angiogenic/angiostatic balance in NNK-induced lung carcinoma via 12 weeks of submaximal swimming and Nigella sativa nanocapsule. Toxicol Rep 2022; 9:1452-1460. [DOI: 10.1016/j.toxrep.2022.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 06/28/2022] [Accepted: 06/28/2022] [Indexed: 10/17/2022] Open
|
20
|
Khan MA, Zheng M, Fu J, Tania M, Li J, Fu J. Thymoquinone upregulates IL17RD in controlling the growth and metastasis of triple negative breast cancer cells in vitro. BMC Cancer 2022; 22:707. [PMID: 35761256 PMCID: PMC9238053 DOI: 10.1186/s12885-022-09782-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/15/2022] [Indexed: 12/17/2022] Open
Abstract
Abstract
Background
Triple negative breast cancer (TNBC) is a molecular subtype of breast cancer, which is a major health burden of females worldwide. Thymoquinone (TQ), a natural compound, has been found to be effective against TNBC cells, and this study identified IL17RD as a novel target of TQ in TNBC cells.
Methods
We have performed chromatin immunoprecipitation Sequence (ChIP-Seq) by MBD1 (methyl-CpG binding domain protein 1) antibody to identify genome-wide methylated sites affected by TQ. ChIP-seq identified 136 genes, including the tumor suppressor IL17RD, as a novel target of TQ, which is epigenetically upregulated by TQ in TNBC cell lines BT-549 and MDA-MB-231. The IL17RD expression and survival outcomes were studied by Kaplan–Meier analysis.
Results
TQ treatment inhibited the growth, migration, and invasion of TNBC cells with or without IL17RD overexpression or knockdown, while the combination of IL17RD overexpression and TQ treatment were the most effective against TNBC cells. Moreover, higher expression of IL17RD is associated with longer survival in TNBC patients, indicating potential therapeutic roles of TQ and IL17RD against TNBC.
Conclusions
Our data suggest that IL17RD might be epigenetically upregulated in TNBC cell lines by TQ, and this might be one of the mechanisms by which TQ exerts its anticancer and antimetastatic effects on TNBC cells.
Collapse
|
21
|
Talib WH, AlHur MJ, Al.Naimat S, Ahmad RE, Al-Yasari AH, Al-Dalaeen A, Thiab S, Mahmod AI. Anticancer Effect of Spices Used in Mediterranean Diet: Preventive and Therapeutic Potentials. Front Nutr 2022; 9:905658. [PMID: 35774546 PMCID: PMC9237507 DOI: 10.3389/fnut.2022.905658] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/16/2022] [Indexed: 01/18/2023] Open
Abstract
Cancer is one of the leading causes of death worldwide, with almost 10 million cancer-related deaths worldwide in 2020, so any investigation to prevent or cure this disease is very important. Spices have been studied widely in several countries to treat different diseases. However, studies that summarize the potential anticancer effect of spices used in Mediterranean diet are very limited. This review highlighted chemo-therapeutic and chemo-preventive effect of ginger, pepper, rosemary, turmeric, black cumin and clove. Moreover, the mechanisms of action for each one of them were figured out such as anti-angiogenesis, antioxidant, altering signaling pathways, induction of cell apoptosis, and cell cycle arrest, for several types of cancer. The most widely used spice in Mediterranean diet is black pepper (Piper nigrum L). Ginger and black cumin have the highest anticancer activity by targeting multiple cancer hallmarks. Apoptosis induction is the most common pathway activated by different spices in Mediterranean diet to inhibit cancer. Studies discussed in this review may help researchers to design and test new anticancer diets enriched with selected spices that have high activities.
Collapse
Affiliation(s)
- Wamidh H. Talib
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman, Jordan
- *Correspondence: Wamidh H. Talib
| | - Mallak J. AlHur
- Office of Scientific Affairs and Research, King Hussein Cancer Center, Amman, Jordan
| | - Sumaiah Al.Naimat
- Office of Scientific Affairs and Research, King Hussein Cancer Center, Amman, Jordan
| | - Rawand E. Ahmad
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman, Jordan
| | | | - Anfal Al-Dalaeen
- Department of Clinical Nutrition and Dietetics, Faculty of Pharmacy, Applied Science Private University, Amman, Jordan
| | - Samar Thiab
- Department of Pharmaceutical Chemistry and Pharmacognosy, Applied Science Private University, Amman, Jordan
| | - Asma Ismail Mahmod
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman, Jordan
| |
Collapse
|
22
|
Baig WA, Alwosaibai K, Al-Jubran KM, Chaudhry TM, Al-Dowish N, Alsaffar F, Alam MA. Synergistic anti-cancer effects of Nigella sativa seed oil and conventional cytotoxic agent against human breast cancer. Drug Metab Pers Ther 2022; 37:315-321. [PMID: 35405048 DOI: 10.1515/dmpt-2021-0229] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/17/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Breast cancer is the most commonly diagnosed invasive non-skin malignancy in women worldwide, and it is the leading cause of cancer-related deaths in them. Nigella sativa Linn. seed oil has been found to be effective in cancer treatment as well as having anti-cancer properties in some other types of cancers. The study looked into the synergistic cytotoxic effects of N. sativa Linn. seed oil and doxorubicin in the treatment of human breast cancer cells (MCF-7). METHODS Nigella sativa Linn. seed oil was used to evaluate its effect on human breast cancer cells, either alone or in conjunction with doxorubicin. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) tests were used to examine cell proliferation and cell viability, while phase-contrast inverted microscopy was used to examine cellular morphology. Furthermore, the role of N. sativa seed oil in decreasing cell tumorigenicity features was highlighted by testing the cancer cell migration using the wound healing assay. RESULTS Results showed that higher concentrations (50 μg/mL) of N. sativa Linn. seed oil changed the breast cancer cell morphology and decreased the cell proliferation and viability. Breast cancer cells treated with black seed oil decreased cell movement after 24 hours compared to the untreated cell in the wound healing assay. Whereas, only the higher concentration of doxorubicin (0.5-2.5 μg/mL) reduced cell proliferation and cell viability. Moreover, the combination treatment of 50 ug/mL of black seed oil with different concentrations of doxorubicin caused a significant cell proliferation reduction and decreased cell viability. The activity was seen optimum at lower concentration (0.1 µg/mL) of doxorubicin. CONCLUSIONS There was decreased cell proliferation and cell viability when N. sativa seed oil was used alone or in conjunction with doxorubicin in Breast cancer cells (MCF-7) revealing potential opportunities in the field of cancer treatment.
Collapse
Affiliation(s)
- Waheed A Baig
- Prince Sultan Military College of Health Sciences, Dhahran, Saudi Arabia
| | | | - Khalid M Al-Jubran
- Prince Sultan Military College of Health Sciences, Dhahran, Saudi Arabia
| | - Tariq M Chaudhry
- Prince Sultan Military College of Health Sciences, Dhahran, Saudi Arabia
| | | | | | - Md Anzar Alam
- Department of Ilmul Atfal, SUMER, Jamia Hamdard, New Delhi-110062
| |
Collapse
|
23
|
Islamuddin M, Ali A, Afzal O, Ali A, Ali I, Altamimi AS, Alamri MA, Kato K, Parveen S. Thymoquinone Induced Leishmanicidal Effect via Programmed Cell Death in Leishmania donovani. ACS OMEGA 2022; 7:10718-10728. [PMID: 35382308 PMCID: PMC8973115 DOI: 10.1021/acsomega.2c00467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 03/02/2022] [Indexed: 05/08/2023]
Abstract
Visceral leishmaniasis (VL) or kala-azar is a vector-borne dreaded protozoal infection that is caused by the parasite Leishmania donovani. With increases in the dramatic infection rates, present drug toxicity, resistance, and the absence of an approved vaccine, the development of new antileishmanial compounds from plant sources remains the keystone for the control of visceral leishmaniasis. In this study, we evaluated the leishmanicidal effect of thymoquinone against L. donovani with an in vitro and ex vivo model. Thymoquinone exhibited potent antipromastigote activity with IC50 and IC90 concentrations achieved at 6.33 ± 1.21 and 20.71 ± 2.15 μM, respectively, whereas the IC50 and IC90 concentrations were found to be 7.83 ± 1.65 and 27.25 ± 2.20 μM against the intramacrophagic form of amastigotes, respectively. Morphological changes in promastigotes and growth reversibility study following treatment confirmed the leishmanicidal effect of thymoquinone. Further, thymoquinone exhibited leishmanicidal activities against L. donovani promastigote through cytoplasmic shrinkage, membrane blebbing, chromatin condensation, cellular and nuclear shrinkage, and DNA fragmentation, as observed under scanning and transmission electron microscopy analyses. The antileishmanial activity was exerted via programmed cell death as proved by exposure of phosphatidylserine, DNA nicking by TUNEL assay, and loss of mitochondrial membrane potential. Thymoquinone at a concentration of 200 μM was devoid of any cytotoxic effects against mammalian macrophage cells. Thymoquinone showed strong leishmanicidal activity against L. donovani, which is mediated via an apoptosis mode of parasitic cell death, and accordingly, thymoquinone may be the source of a new lead molecule for the cure of VL.
