1
|
Edache DO, Baruch J, Kreikemeier W, Nagaraja TG, Renter DR, Smolensky D, Cernicchiaro N. Investigation of Feedlot-level Use of a Direct-fed Microbial on Fecal Shedding of E. coli O157:H7. J Food Prot 2024; 87:100370. [PMID: 39374786 DOI: 10.1016/j.jfp.2024.100370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 10/09/2024]
Abstract
Our objectives were to determine whether the feedlot-level use of a direct-fed microbial (DFM; Lactobacillus animalis LA51 and Propionibacterium freudenreichii PF24; Bovamine Defend®, 2 × 109 CFU/g) was associated with fecal prevalence and concentration of E. coli O157:H7, and determine pen- and feedlot-level risk factors associated with fecal E. coli O157:H7 prevalence in cattle pens from commercial feedlot operations. Twenty commercial feedlots in Nebraska, ten that included DFM (DFM) and ten that did not (no-DFM), were sampled during the summer of 2017. In each sampling month, 22 pen-floor fecal samples were collected from three pens in each feedlot. Samples were subjected to cultural and molecular procedures for the detection of E. coli O157:H7 (immunomagnetic separation, plating on selective media, followed by PCR confirmation) and spiral plating for quantification. A total of 1,320 samples from 180 pens of finishing cattle belonging to 20 feedlots, which were sampled three times throughout a 12-week period, were processed and tested. Across all feedlots and sampling months, the mean within-pen prevalence was 13.5% (95% CI = 2.6-47.4%). The association between DFM status and the within-pen prevalence of E. coli O157:H7 depended significantly (p < 0.05) on the sampling month. The second sampling month between late July and mid-August corresponded to the highest within-pen prevalence estimates reported in this study, with no-DFM pens having a higher prevalence than DFM pens. After accounting for the DFM status, and based on multivariable analyses, sampling month, average pen body weight, and weather conditions were significantly associated with the within-pen fecal prevalence of E. coli O157:H7. Collectively, these findings demonstrate that the use of a DFM containing Lactobacillus animalis LA51 and Propionibacterium freudenreichii PF26 in feedlots showed potential in reducing fecal E. coli O157:H7 prevalence in cattle during times when prevalence peaks.
Collapse
Affiliation(s)
- David O Edache
- Center for Outcomes Research and Epidemiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Joaquin Baruch
- Center for Outcomes Research and Epidemiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | | | - Tiruvoor G Nagaraja
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - David R Renter
- Center for Outcomes Research and Epidemiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Dmitriy Smolensky
- Grain Quality and Structure Research, Center for Grain and Animal Health Research, United States Department of Agriculture, Agricultural Research Service, 1515 College Ave., Manhattan, KS 66502, USA
| | - Natalia Cernicchiaro
- Center for Outcomes Research and Epidemiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
2
|
Tilton TJ, Martens K, Lucherk LW, Word AB, Holland BP, Lawrence TE, Tennant TC. The effect of a direct-fed microbial (10-G) on live animal performance, carcass characteristics, and Salmonella prevalence of fed beef heifers. Transl Anim Sci 2024; 8:txae086. [PMID: 38863595 PMCID: PMC11165639 DOI: 10.1093/tas/txae086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 05/21/2024] [Indexed: 06/13/2024] Open
Abstract
The objective of this study was to determine the efficacy of the direct-fed microbial 10-G upon cattle growth performance, liver and lung health, carcass quality, and yield outcomes, as well as prevalence and enumeration of Salmonella in feces and lymph nodes. Fed beef heifers (N = 1,400; initial shrunk body weight [BW] 343.3 ± 36.2 kg) were blocked by the day of arrival and randomly allocated to one of two treatments (0 [negative control, CON] or 2 g of a direct-fed microbial [10-G] that provided 1 billion CFUs per animal per day of Lactobacillus acidophilus, Enterococcus faecium, Pediococcus pentosaceus, L. brevis, and L. plantarum) with 10 pens per treatment. Recto-anal mucosal fecal samples (RAMs; n = 477) and subiliac lymph nodes (SLNs; n = 479) were collected longitudinally at harvest from 23 to 25 heifers per pen. Data were analyzed using mixed models; pen served as the experimental unit; block and harvest date were random effects. No differences were detected in dry matter intake (P = 0.78), final BW (P = 0.64), average daily gain (P = 0.51), gain to feed (P = 0.71), hot carcass weight (P = 0.54), dressed carcass yield (P = 0.52), 12th rib fat depth (P = 0.13), longissimus muscle area (P = 0.62), calculated empty body fat (P = 0.26), or marbling score (P = 0.82). Distributions of liver scores (P ≥ 0.34), quality grades (P ≥ 0.23), and yield grades (P ≥ 0.11) were also not different between treatments. A tendency was detected for more normal lungs (P = 0.08; 10-G = 65.96%, CON = 61.12%) and fewer inflated lungs at harvest for cattle fed 10-G (P = 0.10; 10-G = 0.29%, CON = 1.16%); other lung outcomes did not differ (P ≥ 0.54). Salmonella prevalence did not differ for RAM samples (P = 0.41; 10-G = 97.74%, CON = 96.82%) or SLN (P = 0.22; 10-G = 17.92%, CON = 13.66%). Salmonella concentration of RAM samples (P = 0.25; 10-G = 3.87 log CFU/g, CON = 3.32 log CFU/g) or SLN (P = 0.37; 10-G = 1.46 log CFU/g, CON = 1.14 log CFU/g) also did not differ between treatments at harvest. These results do not demonstrate any difference in live animal performance, carcass characteristics, or Salmonella carriage for heifers fed 10-G.
Collapse
Affiliation(s)
- Travis J Tilton
- Beef Carcass Research Center, West Texas A&M University, Canyon, TX 79016, USA
| | | | - Loni W Lucherk
- Beef Carcass Research Center, West Texas A&M University, Canyon, TX 79016, USA
| | | | | | - Ty E Lawrence
- Beef Carcass Research Center, West Texas A&M University, Canyon, TX 79016, USA
| | - Travis C Tennant
- Beef Carcass Research Center, West Texas A&M University, Canyon, TX 79016, USA
| |
Collapse
|
3
|
DeHaan ER, Thompson J, Rusche WC, de Jesus M, Block E, Rehberger T, Smith ZK. Evaluation of long-term supplementation of a Bacillus subtilis direct-fed microbial and enzymatically hydrolyzed yeast cell culture product used alone or in combination on Clostridia, Clostridium perfringens, Escherichia coli, and Salmonella prevalence in beef steers. J Anim Sci 2024; 102:skae156. [PMID: 38828876 PMCID: PMC11196994 DOI: 10.1093/jas/skae156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/31/2024] [Indexed: 06/05/2024] Open
Abstract
The objective was to determine the influence of long-term supplementation (258 d) of a direct-fed microbial (DFM) and/or yeast cell wall (YCW) product on bacterial populations in beef steers. Single-sourced Charolais × Red Angus steers (n = 256; body weight = 246 ± 1.68 kg) were used in a randomized complete block design and blocked by location into one of four treatments: 1) fed no DFM and no YCW (Control); 2) fed only the DFM (DFM; Certillus CP B1801 Dry, 28 g/steer d-1 ); 3) fed only the YCW (YCW; Celmanax; 18 g/steer d-1 ); and 4) fed the DFM and the YCW (DFM+YCW). Steers were vaccinated for respiratory and clostridial diseases and treated for internal and external parasites at processing and individually weighed on days 1, 14, 42, 77, 105, 133, 161, 182, 230, and 258. To determine bacterial prevalence, fecal samples were collected on days 1, 14, 77, 133, 182, and 230 and environmental (pen area, feed, and water) samples were collected at the beginning of the week when cattle were weighed. No treatment × day interactions or treatment effects (P > 0.05) were observed between treatment groups at any sampling days for the bacterial populations. Samples on days 1, 133, and 182 had greater (P < 0.05) Clostridia levels compared to the other sampling points but were not different from each other. Clostridia levels were also greater (P < 0.05) on day 77 compared to days 14 and 230. Samples on days 77 and 230 had greater (P < 0.05) Clostridium perfringens levels compared to the other sampling points but were not different (P > 0.05) from each other. Samples on days 1 and 14 had lower (P < 0.05) total Escherichia coli levels compared to the other sampling points but were not different (P > 0.05) from each other. Escherichia coli levels on day 77 were higher (P < 0.05) compared to days 133, 182, and 230. Little Salmonella prevalence (1.5%) was observed throughout the study. This study had greater levels of Clostridia compared to small and large commercial feedlots in the Church and Dwight research database, but C. perfringens, total and pathogenic E. coli, and Salmonella prevalence were notably lower. Collectively, there were no appreciable treatment influences on bacterial populations. These data further indicate a low pathogenic bacterial challenge at the trial site, which could partially explain the lack of differences with DFM or YCW supplementation. The DFM and YCW used alone or in combination cannot be expected to show additional benefits when animals are relatively unstressed with a low pathogenic bacterial challenge.
