1
|
Hrdy J, Vasickova P. Virus detection methods for different kinds of food and water samples – The importance of molecular techniques. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108764] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
2
|
Gyawali P, Kc S, Beale DJ, Hewitt J. Current and Emerging Technologies for the Detection of Norovirus from Shellfish. Foods 2019; 8:foods8060187. [PMID: 31159220 PMCID: PMC6617275 DOI: 10.3390/foods8060187] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/27/2019] [Accepted: 05/27/2019] [Indexed: 12/14/2022] Open
Abstract
Reports of norovirus infections associated with the consumption of contaminated bivalve molluscan shellfish negatively impact both consumers and commercial shellfish operators. Current virus recovery and PCR detection methods can be expensive and time consuming. Due to the lack of rapid, user-friendly and onsite/infield methods, it has been difficult to establish an effective virus monitoring regime that is able to identify contamination points across the production line (i.e., farm-to-plate) to ensure shellfish quality. The focus of this review is to evaluate current norovirus detection methods and discuss emerging approaches. Recent advances in omics-based detection approaches have the potential to identify novel biomarkers that can be incorporated into rapid detection kits for onsite use. Furthermore, some omics techniques have the potential to simultaneously detect multiple enteric viruses that cause human disease. Other emerging technologies discussed include microfluidic, aptamer and biosensor-based detection methods developed to detect norovirus with high sensitivity from a simple matrix. Many of these approaches have the potential to be developed as user-friendly onsite detection kits with minimal costs. However, more collaborative efforts on research and development will be required to commercialize such products. Once developed, these emerging technologies could provide a way forward that minimizes public health risks associated with shellfish consumption.
Collapse
Affiliation(s)
- Pradip Gyawali
- Institute of Environmental Science and Research Ltd. (ESR), Porirua 5240, New Zealand.
| | - Sanjaya Kc
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - David J Beale
- Commonwealth Scientific and Industrial Research Organization, Ecoscience Precinct, Dutton Park, QLD 4102, Australia.
| | - Joanne Hewitt
- Institute of Environmental Science and Research Ltd. (ESR), Porirua 5240, New Zealand.
| |
Collapse
|
3
|
|
4
|
Rodríguez-Lázaro D, Cook N, Ruggeri FM, Sellwood J, Nasser A, Nascimento MSJ, D'Agostino M, Santos R, Saiz JC, Rzeżutka A, Bosch A, Gironés R, Carducci A, Muscillo M, Kovač K, Diez-Valcarce M, Vantarakis A, von Bonsdorff CH, de Roda Husman AM, Hernández M, van der Poel WHM. Virus hazards from food, water and other contaminated environments. FEMS Microbiol Rev 2012; 36:786-814. [PMID: 22091646 PMCID: PMC7114518 DOI: 10.1111/j.1574-6976.2011.00306.x] [Citation(s) in RCA: 192] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 08/30/2011] [Indexed: 12/11/2022] Open
Abstract
Numerous viruses of human or animal origin can spread in the environment and infect people via water and food, mostly through ingestion and occasionally through skin contact. These viruses are released into the environment by various routes including water run-offs and aerosols. Furthermore, zoonotic viruses may infect humans exposed to contaminated surface waters. Foodstuffs of animal origin can be contaminated, and their consumption may cause human infection if the viruses are not inactivated during food processing. Molecular epidemiology and surveillance of environmental samples are necessary to elucidate the public health hazards associated with exposure to environmental viruses. Whereas monitoring of viral nucleic acids by PCR methods is relatively straightforward and well documented, detection of infectious virus particles is technically more demanding and not always possible (e.g. human norovirus or hepatitis E virus). The human pathogenic viruses that are most relevant in this context are nonenveloped and belong to the families of the Caliciviridae, Adenoviridae, Hepeviridae, Picornaviridae and Reoviridae. Sampling methods and strategies, first-choice detection methods and evaluation criteria are reviewed.
