1
|
Jefri UHNM, Khan A, Lim YC, Lee KS, Liew KB, Kassab YW, Choo CY, Al-Worafi YM, Ming LC, Kalusalingam A. A systematic review on chlorine dioxide as a disinfectant. J Med Life 2022; 15:313-318. [PMID: 35449999 PMCID: PMC9015185 DOI: 10.25122/jml-2021-0180] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 01/17/2022] [Indexed: 11/16/2022] Open
Abstract
The COVID-19 pandemic has tremendously increased the production and sales of disinfectants. This study aimed to systematically review and analyze the efficacy and safety of chlorine dioxide as a disinfectant. The literature relating to the use of chlorine dioxide as a disinfectant was systematically reviewed in January 2021 using databases such as PubMed, Science Direct, and Google Scholar. Inclusion criteria were studies that investigated the use of chlorine dioxide to assess the efficacy, safety, and impact of chlorine dioxide as a disinfectant. Out of the 33 included studies, 14 studies focused on the disinfectant efficacy of chlorine dioxide, 8 studies expounded on the safety and toxicity in humans and animals, and 15 studies discussed the impact, such as water treatment disinfection using chlorine dioxide. Chlorine dioxide is a safe and effective disinfectant, even at concentrations as low as 20 to 30 mg/L. Moreover, the efficacy of chlorine dioxide is mostly independent of pH. Chlorine dioxide can be effectively used to disinfect drinking water without much alteration of palatability and can also be used to destroy pathogenic microbes, including viruses, bacteria, and fungi from vegetables and fruits. Our review confirms that chlorine dioxide is effective against the resistant Mycobacterium, H1N1, and other influenza viruses. Studies generally support the use of chlorine dioxide as a disinfectant. The concentration deemed safe for usage still needs to be determined on a case-by-case basis.
Collapse
Affiliation(s)
- Umi Haida Nadia Mohamed Jefri
- PAP Rashidah Sa'adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
| | - Abdullah Khan
- School of Pharmacy, KPJ Healthcare University College, Nilai, Malaysia
| | - Ya Chee Lim
- PAP Rashidah Sa'adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
| | - Kah Seng Lee
- Faculty of Pharmacy, University of Cyberjaya, Cyberjaya, Malaysia
| | - Kai Bin Liew
- Faculty of Pharmacy, University of Cyberjaya, Cyberjaya, Malaysia
| | - Yaman Walid Kassab
- College of Pharmacy, National University of Science and Technology, Muscat, Oman
| | - Chee-Yan Choo
- Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam, Malaysia
| | - Yaser Mohammed Al-Worafi
- College of Pharmacy, University of Science and Technology of Fujairah, Fujairah, United Arab Emirates
- College of Medical Sciences, Azal University for Human Development, Sana'a, Yemen
| | - Long Chiau Ming
- PAP Rashidah Sa'adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
| | | |
Collapse
|
2
|
Hassenberg K, Praeger U, Herppich WB. Effect of Chlorine Dioxide Treatment on Human Pathogens on Iceberg Lettuce. Foods 2021; 10:574. [PMID: 33801806 PMCID: PMC8001664 DOI: 10.3390/foods10030574] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 11/17/2022] Open
Abstract
In the vegetable processing industry, the application of chlorine dioxide (ClO2) as a disinfectant solved in washing water to eliminate undesirable microorganisms harmful to consumers' health and the shelf life of produce has been discussed for years. The disinfection efficacy depends on various factors, e.g., the location of microorganisms and the organic load of the washing water. The present study analyzed the sanitation efficacy of various concentrations of water-solved ClO2 (cClO2: 20 and 30 mg L-1) on Escherichia coli (1.1 × 104 cfu mL-1), Salmonella enterica (2.0 × 104 cfu mL-1) and Listeria monocytogenes (1.7 × 105 cfu mL-1) loads, located on the leaf surface of iceberg lettuce assigned for fresh-cut salads. In addition, it examined the potential of ClO2 to prevent the cross-contamination of these microbes in lettuce washing water containing a chemical oxygen demand (COD) content of 350 mg L-1 after practice-relevant washing times of 1 and 2 min. On iceberg leaves, washing with 30 mg L-1 ClO2 pronouncedly (1 log) reduced loads of E. coli and S. enterica, while it only insignificantly (<0.5 × log) diminished the loads of L. monocytogenes, irrespective of the ClO2 concentration used. Although the sanitation efficacy of ClO2 washing was only limited, the addition of ClO2 to the washing water avoided cross-contamination even at high organic loads. Thus, the application of ClO2 to the lettuce washing water can improve product quality and consumer safety.
