1
|
Circella E, Casalino G, Camarda A, Schiavone A, D'Amico F, Dimuccio MM, Pugliese N, Ceci E, Romito D, Bozzo G. <em>Pseudomonas fluorescens</em> group bacteria as responsible for chromatic alteration on rabbit carcasses. Possible hygienic implications. Ital J Food Saf 2022; 11:9998. [PMID: 35795461 PMCID: PMC9251874 DOI: 10.4081/ijfs.2022.9998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 02/21/2022] [Indexed: 11/23/2022] Open
Abstract
Bacteria belonging to the genus Pseudomonas are ubiquitous and characterized by a high adaptation capability to different environmental conditions and wide range of temperatures. They may colonize food, sometimes causing alteration. Quite recently, a blue pigmentation due to Pseudomonas fluorescens has been widely reported in mozzarella cheese. In this report, we describe a blue coloration occurred on rabbit meat stored in the refrigeration cell of a slaughterhouse. The alteration was observed after about 72 hours of storage at 4-6°C. Bacteriological analyses were performed, and a microorganism included in the Pseudomonas fluorescens group was identified. The experimental contamination was planned, using a bacterial suspension with 1×108 UFC/ml load to spread on rabbit carcasses. The blue pigmentation appeared after 24 hours of storage in a cell with the same conditions of temperature. The bacterium was reisolated and identified as responsible for the alteration on meat. These findings highlight the importance of considering the members of the genus Pseudomonas and, more specifically, of the P. fluorescens group when the microbiological quality of food is to be ascertained. In fact, even if these bacteria are not considered a public health problem, their presence should be monitored by food industry operators in self-control plans because they may cause alteration in food. In fact, any altered product should be withdrawn from the market in agreement with Regulation (EC) No 178/2002 of the European Parliament and of the Council.
Collapse
|
2
|
Guo M, Tan S, Zhu J, Sun A, Du P, Liu X. Genes Involved in Biofilm Matrix Formation of the Food Spoiler Pseudomonas fluorescens PF07. Front Microbiol 2022; 13:881043. [PMID: 35733961 PMCID: PMC9207406 DOI: 10.3389/fmicb.2022.881043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
The extracellular matrix is essential for the biofilm formation of food spoilers. Pseudomonas fluorescens PF07 is a previous isolate from spoiled marine fish; however, the genes involved in the extracellular matrix formation of PF07 biofilms remain poorly defined. In this study, PF07 formed a wrinkled macrocolony biofilm through the high production of extracellular matrix. The genes involved in biofilm matrix formation and regulation were screened and identified by RNA-seq-dependent transcriptomic analysis and gene knock-out analysis. The macrocolony biofilms of PF07 grown for 5 days (PF07_5d) were compared with those grown for 1 day (PF07_1d). A total of 1,403 genes were significantly differentially expressed during biofilm formation. These mainly include the genes related to biofilm matrix proteins, polysaccharides, rhamnolipids, secretion system, biofilm regulation, and metabolism. Among them, functional amyloid genes fapABCDE were highly upregulated in the mature biofilm, and the operon fapA-E had a –24/–12 promoter dependent on the sigma factor RpoN. Moreover, the RNA-seq analyses of the rpoN mutant, compared with PF07, revealed 159 genes were differentially expressed in the macrocolony biofilms, and fapA-E genes were positively regulated by RpoN. In addition, the deletion mutants of fapC, rpoN, and brfA (a novel gene coding for an RpoN-dependent transcriptional regulator) were defective in forming mature macrocolony biofilms, solid surface-associated (SSA) biofilms, and pellicles, and they showed significantly reduced biofilm matrices. The fap genes were significantly downregulated in ΔbrfA, as in ΔrpoN. These findings suggest that the functional amyloid Fap is the main component of PF07 biofilm matrices, and RpoN may directly regulate the transcription of fap genes, in conjunction with BrfA. These genes may serve as potential molecular targets for screening new anti-biofilm agents or for biofilm detection in food environments.