Collapse
Affiliation(s)
- Erin R DeHaan
- Department of Animal Science, South Dakota State University, Brookings, SD 57007, USA
| | - Jesse Thompson
- Arm & Hammer Animal Nutrition, Church and Dwight Company, Princeton, NJ 08540, USA
| | - Warren C Rusche
- Department of Animal Science, South Dakota State University, Brookings, SD 57007, USA
| | - Mackenzie de Jesus
- Arm & Hammer Animal Nutrition, Church and Dwight Company, Princeton, NJ 08540, USA
| | - Elliot Block
- Arm & Hammer Animal Nutrition, Church and Dwight Company, Princeton, NJ 08540, USA
| | - Tom Rehberger
- Arm & Hammer Animal Nutrition, Church and Dwight Company, Princeton, NJ 08540, USA
| | - Zachary K Smith
- Department of Animal Science, South Dakota State University, Brookings, SD 57007, USA
| |
Collapse
|
4
|
Flach MG, Dogan OB, Kreikemeier WM, Nightingale KK, Brashears MM. Prevalence of Foodborne Pathogens in Pacific Northwest Beef Feedlot Cattle Fed Two Different Direct-Fed Microbials. J Food Prot 2023; 86:100139. [PMID: 37567500 DOI: 10.1016/j.jfp.2023.100139] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/25/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023]
Abstract
In recent years, there has been an increased interest in beef cattle shedding of foodborne pathogens due to the potential to contaminate surrounding food crops; however, the number of studies published on this topic has declined as the majority of research has emphasized on postharvest mitigation efforts. A field study was conducted to determine the prevalence of pathogens and indicator bacteria in beef cattle fed two different direct-fed microbials (DFMs). Fecal samples from a total of 3,708 crossbred yearling cattle randomly assigned to 16 pens and two treatment groups at a commercial cattle feedlot were taken. During the study period, diets were supplemented with two different DFMs i.) Lactobacillus acidophilus (NP51) and Propionibacterium freudenreichii (NP24) (9 log10CFU/head/day), and ii.) Lactobacillus salivarius (L28) (6 log10CFU/head/day). Fecal samples from pen floors were collected on days 0, 21, 42, 63, 103, and analyzed for the presence of Salmonella and E. coli O157:H7 and concentration of E. coli O157:H7, Enterobacteriaceae, and C. perfringens. Fecal samples collected from cattle fed L28 had significantly lower concentration of C. perfringens (p < 0.05) and had a similar prevalence with no significant differences in E. coli O157:H7 as those fed NP51/NP24 through the study until day 103. On day 103, the prevalence in cattle fed L28 was 40% with a concentration of 0.95 log10MPN/g while those fed NP51/NP24 were 65% with a concentration of 1.2 log10MPN/g. Cattle supplemented with NP51/NP24 achieved a significant log reduction of EB by 2.4 log10CFU/g over the course of the 103-day supplementation period compared to L28. Salmonella prevalence was also measured, but not detected in any samples at significant amounts to draw conclusions. It is evident that E. coli O157:H7 and other foodborne pathogens are still prevalent in cattle operations and that preharvest mitigation strategies should be considered to reduce the risk to beef products.
Collapse
Affiliation(s)
- Makenzie G Flach
- International Center for Food Industry Excellence, Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Onay B Dogan
- International Center for Food Industry Excellence, Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Wanda M Kreikemeier
- International Center for Food Industry Excellence, Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Kendra K Nightingale
- International Center for Food Industry Excellence, Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Mindy M Brashears
- International Center for Food Industry Excellence, Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX 79409, USA.
| |
Collapse
|
5
|
Reduction of Pathogens in Feces and Lymph Nodes Collected from Beef Cattle Fed Lactobacillus salivarius (L28), Lactobacillus acidophilus (NP51) and Propionibacterium freudenreichii (NP28), Commercially Available Direct-Fed Microbials. Foods 2022; 11:foods11233834. [PMID: 36496642 PMCID: PMC9739559 DOI: 10.3390/foods11233834] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/13/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
The purpose of the study was to evaluate the prevalence and concentration of foodborne pathogens in the feces and peripheral lymph nodes (PLNs) of beef cattle when supplemented with direct-fed microbials (DFMs) in feedlots. Fecal samples were collected from the pen floors over a 5-month period at three different feedlots in a similar geographical location in Nebraska, where each feed yard represented a treatment group: (i.) control: no supplement, (ii.) Bovamine Defend: supplemented with NP51 and NP24 at a target dose of 9 log10CFU/g/head/day, and (iii.) Probicon: supplemented with L28 at a target dose of 6 log10CFU/g/head/day. Each fecal sample was tested for the prevalence of E. coli O157:H7 and Salmonella, and concentration of E. coli O157:H7, Enterobacteriaceae and Clostridium perfringens. Cattle were harvested and PLNs were collected on the harvest floor. Real-time Salmonella PCR assays were performed for each PLN sample to determine Salmonella presence. The cattle supplemented with both DFMs had reduced foodborne pathogens in fecal samples, but feces collected from the pens housing the cattle supplemented with Probicon consistently had significantly less E. coli O157:H7 and Salmonella prevalence as well as a lower C. perfringens concentration. While DFMs do not eliminate foodborne pathogens in fecal shedding and PLNs, the use of DFMs as a pre-harvest intervention allows for an effective way to target multiple pathogens reducing the public health risks and environmental dissemination from cattle.
Collapse
|
6
|
Cull C, Singu VK, Cull BJ, Lechtenberg KF, Amachawadi RG, Schutz JS, Bryan KA. Efficacy of Lactobacillus animalis and Propionibacterium freudenreichii-Based Feed Additives in Reducing Salmonella-Associated Health and Performance Effects in Commercial Beef Calves. Antibiotics (Basel) 2022; 11:antibiotics11101328. [PMID: 36289986 PMCID: PMC9598054 DOI: 10.3390/antibiotics11101328] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/26/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Salmonella enterica, which causes typhoid fever, is one of the most prevalent food-borne pathogens. Salmonellosis in cattle can greatly impact a producer’s income due to treatment costs, decreased productivity of the herd, and mortality due to disease. Current methods of treatment and prevention for salmonellosis consist of antibiotics and vaccinations, but neither of these options are perfect. Probiotics, categorized as antibiotic alternatives, are living microorganisms that are added to animal feeds in appropriate quantities in order to benefit health and productivity in adult and newborn livestock. The objective of this study was to demonstrate that Lactobacillus animalis and Propionibacterium freudenreichii, when used as a direct-fed microbial, was effective in reducing the adverse effects of experimentally induced Salmonella infection in beef calves. We conducted a single site efficacy study with masking using a randomized design comprising two groups of ten beef calves allocated to two treatment groups (control and probiotic). Procedures such as determining general health scores and body weight and collecting fecal samples were carried out following the experimental challenge of calves with Salmonella Typhimurium. The presence of at least one CFU of bacteria in feces was significantly higher among animals in the control than in the probiotic group, which was higher on days 0 to 7 than on days 8 to 14 (p = 0.012). Animals in the control group had a significantly higher presence of abnormal diarrhea scores than animals in the probiotic group (p < 0.001). Most notably, other health benefits in probiotic-fed group calves were obviously better than those for control calves and further substantiates the potential economic and health benefits of feeding effective probiotics.
Collapse
Affiliation(s)
- Charley Cull
- Midwest Veterinary Services, Inc., Oakland, NE 68045, USA
- Central States Research Centre, Inc., Oakland, NE 68045, USA
- Correspondence:
| | - Vijay K. Singu
- Central States Research Centre, Inc., Oakland, NE 68045, USA
| | - Brooke J. Cull
- Midwest Veterinary Services, Inc., Oakland, NE 68045, USA
- Central States Research Centre, Inc., Oakland, NE 68045, USA
| | - Kelly F. Lechtenberg
- Midwest Veterinary Services, Inc., Oakland, NE 68045, USA
- Central States Research Centre, Inc., Oakland, NE 68045, USA
| | - Raghavendra G. Amachawadi
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | | | | |
Collapse
|
7
|
Mayer LM, Martens K, Word AB, Holland BP, Lucherk LL, Lawrence TE, Tennant TC. Effect of a direct-fed microbial (10-G Armor) on feedlot performance, carcass characteristics, and prevalence of Salmonella in fed-beef heifers. Transl Anim Sci 2022; 6:txac073. [PMID: 35795070 PMCID: PMC9249138 DOI: 10.1093/tas/txac073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/25/2022] [Indexed: 11/12/2022] Open
Abstract
Abstract
Crossbred beef heifers [N = 1,394; initial shrunk body weight (BW) 291 ± 9.9 kg] were used to investigate the efficacy of 10-G Armor (Life Products, Inc., Norfolk, NE; 10-G) upon feedlot performance, carcass characteristics, and fecal and subiliac lymph nodes Salmonella prevalence. Heifers were blocked by day of arrival and allocated to 1 of 20 pens (N = 70 heifers/pen) and assigned one of two treatments (10 pens/treatment) : no direct fed microbial (CON) or 2g/heifer/d of L. acidophilus, E. faecium, P. pentosaceus, L. brevis and L. plantarum respectively (Life Products, Inc., Norfolk, NE; 10-G). Twenty four animals were randomly selected from each pen for Salmonella sampling. Recto-anal mucosal swab samples (RAMS) were obtained at initial processing and harvest; subiliac lymph nodes were collected at harvest. In addition, pen surface fecal pats were collected and composited by pen (10 pats per composite, 5 composites per pen) on day 0, 52, 120 and 192. Data were analyzed as a generalized complete block design and pen served as the experimental unit. No differences were observed in live growth performance metrics (P ≥ 0.55). Yield grade distributions did not differ between treatments (P ≥ 0.62), however cattle fed 10-G tended (P = 0.06; 14.6 vs 18.9%) to have fewer USDA Select carcasses and more (P = 0.09; 73.6 vs 78.0%) USDA Choice carcasses. Cattle fed 10-G tended (P = 0.10; 9.2% vs 12.3%) to have fewer liver abscesses and had fewer (P = 0.04; 5.3 vs 8.5%) severe liver abscesses. Salmonella prevalence of RAMS did not differ between treatments at initial processing (P = 0.97; CON = 11.6%, 10-G = 11.5%) or at harvest (P = 0.91; CON = 99.0%, 10-G = 98.6%), however RAMS differed (P < 0.01) in Salmonella prevalence between the two collection times. Cattle fed 10-G had a lower frequency of Salmonella positive lymph nodes (P = 0.01; CON = 15.8%, 10-G = 7.4%) than CON. However, Salmonella log (mpn/g) of lymph nodes did not differ between treatments at harvest (P = 0.34; CON = 0.73, 10-G = 0.34). These data indicate that cattle fed 10-G have decreased rates of severe liver abscesses without altering live animal performance or carcass characteristics. Supplementation of 10-G significantly reduced prevalence rate of Salmonella recovered from the subiliac lymph nodes. The factors responsible for the observed difference in the effects of 10-G on Salmonella warrants further investigation
Collapse
Affiliation(s)
- L M Mayer
- Beef Carcass Research Center, West Texas A&M University , Canyon, TX
| | | | | | | | - L L Lucherk
- Beef Carcass Research Center, West Texas A&M University , Canyon, TX
| | - T E Lawrence
- Beef Carcass Research Center, West Texas A&M University , Canyon, TX
| | - T C Tennant
- Beef Carcass Research Center, West Texas A&M University , Canyon, TX
| |
Collapse
|
8
|
Dewi G, Kollanoor Johny A. Lactobacillus in Food Animal Production—A Forerunner for Clean Label Prospects in Animal-Derived Products. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.831195] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Lactobacillus, the largest genus within the lactic acid bacteria group, has served diverse roles in improving the quality of foods for centuries. The heterogeneity within this genus has resulted in the industry's continued use of their well-known functions and exploration of novel applications. Moreover, the perceived health benefits in many applications have also made them fond favorites of consumers and researchers alike. Their familiarity lends to their utility in the growing “clean label” movement, of which consumers prefer fewer additions to the food label and opt for recognizable and naturally-derived substances. Our review primarily focuses on the historical use of lactobacilli for their antimicrobial functionality in improving preharvest safety, a critical step to validate their role as biocontrol agents and antibiotic alternatives in food animal production. We also explore their potential as candidates catering to the consumer-driven demand for more authentic, transparent, and socially responsible labeling of animal products.