Collapse
Affiliation(s)
- Karin Hassenberg
- Department of Horticultural Engineering, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth-Allee 100, 14469 Potsdam, Germany; (U.P.); (W.B.H.)
| | | | | |
Collapse
|
3
|
Adhikari A, Chhetri VS, Bhattacharya D, Cason C, Luu P, Suazo A. Effectiveness of daily rinsing of alfalfa sprouts with aqueous chlorine dioxide and ozonated water on the growth of Listeria monocytogenes during sprouting. Lett Appl Microbiol 2019; 69:252-257. [PMID: 31429475 DOI: 10.1111/lam.13209] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/13/2019] [Accepted: 08/13/2019] [Indexed: 11/30/2022]
Abstract
Alfalfa sprouts have been implicated in multiple foodborne disease outbreaks. This study evaluated the growth of Listeria monocytogenes during sprouting of alfalfa seeds and the effectiveness of daily chlorine dioxide & ozone rinsing in controlling the growth. Alfalfa seeds inoculated with L. monocytogenes were sprouted for 5 days (25°C) with a daily aqueous ClO2 (3 ppm, 10 min) or ozone water (2 ppm, 5 min) rinse. Neither treatment significantly reduced the growth of L. monocytogenes on sprouting alfalfa seeds. The initial level of L. monocytogenes was 3·44 ± 0·27, which increased to c. 7·0 log CFU per g following 3 days of sprouting. There was no significant difference in the bacterial population between the treatment schemes. Bacterial distribution in roots (7·63 ± 0·511 log CFU per g), stems (7·51 ± 0·511 log CFU per g) and leaves (7·41 ± 0·511 log CFU per g) were similar after 5 days. Spent sanitizers had significantly lower levels of bacterial populations compared to the spent distilled water control. The results indicated that sprouting process provides a favourable condition for the growth of L. monocytogenes and the sanitizer treatment alone may not be able to reduce food safety risks. SIGNIFICANCE AND IMPACT OF THE STUDY: Sprouts are high-risk foods. Consumption of raw sprouts is frequently associated with foodborne disease outbreaks. Optimum sprouting procedure involves soaking seeds in water followed by daily water rinsing to maintain a moist environment that is also favourable for the growth of pathogenic micro-organisms. The present study emphasized the potential food safety risks during sprouting and the effect of applying daily sanitizer rinsing in the place of water rinsing to reduce those risks. The finding of this study may be useful in the development of pre-harvest and post-harvest risk management strategies.