Collapse
Affiliation(s)
- Miao Guo
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Siqi Tan
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Junli Zhu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Aihua Sun
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Peng Du
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Xiaoxiang Liu
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Xiaoxiang Liu,
| |
Collapse
|
3
|
Caputo L, Quintieri L, Bugatti V, Gorrasi G. A salicylate-functionalized PET packaging to counteract blue discoloration on mozzarella cheese under cold storage. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
Quintieri L, Caputo L, Brasca M, Fanelli F. Recent Advances in the Mechanisms and Regulation of QS in Dairy Spoilage by Pseudomonas spp. Foods 2021; 10:3088. [PMID: 34945641 PMCID: PMC8701193 DOI: 10.3390/foods10123088] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/28/2021] [Accepted: 12/08/2021] [Indexed: 11/16/2022] Open
Abstract
Food spoilage is a serious issue dramatically impacting the worldwide need to counteract food insecurity. Despite the very expensive application of low temperatures, the proper conservation of fresh dairy products is continuously threatened at different stages of production and commercialization by psychrotrophic populations mainly belonging to the Pseudomonas genus. These bacteria cause discolouration, loss of structure, and off-flavours, with fatal implications on the quality and shelf-life of products. While the effects of pseudomonad decay have been widely reported, the mechanisms responsible for the activation and regulation of spoilage pathways are still poorly explored. Recently, molecule signals and regulators involved in quorum sensing (QS), such as homoserine lactones, the luxR/luxI system, hdtS, and psoR, have been detected in spoiled products and bacterial spoiler species; this evidence suggests the role of bacterial cross talk in dairy spoilage and paves the way towards the search for novel preservation strategies based on QS inhibition. The aim of this review was to investigate the advancements achieved by the application of omic approaches in deciphering the molecular mechanisms controlled by QS systems in pseudomonads, by focusing on the regulators and metabolic pathways responsible for spoilage of fresh dairy products. In addition, due the ability of pseudomonads to quickly spread in the environment as biofilm communities, which may also include pathogenic and multidrug-resistant (MDR) species, the risk derived from the gaps in clearly defined and regulated sanitization actions is underlined.
Collapse
Affiliation(s)
- Laura Quintieri
- Institute of Sciences of Food Production, National Research Council of Italy, 70126 Bari, Italy; (L.C.); (F.F.)
| | - Leonardo Caputo
- Institute of Sciences of Food Production, National Research Council of Italy, 70126 Bari, Italy; (L.C.); (F.F.)
| | - Milena Brasca
- Institute of Sciences of Food Production, National Research Council of Italy, 20133 Milan, Italy;
| | - Francesca Fanelli
- Institute of Sciences of Food Production, National Research Council of Italy, 70126 Bari, Italy; (L.C.); (F.F.)
| |
Collapse
|
5
|
Assessment of the Spoilage Microbiota during Refrigerated (4 °C) Vacuum-Packed Storage of Fresh Greek Anthotyros Whey Cheese without or with a Crude Enterocin A-B-P-Containing Extract. Foods 2021; 10:foods10122946. [PMID: 34945498 PMCID: PMC8701269 DOI: 10.3390/foods10122946] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 11/21/2022] Open
Abstract
Although fresh whey cheeses are prone to rapid deterioration, mainly by psychrotrophic Gram-negative bacteria and lactic acid bacteria (LAB), data on the specific spoilage species in traditional Greek whey cheeses are scarce. Therefore, this study quantified growth and characterized the primary spoilage bacteria in fresh Anthotyros whey cheeses stored at 4 °C in a vacuum for 40 days, without or with an added 5% (v/w) of an enterocin A-B-P crude extract (CEntE). Psychrotrophic Pseudomonas spp., Aeromonas spp., Hafnia spp. and Serratia spp. grew faster than LAB during early storage. However, LAB outgrew the Gram-negative bacteria and prevailed by mid to late storage in all cheese batches, causing a strong or milder batch-dependent natural acidification. Two major non-slime-producing and two minor biotypes of Leuconostoc-like bacteria, all identified as Leuconostoc mesenteroides by 16S rRNA sequencing, dominated the LAB association (76.7%), which also included four subdominant Carnobacterium maltaromaticum biotypes (10.9%), one Leuconostoc lactis biotype (3.3%) and few Lactococcus (1.6%), mesophilic Lactobacillus (0.8%) and Enterococcus (0.8%). Growth and distribution of LAB and Gram-negative species were strongly batch-dependent and plant-dependent. The CEntE neither retarded growth nor altered the whey cheese spoilage association but enhanced LAB growth and the declines of Gram-negative bacteria by late storage.