Collapse
|
5
|
Stals A, Baert L, Van Coillie E, Uyttendaele M. Extraction of food-borne viruses from food samples: A review. Int J Food Microbiol 2012; 153:1-9. [DOI: 10.1016/j.ijfoodmicro.2011.10.014] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 10/14/2011] [Accepted: 10/24/2011] [Indexed: 10/15/2022]
|
6
|
|
7
|
Abstract
The goal of this study was to determine how enteric viruses persist within shellfish tissues. Several lines of novel evidence show that phagocytic blood cells (hemocytes) of Eastern oysters (Crassostrea virginica) play an important role in the retention of virus particles. Our results demonstrated an association of virus contamination with hemocytes but not with hemolymph. Live oysters contaminated overnight with hepatitis A virus (HAV) and murine norovirus (MNV) had 56% and 80% of extractable virus associated with hemocytes, respectively. Transfer of HAV-contaminated hemocytes to naïve (virus-free) oysters resulted in naïve oyster meat testing HAV positive for up to 3 weeks. Acid tolerance of HAV, MNV, poliovirus (PV), and feline calicivirus (FCV) correlated with the ability of each virus to persist within oysters. Using reverse transcription-PCR (RT-PCR) to evaluate persistence of these viruses in oysters, we showed that HAV persisted the longest (>21 days) and was most acid resistant, MNV and PV were less tolerant of acidic pH, persisting for up to 12 days and 1 day, respectively, and FCV did not persist (<1 day) within oysters and was not acid tolerant. This suggests that the ability of a virus to tolerate the acidic conditions typical of phagolysosomal vesicles within hemocytes plays a role in determining virus persistence in shellfish. Evaluating oyster and hemocyte homogenates and live contaminated oysters as a prelude to developing improved viral RNA extraction methods, we found that viruses were extracted more expediently from hemocytes than from whole shellfish tissues and gave similar RT-PCR detection sensitivities.
Collapse
|
8
|
Uhrbrand K, Myrmel M, Maunula L, Vainio K, Trebbien R, Nørrung B, Schultz AC. Evaluation of a rapid method for recovery of norovirus and hepatitis A virus from oysters and blue mussels. J Virol Methods 2010; 169:70-8. [DOI: 10.1016/j.jviromet.2010.06.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 06/18/2010] [Accepted: 06/28/2010] [Indexed: 11/30/2022]
|
9
|
Morales-Rayas R, Wolffs PFG, Griffiths MW. Anion-exchange filtration and real-time PCR for the detection of a norovirus surrogate in food. J Food Prot 2009; 72:2178-83. [PMID: 19833042 DOI: 10.4315/0362-028x-72.10.2178] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In the present study, nanoalumina filters were used as a sample preparation step for the concentration of a norovirus surrogate (murine norovirus 1) from food, and this was coupled with a two-step, real-time reverse transcriptase PCR for quantification. The nanoalumina medium was provided in a syringe-filter format, and its binding and elution capacities were tested with different buffers. Among the binding buffers tested (0.1 M Tris-HCl [pH 7.0] with 0.1% Tween 80, 0.1% 3-[(3-cholamidopropyl)-dimethyl-ammonio]-1-propanesulfonate, or 1 M NaCl), no significant differences were found in the capture capacity of the nanoalumina filters, which was found to be as high as 99.8% of murine norovirus 1 present in the buffer. Elution of 50% of captured viral particles from the filters was possible by using glycine buffer. The desorption capacity of the binding buffers was tested on different inoculated food surfaces. Recoveries of up to 100% from lettuce, raspberries, strawberries, or mussels were obtained with 0.1 M Tris-HCl (pH 7.0) containing 1 M NaCl by using orbital shaking or pipetting. The latter method was more efficient and gave higher recoveries than did orbital shaking. The combination of an efficient desorption-binding-elution buffer with the high concentration capacity of the nanoalumina medium allowed the detection of 10(1) PFU from inoculated produce and 10(5) PFU from inoculated mussels.
Collapse
Affiliation(s)
- Rocío Morales-Rayas
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | | | |
Collapse
|
10
|
Gentry J, Vinjé J, Guadagnoli D, Lipp EK. Norovirus distribution within an estuarine environment. Appl Environ Microbiol 2009; 75:5474-80. [PMID: 19581478 PMCID: PMC2737928 DOI: 10.1128/aem.00111-09] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Accepted: 06/29/2009] [Indexed: 11/20/2022] Open
Abstract
Human norovirus (NoV) has been studied extensively as an important cause of gastroenteritis outbreaks worldwide. While oysters are a primary vehicle for infection, few studies have examined the wider distribution of NoV in the estuarine environment. Active shellfish-harvesting areas in Georgia were examined for the prevalence, genotype diversity, and concentrations of NoV in a variety of estuarine sample types over the course of 1 year. Of the 225 samples (9 oyster, 72 water, 72 63- to 200-microm plankton, and 72 >200-microm plankton) collected from 12 stations across two estuaries, 21 samples (9.3%) tested positive for NoV. By sample type, 55.0% (5/9) of oysters, 8.3% (6/72) of water samples, 11.1% (8/72) of 63- to 200-microm plankton samples, and 2.8% (2/72) of >200-microm plankton samples were positive for human NoV. The two NoV-positive >200-microm plankton samples, which contained mainly zooplankton, had the greatest quantity of NoV genomes (3.5 x 10(13) and 1.7 x 10(15) genomes g(-1)) of any sample tested. The majority, 90.5% (19/21), of the samples tested positive for genogroup I NoV, and only 9.5% (2/21) of the samples tested positive for genogroup II. The high concentrations of NoV in plankton samples compared to water and oyster samples were unexpected and provide new insights into the presence and distribution of human NoV in the water environment.