Collapse
Affiliation(s)
- A Adhikari
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, USA
| | - V S Chhetri
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, USA
| | - D Bhattacharya
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, USA
| | - C Cason
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, USA
| | - P Luu
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, USA
| | - A Suazo
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, USA
| |
Collapse
|
4
|
Berrang M, Harrison M, Meinersmann R, Gamble G. Self-contained chlorine dioxide generation and delivery pods for decontamination of floor drainsce:. J APPL POULTRY RES 2017. [DOI: 10.3382/japr/pfx009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
5
|
Millan-Sango D, Sammut E, Van Impe JF, Valdramidis VP. Decontamination of alfalfa and mung bean sprouts by ultrasound and aqueous chlorine dioxide. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2016.12.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
6
|
Ahmed ST, Kim G, Islam MM, Mun HS, Bostami AR, Yang CJ. Effects of dietary chlorine dioxide on growth performance, intestinal and excreta microbiology, and odorous gas emissions from broiler excreta. J APPL POULTRY RES 2015. [DOI: 10.3382/japr/pfv058] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
7
|
Back KH, Ha JW, Kang DH. Effect of hydrogen peroxide vapor treatment for inactivating Salmonella Typhimurium, Escherichia coli O157:H7 and Listeria monocytogenes on organic fresh lettuce. Food Control 2014. [DOI: 10.1016/j.foodcont.2014.03.046] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Kim SO, Ha JW, Park KH, Chung MS, Kang DH. Infrared sensor-based aerosol sanitization system for controlling Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes on fresh produce. J Food Prot 2014; 77:977-80. [PMID: 24853521 DOI: 10.4315/0362-028x.jfp-13-531] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
An economical aerosol sanitization system was developed based on sensor technology for minimizing sanitizer usage, while maintaining bactericidal efficacy. Aerosol intensity in a system chamber was controlled by a position-sensitive device and its infrared value range. The effectiveness of the infrared sensor-based aerosolization (ISA) system to inactivate Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes on spinach leaf surfaces was compared with conventional aerosolization (full-time aerosol treated), and the amount of sanitizer consumed was determined after operation. Three pathogens artificially inoculated onto spinach leaf surfaces were treated with aerosolized peracetic acid (400 ppm) for 15, 30, 45, and 60 min at room temperature (22 ± 2°C). Using the ISA system, inactivation levels of the three pathogens were equal or better than treatment with conventional full-time aerosolization. However, the amount of sanitizer consumed was reduced by ca. 40% using the ISA system. The results of this study suggest that an aerosol sanitization system combined with infrared sensor technology could be used for transportation and storage of fresh produce efficiently and economically as a practical commercial intervention.
Collapse
Affiliation(s)
- Sang-Oh Kim
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, South Korea
| | - Jae-Won Ha
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, South Korea
| | - Ki-Hwan Park
- Department of Food and Nutrition, Chung-Ang University, Gyeonggi-do, 456-756, South Korea
| | - Myung-Sub Chung
- Department of Food and Nutrition, Chung-Ang University, Gyeonggi-do, 456-756, South Korea
| | - Dong-Hyun Kang
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, South Korea.
| |
Collapse
|
9
|
Trinetta V, Linton R, Morgan M. The application of high-concentration short-time chlorine dioxide treatment for selected specialty crops including Roma tomatoes (Lycopersicon esculentum), cantaloupes (Cucumis melo ssp. melo var. cantaloupensis) and strawberries (Fragaria×ananassa). Food Microbiol 2013; 34:296-302. [DOI: 10.1016/j.fm.2012.12.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 11/21/2012] [Accepted: 12/27/2012] [Indexed: 10/27/2022]
|
10
|
Berrang M, Meinersmann R, Cox N, Fedorka-Cray P. Application of chlorine dioxide to lessen bacterial contamination during broiler defeathering. J APPL POULTRY RES 2011. [DOI: 10.3382/japr.2010-00178] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