Collapse
|
6
|
Yap M, Ercolini D, Álvarez-Ordóñez A, O'Toole PW, O'Sullivan O, Cotter PD. Next-Generation Food Research: Use of Meta-Omic Approaches for Characterizing Microbial Communities Along the Food Chain. Annu Rev Food Sci Technol 2021; 13:361-384. [PMID: 34678075 DOI: 10.1146/annurev-food-052720-010751] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Microorganisms exist along the food chain and impact the quality and safety of foods in both positive and negative ways. Identifying and understanding the behavior of these microbial communities enable the implementation of preventative or corrective measures in public health and food industry settings. Current culture-dependent microbial analyses are time-consuming and target only specific subsets of microbes. However, the greater use of culture-independent meta-omic approaches has the potential to facilitate a thorough characterization of the microbial communities along the food chain. Indeed, these methods have shown potential in contributing to outbreak investigation, ensuring food authenticity, assessing the spread of antimicrobial resistance, tracking microbial dynamics during fermentation and processing, and uncovering the factors along the food chain that impact food quality and safety. This review examines the community-based approaches, and particularly the application of sequencing-based meta-omics strategies, for characterizing microbial communities along the food chain. Expected final online publication date for the Annual Review of Food Science and Technology, Volume 13 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Min Yap
- Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland; .,School of Microbiology, University College Cork, County Cork, Ireland
| | - Danilo Ercolini
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy.,Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Avelino Álvarez-Ordóñez
- Department of Food Hygiene and Technology, Universidad de León, León, Spain.,Institute of Food Science and Technology, Universidad de León, León, Spain
| | - Paul W O'Toole
- School of Microbiology, University College Cork, County Cork, Ireland.,APC Microbiome Ireland, University College Cork, County Cork, Ireland
| | - Orla O'Sullivan
- Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland; .,APC Microbiome Ireland, University College Cork, County Cork, Ireland.,VistaMilk SFI Research Centre, Moorepark, Fermoy, County Cork, Ireland
| | - Paul D Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland; .,APC Microbiome Ireland, University College Cork, County Cork, Ireland.,VistaMilk SFI Research Centre, Moorepark, Fermoy, County Cork, Ireland
| |
Collapse
|
7
|
Rodrigues RDS, Machado SG, Carvalho AFD, Nero LA. Pseudomonas sp. as the causative agent of anomalous blue discoloration in Brazilian fresh soft cheese (Minas Frescal). Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2021.105020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
8
|
Pseudomonas spp.: Are Food Grade Organic Acids Efficient against These Spoilage Microorganisms in Fresh Cheeses? Foods 2021; 10:foods10040891. [PMID: 33921594 PMCID: PMC8074068 DOI: 10.3390/foods10040891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/01/2021] [Accepted: 04/15/2021] [Indexed: 11/16/2022] Open
Abstract
Psychrotolerant Pseudomonas spp. are among the most common spoilage agents in fresh, soft and semi-soft cheeses; therefore, hurdles inhibiting their growth are in strong demand by producers. This study aimed to establish Minimal Inhibiting Concentrations (MICs) of lactic and acetic acid towards P. fluorescens and to evaluate the efficacy of a cheese surface treatment with these two organic acids. MICs were determined in Brain Heart Infusion broth at 30 °C: the inhibition was achieved at a concentration of 49.96 mM and 44.40 mM of acetic and lactic acid, respectively. Two series of inhibition tests were performed on fresh “Primo sale” cheese, inoculated with P. brenneri MGM3, then dipped into different acid solutions (acetic acid: 49.96, 99.92 and 149.88 mM; lactic acid: 44.40, 88.80 and 133.20 mM) and stored at 6 °C. P. brenneri MGM3 were enumerated, including a control series. A significantly lower growth was revealed at the highest concentrations tested, both for acetic (p < 0.01) and lactic acid (p < 0.05) if compared to control samples. A conditioning of “Primo sale” surface with organic acid solutions could be a useful hurdle for Pseudomonas inhibition and shelf-life extension; it should be applied in combination with other mild interventions to fight spoilage and maintain the original product characteristics.