Collapse
|
9
|
Koyun OY, Callaway TR, Nisbet DJ, Anderson RC. Innovative Treatments Enhancing the Functionality of Gut Microbiota to Improve Quality and Microbiological Safety of Foods of Animal Origin. Annu Rev Food Sci Technol 2022; 13:433-461. [DOI: 10.1146/annurev-food-100121-050244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The gastrointestinal tract, or gut, microbiota is a microbial community containing a variety of microorganisms colonizing throughout the gut that plays a crucial role in animal health, growth performance, and welfare. The gut microbiota is closely associated with the quality and microbiological safety of foods and food products originating from animals. The gut microbiota of the host can be modulated and enhanced in ways that improve the quality and safety of foods of animal origin. Probiotics—also known as direct-fed microbials—competitive exclusion cultures, prebiotics, and synbiotics have been utilized to achieve this goal. Reducing foodborne pathogen colonization in the gut prior to slaughter and enhancing the chemical, nutritional, or sensory characteristics of foods (e.g., meat, milk, and eggs) are two of many positive outcomes derived from the use of these competitive enhancement–based treatments in food-producing animals. Expected final online publication date for the Annual Review of Food Science and Technology, Volume 13 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Osman Y. Koyun
- Department of Animal and Dairy Science, University of Georgia, Athens, Georgia, USA
| | - Todd R. Callaway
- Department of Animal and Dairy Science, University of Georgia, Athens, Georgia, USA
| | - David J. Nisbet
- Food and Feed Safety Research Unit, Southern Plains Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, College Station, Texas, USA
| | - Robin C. Anderson
- Food and Feed Safety Research Unit, Southern Plains Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, College Station, Texas, USA
| |
Collapse
|
10
|
Zommiti M, Chikindas ML, Ferchichi M. Probiotics-Live Biotherapeutics: a Story of Success, Limitations, and Future Prospects-Not Only for Humans. Probiotics Antimicrob Proteins 2021; 12:1266-1289. [PMID: 31376026 DOI: 10.1007/s12602-019-09570-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In livestock production, lactic acid bacteria (LAB) represent the most widespread microorganisms used as probiotics. For such critical use, these bacteria must be correctly identified and characterized to ensure their safety and efficiency. Recently, probiotics have become highly recognized as supplements for humans and in particular for animals because of their beneficial outcome on health improvement and well-being maintenance. Various factors, encompassing dietary and management constraints, have been demonstrated to tremendously influence the structure, composition, and activities of gut microbial communities in farm animals. Previous investigations reported the potential of probiotics in animal diets and nutrition. But a high rate of inconsistency in the efficiency of probiotics has been reported. This may be due, in a major part, to the dynamics of the gastrointestinal microbial communities. Under stressing surroundings, the direct-fed microbials may play a key role as the salient limiting factor of the severity of the dysbiosis caused by disruption of the normal intestinal balance. Probiotics are live microorganisms, which confer health benefits on the host by positively modifying the intestinal microflora. Thus, the aim of this review is to summarize and to highlight the positive influence of probiotics and potential probiotic microbe supplementation in animal feed with mention of several limitations.
Collapse
Affiliation(s)
- Mohamed Zommiti
- Unité de Protéomique Fonctionnelle et Potentiel Nutraceutique de la Biodiversité de Tunisie, Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Université de Tunis El-Manar, 1006, Tunis, Tunisia
| | - Michael L Chikindas
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, New Brunswick, NJ, USA.,Center for Digestive Health, New Jersey Institute for Food, Nutrition, and Health, New Brunswick, NJ, USA
| | - Mounir Ferchichi
- Unité de Protéomique Fonctionnelle et Potentiel Nutraceutique de la Biodiversité de Tunisie, Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Université de Tunis El-Manar, 1006, Tunis, Tunisia.
| |
Collapse
|
11
|
Effects of Multi-Species Direct-Fed Microbial Products on Ruminal Metatranscriptome and Carboxyl-Metabolome of Beef Steers. Animals (Basel) 2021; 11:ani11010072. [PMID: 33401746 PMCID: PMC7823837 DOI: 10.3390/ani11010072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/14/2020] [Accepted: 12/18/2020] [Indexed: 12/19/2022] Open
Abstract
We examined the effects of two direct-fed microbial (DFM) products containing multiple microbial species and their fermentation products on ruminal metatranscriptome and carboxyl-metabolome of beef steers. Nine ruminally-cannulated Holstein steers were assigned to 3 treatments arranged in a 3 × 3 Latin square design with three 21-d periods. Dietary treatments were (1) Control (CON; basal diet without additive), (2) Commence (PROB; basal diet plus 19 g/d of Commence), and (3) RX3 (SYNB; basal diet plus 28 g/d of RX3). Commence and RX3 are both S. cerevisiae-based DFM products containing several microbial species and their fermentation products. Mixed ruminal contents collected multiple times after feeding on day 21 were used for metatranscriptome and carboxyl-metabolome analysis. Partial least squares discriminant analysis revealed a distinct transcriptionally active taxonomy profiles between CON and each of the PROB and SYNB samples. Compared to CON, the steers fed supplemental PROB had 3 differential (LDA ≥ 2.0; p ≤ 0.05) transcriptionally active taxa, none of which were at the species level, and those fed SYNB had eight differential (LDA > 2.0, p ≤ 0.05) transcriptionally active taxa, but there was no difference (p > 0.05) between PROB and SYNB. No functional microbial genes were differentially expressed among the treatments. Compared with CON, 3 metabolites (hydroxylpropionic acid and 2 isomers of propionic acid) were increased (FC ≥ 1.2, FDR ≤ 0.05), whereas 15 metabolites, including succinic acid and fatty acid peroxidation and amino acid degradation products were reduced (FC ≤ 0.83, FDR ≤ 0.05) by supplemental PROB. Compared with CON, 2 metabolites (2 isomers of propionic acid) were increased (FC ≥ 1.2, FDR ≤ 0.05), whereas 2 metabolites (succinic acid and pimelate) were reduced (FC ≤ 0.83, FDR ≤ 0.05) by supplemental SYNB. Compared to SYNB, supplemental PROB reduced (FC ≤ 0.83, FDR ≤ 0.05) the relative abundance of four fatty acid peroxidation products in the rumen. This study demonstrated that dietary supplementation with either PROB or SYNB altered the ruminal fermentation pattern. In addition, supplemental PROB reduced concentrations of metabolic products of fatty acid peroxidation and amino acid degradation. Future studies are needed to evaluate the significance of these alterations to ruminal fatty acid and amino acid metabolisms, and their influence on beef cattle performance.