11
|
Inactivation and mechanisms of chlorine dioxide on Nosema bombycis. J Invertebr Pathol 2010; 104:134-9. [DOI: 10.1016/j.jip.2009.11.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Revised: 11/01/2009] [Accepted: 11/23/2009] [Indexed: 11/21/2022]
|
12
|
Ogata N, Shibata T. Protective effect of low-concentration chlorine dioxide gas against influenza A virus infection. J Gen Virol 2008; 89:60-67. [DOI: 10.1099/vir.0.83393-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Influenza virus infection is one of the major causes of human morbidity and mortality. Between humans, this virus spreads mostly via aerosols excreted from the respiratory system. Current means of prevention of influenza virus infection are not entirely satisfactory because of their limited efficacy. Safe and effective preventive measures against pandemic influenza are greatly needed. We demonstrate that infection of mice induced by aerosols of influenza A virus was prevented by chlorine dioxide (ClO2) gas at an extremely low concentration (below the long-term permissible exposure level to humans, namely 0.1 p.p.m.). Mice in semi-closed cages were exposed to aerosols of influenza A virus (1 LD50) and ClO2 gas (0.03 p.p.m.) simultaneously for 15 min. Three days after exposure, pulmonary virus titre (TCID50) was 102.6±1.5 in five mice treated with ClO2, whilst it was 106.7±0.2 in five mice that had not been treated (P=0.003). Cumulative mortality after 16 days was 0/10 mice treated with ClO2 and 7/10 mice that had not been treated (P=0.002). In in vitro experiments, ClO2 denatured viral envelope proteins (haemagglutinin and neuraminidase) that are indispensable for infectivity of the virus, and abolished infectivity. Taken together, we conclude that ClO2 gas is effective at preventing aerosol-induced influenza virus infection in mice by denaturing viral envelope proteins at a concentration well below the permissible exposure level to humans. ClO2 gas could therefore be useful as a preventive means against influenza in places of human activity without necessitating evacuation.
Collapse
Affiliation(s)
- Norio Ogata
- Research Institute, Taiko Pharmaceutical Co. Ltd, 3-34-14 Uchihonmachi, Suita, Osaka 564-0032, Japan
| | - Takashi Shibata
- Research Institute, Taiko Pharmaceutical Co. Ltd, 3-34-14 Uchihonmachi, Suita, Osaka 564-0032, Japan
| |
Collapse
|
13
|
Pao S, Kelsey DF, Khalid MF, Ettinger MR. Using aqueous chlorine dioxide to prevent contamination of tomatoes with Salmonella enterica and erwinia carotovora during fruit washing. J Food Prot 2007; 70:629-34. [PMID: 17388051 DOI: 10.4315/0362-028x-70.3.629] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Chlorine dioxide (ClO2) is an antimicrobial agent recognized for its disinfectant properties. In this study, the sanitizing effects of ClO2 solutions against Salmonella enterica and Erwinia carotovora in water, on tomato surfaces, and between loads of tomatoes were evaluated. In water, ClO2 at 5, 10, and 20 ppm caused a > or = 5-log reduction of S. enterica within 6, 4, and 2 s, respectively. Higher lethality was observed with E. carotovora; a 5-log reduction was achieved after only 2 s with 10 ppm ClO2. On fruit surfaces, however, the sanitizing effects were compromised. A full minute of contact with ClO2 at 20 and 10 ppm was required to achieve a 5-log reduction in S. enterica and E. carotovora counts, respectively, on freshly spot-inoculated tomatoes. On inoculated fruit surfaces, populations decreased > 3 log CFU/cm2 during desiccation at 24 +/- 1 degrees C for 24 h. Populations of air-dried Salmonella and Erwinia were not significantly reduced (P > 0.05) by ClO2 at < or = 20 ppm after 1 min. Either wet or dry inoculum of these two pathogens could contaminate immersion water, which in turn can cross-contaminate a subsequent load of clean fruit and water. ClO2 at 5 ppm used for immersion effectively prevented cross-contamination. Pathogen contamination during fruit handling is best prevented with an effective disinfectant. Once a load of fruit is contaminated with pathogens, even a proven disinfectant such as ClO2 cannot completely eliminate such contaminants, particularly when they are in a dehydrated state on fruit.