Collapse
|
9
|
Carrascosa C, Martínez R, Sanjuán E, Millán R, Del Rosario-Quintana C, Acosta F, García A, Jaber JR. Identification of the Pseudomonas fluorescens group as being responsible for blue pigment on fresh cheese. J Dairy Sci 2021; 104:6548-6558. [PMID: 33838893 DOI: 10.3168/jds.2020-19517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/10/2020] [Indexed: 11/19/2022]
Abstract
New cases of blue cheese discoloration has led to recent research to identify the causal agent and factors that favor blue pigment appearing. Nonetheless, very few reports have described the source of contamination and the measurements to eradicate the microbiological source on cheese farms by determining the relation between blue discoloration on fresh cheese and the Pseudomonas fluorescens group. Thus, 60 samples from a cheese farm (cheese, equipment surfaces, tap water, and raw and pasteurized milk) were analyzed by phenotypical, MALDI-TOF, 16S rRNA sequencing and pulsed-field gel electrophoresis tests to determine the causal agent. The results obtained by pulsed-field gel electrophoresis with restriction enzymes XbaI and SpeI confirmed tap water as the initial contaminated source. The above-mentioned result was essential to avoid Pseudomonas contamination due to the most residual microorganisms being inactivated through a new disinfection program.
Collapse
Affiliation(s)
- Conrado Carrascosa
- Food Hygiene Unit, Department of Animal Pathology, Animal Production, Bromatology, and Food Technology, Faculty of Veterinary, Universidad de Las Palmas de Gran Canaria, Arucas, 35413 Las Palmas, Spain.
| | - Remigio Martínez
- Red de Grupos de Investigación en Recursos Faunísticos, Instituto de Biotecnología Ganadera y Cinegética (INBIO), Facultad de Veterinaria, Universidad de Extremadura, 10003 Cáceres, Spain
| | - Esther Sanjuán
- Food Hygiene Unit, Department of Animal Pathology, Animal Production, Bromatology, and Food Technology, Faculty of Veterinary, Universidad de Las Palmas de Gran Canaria, Arucas, 35413 Las Palmas, Spain
| | - Rafael Millán
- Food Hygiene Unit, Department of Animal Pathology, Animal Production, Bromatology, and Food Technology, Faculty of Veterinary, Universidad de Las Palmas de Gran Canaria, Arucas, 35413 Las Palmas, Spain
| | - Cristóbal Del Rosario-Quintana
- Microbiology Service, Complejo Hospitalario Materno-Insular de Gran Canaria, Canary Health Service, 35016, Las Palmas de Gran Canaria, Spain
| | - Félix Acosta
- Grupo de Investigación de Acuicultura (GIA), Instituto EcoAqua, Universidad de Las Palmas de Gran Canaria, Spain
| | - Alfredo García
- Department of Animal Production, CICYTEX-La Orden, 06187 Junta de Extremadura, Spain
| | - José R Jaber
- Department of Morphology, Faculty of Veterinary, Universidad de Las Palmas de Gran Canaria, Arucas, 35413 Las Palmas, Spain
| |
Collapse
|
10
|
Angarano V, Akkermans S, Smet C, Chieffi A, Van Impe JF. The potential of violet, blue, green and red light for the inactivation of P. fluorescens as planktonic cells, individual cells on a surface and biofilms. FOOD AND BIOPRODUCTS PROCESSING 2020. [DOI: 10.1016/j.fbp.2020.07.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
11
|
Angarano V, Smet C, Akkermans S, Watt C, Chieffi A, Van Impe JF. Visible Light as an Antimicrobial Strategy for Inactivation of Pseudomonas fluorescens and Staphylococcus epidermidis Biofilms. Antibiotics (Basel) 2020; 9:E171. [PMID: 32290162 PMCID: PMC7235755 DOI: 10.3390/antibiotics9040171] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 12/13/2022] Open
Abstract
The increase of antimicrobial resistance is challenging the scientific community to find solutions to eradicate bacteria, specifically biofilms. Light-Emitting Diodes (LED) represent an alternative way to tackle this problem in the presence of endogenous or exogenous photosensitizers. This work adds to a growing body of research on photodynamic inactivation using visible light against biofilms. Violet (400 nm), blue (420 nm), green (570 nm), yellow (584 nm) and red (698 nm) LEDs were used against Pseudomonas fluorescens and Staphylococcus epidermidis. Biofilms, grown on a polystyrene surface, were irradiated for 4 h. Different irradiance levels were investigated (2.5%, 25%, 50% and 100% of the maximum irradiance). Surviving cells were quantified and the inactivation kinetic parameters were estimated. Violet light could successfully inactivate P. fluorescens and S. epidermidis (up to 6.80 and 3.69 log10 reduction, respectively), while blue light was effective only against P. fluorescens (100% of maximum irradiance). Green, yellow and red irradiation neither increased nor reduced the biofilm cell density. This is the first research to test five different wavelengths (each with three intensities) in the visible spectrum against Gram-positive and Gram-negative biofilms. It provides a detailed study of the potential of visible light against biofilms of a different Gram-nature.