Collapse
|
12
|
Dewsbury DMA, Cernicchiaro N, Depenbusch B, Nagaraja TG, Renter DG. Effectiveness of a Direct-Fed Microbial Product Containing Lactobacillus acidophilus and Lactobacillus casei in Reducing Fecal Shedding of Escherichia coli O157:H7 in Commercial Feedlot Cattle. Foodborne Pathog Dis 2020; 18:16-23. [PMID: 32898446 DOI: 10.1089/fpd.2020.2828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The objective of this study was to evaluate the effectiveness of a direct-fed microbial (DFM) product in reducing fecal shedding of Escherichia coli O157:H7 in finishing commercial feedlot cattle in Kansas (KS) and Nebraska (NE). Utilizing a randomized complete block design within the feedlot (KS, n = 1; NE, n = 1), cattle were randomly allocated to 20 pens, grouped in blocks of two based on allocation date, and then, within the block, randomly assigned to a treatment group (DFM or negative control). The DFM product was included in the diet at a targeted daily dose of 1 × 109 colony-forming units (CFU) of the Lactobacillus acidophilus and Lactobacillus casei combination per animal for at least 60 d before sampling. Feedlots were sampled for four consecutive weeks; weekly sampling consisted of collecting 20 pen floor fecal samples per pen. Fecal samples were subjected to culture-based methods for detection and isolation of E. coli O157, and positive samples were quantified using real-time polymerase chain reaction. Primary outcomes of interest were fecal prevalence of E. coli O157:H7 and E. coli O157 supershedding (≥104 CFU/g of feces) prevalence. Data for each feedlot were analyzed at the pen level using mixed models accounting for the study design features. Model-adjusted mean E. coli O157:H7 fecal prevalence estimates (standard error of the mean [SEM]) for DFM and control groups were 8.2% (SEM = 2.2%) and 9.9% (SEM = 2.5%) in KS and 14.6% (SEM = 2.8%) versus 14.3% (SEM = 2.6%) in NE; prevalence did not differ significantly between treatment groups at either site (KS, p = 0.51; NE, p = 0.92). Mean E. coli O157 supershedding prevalence estimates for DFM and control groups were 2.2% (SEM = 0.7%) versus 1.8% (SEM = 0.7%) in KS (p = 0.66) and 6.7% (SEM = 1.5%) versus 3.2% (SEM = 1.0%) in NE (p = 0.04). In conclusion, administering the DFM product in the finishing diet of feedlot cattle did not significantly reduce E. coli O157:H7 fecal prevalence or supershedding prevalence in study pens at either commercial feedlot.
Collapse
Affiliation(s)
- Diana M A Dewsbury
- Center for Outcomes Research and Epidemiology, Kansas State University, Manhattan, Kansas, USA.,Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Natalia Cernicchiaro
- Center for Outcomes Research and Epidemiology, Kansas State University, Manhattan, Kansas, USA.,Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | | | - T G Nagaraja
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - David G Renter
- Center for Outcomes Research and Epidemiology, Kansas State University, Manhattan, Kansas, USA.,Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
13
|
Ballou MA, Davis EM, Kasl BA. Nutraceuticals: An Alternative Strategy for the Use of Antimicrobials. Vet Clin North Am Food Anim Pract 2019; 35:507-534. [PMID: 31590900 PMCID: PMC7127241 DOI: 10.1016/j.cvfa.2019.08.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Livestock industries strive to improve the health of their animals and, in the future, they are going to be required to do this with a continued reduction in antimicrobial use. Nutraceuticals represent a group of compounds that may help fill that void because they exert some health benefits when supplemented to livestock. This review is focused on the mechanisms of action, specifically related to the immune responses and health of ruminants. The nutraceutical classes discussed include probiotics, prebiotics, phytonutrients (essential oils and spices), and polyunsaturated fatty acids.
Collapse
Affiliation(s)
- Michael A Ballou
- Department of Veterinary Sciences, Texas Tech University, Lubbock, TX 79409, USA.
| | - Emily M Davis
- Department of Veterinary Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Benjamin A Kasl
- Department of Veterinary Sciences, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
14
|
Nair D, Vazhakkattu Thomas J, Dewi G, Noll S, Brannon J, Kollanoor Johny A. Reduction of Multidrug-Resistant Salmonella enterica Serovar Heidelberg Using a Dairy-Originated Probiotic Bacterium, Propionibacterium freudenreichii freudenreichii B3523, in Growing Turkeys. J APPL POULTRY RES 2019. [DOI: 10.3382/japr/pfy079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
15
|
Wiley NC, Dinan TG, Ross RP, Stanton C, Clarke G, Cryan JF. The microbiota-gut-brain axis as a key regulator of neural function and the stress response: Implications for human and animal health. J Anim Sci 2018; 95:3225-3246. [PMID: 28727115 DOI: 10.2527/jas.2016.1256] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The brain-gut-microbiota axis comprises an extensive communication network between the brain, the gut, and the microbiota residing there. Development of a diverse gut microbiota is vital for multiple features of behavior and physiology, as well as many fundamental aspects of brain structure and function. Appropriate early-life assembly of the gut microbiota is also believed to play a role in subsequent emotional and cognitive development. If the composition, diversity, or assembly of the gut microbiota is impaired, this impairment can have a negative impact on host health and lead to disorders such as obesity, diabetes, inflammatory diseases, and even potentially neuropsychiatric illnesses, including anxiety and depression. Therefore, much research effort in recent years has focused on understanding the potential of targeting the intestinal microbiota to prevent and treat such disorders. This review aims to explore the influence of the gut microbiota on host neural function and behavior, particularly those of relevance to stress-related disorders. The involvement of microbiota in diverse neural functions such as myelination, microglia function, neuronal morphology, and blood-brain barrier integrity across the life span, from early life to adolescence to old age, will also be discussed. Nurturing an optimal gut microbiome may also prove beneficial in animal science as a means to manage stressful situations and to increase productivity of farm animals. The implications of these observations are manifold, and researchers are hopeful that this promising body of preclinical work can be successfully translated to the clinic and beyond.
Collapse
|
16
|
Fomenky BE, Chiquette J, Bissonnette N, Talbot G, Chouinard PY, Ibeagha-Awemu EM. Impact of Saccharomyces cerevisiae boulardii CNCMI-1079 and Lactobacillus acidophilus BT1386 on total lactobacilli population in the gastrointestinal tract and colon histomorphology of Holstein dairy calves. Anim Feed Sci Technol 2017. [DOI: 10.1016/j.anifeedsci.2017.08.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
17
|
Hossain MI, Sadekuzzaman M, Ha SD. Probiotics as potential alternative biocontrol agents in the agriculture and food industries: A review. Food Res Int 2017; 100:63-73. [DOI: 10.1016/j.foodres.2017.07.077] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 07/29/2017] [Accepted: 07/31/2017] [Indexed: 12/13/2022]
|
18
|
The diversity of beef safety: A global reason to strengthen our current systems. Meat Sci 2017; 132:59-71. [DOI: 10.1016/j.meatsci.2017.03.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 03/20/2017] [Accepted: 03/30/2017] [Indexed: 11/24/2022]
|
19
|
Reducing Foodborne Pathogen Persistence and Transmission in Animal Production Environments: Challenges and Opportunities. Microbiol Spectr 2017; 4. [PMID: 27726803 DOI: 10.1128/microbiolspec.pfs-0006-2014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Preharvest strategies to reduce zoonotic pathogens in food animals are important components of the farm-to-table food safety continuum. The problem is complex; there are multiple pathogens of concern, multiple animal species under different production and management systems, and a variety of sources of pathogens, including other livestock and domestic animals, wild animals and birds, insects, water, and feed. Preharvest food safety research has identified a number of intervention strategies, including probiotics, direct-fed microbials, competitive exclusion cultures, vaccines, and bacteriophages, in addition to factors that can impact pathogens on-farm, such as seasonality, production systems, diet, and dietary additives. Moreover, this work has revealed both challenges and opportunities for reducing pathogens in food animals. Animals that shed high levels of pathogens and predominant pathogen strains that exhibit long-term persistence appear to play significant roles in maintaining the prevalence of pathogens in animals and their production environment. Continued investigation and advancements in sequencing and other technologies are expected to reveal the mechanisms that result in super-shedding and persistence, in addition to increasing the prospects for selection of pathogen-resistant food animals and understanding of the microbial ecology of the gastrointestinal tract with regard to zoonotic pathogen colonization. It is likely that this continued research will reveal other challenges, which may further indicate potential targets or critical control points for pathogen reduction in livestock. Additional benefits of the preharvest reduction of pathogens in food animals are the reduction of produce, water, and environmental contamination, and thereby lower risk for human illnesses linked to these sources.
Collapse
|
20
|
Rapid systematic review and meta-analysis of the evidence for effectiveness of primary production interventions to control Salmonella in beef and pork. Prev Vet Med 2016; 147:213-225. [PMID: 27993401 DOI: 10.1016/j.prevetmed.2016.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 11/29/2016] [Accepted: 12/04/2016] [Indexed: 10/20/2022]
Abstract
Non-typhoidal Salmonella spp. (hereafter referred to as Salmonella) on beef and pork is an important cause of foodborne illness and death globally. A systematic review of the effectiveness of interventions to reduce Salmonella prevalence or concentration in beef and pork was undertaken. A broad search was conducted in Scopus and CAB abstracts. Each citation was appraised using screening tools tested a priori. Level 1 relevance screening excluded irrelevant citations; level 2 confirmed relevance and categorized studies. Data were then extracted, and intervention categories were descriptively summarized. Meta-analysis was performed to provide a summary estimate of treatment effect where two or more studies investigated the same intervention in comparable populations. The Grading of Recommendation, Assessment, Development and Evaluation (GRADE) approach was used to assess the confidence in the estimated measures of intervention effect for data subgroups.