Collapse
Affiliation(s)
- S Pao
- Virginia State University, Agricultural Research Station, P.O. Box 9061, Petersburg, Virginia 23806, USA.
| | | | | | | |
Collapse
|
14
|
Huang TS, Xu C, Walker K, West P, Zhang S, Weese J. Decontamination Efficacy of Combined Chlorine Dioxide with Ultrasonication on Apples and Lettuce. J Food Sci 2006. [DOI: 10.1111/j.1750-3841.2006.00015.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Oh SW, Dancer GI, Kang DH. Efficacy of aerosolized peroxyacetic acid as a sanitizer of lettuce leaves. J Food Prot 2005; 68:1743-7. [PMID: 21132990 DOI: 10.4315/0362-028x-68.8.1743] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Aerosolized sanitizer was investigated as a potential alternative to aqueous and gaseous sanitizers for produce. Peroxyacetic acid was aerosolized (5.42 to 11.42 microm particle diameter) by a commercially available nebulizer into a model cabinet. Iceberg lettuce leaves were inoculated with three strains each of Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella Typhimurium and then treated with aerosolized peroxyacetic acid for 10, 30, or 60 min in a model aerosol cabinet at room temperature (22 +/- 2 degrees C). After treatment, surviving healthy and injured bacterial cells were enumerated on appropriate selective agars or using the overlay agar method. Inoculated iceberg lettuce leaves exposed to aerosolized peroxyacetic acid for 10 min exhibited a 0.8-log reduction in E. coli O157:H7, a 0.3-log reduction in Salmonella Typhimurium, and a 2.5-log reduction in L. monocytogenes when compared with the control. After 30 min of treatment, the three pathogens were reduced by 2.2, 3.3, and 2.7 log, and after 60 min, the reductions were 3.4, 4.5, and 3.8 log, respectively. Aerosolization may be a new and convenient method for sanitizing produce for storage or shipping.
Collapse
Affiliation(s)
- Se-Wook Oh
- Food Safety Research Division, Korea Food Research Institute, Seoul 463-420, Korea
| | | | | |
Collapse
|
16
|
Oie S, Yanagi C, Matsui H, Nishida T, Tomita M, Kamiya A. Contamination of environmental surfaces by Staphylococcus aureus in a dermatological ward and its preventive measures. Biol Pharm Bull 2005; 28:120-3. [PMID: 15635175 DOI: 10.1248/bpb.28.120] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated contamination of environmental surfaces by Staphylococcus aureus from April 1 to the end of June in 2002 in the dermatological ward (37 beds) of a university hospital. For surfaces contaminated by high levels of S. aureus, disinfection methods were evaluated. 100-10(5) colony forming units (cfu) of methicillin-resistant S. aureus (MRSA) or methicillin-sensitive S. aureus (MSSA) were detected on items such as an immersion bathtub (examined area, about 900 cm2), foot washbowl, stretcher for an immersion bath, and chair for the shower. After disinfection, no S. aureus was detected on smooth surfaces such as the immersion bathtub and foot washbowl; however, S. aureus was detected even after disinfection on porous surfaces made of sponge-like materials (polyethylene foam) such as the stretcher for the immersion bath and the shower chair. Scanning electron microscopy of the porous surfaces showed formation of a large amount of coccus and bacillus biofilms on the walls of pores in the multi-pore structure. Material that is porous should not be used in patient care settings because it is not possible to disinfect it properly.