Collapse
Affiliation(s)
- Mohammad Islamuddin
- Molecular
Virology Laboratory, Centre for Interdisciplinary Research in Basic
Sciences, Jamia Millia Islamia, New Delhi 110025, India
- Laboratory
of Sustainable Animal Environment, Graduate School of Agricultural
Science, Tohoku University, Miyagi 989-6711, Japan
| | - Abuzer Ali
- Department
of Pharmacognosy, College of Pharmacy, Taif
University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Obaid Afzal
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Amena Ali
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Intzar Ali
- Department
of Microbiology, Hamdard Institute of Medical
Sciences & Research, New Delhi 110062, India
| | | | - Mubarak A. Alamri
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Kentaro Kato
- Laboratory
of Sustainable Animal Environment, Graduate School of Agricultural
Science, Tohoku University, Miyagi 989-6711, Japan
| | - Shama Parveen
- Molecular
Virology Laboratory, Centre for Interdisciplinary Research in Basic
Sciences, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
24
|
Formulation, Characterization and Cytotoxicity Effects of Novel Thymoquinone-PLGA-PF68 Nanoparticles. Int J Mol Sci 2021; 22:ijms22179420. [PMID: 34502328 PMCID: PMC8431343 DOI: 10.3390/ijms22179420] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 12/12/2022] Open
Abstract
Thymoquinone has anti-cancer properties. However, its application for clinical use is limited due to its volatile characteristics. The current study aims to develop a polymeric nanoformulation with PLGA-PEG and Pluronics F68 as encapsulants to conserve thymoquinone’s (TQ) biological activity before reaching the target sites. Synthesis of nanoparticles was successfully completed by encapsulating TQ with polymeric poly (D, L-lactide-co-glycolide)-block-poly (ethylene glycol) and Pluronics F68 (TQ-PLGA-PF68) using an emulsion–solvent evaporation technique. The size and encapsulation efficiency of TQ-PLGA-PF68 nanoparticles were 76.92 ± 27.38 nm and 94%, respectively. TQ released from these encapsulants showed a biphasic released pattern. Cytotoxicity activity showed that tamoxifen-resistant (TamR) MCF-7 breast cancer cells required a higher concentration of TQ-PLGA-PF68 nanoparticles than the parental MCF-7 cells to achieve IC50 (p < 0.05). The other two resistant subtypes (TamR UACC732 inflammatory breast carcinoma and paclitaxel-resistant (PacR) MDA-MB 231 triple-negative breast cell line) required a lower concentration of TQ-PLGA-PF68 nanoparticles compared to their respective parental cell lines (p < 0.05). These findings suggest that TQ encapsulation with PLGA-PEG and Pluronics F68 is a promising anti-cancer agent in mitigating breast cancer resistance to chemotherapeutics. In future studies, the anti-cancer activity of TQ-PLGA-PF68 with the standard chemotherapeutic drugs used for breast cancer treatment is recommended.
Collapse
|
25
|
Różyło R, Piekut J, Wójcik M, Kozłowicz K, Smolewska M, Krajewska M, Szmigielski M, Bourekoua H. Black Cumin Pressing Waste Material as a Functional Additive for Starch Bread. MATERIALS 2021; 14:ma14164560. [PMID: 34443082 PMCID: PMC8401299 DOI: 10.3390/ma14164560] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/03/2021] [Accepted: 08/10/2021] [Indexed: 12/25/2022]
Abstract
The aim of the study was to determine the effect of the addition of black cumin (Nigella sativa L.) pressing waste (BCW) and black cumin seeds (BCS) on the properties of starch bread. The control bread was prepared from wheat starch (100%) with a gluten-free certificate, plantain husk (5%), and guar gum (2%). BCS and BCW were added between 0 and 10% of wheat starch. We determined the physicochemical properties, color, texture, and sensory properties of the prepared bread. Gas chromatography–mass spectrometry (GC–MS) analysis was performed to detect the phenolic compounds in the bread. The bread prepared with 6% BCS and 4% BCW had a significantly higher volume than the starch control bread did. Sensory analysis (taste) showed that BCS and BCW could be added up to 4% and 8%, respectively. The addition of BCS and BCW reduced the brightness of the crumb. A significant decrease in the L * index of the crumb was observed from 50.9 for the control bread to 34.1 and 34.0 for bread with 10% BCS and BCW, respectively. The addition of BCS and BCW decreased the hardness, elasticity, and chewiness of the starch bread crumb. Starch bread enriched with BCS and BCW was characterized by a higher content of 2-hydroxybenzoic acid, 2-hydroxyphenyl acetic acid, and 4-hydroxyphenyl acetic acid.
Collapse
Affiliation(s)
- Renata Różyło
- Department of Food Engineering and Machines, University of Life Sciences in Lublin, 28 Głęboka Str., 20-612 Lublin, Poland;
- Correspondence:
| | - Jolanta Piekut
- Department of Agricultural, Food and Forestry Engineering, Bialystok University of Technology, 45E Wiejska Str., 15-351 Białystok, Poland;
| | - Monika Wójcik
- Department of Food Engineering and Machines, University of Life Sciences in Lublin, 28 Głęboka Str., 20-612 Lublin, Poland;
| | - Katarzyna Kozłowicz
- Department of Biological Bases of Food and Feed Technologies, University of Life Sciences in Lublin, 28 Głęboka Str., 20-612 Lublin, Poland; (K.K.); (M.K.); (M.S.)
| | - Marzena Smolewska
- Faculty Chemical Laboratory, Bialystok University of Technology, 45E Wiejska Str., 15-351 Białystok, Poland;
| | - Marta Krajewska
- Department of Biological Bases of Food and Feed Technologies, University of Life Sciences in Lublin, 28 Głęboka Str., 20-612 Lublin, Poland; (K.K.); (M.K.); (M.S.)
| | - Marek Szmigielski
- Department of Biological Bases of Food and Feed Technologies, University of Life Sciences in Lublin, 28 Głęboka Str., 20-612 Lublin, Poland; (K.K.); (M.K.); (M.S.)