Collapse
|
21
|
Manhar AK, Bashir Y, Saikia D, Nath D, Gupta K, Konwar BK, Kumar R, Namsa ND, Mandal M. Cellulolytic potential of probiotic Bacillus Subtilis AMS6 isolated from traditional fermented soybean (Churpi): An in-vitro study with regards to application as an animal feed additive. Microbiol Res 2016; 186-187:62-70. [PMID: 27242144 DOI: 10.1016/j.micres.2016.03.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 02/23/2016] [Accepted: 03/22/2016] [Indexed: 12/18/2022]
Abstract
The aim of the present study is to evaluate the probiotic attributes of Bacillus subtilis AMS6 isolated from fermented soybean (Churpi). This isolate exhibited tolerance to low pH (pH 2.0) and bile salt (0.3%), capability to autoaggregate and coaggregate. AMS6 also showed highest antibacterial activity against the pathogenic indicator strain Salmonella enterica typhimurium (MTCC 1252) and susceptibility towards different antibiotics tested. The isolate was effective in inhibiting the adherence of food borne pathogens to Caco-2 epithelial cell lines, and was also found to be non-hemolytic which further strengthen the candidature of the isolate as a potential probiotic. Further studies revealed B. subtilis AMS6 showed cellulolytic activity (0.54±0.05 filter paper units mL(-1)) at 37°C. The isolate was found to hydrolyze carboxymethyl cellulose, filter paper and maize (Zea mays) straw. The maize straw digestion was confirmed by scanning electron microscopy studies. The isolate was able to degrade filter paper within 96h of incubation. A full length cellulase gene of AMS6 was amplified using degenerate primers consisting of 1499 nucleotides. The ORF encoded for a protein of 499 amino acids residues with a predicted molecular mass of 55.04kDa. The amino acids sequence consisted of a glycosyl hydrolase family 5 domain at N-terminal; Glycosyl hydrolase catalytic core and a CBM-3 cellulose binding domain at its C terminal. The study suggests potential probiotic B. subtilis AMS6 as a promising candidate envisaging its application as an animal feed additive for enhanced fiber digestion and gut health of animal.
Collapse
Affiliation(s)
- Ajay K Manhar
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India
| | - Yasir Bashir
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India
| | - Devabrata Saikia
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India
| | - Dhrubajyoti Nath
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India
| | - Kuldeep Gupta
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India
| | - Bolin K Konwar
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India
| | - Rahul Kumar
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India
| | - Nima D Namsa
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India
| | - Manabendra Mandal
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India.
| |
Collapse
|
22
|
Rigobelo EEC, Karapetkov N, Maestá SA, Avila FA, McIntosh D. Use of probiotics to reduce faecal shedding of Shiga toxin-producing Escherichia coli in sheep. Benef Microbes 2015; 6:53-60. [PMID: 25380795 DOI: 10.3920/bm2013.0094] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Shiga toxin-producing Escherichia coli (STEC) are zoonotic, foodborne pathogens of humans. Ruminants, including sheep, are the primary reservoirs of STEC and there is a need to develop intervention strategies to reduce the entry of STEC into the food chain. The initiation of the majority of bacterial, enteric infections involves colonisation of the gut mucosal surface by the pathogen. However, probiotic bacteria can serve to decrease the severity of infection via a number of mechanisms including competition for receptors and nutrients, and/or the synthesis of organic acids and bacteriocins that create an environment unfavourable for pathogen development. The aim of the current study was to determine whether the administration of a probiotic mixture to sheep experimentally infected with a non-O157 STEC strain, carrying stx1, stx2 and eae genes, was able to decrease faecal shedding of the pathogen. The probiotic mixture contained Lactobacillus acidophilus, Lactobacillus helveticus, Lactobacillus bulgaricus, Lactobacillus lactis, Streptococcus thermophilus and Enterococcus faecium. The numbers of non-O157 STEC in faecal samples collected from sheep receiving daily doses of the probiotic mixture were significantly lower at the 3rd, 5th and 6th week post-inoculation when compared to the levels recorded in untreated animals. It was concluded that administration of the probiotic mixture reduced faecal shedding of non-O157 STEC in sheep, and holds potential as a pre-harvest intervention method to reduce transmission to humans.
Collapse
Affiliation(s)
- E E C Rigobelo
- UNESP, Cmte João Ribeiro de Barros, km 651 17900-000 Dracena, SP, Brazil
| | - N Karapetkov
- Lactina Ltd., 101 Sofia str., 1320 Bankya, Bulgaria
| | - S A Maestá
- UNESP, Cmte João Ribeiro de Barros, km 651 17900-000 Dracena, SP, Brazil
| | - F A Avila
- UNESP Jaboticabal, Rodovia Prof. Paulo Donato Castellane, 14884-900 Jaboticabal, SP, Brazil
| | - D McIntosh
- Departamento de Parasitologia Animal, Instituto de Veterinaria, Universidade Federal Rural do Rio de Janeiro (UFRRJ), BR-465 km 7, 23890-000 Seropédica, RJ, Brazil
| |
Collapse
|
23
|
Manhar AK, Saikia D, Bashir Y, Mech RK, Nath D, Konwar BK, Mandal M. In vitro evaluation of celluloytic Bacillus amyloliquefaciens AMS1 isolated from traditional fermented soybean (Churpi) as an animal probiotic. Res Vet Sci 2015; 99:149-56. [PMID: 25660401 DOI: 10.1016/j.rvsc.2015.01.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 12/07/2014] [Accepted: 01/16/2015] [Indexed: 02/06/2023]
Abstract
A microorganism showing probiotic attributes and hydrolyzing carboxymethylcellulose was isolated from traditional fermented soybean (Churpi) and identified as Bacillus amyloliquefaciens by analysis of 16S rRNA gene sequence and named as B. amyloliquefaciens AMS1. The potentiality of this isolate as probiotic was investigated in vitro and it showed gastrointestinal transit tolerance, cell surface hydrophobicity, cell aggregation and antimicrobial activity. The isolate was found to be non-hemolytic which further strengthens its candidature as a potential probiotic. The maize straw digestion was confirmed by scanning electron microscopy studies. The isolate was able to degrade filter paper within 96 hours of incubation. This study explores the possibility of combining the cellulase degrading ability of a microbe with its probiotic attributes to enhance gut health of animal and digestibility of the feed.
Collapse
Affiliation(s)
- Ajay K Manhar
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India
| | - Devabrata Saikia
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India
| | - Yasir Bashir
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India
| | - Reba K Mech
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India
| | - Dhrubajyoti Nath
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India
| | - Bolin K Konwar
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India
| | - Manabendra Mandal
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India.
| |
Collapse
|
24
|
Steinberg RS, Silva LCS, Souza TC, Lima MT, de Oliveira NLG, Vieira LQ, Arantes RME, Miyoshi A, Nicoli JR, Neumann E, Nunes ÁC. Safety and protective effectiveness of two strains of Lactobacillus with probiotic features in an experimental model of salmonellosis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2014; 11:8755-76. [PMID: 25162711 PMCID: PMC4198989 DOI: 10.3390/ijerph110908755] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 08/12/2014] [Accepted: 08/17/2014] [Indexed: 12/21/2022]
Abstract
Two strains of Lactobacillus, previously isolated from bovine faeces and tested in vitro for properties desired in probiotics, were evaluated for their in vivo effectiveness in protecting against experimental salmonellosis. L. salivarius L38 and L. acidophilus L36 previously demonstrated the ability to successfully colonize the gastrointestinal tract of germ-free mice and stimulate the immune system associated with the intestinal mucosa. L38- or L36-feeding showed no detrimental effect on the general health indicators and did not induce changes in normal architecture of liver and small intestine, indicating that the use of these strains is apparently safe. In control animals fed L38 strain, several cytokines had augmented mRNA levels that can be associated with a homeostatic state of intestinal mucosa, while L36 had less diverse regulation. IgA production and secretion in the intestinal lumen induced by infection was abrogated by pretreating with both lactobacilli. In addition, liver and small intestine histological scores and, translocation of Salmonella cells to liver and spleen, indicated that these strains did not confer protection against the infection. So, the IL-12:IL-18àIFN-g axis, essential for an effective immune response against Salmonella, was not favored with L38 or L36 strains. However, increased expression of IL-10 in different portions of the gastrointestinal tract of L38-fed animals is indicative of anti-inflammatory effect to be explored furthermore.
Collapse
Affiliation(s)
- Raphael S. Steinberg
- Department of General Biology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antonio Carlos 6627, 31270-901, Belo Horizonte, Brazil; E-Mails: (R.S.S.); (L.C.S.S.); (A.M.)
| | - Lilian C. S. Silva
- Department of General Biology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antonio Carlos 6627, 31270-901, Belo Horizonte, Brazil; E-Mails: (R.S.S.); (L.C.S.S.); (A.M.)
| | - Tássia C. Souza
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antonio Carlos 6627, 31270-901, Belo Horizonte, Brazil; E-Mails: (T.C.S.); (M.T.L.); (M.L.G.O.); (J.R.N.); (E.N.)
| | - Maurício T. Lima
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antonio Carlos 6627, 31270-901, Belo Horizonte, Brazil; E-Mails: (T.C.S.); (M.T.L.); (M.L.G.O.); (J.R.N.); (E.N.)
| | - Nayara L. G. de Oliveira
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antonio Carlos 6627, 31270-901, Belo Horizonte, Brazil; E-Mails: (T.C.S.); (M.T.L.); (M.L.G.O.); (J.R.N.); (E.N.)
| | - Leda Q. Vieira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antonio Carlos 6627, 31270-901, Belo Horizonte, Brazil; E-Mail:
| | - Rosa M. E. Arantes
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antonio Carlos 6627, 31270-901, Belo Horizonte, Brazil; E-Mail:
| | - Anderson Miyoshi
- Department of General Biology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antonio Carlos 6627, 31270-901, Belo Horizonte, Brazil; E-Mails: (R.S.S.); (L.C.S.S.); (A.M.)