Collapse
Affiliation(s)
- Shigeharu Oie
- Department of Pharmacy, Yamaguchi University Hospital, Ube, Japan
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
Aqueous solutions of sodium hypochlorite or hypochlorous acid are typically used to sanitize fresh fruits and vegetables. However, pathogenic organisms occasionally survive aqueous sanitization in sufficient numbers to cause disease outbreaks. Chlorine dioxide (ClO2) gas generated by a dry chemical sachet was tested against foodborne pathogens on lettuce leaves. Lettuce leaves were inoculated with cocktail of three strains each of Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella Typhimurium and treated with CLO2 gas for 30 min, 1 h, and 3 h in a model gas cabinet at room temperature (22 +/- 2 degrees C). After treatment, surviving cells, including injured cells, were enumerated on appropriate selective agar or using the overlay agar method, respectively. Total ClO2, generated by the gas packs was 4.3, 6.7, and 8.7 mg after 30 min, 1 h, and 3 h of treatment, respectively. Inoculated lettuce leaves exposed to ClO2 gas for 30 min experienced a 3.4-log reduction in E. coli, a 4.3-log reduction in Salmonella Typhimurium, and a 5.0-log reduction in L. monocytogenes when compared with the control. After 1 h. the three pathogens were reduced in number of CFU by 4.4. 5.3, and 5.2 log, respectively. After 3 h, the reductions were 6.9, 5.4, and 5.4 log, respectively. A similar pattern emerged when injured cells were enumerated. The ClO2, gas sachet was effective at killing pathogens on lettuce without deteriorating visual quality. Therefore, this product can be used during storage and transport of lettuce to improve its microbial safety.
Collapse
Affiliation(s)
- Sun-Young Lee
- Department of Food Science and Human Nutrition, Washington State University, Pullman, Washington 99164-6376, USA
| | | | | |
Collapse
|
18
|
Copes WE. Dose Curves of Disinfestants Applied to Plant Production Surfaces to Control Botrytis cinerea. PLANT DISEASE 2004; 88:509-515. [PMID: 30812655 DOI: 10.1094/pdis.2004.88.5.509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Lethal dose curves were calculated using probit analysis for six disinfestants (chlorazene hydrosol, hydrogen dioxide, hydrogen peroxide, iodine, quaternary ammonium chloride, sodium hypochlorite) when applied on seven substrates (galvanized metal, stainless steel, polyethylene ground fabric, polyethylene pot plastic, pressure-treated pine, exterior latex-painted pine, raw pine) that had been inoculated with Botrytis cinerea conidia. Mortality was determined by percentage of ungerminated versus germinated conidia that had been rubbed off of a substrate onto half-strength potato dextrose agar (hPDA) 16 to 24 h previously. Based on overlapping confidence limits (95% CL) of the lethal doses resulting in 90 and 50% mortality (LD90 and LD50, respectively) and significance of slopes, differences occurred between substrates with all six disinfestants. LD90 values ranged from 0.21 to 4.54 g a.i./liter for chlorazene hydrosol, 4.99 to 40.3 g a.i./liter for hydrogen dioxide, 63.0 to 233.1 g a.i./liter for hydrogen peroxide, 0.42 to 2.45 g a.i./liter for iodine, 0.64 to 6.46 g a.i./liter for quaternary ammonium chloride, and 0.87 to 6.84 g a.i./liter for sodium hypochlorite. For hydrogen dioxide, quaternary ammonium chloride, and sodium hypochlorite, a binomial lethal dose (LDb) was calculated by plating the inverted inoculated substrates on hPDA, then recording the presence or absence of B. cinerea mycelial growth over 7 days. Lethal doses resulting in the absence of mycelial growth (LDb100) were equal to or greater than the LD90 values for most disinfestants and substrates. Results demonstrate for the six disinfestants that dose should be selected based on the substrate being disinfested of B. cinerea conidia.