| | - Hayat Bourekoua
- Laboratoire de Nutrition et Technologie Alimentaire (LNTA), Institut de la Nutrition, de l’Alimentation et des Technologies Agro-Alimentaires (INATAA), Equipe de Transformation et Elaboration de Produits Agro-Alimentaires (TEPA), Université Frères Mentouri-Constantine 1, Route de Ain El-Bey, Constantine 25000, Algeria;
| |
Collapse
|
26
|
Tania M, Asad A, Li T, Islam MS, Islam SB, Hossen MM, Bhuiyan MR, Khan MA. Thymoquinone against infectious diseases: Perspectives in recent pandemics and future therapeutics. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:1014-1022. [PMID: 34804418 PMCID: PMC8591769 DOI: 10.22038/ijbms.2021.56250.12548] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/09/2021] [Indexed: 11/07/2022]
Abstract
The recent pandemics caused by coronavirus infections have become major challenges in 21st century human health. Scientists are struggling hard to develop a complete cure for infectious diseases, for example, drugs or vaccines against these deadly infectious diseases. We have searched papers on thymoquinone (TQ) and its effects on different infectious diseases in databases like Pubmed, Web of Science, Scopus, and Google Scholar, and reviewed them in this study. To date research suggests that natural products may become a potential therapeutic option for their prodigious anti-viral or anti-microbial effects on infectious diseases. TQ, a natural phytochemical from black seeds, is known for its health-beneficial activities against several diseases, including infections. It is evident from different in vitro and in vivo studies that TQ is effective against tuberculosis, influenza, dengue, Ebola, Zika, hepatitis, malaria, HIV, and even recent pandemics caused by severe acute respiratory syndrome of coronaviruses (SARS-CoV and SARS-CoV-2). In these cases, the molecular mechanism of TQ is partly clear but mostly obscure. In this review article, we have discussed the role of TQ against different infectious diseases, including COVID-19, and also critically reviewed the future use of TQ use to fight against infectious diseases.
Collapse
Affiliation(s)
- Mousumi Tania
- Research Division of Nature Study Society of Bangladesh, Dhaka, Bangladesh
- Division of Molecular Cancer, Red Green Research Center, Dhaka, Bangladesh
| | - Asaduzzaman Asad
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Tian Li
- The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Md. Shariful Islam
- Department of Biochemistry and Molecular Biology, Tejgaon College, National University, Dhaka, Bangladesh
| | - Shad Bin Islam
- Bachelor in Medicine and Surgery Program, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Md. Munnaf Hossen
- Department of Immunology, Health Science Center, Shenzhen, University, Shenzhen, Guangdong, China
| | | | - Md. Asaduzzaman Khan
- The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
27
|
Chemical Composition Analysis Using HPLC-UV/GC-MS and Inhibitory Activity of Different Nigella sativa Fractions on Pancreatic α-Amylase and Intestinal Glucose Absorption. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9979419. [PMID: 34258287 PMCID: PMC8257330 DOI: 10.1155/2021/9979419] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/19/2021] [Indexed: 11/17/2022]
Abstract
Nigella sativa (NS) is a well-known plant for its various benefits and multiuse in traditional medicine. This study is aimed at investigating the chemical composition of the different NS fractions by using GC-MS for the esterified fatty acids or HPLC-UV for organic fraction and at evaluating the inhibitory effect on pancreatic α-amylase (in vitro, in vivo) and intestinal glucose absorption. Among all the investigated fractions, it was shown that they are rich with different molecules of great interest. The n-hexane fraction was characterized by the presence of linoleic acid (44.65%), palmitic acid (16.32%), stearic acid (14.60%), and thymoquinone (8.7%), while among the identified peaks in EtOH fraction we found catechin (89.03 mg/100 g DW), rutin (6.46 mg/100 g DW), and kaempferol (0.032 mg/100 g DW). The MeOH fraction was distinguished with the presence of gallic acid (19.91 mg/100 g DW), catechin (13.79 mg/100 g DW), and rutin (21.07 mg/100 g DW). Finally, the aqueous fraction was marked by the existence of different molecules; among them, we mention salicylic acid (32.26 mg/100 g DW), rutin (21.46 mg/100 g DW), and vanillic acid (3.81 mg/100 g DW). Concerning the inhibitory effect on pancreatic α-amylase, it was found that in the in vitro study, the best IC50 registered were those of EtOH (0.25 mg/ml), MeOH (0.10 mg/ml), aqueous (0.031 mg/ml), and n-hexane fraction (0.76 mg/ml), while in the in vivo study an important inhibition of α-amylase in normal and diabetic rats was observed. Finally, the percentage of intestinal glucose absorption was evaluated for all tested extracts and it was ranging from 24.82 to 60.12%. The results of the present study showed that the NS seed fractions exert an interesting inhibitory effect of α-amylase and intestinal glucose absorption activity which could be associated with the existent bioactive compounds. Indeed, these compounds can be used as antidiabetic agents because of their nontoxic effect and high efficacy.
Collapse
|
28
|
Attah AF, Fagbemi AA, Olubiyi O, Dada-Adegbola H, Oluwadotun A, Elujoba A, Babalola CP. Therapeutic Potentials of Antiviral Plants Used in Traditional African Medicine With COVID-19 in Focus: A Nigerian Perspective. Front Pharmacol 2021; 12:596855. [PMID: 33981214 PMCID: PMC8108136 DOI: 10.3389/fphar.2021.596855] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 01/20/2021] [Indexed: 12/12/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic is caused by an infectious novel strain of coronavirus known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which was earlier referred to as 2019-nCoV. The respiratory disease is the most consequential global public health crisis of the 21st century whose level of negative impact increasingly experienced globally has not been recorded since World War II. Up till now, there has been no specific globally authorized antiviral drug, vaccines, supplement or herbal remedy available for the treatment of this lethal disease except preventive measures, supportive care and non-specific treatment options adopted in different countries via divergent approaches to halt the pandemic. However, many of these interventions have been documented to show some level of success particularly the Traditional Chinese Medicine while there is paucity of well reported studies on the impact of the widely embraced Traditional African Medicines (TAM) adopted so far for the prevention, management and treatment of COVID-19. We carried out a detailed review of publicly available data, information and claims on the potentials of indigenous plants used in Sub-Saharan Africa as antiviral remedies with potentials for the prevention and management of COVID-19. In this review, we have provided a holistic report on evidence-based antiviral and promising anti-SARS-CoV-2 properties of African medicinal plants based on in silico evidence, in vitro assays and in vivo experiments alongside the available data on their mechanistic pharmacology. In addition, we have unveiled knowledge gaps, provided an update on the effort of African Scientific community toward demystifying the dreadful SARS-CoV-2 micro-enemy of man and have documented popular anti-COVID-19 herbal claims emanating from the continent for the management of COVID-19 while the risk potentials of herb-drug interaction of antiviral phytomedicines when used in combination with orthodox drugs have also been highlighted. This review exercise may lend enough credence to the potential value of African medicinal plants as possible leads in anti-COVID-19 drug discovery through research and development.
Collapse
Affiliation(s)
- Alfred Francis Attah
- Department of Pharmacognosy and Drug Development, Faculty of Pharmaceutical Sciences, University of Ilorin, Ilorin, Nigeria
| | - Adeshola Adebayo Fagbemi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria
| | - Olujide Olubiyi
- Department of Pharmaceutical Chemistry, Obafemi Awolowo University, Ile-Ife, Nigeria
- Institute of Biological Information Processing, Structural Biochemistry (IBI-7), Forschungszentrum Jülich, Jülich, Germany
| | - Hannah Dada-Adegbola
- Department of Medical Microbiology and Parasitology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | | | - Anthony Elujoba
- Department of Pharmacognosy, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Chinedum Peace Babalola
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria
- Centre for Drug Discovery, Development and Production, University of Ibadan, Ibadan, Nigeria
- College of Basic Medical Sciences, Chrisland University, Abeokuta, Nigeria
| |
Collapse
|
29
|
Ansary J, Giampieri F, Forbes-Hernandez TY, Regolo L, Quinzi D, Gracia Villar S, Garcia Villena E, Tutusaus Pifarre K, Alvarez-Suarez JM, Battino M, Cianciosi D. Nutritional Value and Preventive Role of Nigella sativa L. and Its Main Component Thymoquinone in Cancer: An Evidenced-Based Review of Preclinical and Clinical Studies. Molecules 2021; 26:molecules26082108. [PMID: 33916916 PMCID: PMC8067617 DOI: 10.3390/molecules26082108] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/31/2021] [Accepted: 04/03/2021] [Indexed: 11/16/2022] Open
Abstract
In recent times, scientific attention has been paid to different foods and their bioactive components for the ability to inhibit the onset and progress of different types of cancer. Nigella sativa extract, powder and seed oil and its main components, thymoquinone and α-hederin, have showed potent anticancer and chemosensitizing effects against various types of cancer, such as liver, colon, breast, renal, cervical, lung, ovarian, pancreatic, prostate and skin tumors, through the modulation of various molecular signaling pathways. Herein, the purpose of this review was to highlight the anticancer activity of Nigella sativa and it constitutes, focusing on different in vitro, in vivo and clinical studies and projects, in order to underline their antiproliferative, proapoptotic, cytotoxic and antimetastatic effects. Particular attention has been also given to the synergistic effect of Nigella sativa and it constitutes with chemotherapeutic drugs, and to the synthesized analogs of thymoquinone that seem to enhance the chemo-sensitizing potential. This review could be a useful step towards new research on N. sativa and cancer, to include this plant in the dietary treatments in support to conventional therapies, for the best achievement of therapeutic goals.