| | - Jacques R. Nicoli
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antonio Carlos 6627, 31270-901, Belo Horizonte, Brazil; E-Mails: (T.C.S.); (M.T.L.); (M.L.G.O.); (J.R.N.); (E.N.)
| | - Elisabeth Neumann
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antonio Carlos 6627, 31270-901, Belo Horizonte, Brazil; E-Mails: (T.C.S.); (M.T.L.); (M.L.G.O.); (J.R.N.); (E.N.)
| | - Álvaro C. Nunes
- Department of General Biology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antonio Carlos 6627, 31270-901, Belo Horizonte, Brazil; E-Mails: (R.S.S.); (L.C.S.S.); (A.M.)
| |
Collapse
|
25
|
Wisener LV, Sargeant JM, O'Connor AM, Faires MC, Glass-Kaastra SK. The Use of Direct-Fed Microbials to Reduce Shedding ofEscherichia coliO157 in Beef Cattle: A Systematic Review and Meta-analysis. Zoonoses Public Health 2014; 62:75-89. [DOI: 10.1111/zph.12112] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Indexed: 01/05/2023]
Affiliation(s)
- L. V. Wisener
- Population Medicine; University of Guelph; Guelph ON Canada
| | - J. M. Sargeant
- Population Medicine; University of Guelph; Guelph ON Canada
- Centre for Public Health and Zoonoses; University of Guelph; Guelph ON Canada
| | - A. M. O'Connor
- Department of Veterinary Diagnostic and Production Animal Medicine; College of Veterinary Medicine; Iowa State University; Ames IA USA
| | - M. C. Faires
- Centre for Public Health and Zoonoses; University of Guelph; Guelph ON Canada
| | - S. K. Glass-Kaastra
- Centre for Public Health and Zoonoses; University of Guelph; Guelph ON Canada
| |
Collapse
|
26
|
Stanford K, Gibb D, McAllister TA. Evaluation of a shelf-stable direct-fed microbial for control of Escherichia coli O157 in commercial feedlot cattle. CANADIAN JOURNAL OF ANIMAL SCIENCE 2013. [DOI: 10.4141/cjas2013-100] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Stanford, K, Gibb, D. and McAllister, T. A. 2013. Evaluation of a shelf-stable direct-fed microbial for control of Escherichia coli O157 in commercial feedlot cattle. Can. J. Anim. Sci. 93: 535–542. A direct-fed microbial (DFM) registered for use in cattle in Canada containing Lactobacillus acidophilus strain BT-1386 and a Saccharomyces cerevisiae yeast autolysate was evaluated for control of E. coli O157. Weaned calves entered the feedlot in October and November and in January were sorted into Control (12 pens with a total of 2170 calves) and DFM treatment groups (10 pens with a total of 2040 calves). Although targeted dosage of L. acidophilus was 9 log10 colony forming units (CFU) head−1 d−1, analyses after storage at ambient temperature showed an average dose of 8.6 Log10 CFU head−1 d−1 and demonstrated stability of DFM over the range of temperatures encountered (−32.6 to 32.9°C) during storage. Calves entering the feedlot had low prevalence (0.8%) of E. coli O157 in feces, which increased to 11.2% in January. A 47°C range in ambient temperature for that month may have stressed cattle and led to increased shedding of E. coli O157 compared with seasonal norms. Comparing hide swabs collected at initiation of DFM feeding with those at shipping for slaughter, prevalence of E. coli O157 declined (P<0.05) in cattle fed DFM, although prevalence of E. coli O157 in hide swabs from Control and DFM-treated cattle did not differ at any time. As well, numbers of E. coli O157 and prevalence of the organism in fecal pats did not differ among treatments. Colonization of calves with E. coli O157 prior to DFM feeding likely reduced efficacy of DFM in the present study. Additional information regarding timing of feeding DFM relative to interactions among organisms within the gastrointestinal tract of cattle are required to ensure consistent efficacy of DFM for pre-harvest control of E. coli O157.
Collapse
Affiliation(s)
- K. Stanford
- Alberta Agriculture and Rural Development, Agriculture Centre, 5401-1st Ave. S., Lethbridge, Alberta, Canada T1J 4V6
| | - D. Gibb
- Hi-Pro Feeds, 1810-39 St. N., Lethbridge, Alberta, Canada
| | - T. A. McAllister
- Agriculture and Agri-Food Canada, 5403-1st Ave. S., Lethbridge, Alberta, Canada T1J 4B1
| |
Collapse
|
27
|
Wisener LV, Sargeant JM, O'Connor AM, Faires MC, Glass-Kaastra SK. The Evidentiary Value of Challenge Trials for Three Pre-harvest Food Safety Topics: A Systematic Assessment. Zoonoses Public Health 2013; 61:449-76. [DOI: 10.1111/zph.12083] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Indexed: 01/07/2023]
Affiliation(s)
- L. V. Wisener
- Centre for Public Health and Zoonoses; University of Guelph; Guelph ON Canada
| | - J. M. Sargeant
- Centre for Public Health and Zoonoses; University of Guelph; Guelph ON Canada
- Population Medicine; University of Guelph; Guelph ON Canada
| | - A. M. O'Connor
- Department of Veterinary Diagnostic and Production Animal Medicine; College of Veterinary Medicine; Iowa State University; Ames IA Canada
| | - M. C. Faires
- Population Medicine; University of Guelph; Guelph ON Canada
| | | |
Collapse
|
28
|
Forano E, Chaucheyras-Durand F, Bertin Y, Martin C. [EHEC carriage in ruminants and probiotic effects]. Biol Aujourdhui 2013; 207:261-7. [PMID: 24594574 DOI: 10.1051/jbio/2013023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Indexed: 01/01/2023]
Abstract
Enterohaemorrhagic Escherichia coli (EHEC) are Shiga-Toxin producing E. coli (STEC) that cause human outbreaks which can lead to a severe illness such as haemolytic-uraemic syndrome (HUS), particularly in young children. The gastrointestinal tract of cattle and other ruminants is the principal reservoir of EHEC strains and outbreaks have been associated with direct contact with the farm environment, and with the consumption of meat, dairy products, water and fruit or vegetable contaminated with ruminant manure. Several outbreaks occurred these last years in France. In Brazil, although STEC carriage in ruminants is important, human cases due to EHEC are fairly rare. In order to reduce EHEC survival in the ruminant gastrointestinal tract and thus limit contamination of food products, it is necessary to determine the mechanisms underlying EHEC persistence in this ecosystem with the aim of developing nutritional or ecological strategies. The effect of probiotics has been tested in vitro on the growth and survival of EHEC strains and in vivo on the animal carriage of these strains. Various studies have then shown that lactic bacteria or non-pathogenic E. coli strains were able to limit EHEC fecal shedding. In addition, understanding EHEC physiology in the ruminant gut is also critical for limiting EHEC shedding. We found that EHEC O157:H7 is able to use ethanolamine and mucus-derived sugars as nitrogen and carbon sources, respectively. Thus, these substrates represent an ecological niche for EHEC and their utilization confers a competitive growth advantage to these pathogens as they use them more rapidly than the bacteria belonging to the resident intestinal microbiota. Understanding EHEC metabolism and ecology in the bovine intestinal tract will allow proposing probiotic strains to compete with EHEC for nutrients and thus decrease the sanitary risk.
Collapse
Affiliation(s)
- Evelyne Forano
- INRA, UR 454 Microbiologie, Centre de Recherches de Clermont-Ferrand/Theix, 63122 St-Genès-Champanelle, France
| | - Frédérique Chaucheyras-Durand
- INRA, UR 454 Microbiologie, Centre de Recherches de Clermont-Ferrand/Theix, 63122 St-Genès-Champanelle, France - Lallemand Animal Nutrition, 19 rue des Briquetiers, 31702 Blagnac, France
| | - Yolande Bertin
- INRA, UR 454 Microbiologie, Centre de Recherches de Clermont-Ferrand/Theix, 63122 St-Genès-Champanelle, France
| | - Christine Martin
- INRA, UR 454 Microbiologie, Centre de Recherches de Clermont-Ferrand/Theix, 63122 St-Genès-Champanelle, France
| |
Collapse
|
29
|
Escherichia coli O157:H7 in beef cattle: on farm contamination and pre-slaughter control methods. Anim Health Res Rev 2012; 12:197-211. [PMID: 22152293 DOI: 10.1017/s1466252311000132] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This paper addresses food safety in beef cattle production, with particular emphasis on factors that affect the prevalence of Escherichia coli O157:H7 in beef cattle and on control methods that have been investigated. Product recalls and foodborne diseases due to this organism continue to occur even though control measures have been under investigation for over 20 years. Most meatborne outbreaks are due to improper food handling practices and consumption of undercooked meat. However, the majority of pathogenic bacteria that can spread at slaughter by cross-contamination can be traced back to the farm rather than originating from the slaughter plant. This would ideally require the adoption of rigorous on-farm intervention strategies to mitigate risks at the farm level. On-farm strategies to control and reduce E. coli O157:H7 at the farm level will reduce the risk of carcass contamination at slaughter and processing facilities although they will not eliminate E. coli O157:H7. The most successful strategy for reducing the risk of contamination of beef and beef products will involve the implementation of both pre- and post-harvest measures.