Collapse
Affiliation(s)
- W E Copes
- USDA/ARS Small Fruit Experiment Station, Poplarville, MS 39470
| |
Collapse
|
19
|
Wirthlin MR, Marshall GW, Rowland RW. Formation and Decontamination of Biofilms in Dental Unit Waterlines. J Periodontol 2003; 74:1595-609. [PMID: 14682656 DOI: 10.1902/jop.2003.74.11.1595] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Biofilms are a natural occurrence in aquatic environments, including community drinking water systems. The interior of small-diameter tubings in dental unit waterlines (DUWL) are also sites of biofilm formation. In the lumen of the tubings, the flow is minimal, and the water becomes stagnant when the units are not in use. Molecules precipitate from the water onto the interior wall and promote the adherence of planktonic microorganisms from the water. Once they become sessile, the microorganisms change their phenotype. After adherence, there is a so-called surface-associated lag time, and the organisms then enter a growth phase and produce exopolysaccharides that coat the organisms in a slime layer. Within the biofilm, the microorganisms can signal one another, transfer nutrients, and exchange genetic material. The insoluble exopolysaccharides shield the microorganisms from displacement and from penetration by predator organisms, antibiotics, and disinfectants. The external surface layer of microorganisms is faster growing and may detach as "swarmer" cells. Detachment of microorganisms from dental unit biofilm flushed into the oral cavity could theoretically infect the patient. Splatter and aerosols from dental procedures may possibly infect health care personnel. METHODS This study compared three DUWL cleaners (an alkaline peroxide product, a freshly mixed chlorine dioxide product, and a buffer-stabilized chlorine dioxide product) in 16 dental units with self-contained water systems, 6 months after installation in a periodontal teaching clinic. One unit treated by flushing and drying served as a control. Units were sampled daily for 10 days with heterotrophic plate count (HPC) sampler plates. The plates were incubated for 7 days at room temperature, and colonies were counted at 10.5x magnification. Samples of internal water tubing before and after the use of waterline cleaners were processed and examined by scanning electron microscopy. RESULTS The estimated mean HPC was derived from original and replicate independent counts of two investigators of undiluted and diluted samples, reported as colony forming units (CFU)/ml. Shock treatments with the alkaline peroxide product (n = 5) reduced the HPC from baseline, but in the ratio of daily counts to control, there was a large variance and a trend to return of high counts as days passed. The mean daily HPC was significantly better than the control for only 3 of the 9 days of treatment and exceeded the goal of 200 on 3 days. Freshly mixed chlorine dioxide (n = 4) and the buffer-stabilized chlorine dioxide (n = 5) both reduced HPC to near 0 on all days. Their ratios of daily estimated means to that of the control were significantly (P < 0.001) better at all times. In comparing treatments, the freshly mixed chlorine dioxide was better (P < 0.001) than the alkaline peroxide on 8 of 9 days. The buffered chlorine dioxide treatment was better than the alkaline peroxide at all times. The two chlorine dioxide treatments each had so many HPC counts of 0 that a meaningful statistical difference between them was not calculated. Scanning electron microscopy of plastic waterline tubing samples taken before and after treatments showed reductions in biofilm coverage, but the differences were not statistically significant. CONCLUSIONS Chlorine dioxide waterline cleaners are effective in decontaminating DUWL biofilm. Chlorine dioxide has advantages over other chlorine products. Controlling DUWL biofilm may have beneficial effects on nosocomial infections.
Collapse
Affiliation(s)
- M Robert Wirthlin
- Department of Stomatology, Division of Periodontology, University of California-San Francisco, San Francisco, CA 94143-0762, USA
| | | | | |
Collapse
|
20
|