Collapse
Affiliation(s)
- Johura Ansary
- Department of Clinical Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (J.A.); (F.G.); (L.R.); (D.Q.)
| | - Francesca Giampieri
- Department of Clinical Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (J.A.); (F.G.); (L.R.); (D.Q.)
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Tamara Y. Forbes-Hernandez
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, 36310 Vigo, Spain;
| | - Lucia Regolo
- Department of Clinical Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (J.A.); (F.G.); (L.R.); (D.Q.)
| | - Denise Quinzi
- Department of Clinical Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (J.A.); (F.G.); (L.R.); (D.Q.)
| | - Santos Gracia Villar
- Research Center for Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres 21, 39011 Santander, Spain; (S.G.V.); (E.G.V.); (K.T.P.)
- Research Center for Foods, Nutritional Biochemistry and Health, Universidad Internacional Iberoamericana, Campeche 24560, Mexico
| | - Eduardo Garcia Villena
- Research Center for Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres 21, 39011 Santander, Spain; (S.G.V.); (E.G.V.); (K.T.P.)
| | - Kilian Tutusaus Pifarre
- Research Center for Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres 21, 39011 Santander, Spain; (S.G.V.); (E.G.V.); (K.T.P.)
- Research Center for Foods, Nutritional Biochemistry and Health, Universidad Internacional Iberoamericana, Campeche 24560, Mexico
| | - José M. Alvarez-Suarez
- Departamento de Ingeniería en Alimentos, Colegio de Ciencias e Ingenierías, Universidad San Francisco de Quito, Quito 170157, Ecuador
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: (J.M.A.-S.); (M.B.); (D.C.); Tel.: +593-2-297-1700 (J.M.A.-S.); +339-071-220-4646 (M.B.); +339-071-220-4136 (D.C.)
| | - Maurizio Battino
- Department of Clinical Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (J.A.); (F.G.); (L.R.); (D.Q.)
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- Correspondence: (J.M.A.-S.); (M.B.); (D.C.); Tel.: +593-2-297-1700 (J.M.A.-S.); +339-071-220-4646 (M.B.); +339-071-220-4136 (D.C.)
| | - Danila Cianciosi
- Department of Clinical Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (J.A.); (F.G.); (L.R.); (D.Q.)
- Correspondence: (J.M.A.-S.); (M.B.); (D.C.); Tel.: +593-2-297-1700 (J.M.A.-S.); +339-071-220-4646 (M.B.); +339-071-220-4136 (D.C.)
| |
Collapse
|
30
|
Ahmad MF, Ahmad FA, Ashraf SA, Saad HH, Wahab S, Khan MI, Ali M, Mohan S, Hakeem KR, Athar MT. An updated knowledge of Black seed ( Nigella sativa Linn.): Review of phytochemical constituents and pharmacological properties. J Herb Med 2021; 25:100404. [PMID: 32983848 PMCID: PMC7501064 DOI: 10.1016/j.hermed.2020.100404] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 10/08/2019] [Accepted: 09/09/2020] [Indexed: 02/06/2023]
Abstract
N. sativa (N. sativa) has been used since ancient times, when a scientific concept about the use of medicinal plants for the treatment of human illnesses and alleviation of their sufferings was yet to be developed. It has a strong religious significance as it is mentioned in the religious books of Islam and Christianity. In addition to its historical and religious significance, it is also mentioned in ancient medicine. It is widely used in traditional systems of medicine for a number of diseases including asthma, fever, bronchitis, cough, chest congestion, dizziness, paralysis, chronic headache, back pain and inflammation. The importance of this plant led the scientific community to carry out extensive phytochemical and biological investigations on N. sativa. Pharmacological studies on N. sativa have confirmed its antidiabetic, antitussive, anticancer, antioxidant, hepatoprotective, neuro-protective, gastroprotective, immunomodulator, analgesic, antimicrobial, anti-inflammatory, spasmolytic, and bronchodilator activity. The present review is an effort to explore the reported chemical composition and pharmacological activity of this plant. It will help as a reference for scientists, researchers, and other health professionals who are working with this plant and who need up to date knowledge about it.
Collapse
Affiliation(s)
- Md Faruque Ahmad
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Saudi Arabia
| | - Fakhruddin Ali Ahmad
- Department of Laboratory Medicine Al-Hada and Taif Military Hospital, Saudi Arabia
| | - Syed Amir Ashraf
- Dept. of Clinical Nutrition, College of Applied Medical Sciences, University of Hail, Saudi Arabia
| | - Hisham H Saad
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Saudi Arabia
| | - Shadma Wahab
- College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Mohammed Idreesh Khan
- Department of Clinical Nutrition, College of Applied Health Sciences in Arras, Qassim University, Saudi Arabia
| | - M Ali
- College of pharmacy, Dept. of Pharmacognosy, Jazan University, Saudi Arabia
| | - Syam Mohan
- Medical Research Center, Jazan University, Jazan, Saudi Arabia
| | - Khalid Rehman Hakeem
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Md Tanwir Athar
- Bioactive Natural Product Laboratory, Hamdard University, India.,Scientific Research Center, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| |
Collapse
|
31
|
Saadat S, Aslani MR, Ghorani V, Keyhanmanesh R, Boskabady MH. The effects of Nigella sativa on respiratory, allergic and immunologic disorders, evidence from experimental and clinical studies, a comprehensive and updated review. Phytother Res 2021; 35:2968-2996. [PMID: 33455047 DOI: 10.1002/ptr.7003] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/28/2020] [Accepted: 12/13/2020] [Indexed: 12/15/2022]
Abstract
Nigella sativa (N. sativa) seed had been used traditionally due to several pharmacological effects. The updated experimental and clinical effects of N. sativa and its constituents on respiratory, allergic and immunologic disorders are provided in this comprehensive review article. Various databases including PubMed, Science Direct and Scopus were used. The preventive effects of N. sativa on pulmonary diseases were mainly due to its constituents such as thymoquinone, thymol, carvacrol and alpha-hederin. Extracts and constituents of N. sativa showed the relaxant effect, with possible mechanisms indicating its bronchodilatory effect in obstructive pulmonary diseases. In experimental animal models of different respiratory diseases, the preventive effect of various extracts and constituents of N. sativa was demonstrated by mechanisms such as antioxidant, immunomodulatory and antiinflammatory effects. Bronchodilatory and preventive effects of the plant and its components on asthma, COPD and lung disorders due to exposure to noxious agents as well as on allergic and immunologic disorders were also shown in the clinical studies. Various extracts and constituents of N. sativa showed pharmacological and therapeutic effects on respiratory, allergic and immunologic disorders indicating possible remedy effect of that the plant and its effective substances in treating respiratory, allergic and immunologic diseases.