Collapse
|
30
|
Doyle MP, Erickson MC. Opportunities for mitigating pathogen contamination during on-farm food production. Int J Food Microbiol 2012; 152:54-74. [DOI: 10.1016/j.ijfoodmicro.2011.02.037] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 02/03/2011] [Accepted: 02/28/2011] [Indexed: 10/18/2022]
|
31
|
Abstract
The use of probiotics for farm animals has increased considerably over the last 15 years. Probiotics are defined as live microorganisms which can confer a health benefit for the host when administered in appropriate and regular quantities. Once ingested, the probiotic microorganisms can modulate the balance and activities of the gastrointestinal microbiota, whose role is fundamental to gut homeostasis. It has been demonstrated that numerous factors, such as dietary and management constraints, can strongly affect the structure and activities of the gut microbial communities, leading to impaired health and performance in livestock animals. In this review, the most important benefits of yeast and bacterial probiotics upon the gastrointestinal microbial ecosystem in ruminants and monogastric animals (equines, pigs, poultry, fish) reported in the recent scientific literature are described, as well as their implications in terms of animal nutrition and health. Additional knowledge on the possible mechanisms of action is also provided.
Collapse
|
32
|
Gaggia F, Di Gioia D, Baffoni L, Biavati B. The role of protective and probiotic cultures in food and feed and their impact in food safety. Trends Food Sci Technol 2011. [DOI: 10.1016/j.tifs.2011.03.003] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
33
|
Dodd CC, Sanderson MW, Jacob ME, Renter DG. Modeling preharvest and harvest interventions for Escherichia coli O157 contamination of beef cattle carcasses. J Food Prot 2011; 74:1422-33. [PMID: 21902910 DOI: 10.4315/0362-028x.jfp-10-516] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Field studies evaluating the effects of multiple concurrent preharvest interventions for Escherichia coli O157 are logistically and economically challenging; however, modeling techniques may provide useful information on these effects while also identifying crucial information gaps that can guide future research. We constructed a risk assessment model with data obtained from a systematic search of scientific literature. Parameter distributions were incorporated into a stochastic Monte Carlo modeling framework to examine the impacts of different combinations of preharvest and harvest interventions for E. coli O157 on the risk of beef carcass contamination. We estimated the risk of E. coli O157 carcass contamination conditional on preharvest fecal prevalence estimates, inclusion of feed additive(s) in the diet, vaccination for E. coli O157, transport and lairage effects, hide intervention(s), and carcass intervention(s). Prevalence parameters for E. coli O157 were assumed to encompass potential effects of concentration; therefore, concentration effects were not specifically evaluated in this study. Sensitivity analyses revealed that fecal prevalence, fecal-to-hide transfer, hide-to-carcass transfer, and carcass intervention efficacy significantly affected the risk of carcass contamination (correlation coefficients of 0.37, 0.56, 0.58, and -0.29, respectively). The results indicated that combinations of preharvest interventions may be particularly important for supplementing harvest interventions during periods of higher variability in fecal shedding prevalence (i.e., summer). Further assessments of the relationships among fecal prevalence and concentration, hide contamination, and subsequent carcass contamination are needed to further define risks and intervention impacts for E. coli O157 contamination of beef.
Collapse
Affiliation(s)
- Charles C Dodd
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506-5006, USA
| | | | | | | |
Collapse
|
34
|
McAllister TA, Beauchemin KA, Alazzeh AY, Baah J, Teather RM, Stanford K. Review: The use of direct fed microbials to mitigate pathogens and enhance production in cattle. CANADIAN JOURNAL OF ANIMAL SCIENCE 2011. [DOI: 10.4141/cjas10047] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
McAllister, T. A., Beauchemin, K. A., Alazzeh, A. Y., Baah, J., Teather, R. M. and Stanford, K. 2011. Review: The use of direct fed microbials to mitigate pathogens and enhance production in cattle. Can. J. Anim. Sci. 91: 193–211. Direct-fed microbials (DFM) have been employed in ruminant production for over 30 yr. Originally, DFM were used primarily in young ruminants to accelerate establishment of the intestinal microflora involved in feed digestion and to promote gut health. Further advancements led to more sophisticated mixtures of DFM that are targeted at improving fiber digestion and preventing ruminal acidosis in mature cattle. Through these outcomes on fiber digestion/rumen health, second-generation DFM have also resulted in improvements in milk yield, growth and feed efficiency of cattle, but results have been inconsistent. More recently, there has been an emphasis on the development of DFM that exhibit activity in cattle against potentially zoonotic pathogens such as Escherichia coli O157:H7, Salmonella spp. and Staphylococcus aureus. Regulatory requirements have limited the microbial species within DFM products to organisms that are generally recognized as safe, such as lactic acid-producing bacteria (e.g., Lactobacillus and Enterococcus spp.), fungi (e.g., Aspergillus oryzae), or yeast (e.g., Saccharomyces cerevisiae). Direct-fed microbials of rumen origin, involving lactate-utilizing species (e.g., Megasphaera elsdenii, Selenomonas ruminantium, Propionibacterium spp.) and plant cell wall-degrading isolates of Butyrivibrio fibrisolvens have also been explored, but have not been commercially used. Development of DFM that are efficacious over a wide range of ruminant production systems remains challenging because[0] comprehensive knowledge of microbial ecology is lacking. Few studies have employed molecular techniques to study in detail the interaction of DFM with native microbial communities or the ruminant host. Advancements in the metagenomics of microbial communities and the genomics of microbial–host interactions may enable DFM to be formulated to improve production and promote health, responses that are presently often achieved through the use of antimicrobials in cattle.
Collapse
Affiliation(s)
- T. A. McAllister
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, Alberta, Canada T1J 4B1
| | - K. A. Beauchemin
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, Alberta, Canada T1J 4B1
| | - A. Y. Alazzeh
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, Alberta, Canada T1J 4B1
| | - J. Baah
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, Alberta, Canada T1J 4B1
| | - R. M. Teather
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, Alberta, Canada T1J 4B1
| | - K. Stanford
- Alberta Agriculture and Rural Development, Lethbridge, Alberta, Canada T1J 4V6 (e-mail: )
| |
Collapse
|
35
|
Swyers KL, Carlson BA, Nightingale KK, Belk KE, Archibeque SL. Naturally colonized beef cattle populations fed combinations of yeast culture and an ionophore in finishing diets containing dried distiller's grains with solubles had similar fecal shedding of Escherichia coli O157:H7. J Food Prot 2011; 74:912-8. [PMID: 21669067 DOI: 10.4315/0362-028x.jfp-10-484] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Beef steers (n = 252) were used to evaluate the effects of dietary supplement on fecal shedding of Escherichia coli O157:H7. Seven pens of 9 steers (63 steers per treatment) were fed diets supplemented with or without yeast culture (YC) or monensin (MON) and their combination (YC × MON). YC and MON were offered at 2.8 g/kg and 33 mg/kg of dry matter intake, respectively. Environmental sponge samples (from each pen floor, feed bunk, and water trough) were collected on day 0. Rectal fecal grab samples were collected on days 0, 28, 56, 84, 110, and 125. Samples were collected and pooled by pen and analyzed for presumptive E. coli O157:H7 colonies, which were confirmed by a multiplex PCR assay and characterized by pulsed-field gel electrophoresis (PFGE) typing. On day 0, E. coli O157:H7 was detected in 7.0% of feed bunk samples and 14.3% of pen floor samples but in none of the water trough samples. The 71.4% prevalence of E. coli O157:H7 in fecal samples on day 0 decreased significantly (P < 0.05) over time. E. coli O157:H7 fecal shedding was not associated with dietary treatment (P > 0.05); however, in cattle fed YC and YC × MON fecal shedding was 0% by day 28. Eight Xba I PFGE subtypes were identified, and a predominant subtype and three closely related subtypes (differing by three or fewer bands) accounted for 78.7% of environmental and fecal isolates characterized. Results from this study indicate that feeding YC to cattle may numerically decrease but not eliminate fecal shedding of E. coli O157:H7 at the onset of treatment and that certain E. coli O157 subtypes found in the feedlot environment may persist in feedlot cattle.
Collapse
Affiliation(s)
- K L Swyers
- Department of Animal Sciences, Colorado State University, Fort Collins, Colorado 80523-1171, USA
| | | | | | | | | |
Collapse
|
36
|
van Elsas JD, Semenov AV, Costa R, Trevors JT. Survival of Escherichia coli in the environment: fundamental and public health aspects. THE ISME JOURNAL 2011; 5:173-83. [PMID: 20574458 PMCID: PMC3105702 DOI: 10.1038/ismej.2010.80] [Citation(s) in RCA: 360] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In this review, our current understanding of the species Escherichia coli and its persistence in the open environment is examined. E. coli consists of six different subgroups, which are separable by genomic analyses. Strains within each subgroup occupy various ecological niches, and can be broadly characterized by either commensalistic or different pathogenic behaviour. In relevant cases, genomic islands can be pinpointed that underpin the behaviour. Thus, genomic islands of, on the one hand, broad environmental significance, and, on the other hand, virulence, are highlighted in the context of E. coli survival in its niches. A focus is further placed on experimental studies on the survival of the different types of E. coli in soil, manure and water. Overall, the data suggest that E. coli can persist, for varying periods of time, in such terrestrial and aquatic habitats. In particular, the considerable persistence of the pathogenic E. coli O157:H7 is of importance, as its acid tolerance may be expected to confer a fitness asset in the more acidic environments. In this context, the extent to which E. coli interacts with its human/animal host and the organism's survivability in natural environments are compared. In addition, the effect of the diversity and community structure of the indigenous microbiota on the fate of invading E. coli populations in the open environment is discussed. Such a relationship is of importance to our knowledge of both public and environmental health.