Collapse
Affiliation(s)
- Jennifer Gentry
- The University of Georgia, Department of Environmental Health Science, Athens, GA 30602, USA
| | | | | | | |
Collapse
|
11
|
Inactivation of enteric viruses in minimally processed berries and herbs. Appl Environ Microbiol 2009; 75:4155-61. [PMID: 19395576 DOI: 10.1128/aem.00182-09] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several hepatitis A virus (HAV) and human norovirus (HuNoV) outbreaks due to consumption of contaminated berries and vegetables have recently been reported. Model experiments were performed to determine the effectiveness of freeze-drying, freeze-drying combined with heating, and steam blanching for inactivation of enteric viruses that might be present on the surface of berries and herbs. Inactivation of HAV and inactivation of feline calicivirus, a surrogate for HuNoV, were assessed by viral culturing and quantitative reverse transcription PCR (RT-PCR), whereas HuNoV survival was determined only by quantitative RT-PCR. While freeze-drying barely reduced (<1.3 log(10) units) the amount of HAV RNA detected in frozen produce, a greater decline in HAV infectivity was observed. The resistance of HuNoV genogroup I (GI) to freeze-drying was significantly higher than that of HuNoV GII on berries. Addition of a terminal dry heat treatment at 120 degrees C after freeze-drying enhanced virus inactivation by at least 2 log(10) units, except for HuNoV GII. The results suggest that steam blanching at 95 degrees C for 2.5 min effectively inactivated infectious enteric viruses if they were present in herbs. Our results provide data for adjusting food processing technologies if viral contamination of raw materials is suspected.
Collapse
|
12
|
Gentry J, Vinjé J, Lipp EK. A rapid and efficient method for quantitation of genogroups I and II norovirus from oysters and application in other complex environmental samples. J Virol Methods 2009; 156:59-65. [DOI: 10.1016/j.jviromet.2008.11.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Revised: 11/03/2008] [Accepted: 11/04/2008] [Indexed: 10/21/2022]
|
13
|
Le Guyader FS, Parnaudeau S, Schaeffer J, Bosch A, Loisy F, Pommepuy M, Atmar RL. Detection and quantification of noroviruses in shellfish. Appl Environ Microbiol 2009; 75:618-24. [PMID: 19047383 PMCID: PMC2632116 DOI: 10.1128/aem.01507-08] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Accepted: 11/23/2008] [Indexed: 11/20/2022] Open
Abstract
Noroviruses (NoVs) are the most common viral agents of acute gastroenteritis in humans, and high concentrations of NoVs are discharged into the environment. As these viruses are very resistant to inactivation, the sanitary consequences are contamination of food, including molluscan shellfish. There are four major problems with NoV detection in shellfish samples: low levels of virus contamination, the difficulty of efficient virus extraction, the presence of interfering substances that inhibit molecular detection, and NoV genetic variability. The aims of this study were to adapt a kit for use with a method previously shown to be efficient for detection of NoV in shellfish and to use a one step real-time reverse transcription-PCR method with addition of an external viral control. Comparisons of the two methods using bioaccumulated oysters showed that the methods reproducibly detected similar levels of virus in oyster samples. Validation studies using naturally contaminated samples also showed that there was a good correlation between the results of the two methods, and the variability was more attributable to the level of sample contamination. Magnetic silica very efficiently eliminated inhibitors, and use of extraction and amplification controls increased quality assurance. These controls increased the confidence in estimates of NoV concentrations in shellfish samples and strongly supported the conclusion that the results of the method described here reflected the levels of virus contamination in oysters. This approach is important for food safety and is under evaluationfor European regulation.
Collapse
|
14
|
Norovirus Detection in Shellfish Using a Rapid, Sensitive Virus Recovery and Real-Time RT-PCR Detection Protocol. FOOD ANAL METHOD 2008. [DOI: 10.1007/s12161-008-9018-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|