Collapse
Affiliation(s)
- Saeideh Saadat
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Physiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mohammad Reza Aslani
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Lung Inflammatory Diseases Research Center, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Vahideh Ghorani
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Clinical Research Unit, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rana Keyhanmanesh
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hossein Boskabady
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
32
|
Silva AFC, Haris PI, Serralheiro ML, Pacheco R. Mechanism of action and the biological activities of Nigella sativa oil components. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100783] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
33
|
Afrose SS, Junaid M, Akter Y, Tania M, Zheng M, Khan MA. Targeting kinases with thymoquinone: a molecular approach to cancer therapeutics. Drug Discov Today 2020; 25:2294-2306. [PMID: 32721537 DOI: 10.1016/j.drudis.2020.07.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 06/01/2020] [Accepted: 07/20/2020] [Indexed: 01/02/2023]
Abstract
Kinases are enzymes that are important for cellular functions, but their overexpression has strong connections with carcinogenesis, rendering them important targets for anticancer drugs. Thymoquinone (TQ) is a natural compound with proven anticancer activities, at least in preclinical studies. TQ can target several kinases, including phosphoinositide 3-kinase (PI3K), mitogen-activated protein kinase (MAPK), Janus kinase/signal transducers and activators of transcription (JAK/STAT), polo-like kinase 1 (PLK1), and tyrosine kinase in different cancer cells and animal models. Inhibiting the activity of kinases or suppressing their expression might be among the mechanisms of TQ anticancer activity. In this review, we discuss the role of TQ in kinase regulation in different cancer models.
Collapse
Affiliation(s)
| | - Md Junaid
- Molecular Modeling Drug-design and Discovery Laboratory, Pharmacology Research Division, Bangladesh Council of Scientific and Industrial Research, Chattogram, Bangladesh
| | - Yeasmin Akter
- Department of Biotechnology and Genetic Engineering, Noakhali Science & Technology University, Noakhali, Bangladesh
| | - Mousumi Tania
- Division of Molecular Cancer, Red Green Research Center, Dhaka, Bangladesh
| | - Meiling Zheng
- The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Md Asaduzzaman Khan
- The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China.
| |
Collapse
|
34
|
Untargeted Metabolomics Identifies Key Metabolic Pathways Altered by Thymoquinone in Leukemic Cancer Cells. Nutrients 2020; 12:nu12061792. [PMID: 32560283 PMCID: PMC7353463 DOI: 10.3390/nu12061792] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/02/2020] [Accepted: 06/12/2020] [Indexed: 11/24/2022] Open
Abstract
Thymoquinone (TQ), a naturally occurring anticancer compound extracted from Nigella sativa oil, has been extensively reported to possess potent anti-cancer properties. Experimental studies showed the anti-proliferative, pro-apoptotic, and anti-metastatic effects of TQ on different cancer cells. One of the possible mechanisms underlying these effects includes alteration in key metabolic pathways that are critical for cancer cell survival. However, an extensive landscape of the metabolites altered by TQ in cancer cells remains elusive. Here, we performed an untargeted metabolomics study using leukemic cancer cell lines during treatment with TQ and found alteration in approximately 335 metabolites. Pathway analysis showed alteration in key metabolic pathways like TCA cycle, amino acid metabolism, sphingolipid metabolism and nucleotide metabolism, which are critical for leukemic cell survival and death. We found a dramatic increase in metabolites like thymine glycol in TQ-treated cancer cells, a metabolite known to induce DNA damage and apoptosis. Similarly, we observed a sharp decline in cellular guanine levels, important for leukemic cancer cell survival. Overall, we provided an extensive metabolic landscape of leukemic cancer cells and identified the key metabolites and pathways altered, which could be critical and responsible for the anti-proliferative function of TQ.
Collapse
|
35
|
Al-Obeed O, El-Obeid AS, Matou-Nasri S, Vaali-Mohammed MA, AlHaidan Y, Elwatidy M, Al Dosary H, Alehaideb Z, Alkhayal K, Haseeb A, McKerrow J, Ahmad R, Abdulla MH. Herbal melanin inhibits colorectal cancer cell proliferation by altering redox balance, inducing apoptosis, and modulating MAPK signaling. Cancer Cell Int 2020; 20:126. [PMID: 32322173 PMCID: PMC7161222 DOI: 10.1186/s12935-020-01206-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 04/05/2020] [Indexed: 12/18/2022] Open
Abstract
Background Colorectal carcinoma is one of the most deadly cancers that requests effective and safe chemotherapy. Evaluation of natural product-based anticancer drugs as adjuvant treatment with fewer side effects is largely unexplored research fields. Herbal melanin (HM) is an extract of the seed coats of Nigella sativa that modulates an inflammatory response through toll-like receptor 4 (TLR4). This TLR4 receptor is also involved in the modulation of apoptosis. We therefore explored the anticancer potential of HM and specifically its effect on the molecular mechanisms underlying adenocarcinoma and metastatic colorectal cancer (mCRC) cell death in vitro. Methods Cell viability was evaluated using the MTT assay. Cellular reactive oxygen species (ROS), glutathione levels, and apoptotic status were assessed using fluorometric and colorimetric detection methods. HM-induced apoptotic and other signaling pathways were investigated using Western blot technology and mitochondrial transition pore assay kit. TLR4 receptor downregulation and blockade were performed using siRNA technology and neutralizing antibody, respectively. Results Our results showed that HM inhibited the proliferation of the colorectal adenocarcinoma HT29 and mCRC SW620 cell lines. Furthermore, HM enhanced ROS production and decreased glutathione levels. HM-induced apoptosis was associated with mitochondrial outer membrane permeability and cytochrome c release, inhibition of the Bcl2 family proteins, and activation of caspase-3/-7. In addition, HM modulated MAPK pathways by activating the JNK pathway and by inhibiting ERK phosphorylation. TLR4 receptor downregulation enhanced HM-induced apoptosis while TLR4 receptor blockade partially alleviated HM-inhibited ERK phosphorylation. Conclusion Altogether, these findings indicate that HM exerts pro-apoptotic effects and inhibits MAPK pathway through TLR4 in mCRC and colorectal adenocarcinoma cells, suggesting HM as a promising natural-based drug for the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Omar Al-Obeed
- 1Colorectal Research Chair, Department of Surgery, King Khalid University Hospital and College of Medicine, King Saud University, PO Box 7805 (37), Riyadh, 11472 Saudi Arabia
| | - Adila Salih El-Obeid
- 2Department of Biobank, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, PO Box 22490, Riyadh, 11426 Saudi Arabia.,3Faculty of Pharmacology, Ahfad University for Women, Khartoum, Sudan
| | - Sabine Matou-Nasri
- 4Cell and Gene Therapy Group, Medical Genomics Research Department, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, PO Box 22490, Riyadh, 11426 Saudi Arabia
| | - Mansoor-Ali Vaali-Mohammed
- 1Colorectal Research Chair, Department of Surgery, King Khalid University Hospital and College of Medicine, King Saud University, PO Box 7805 (37), Riyadh, 11472 Saudi Arabia
| | - Yazeid AlHaidan
- 4Cell and Gene Therapy Group, Medical Genomics Research Department, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, PO Box 22490, Riyadh, 11426 Saudi Arabia
| | - Mohammed Elwatidy
- 1Colorectal Research Chair, Department of Surgery, King Khalid University Hospital and College of Medicine, King Saud University, PO Box 7805 (37), Riyadh, 11472 Saudi Arabia
| | - Hamad Al Dosary