Collapse
Affiliation(s)
- Jan Dirk van Elsas
- Department of Microbial Ecology, Centre for Ecological and Evolutionary Studies, University of Groningen, Haren, The Netherlands.
| | | | | | | |
Collapse
|
37
|
Ibrahim SA, Yang G, Song D, Tse TS. Antimicrobial Effect of Guava onEscherichia ColiO157:H7 andSalmonellaTyphimurium in Liquid Medium. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2011. [DOI: 10.1080/10942910903147833] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
38
|
Stephens T, Stanford K, Rode L, Booker C, Vogstad A, Schunicht O, Jim G, Wildman B, Perrett T, McAllister T. Effect of a direct-fed microbial on animal performance, carcass characteristics and the shedding of Escherichia coli O157 by feedlot cattle. Anim Feed Sci Technol 2010. [DOI: 10.1016/j.anifeedsci.2010.04.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
39
|
Gaggìa F, Mattarelli P, Biavati B. Probiotics and prebiotics in animal feeding for safe food production. Int J Food Microbiol 2010; 141 Suppl 1:S15-28. [PMID: 20382438 DOI: 10.1016/j.ijfoodmicro.2010.02.031] [Citation(s) in RCA: 446] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 02/04/2010] [Accepted: 02/28/2010] [Indexed: 01/16/2023]
Abstract
Recent outbreaks of food-borne diseases highlight the need for reducing bacterial pathogens in foods of animal origin. Animal enteric pathogens are a direct source for food contamination. The ban of antibiotics as growth promoters (AGPs) has been a challenge for animal nutrition increasing the need to find alternative methods to control and prevent pathogenic bacterial colonization. The modulation of the gut microbiota with new feed additives, such as probiotics and prebiotics, towards host-protecting functions to support animal health, is a topical issue in animal breeding and creates fascinating possibilities. Although the knowledge on the effects of such feed additives has increased, essential information concerning their impact on the host are, to date, incomplete. For the future, the most important target, within probiotic and prebiotic research, is a demonstrated health-promoting benefit supported by knowledge on the mechanistic actions. Genomic-based knowledge on the composition and functions of the gut microbiota, as well as its deviations, will advance the selection of new and specific probiotics. Potential combinations of suitable probiotics and prebiotics may prove to be the next step to reduce the risk of intestinal diseases and remove specific microbial disorders. In this review we discuss the current knowledge on the contribution of the gut microbiota to host well-being. Moreover, we review available information on probiotics and prebiotics and their application in animal feeding.
Collapse
Affiliation(s)
- Francesca Gaggìa
- Department of Agroenvironmental Sciences and Technologies, University of Bologna, Bologna, Italy
| | | | | |
Collapse
|
40
|
Arthur TM, Bosilevac JM, Kalchayanand N, Wells JE, Shackelford SD, Wheeler TL, Koohmaraie M. Evaluation of a direct-fed microbial product effect on the prevalence and load of Escherichia coli O157:H7 in feedlot cattle. J Food Prot 2010; 73:366-71. [PMID: 20132685 DOI: 10.4315/0362-028x-73.2.366] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Direct-fed microbials (DFM) have been identified as potential preharvest interventions for the reduction of foodborne bacterial pathogens such as Escherichia coli O157:H7. This study evaluated the efficacy of a DFM consisting of Bacillus subtilis strain 166 as an antimicrobial intervention strategy for the reduction of prevalence and load of E. coli O157:H7 in feces and on hides of feedlot cattle. Cattle (n = 526) were divided among 16 feedlot pens. Half of the pens received the DFM, and the other half did not. Hide and fecal samples were collected from each animal on days 28, 63, and 84 of the feeding trial. Over the course of the 84-day feeding period, there were no significant differences observed between treatments for either hide or fecal prevalence of E. coli O157:H7, or for the percentage of animals that were shedding E. coli O157:H7 at high levels (> or =200 CFU/g) in their feces or harboring E. coli O157:H7 at high levels (> or =40 CFU/cm(2)) on their hides. In addition, there was no significant difference between the average daily gains for the treated and control groups, with both groups averaging 1.3 kg/day. We concluded that the DFM tested would not be an effective preharvest intervention against E. coli O157:H7.
Collapse
Affiliation(s)
- Terrance M Arthur
- U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, Nebraska 68933-0166, USA.
| | | | | | | | | | | | | |
Collapse
|
41
|
Berry ED, Wells JE. Escherichia coli O157:H7: recent advances in research on occurrence, transmission, and control in cattle and the production environment. ADVANCES IN FOOD AND NUTRITION RESEARCH 2010; 60:67-117. [PMID: 20691954 DOI: 10.1016/s1043-4526(10)60004-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Escherichia coli O157:H7 is a zoonotic pathogen that is an important cause of human foodborne and waterborne disease, with a spectrum of illnesses ranging from asymptomatic carriage and diarrhea to the sometimes fatal hemolytic uremic syndrome. Outbreaks of E. coli O157:H7 disease are often associated with undercooked beef, but there are other sources of transmission, including water, produce, and animal contact, which can often be linked directly or indirectly to cattle. Thus, preharvest control of this pathogen in cattle production should have a large impact on reducing the risk of human foodborne illness. In this review, we will summarize preharvest research on E. coli O157:H7 in cattle and the production environment, focusing on factors that may influence the transmission, prevalence, and levels of this pathogen, such as season, diet, high-level shedders, and animal stress. In addition, we will discuss recent research on the reduction of this pathogen in cattle production, including vaccination, probiotics, bacteriophage, and manure treatments.
Collapse
Affiliation(s)
- Elaine D Berry
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, Nebraska, USA.
| | | |
Collapse
|
42
|
Fates of acid-resistant and non-acid-resistant Shiga toxin-producing Escherichia coli strains in ruminant digestive contents in the absence and presence of probiotics. Appl Environ Microbiol 2009; 76:640-7. [PMID: 19948865 DOI: 10.1128/aem.02054-09] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Healthy ruminants are the main reservoir of Shiga toxin-producing Escherichia coli (STEC). During their transit through the ruminant gastrointestinal tract, STEC encounters a number of acidic environments. As all STEC strains are not equally resistant to acidic conditions, the purpose of this study was to investigate whether acid resistance confers an ecological advantage to STEC strains in ruminant digestive contents and whether acid resistance mechanisms are induced in the rumen compartment. We found that acid-resistant STEC survived at higher rates during prolonged incubation in rumen fluid than acid-sensitive STEC and that they resisted the highly acidic conditions of the abomasum fluid, whereas acid-sensitive strains were killed. However, transit through the rumen contents allowed acid-sensitive strains to survive in the abomasum fluid at levels similar to those of acid-resistant STEC. The acid resistance status of the strains had little influence on STEC growth in jejunal and cecal contents. Supplementation with the probiotic Saccharomyces cerevisiae CNCM I-1077 or Lactobacillus acidophilus BT-1386 led to killing of all of the strains tested during prolonged incubation in the rumen contents, but it did not have any influence in the other digestive compartments. In addition, S. cerevisiae did not limit the induction of acid resistance in the rumen fluid. Our results indicate that the rumen compartment could be a relevant target for intervention strategies that could both limit STEC survival and eliminate induction of acid resistance mechanisms in order to decrease the number of viable STEC cells reaching the hindgut and thus STEC shedding and food contamination.
Collapse
|
43
|
Coombes BK. Type III secretion systems in symbiotic adaptation of pathogenic and non-pathogenic bacteria. Trends Microbiol 2009; 17:89-94. [PMID: 19217298 DOI: 10.1016/j.tim.2008.11.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Revised: 11/06/2008] [Accepted: 11/26/2008] [Indexed: 12/19/2022]
Abstract
The emergence of multi-drug resistance and bacteria with increased virulence is a familiar refrain to the contemporary microbiologist. Although intense research over the past decade has ascribed much molecular detail to these processes, more esoteric questions remain: for example, why are some bacteria evolving increased virulence towards humans, what are the genes underpinning this virulence potential and what are the selective pressures that favor these traits? A holistic approach that considers the organismal biology of bacteria with their diverse hosts seems appropriate to begin to tackle such issues. As it happens, the type III secretion system is turning out to be a central player in the adaptation of both parasites and mutualists to diverse hosts. With this in mind, human interventions in agriculture, animal husbandry and even drug discovery that could influence the selection of bacteria with improved type III secretion system function should be critically appraised.
Collapse
Affiliation(s)
- Brian K Coombes
- Michael DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 3Z5, Canada.
| |
Collapse
|
44
|
Probiotics, prebiotics and competitive exclusion for prophylaxis against bacterial disease. Anim Health Res Rev 2008; 9:217-25. [DOI: 10.1017/s1466252308001540] [Citation(s) in RCA: 151] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AbstractThe microbial population of the intestinal tract is a complex natural resource that can be utilized in an effort to reduce the impact of pathogenic bacteria that affect animal production and efficiency, as well as the safety of food products. Strategies have been devised to reduce the populations of food-borne pathogenic bacteria in animals at the on-farm stage. Many of these techniques rely on harnessing the natural competitive nature of bacteria to eliminate pathogens that negatively impact animal production or food safety. Thus feed products that are classified as probiotics, prebiotics and competitive exclusion cultures have been utilized as pathogen reduction strategies in food animals with varying degrees of success. The efficacy of these products is often due to specific microbial ecological factors that alter the competitive pressures experienced by the microbial population of the gut. A few products have been shown to be effective under field conditions and many have shown indications of effectiveness under experimental conditions and as a result probiotic products are widely used in all animal species and nearly all production systems. This review explores the ecology behind the efficacy of these products against pathogens found in food animals, including those that enter the food chain and impact human consumers.
Collapse
|