Inactivation by chlorine dioxide gas (ClO2) of Listeria monocytogenes spotted onto different apple surfaces. Food Microbiol 2002. [DOI: 10.1006/fmic.2002.0501] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Surface Science and Microbiology. The Strategy for Existence of Microorganisms. Adhesion to Solid Surfaces. ACTA ACUST UNITED AC 2001. [DOI: 10.1380/jsssj.22.652] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Han Y, Linton R, Nielsen S, Nelson P. Inactivation of Escherichia coli O157:H7 on surface-uninjured and -injured green pepper (Capsicum annuum L.) by chlorine dioxide gas as demonstrated by confocal laser scanning microscopy. Food Microbiol 2000. [DOI: 10.1006/fmic.2000.0357] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Wisniewsky MA, Glatz BA, Gleason ML, Reitmeier CA. Reduction of Escherichia coli O157:H7 counts on whole fresh apples by treatment with sanitizers. J Food Prot 2000; 63:703-8. [PMID: 10852561 DOI: 10.4315/0362-028x-63.6.703] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The objectives of this study were to determine if washing of whole apples with solutions of three different sanitizers (peroxyacetic acid, chlorine dioxide, or a chlorine-phosphate buffer solution) could reduce a contaminating nonpathogenic Escherichia coli O157:H7 population by 5 logs and at what sanitizer concentration and wash time such a reduction could be achieved. Sanitizers were tested at 1, 2, 4, 8, and 16 times the manufacturer's recommended concentration at wash times of 5, 10, and 15 min. Whole, sound Braeburn apples were inoculated with approximately 1 x 108 or 7 x 106 CFU per apple, stored for 24 h, then washed with sterile water (control) or with sanitizers for the prescribed time. Recovered bacteria were enumerated on trypticase soy agar. Washing with water alone reduced the recoverable population by almost 2 logs from the starting population; this can be attributed to physical removal of organisms from the apple surface. No sanitizer, when used at the recommended concentration, reduced the recovered E. coli population by 5 logs under the test conditions. The most effective sanitizer, peroxyacetic acid, achieved a 5-log reduction when used at 2.1 to 14 times its recommended concentration, depending on the length of the wash time. The chlorine-phosphate buffer solution reduced the population by 5 logs when used at 3 to 15 times its recommended concentration, depending on wash time. At no concentration or wash time tested did chlorine dioxide achieve the 5-log reduction.
Collapse
Affiliation(s)
- M A Wisniewsky
- Department of Food Science and Human Nutrition, Iowa State University, Ames 50011, USA
| | | | | | | |
Collapse
|
24
|
Jones CR, Adams MR, Zhdan PA, Chamberlain AH. The role of surface physicochemical properties in determining the distribution of the autochthonous microflora in mineral water bottles. J Appl Microbiol 1999; 86:917-27. [PMID: 10389242 DOI: 10.1046/j.1365-2672.1999.00768.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Investigation of the distribution of the viable autochthonous microflora in three brands of 1-2-month-old bottled mineral water showed that 1.8 x 10(4) (S.E.M. 8.9 x 10(3), n = 5) to 1.2 x 10(5) (S.E.M. 1.3 x 10(4), n = 5) cfu ml-1 were planktonic cells while 11 (S.E.M. 4, n = 5)-632 (S.E.M. 176, n = 5) cfu cm-2 were found in the biofilm. The biofilm represented between 0.03 and 1.79% of the total viable microbial population in the 1.5 litre bottles studied. Scanning electron microscopy studies showed that the cells adhering to the polyethylene terephthalate (PET) bottles were predominantly rod-shaped, sparsely distributed over the surface. In contrast, the cells adhering to the high density polyethylene (HDPE) caps were found to be mainly clumps of coccoid cells, suggesting that the bottle may provide different microhabitats for different microfloras. Large-scale roughness, such as that observed as lettering inside the cap (average height (z) = 93 microns) was associated with a 46-fold increase in cell numbers. Increased small-scale roughness, as measured by atomic force microscopy on PET and HDPE surfaces (average roughness (Ra) = 5-551 (nm), showed no correlation with adhesion. Investigations of surface hydrophobicity by the sessile drop technique showed that contact angles (theta) were greater on the HDPE caps (theta = 89-96 degrees) than on the PET surfaces (theta = 69-80 degrees). However, no correlation was found between contact angle and attached cell numbers. Measurements of surface electrostatic charge by streaming potential showed that the PET carried an overall negative charge, measuring -15.9 to -16.6 mV in mineral water. No significant change in charge occurred when the monomer composition of the PET was altered. It was concluded that surface roughness, in particular the scale of surface topographical features, is the most important physicochemical surface characteristic determining the distribution of the autochthonous microflora in mineral water bottles.
Collapse
Affiliation(s)
- C R Jones
- School of Biological Sciences, University of Surrey, Guildford, UK
| | | | | | | |
Collapse
|