- 1Colorectal Research Chair, Department of Surgery, King Khalid University Hospital and College of Medicine, King Saud University, PO Box 7805 (37), Riyadh, 11472 Saudi Arabia
| | - Zeyad Alehaideb
- 4Cell and Gene Therapy Group, Medical Genomics Research Department, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, PO Box 22490, Riyadh, 11426 Saudi Arabia
| | - Khayal Alkhayal
- 1Colorectal Research Chair, Department of Surgery, King Khalid University Hospital and College of Medicine, King Saud University, PO Box 7805 (37), Riyadh, 11472 Saudi Arabia
| | - Adil Haseeb
- 5Department of Physics, Faculty of Science, University of Khartoum, Khartoum, Sudan
| | - James McKerrow
- 6Skaggs School of Pharmacy and Pharmaceutical Chemistry, University of California, La Jolla, San Diego, CA USA
| | - Rehan Ahmad
- 1Colorectal Research Chair, Department of Surgery, King Khalid University Hospital and College of Medicine, King Saud University, PO Box 7805 (37), Riyadh, 11472 Saudi Arabia
| | - Maha-Hamadien Abdulla
- 1Colorectal Research Chair, Department of Surgery, King Khalid University Hospital and College of Medicine, King Saud University, PO Box 7805 (37), Riyadh, 11472 Saudi Arabia
| |
Collapse
|
36
|
Santra I, Haque SM, Ghosh B. Giemsa C-banding Karyotype and Detection of Polymorphic Constitutive Heterochromatin in <i>Nigella sativa</i> L. CYTOLOGIA 2020. [DOI: 10.1508/cytologia.85.85] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Indranil Santra
- Plant Biotechnology Laboratory, Post Graduate Department of Botany, Ramakrishna Mission Vivekananda Centenary College
| | - Sk Moquammel Haque
- Plant Biotechnology Laboratory, Post Graduate Department of Botany, Ramakrishna Mission Vivekananda Centenary College
- Department of Botany, East Calcutta Girls’ College
| | - Biswajit Ghosh
- Plant Biotechnology Laboratory, Post Graduate Department of Botany, Ramakrishna Mission Vivekananda Centenary College
| |
Collapse
|
37
|
Ibiyeye KM, Zuki ABZ. Cockle Shell-Derived Aragonite CaCO 3 Nanoparticles for Co-Delivery of Doxorubicin and Thymoquinone Eliminates Cancer Stem Cells. Int J Mol Sci 2020; 21:ijms21051900. [PMID: 32164352 PMCID: PMC7084823 DOI: 10.3390/ijms21051900] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/12/2020] [Accepted: 01/24/2020] [Indexed: 12/13/2022] Open
Abstract
Cancer stem cells CSCs (tumour-initiating cells) are responsible for cancer metastasis and recurrence associated with resistance to conventional chemotherapy. This study generated MBA MD231 3D cancer stem cells enriched spheroids in serum-free conditions and evaluated the influence of combined doxorubicin/thymoquinone-loaded cockle-shell-derived aragonite calcium carbonate nanoparticles. Single loaded drugs and free drugs were also evaluated. WST assay, sphere forming assay, ALDH activity analysis, Surface marker of CD44 and CD24 expression, apoptosis with Annexin V-PI kit, cell cycle analysis, morphological changes using a phase contrast light microscope, scanning electron microscopy, invasion assay and migration assay were carried out; The combination therapy showed enhanced apoptosis, reduction in ALDH activity and expression of CD44 and CD24 surface maker, reduction in cellular migration and invasion, inhibition of 3D sphere formation when compared to the free drugs and the single drug-loaded nanoparticle. Scanning electron microscopy showed poor spheroid formation, cell membrane blebbing, presence of cell shrinkage, distortion in the spheroid architecture; and the results from this study showed that combined drug-loaded cockle-shell-derived aragonite calcium carbonate nanoparticles can efficiently destroy the breast CSCs compared to single drug-loaded nanoparticle and a simple mixture of doxorubicin and thymoquinone.
Collapse
Affiliation(s)
- Kehinde Muibat Ibiyeye
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, Selangor 43400, Malaysia;
| | - Abu Bakar Zakaria Zuki
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, Selangor 43400, Malaysia;
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Selangor 43400, Malaysia
- Correspondence: ; Tel.: +60196046659
| |
Collapse
|
38
|
Effect of crosslinking agents on drug distribution in chitosan hydrogel for targeted drug delivery to treat cancer. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02059-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
39
|
Nirmala MJ, Durai L, Rao KA, Nagarajan R. Ultrasonic Nanoemulsification of Cuminum cyminum Essential Oil and Its Applications in Medicine. Int J Nanomedicine 2020; 15:795-807. [PMID: 32103937 PMCID: PMC7008196 DOI: 10.2147/ijn.s230893] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 12/20/2019] [Indexed: 12/29/2022] Open
Abstract
Background and Study Cumin seed oil (extracted from Cuminum cyminum) has many applications but conclusive evidence of its therapeutic uses has not been presented. This study has explored the anticancer and antibacterial properties of the seed oil. Methods The cumin nanoemulsion was prepared with Tween 80 non-ionic surfactant employing ultra-sonication technology. The anticancer activity of the nanoscale-based emulsion was evaluated through cell viability (MTT), antiproliferation evaluation through clonogenic assay, and apoptosis through Annexin V-FITC assay. Agar well diffusion was used to study the antimicrobial activity, and this was supported by membrane integrity analysis. Results A thorough study of process parameters, aimed at obtaining the optimal surface concentration and emulsification time, was completed. GC-MS data indicated cumaldehyde as a major component. The resultant droplet diameter after a sonication time of 5 min was 10.4 ± 0.5 nm. MTT assay revealed the IC50 value at 1.5 µL/mL and the early induction of apoptosis was evident. Tongue carcinoma cell line treated with cumin nanoemulsion presented a diminished colony formation. The nanoemulsion exhibited significant antibacterial activity against S. aureus. A significant cytoplasmic leakage was observed on treatment with cumin nanoemulsion. The consequences of the analysis projected cumin as a potential component for cancer therapy. Conclusion This study provides definitive evidence for cumin essential oil nanoemulsion as a legitimate plant-based medicine that can bypass the drawbacks of the present aggressive treatment of cancer, can overcome the antimicrobial resistance, and can also meet all prerequisites.
Collapse
Affiliation(s)
- M Joyce Nirmala
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600 036, India
| | - Latha Durai
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Kagitala Anvesh Rao
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600 036, India
| | - R Nagarajan
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600 036, India
| |
Collapse
|
40
|
Thakur A, Singh A, Kaur N, Ojha R, Nepali K. Steering the antitumor drug discovery campaign towards structurally diverse indolines. Bioorg Chem 2020; 94:103436. [DOI: 10.1016/j.bioorg.2019.103436] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/05/2019] [Accepted: 11/11/2019] [Indexed: 12/13/2022]
|
41
|
Khan MA, Tania M, Fu J. Epigenetic role of thymoquinone: impact on cellular mechanism and cancer therapeutics. Drug Discov Today 2019; 24:2315-2322. [PMID: 31541714 DOI: 10.1016/j.drudis.2019.09.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/06/2019] [Accepted: 09/12/2019] [Indexed: 12/17/2022]
Abstract
Thymoquinone is a natural product known for its anticancer activity. Preclinical studies indicated numerous mechanisms of action by which thymoquinone exerts its effects on cancer cells. Recent evidence has indicated that thymoquinone can modulate epigenetic machinery, like modifying histone acetylation and deacetylation, DNA methylation and demethylation, which are among the major epigenetic changes that can contribute to carcinogenesis. Moreover, thymoquinone can alter the genetic expression of various noncoding RNAs, such as miRNA and lncRNA, which are the key parts of cellular epigenetics. This review focuses on cellular epigenetic systems, epigenetic changes responsible for cancer and the counteraction of thymoquinone to target epigenetic challenges, which might be among the mechanisms of the thymoquinone effect in cancer cells.
Collapse
Affiliation(s)
- Md Asaduzzaman Khan
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Mousumi Tania
- Division of Molecular Cancer Biology, The Red-Green Research Center, Dhaka 1205, Bangladesh
| | - Junjiang Fu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
42
|
Alexander HR, Syed Alwi SS, Yazan LS, Zakarial Ansar FH, Ong YS. Migration and Proliferation Effects of Thymoquinone-Loaded Nanostructured Lipid Carrier (TQ-NLC) and Thymoquinone (TQ) on In Vitro Wound Healing Models. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2019; 2019:9725738. [PMID: 31915456 PMCID: PMC6935463 DOI: 10.1155/2019/9725738] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/11/2019] [Indexed: 12/18/2022]
Abstract
Wound healing is a regulated biological event that involves several processes including infiltrating leukocyte subtypes and resident cells. Impaired wound healing is one of the major problems in diabetic patients due to the abnormal physiological changes of tissues and cells in major processes. Thymoquinone, a bioactive compound found in Nigella sativa has been demonstrated to possess antidiabetic, anti-inflammatory, and antioxidant effects. Today, the rapidly progressing nanotechnology sets a new alternative carrier to enhance and favour the speed of healing process. In order to overcome its low bioavailability, TQ is loaded into a colloidal drug carrier known as a nanostructured lipid carrier (NLC). This study aimed to determine the effect of TQ-NLC and TQ on cell proliferation and migration, mode of cell death, and the antioxidant levels in normal and diabetic cell models, 3T3 and 3T3-L1. Cytotoxicity of TQ-NLC and TQ was determined by MTT assay. The IC10 values obtained for 3T3-L1 treated with TQ-NLC and TQ for 24 hours were 4.7 ± 3.3 and 5.3 ± 0.6 μM, respectively. As for 3T3, the IC10 values obtained for TQ-NLC and TQ at 24 hours were 4.3 ± 0.17 and 3.9 ± 2.05 μM, respectively. TQ-NLC was observed to increase the number of 3T3 and 3T3-L1 healthy cells (87-95%) and gradually decrease early apoptotic cells in time- and dose-dependant manner compared with TQ. In the proliferation and migration assay, 3T3-L1 treated with TQ-NLC showed higher proliferation and migration rate (p < 0.05) compared with TQ. TQ-NLC also acted as an antioxidant by reducing the ROS levels in both cells after injury at concentration as low as 3 μM. Thus, this study demonstrated that TQ-NLC has better proliferation and migration as well as antioxidant effect compared with TQ especially on 3T3-L1 which confirms its ability as a good antidiabetic and antioxidant agent.
Collapse
Affiliation(s)
- Henna Roshini Alexander
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
| | - Sharifah Sakinah Syed Alwi
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
| | - Latifah Saiful Yazan
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
| | - Fatin Hanani Zakarial Ansar
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
| | - Yong Sze Ong
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
43
|
Design, synthesis, anticancer evaluation and docking studies of new pyrimidine derivatives as potent thymidylate synthase inhibitors. Bioorg Chem 2019; 91:103159. [DOI: 10.1016/j.bioorg.2019.103159] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 06/25/2019] [Accepted: 07/25/2019] [Indexed: 02/08/2023]
|
44
|
Shahraki S, Mohebbati R, Shafei MN, Mahmoudi M, Hosseinian S, Parhizgar S, Yazd ZNE, Heravi NE, Abadi RNS, Khajavirad A. Induction of Apoptosis and Growth-Inhibition by Thymoquinone in ACHN and GP-293 Cell Lines in Comparable with Cis-Platinum. J Pharmacopuncture 2019; 22:176-183. [PMID: 31673449 PMCID: PMC6820476 DOI: 10.3831/kpi.2019.22.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/22/2019] [Accepted: 09/03/2019] [Indexed: 11/15/2022] Open
Abstract
Objective In the current work, we investigated the cytotoxic and apoptotic effects of Thymoquinone (TQ), an active compound of Nigella sativa (N. sativa) and Cis-platinum, on normal renal epithelial (GP-293) and human renal adenocarcinoma cell lines (ACHN). Methods GP-293 and ACHN cell lines were cultured in Dulbecco’s modified Eagle’s medium (DMEM) with 10% Fetal bovine serum (FBS) and 1% penicillin plus streptomycin antibiotic. The MTT assay was used for cellular viability assessment. Viability of cells was observed using inverted light microscope 24, 48 and 72 h after exposure of the cells to various concentrations of TQ (1, 2.5, 5, 10, 50 and 100 μg/ml) and Cis-platinum (0.5, 1, 1.5, 2, 3, 6 and 12.5 μg/ml). Moreover, apoptosis was analyzed with a flow-cytometry method. The untreated cells were considered as control group. Results Morphological changes such as reduced cell number and increased intercellular distance and reduced cell viability in ACHN and GP-293cell lines were observed in both TQ and Cis-platinum groups; however, Cis-platinum had greater effect on ACHN cell line than GP-293 cell line. In addition, GP-293 cell line was more sensitive to TQ compared to ACHN cell line. Furthermore, TQ and Cis-platinum had apoptotic effects on both ACHN and GP-293 cell lines. Conclusion Our findings demonstrated that TQ and Cis-platinum had cytotoxic and apoptotic effects on both cell lines, However, GP-293 cell line was more sensitive to TQ. Additionally, Cis-platinum was more effective on ACHN cell line than on GP-293 cell line.
Collapse
Affiliation(s)
- Samira Shahraki
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Mohebbati
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Naser Shafei
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Mahmoudi
- Bu-Ali Research Institute, Immunology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sara Hosseinian
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soghra Parhizgar
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zohreh Naji Ebrahimi Yazd
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nazanin Entezari Heravi
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Abolfazl Khajavirad
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
45
|
Docetaxel Combined with Thymoquinone Induces Apoptosis in Prostate Cancer Cells via Inhibition of the PI3K/AKT Signaling Pathway. Cancers (Basel) 2019; 11:cancers11091390. [PMID: 31540423 PMCID: PMC6770702 DOI: 10.3390/cancers11091390] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/09/2019] [Accepted: 09/16/2019] [Indexed: 02/06/2023] Open
Abstract
Toxicity and the development of resistance by cancer cells are impediments for docetaxel (DTX), a primary drug for treating prostate cancer (PCa). Since the combination of DTX with natural compounds can increase its effectiveness by reducing its toxic concentrations, we evaluated a combination of thymoquinone (TQ) with DTX and determined its cytotoxicity against PCa cells (DU145 and C4-2B). This combination, in a concentration-dependent manner, resulted in synergistic cytotoxicity and apoptosis in comparison to either DTX or TQ alone. In addition, inhibition of cell survival pathways by PI3K/AKT inhibitors conferred sensitivity of DU145 and C4-2B cells to the combination as compared to the individual drugs. Moreover, the combined drugs (DTX+TQ) with inhibitors of PI3K/AKT increased the expression of pro-apoptotic markers (BAX and BID) along with caspase-3, PARP and decreased expression of the anti-apoptotic marker, BCL-XL. These data show that, for PCa cells, the cytotoxic effect of the DTX and TQ combination correlates with a block of the PI3K/AKT signaling pathway. These findings indicate that the combination of DTX and TQ, by blocking of the PI3K/AKT pathway, will improve the survival rate and quality of life of PCa patients.
Collapse
|
46
|
Ibiyeye KM, Nordin N, Ajat M, Zuki ABZ. Ultrastructural Changes and Antitumor Effects of Doxorubicin/Thymoquinone-Loaded CaCO 3 Nanoparticles on Breast Cancer Cell Line. Front Oncol 2019; 9:599. [PMID: 31334120 PMCID: PMC6617642 DOI: 10.3389/fonc.2019.00599] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 06/18/2019] [Indexed: 12/17/2022] Open
Abstract
Background: Combination chemotherapy of anticancer drugs is extensively being researched since it could reduce multidrug resistance and side effects as a result of lower dosage of each drug. In this study, we evaluated the effects of doxorubicin-loaded (Dox-ACNP), thymoquinone-loaded (TQ-ACNP) and a combined doxorubicin/thymoquinone-loaded cockle shell-derived aragonite calcium carbonate nanoparticles (Dox/TQ-ACNP) on breast cancer cell line and compared with their free drugs counterpart. Methods: Cell viability using MTT assay, apoptosis with Annexin V-PI kit, morphological changes using contrast light microscope, scanning electron microscope and transmission electron microscope, cell cycle analysis, invasion assay, and scratch assay were carried out. The cell viability was evaluated in breast cancer cell line (MDA MB231), normal breast cells (MDF10A) and normal fibroblast (3T3). Results: MDA MB231 IC50 dosages of drug-loaded nanoparticle were not toxic to the normal cells. The combination therapy showed enhanced apoptosis, reduction in cellular migration and invasion when compared to the single drug-loaded nanoparticle and the free drugs. Scanning electron microscope showed presence of cell shrinkage, cell membrane blebbing, while transmission electron microscope showed nuclear fragmentation, disruption of cell membrane, apoptotic bodies, and disruption of mitochondrial cistern. Conclusion: The results from this study showed that the combined drug-loaded cockle shell-derived aragonite calcium carbonate nanoparticles (Dox/TQ-ACNP) showed higher efficacy in breast cancer cells at lower dose of doxorubicin and thymoquinone.
Collapse
Affiliation(s)
- Kehinde Muibat Ibiyeye
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| | - Norshariza Nordin
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| | - Mokrish Ajat
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| | - Abu Bakar Zakaria Zuki
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, Seri Kembangan, Malaysia
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| |
Collapse
|
47
|
Evaluation of Carum-loaded Niosomes on Breast Cancer Cells:Physicochemical Properties, In Vitro Cytotoxicity, Flow Cytometric, DNA Fragmentation and Cell Migration Assay. Sci Rep 2019; 9:7139. [PMID: 31073144 PMCID: PMC6509162 DOI: 10.1038/s41598-019-43755-w] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 04/26/2019] [Indexed: 11/10/2022] Open
Abstract
Thymoquinone (TQ), a phytochemical compound found in Carum carvil seeds (C. carvil), has a lot of applications in medical especially cancer therapy. However, TQ has a hydrophobic nature, and because of that, its solubility, permeability and its bioavailability in biological mediums are poor. To diminish these drawbacks, we have designed a herbal carrier composed of Ergosterol (herbal lipid), Carum carvil extract (Carum) and nonionic surfactants for herbal cancer treatment. C. carvil was extracted and characterized by GC/Mass. Two different formulations containing TQ and Carum were encapsulated into niosomes (Nio/TQ and Nio/Carum, respectively) and their properties were compared together. Morphology, size, zeta potential, encapsulation efficiency (EE%), profile release rate, in vitro cytotoxicity, flow cytometric, DNA fragmentation and cell migration assay of formulations were evaluated. Results show that both loaded formulations have a spherical morphology, nanometric size and negative zeta potential. EE% of TQ and Carum loaded niosomes was about 92.32% ± 2.32 and 86.25% ± 1.85, respectively. Both loaded formulations provided a controlled release compared with free TQ. MTT assay showed that loaded niosomes have more anti-cancer activity compared with Free TQ and free Carum against MCF-7 cancer cell line and these results were confirmed by flow cytometric analysis. Cell cycle analysis showed G2/M arrest in TQ, Nio/TQ and Nio/Carum formulations. TQ, Nio/TQ and Nio/Carum decreased the migration of MCF7 cells remarkedly. These results show that the TQ and Carum loaded niosomes are novel carriers with high efficiency for encapsulation of low soluble phytochemicals and also would be favourable systems for breast cancer treatment.
Collapse
|
48
|
Mazaheri Y, Torbati M, Azadmard-Damirchi S, Savage GP. A comprehensive review of the physicochemical, quality and nutritional properties of Nigella sativa oil. FOOD REVIEWS INTERNATIONAL 2019. [DOI: 10.1080/87559129.2018.1563793] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Yeganeh Mazaheri
- Department of Food Science and Technology, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadali Torbati
- Department of Food Science and Technology, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sodeif Azadmard-Damirchi
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
- Food and Drug Safety Research Center, Health Management and Safety Promotion Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Geoffrey P. Savage
- Food Group, Department of Wine, Food and Molecular Biosciences, Lincoln University, Canterbury, New Zealand
| |
Collapse
|
49
|
Dawaba AM, Dawaba HM. Application of Optimization Technique to Develop Nano-Based Carrier of Nigella Sativa Essential Oil: Characterization and Assessment. RECENT PATENTS ON DRUG DELIVERY & FORMULATION 2019; 13:228-240. [PMID: 31096899 PMCID: PMC7011686 DOI: 10.2174/1872211313666190516095309] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 04/27/2019] [Accepted: 05/06/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Chitosan, a naturally occurring polymer, has interesting applications in the field of drug delivery due to its plentiful advantages as biodegradability, biocompatibility and nontoxic nature. Nigella sativa essential oil is unstable, volatile, and insoluble in water and these problems confine its usage in developing new medicines. OBJECTIVE This study focuses on developing a chitosan-based nanocarrier for the encapsulation of Nigella Sativa essential oil. By using Quality by design outline, the quality target product outline, critical quality attributes and critical material attributes were defined by knowledge and risk-based procedures. METHODS According to defined critical material attributes, Optimization software (Statgraphics XVII) was used to study the effect of the processing parameters. The processing parameters identified and fixed first with a "One factor at a time" approach. Various physicochemical characterization techniques were performed. RESULTS As a result, the ratio of chitosan to benzoic acid (2:1) along with the stirring rate (4000 rpm) produced minimum-sized particles (341 nm) with good stability. The anti-bacterial activity study using Staph. Aureus strain proved that the optimized nanoparticles were more efficacious than the pure oil based on the diameter of inhibition zone obtained (diameter =5.5 cm for optimized formula vs diameter = 3.6 cm for pure oil). Furthermore, MTT (methyl thiazolyl-diphenyl-tetrazolium bromide) assay was performed to compare the in vitro cytotoxicity using two different cell lines (i.e. HCT 116 for colorectal carcinoma and PC3 for prostatic cancer). It was found that in both cell lines, the optimized nanoparticles had noteworthy antiproliferative properties illustrated by determining the concentration at which 50% of growth is inhibited (IC50). The optimized nanoparticles showed lower IC50 (17.95 ±0.82 and 4.02 ±0.12μg/ml) than the bare oil IC50 (43.56 ±1.95 and 29.72 ±1.41μg/ml).
Collapse
Affiliation(s)
- Aya M. Dawaba
- Address correspondence to this author at Department of Pharmaceutics, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11651, Egypt;
Tel: +201092249996; E-mails: ;
| | | |
Collapse
|
50
|
Elgohary HM, Al Jaouni SKH, Selim SA. Effect of ultrasound-enhanced Nigella sativa seeds oil on wound healing: An animal model. J Taibah Univ Med Sci 2018; 13:438-443. [PMID: 31435359 PMCID: PMC6694951 DOI: 10.1016/j.jtumed.2018.02.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 02/08/2018] [Accepted: 02/11/2018] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVES Nigella sativa oil, ultrasound, and moist-exposed burn ointment (MEBO) have been suggested as noninvasive treatments for a number of inflammatory conditions and to accelerate wound healing. The aim of this study was to evaluate the efficiency of pulsed and continuous modes of ultrasound either alone or through phonophoresis, with N. sativa oil, or MEBO ointment in the treatment of chemical burns. METHODS Thirty-five local rabbits were randomly divided into seven equal groups: pulsed ultrasound, continuous ultrasound, topical N. sativa oil, pulsed phonophoresis, continuous phonophoresis, topical MEBO ointment, and control group. Wound surface area was measured on days 0, 7, 14, and 21 using metric graph paper and photographs. RESULTS Significant differences were found between pre- and post-treatment wounds in all groups, except for the control group, in favor of the pulsed phonophoresis. In contrast, low results were found in favor of continuous ultrasound. CONCLUSION Ultrasound, topical application of N. sativa oil, phonophoresis, and MEBO ointment have the potential to accelerate wound healing induced by chemical burns. Such treatment modalities may be used to treat wounds.
Collapse
Affiliation(s)
- Hany M. Elgohary
- Department of Physical Therapy for Surgery, Faculty of Physical Therapy, Cairo University, Giza, Egypt
| | - Soad KH. Al Jaouni
- Department of Hematology and Youssef Abdulatif Jameel Chair of Prophetic Medicine Application (YAJCPMA), Faculty of Medicine, King Abdulaziz University, Jeddah, KSA
| | - Samy A. Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, KSA
| |
Collapse
|