Collapse
Affiliation(s)
- Valeria Angarano
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, 9000 Gent, Belgium; (V.A.); (C.S.); (S.A.); (C.W.)
| | - Cindy Smet
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, 9000 Gent, Belgium; (V.A.); (C.S.); (S.A.); (C.W.)
| | - Simen Akkermans
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, 9000 Gent, Belgium; (V.A.); (C.S.); (S.A.); (C.W.)
| | - Charlotte Watt
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, 9000 Gent, Belgium; (V.A.); (C.S.); (S.A.); (C.W.)
| | - Andre Chieffi
- Procter & Gamble, Newcastle Innovation Center, Newcastle NE12 9TS, UK;
| | - Jan F.M. Van Impe
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, 9000 Gent, Belgium; (V.A.); (C.S.); (S.A.); (C.W.)
| |
Collapse
|
12
|
Circella E, Schiavone A, Barrasso R, Camarda A, Pugliese N, Bozzo G. Pseudomonas azotoformans Belonging to Pseudomonas fluorescens Group as Causative Agent of Blue Coloration in Carcasses of Slaughterhouse Rabbits. Animals (Basel) 2020; 10:ani10020256. [PMID: 32041142 PMCID: PMC7070765 DOI: 10.3390/ani10020256] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 01/29/2020] [Indexed: 11/18/2022] Open
Abstract
Simple Summary Bacteria belonging to the genus Pseudomonas are well known for their ubiquitous distribution and their high adaptation capability, which allows them to survive in a wide range of temperatures and other environmental conditions. Therefore, they may colonize food, and a number of cases of food contamination due to Pseudomonas spp. have been reported. Among them, in recent years, blue pigmentation due to Pseudomonas fluorescens has been widely described in mozzarella cheese, insomuch that it was dubbed the “blue mozzarella” case. Here, we report on the contamination of rabbit meat due to a member of the P. fluorescens group that conferred blue coloration to the food matrix. Specifically, colored meat was observed in the refrigeration cell of two butcher shops which had originated from the same slaughterhouse. Bacteriological sampling was performed on pigmented rabbit carcasses as well as from the labeling gun, knives, and water from the slaughterhouse. The same kind of bacterial colony was observed to grow from carcasses, labeling gun, and water. The first identification, performed using a miniaturized biochemical test, revealed it belonged to the P. fluorescens group, and further analysis of the 16S ribosomal RNA gene led to definitive identification as Pseudomonas azotoformans. These findings highlight the importance of considering the members of the genus Pseudomonas and, more specifically, of the P. fluorescens group when the microbiological quality of food is to be ascertained. Abstract The study describes the finding of an abnormal blue-tinged color found on rabbit carcasses in the refrigeration cell of two butcher shops in Apulia Region. The carcasses were from an industrial rabbitry for production of meat with a regularly authorized slaughterhouse. Pseudomonas azotoformans, a microorganism included in Pseudomonasfluorescens group, was isolated from samples collected by the altered carcasses, showing the growth of uniform bacterial colonies with fluorescent pigmentation. The bacterium was also isolated from an additional water sample and from the labelling gun collected in the slaughterhouse, whilst the knives used for slaughtering resulted negative. Chromatic alteration was experimentally reproduced on new carcasses using a 108 cfu/mL bacterial suspension prepared with the isolated strain. Due to their resistance characteristics, members of P. fluorescens group are very difficult to eradicate once introduced into the production environment. Therefore, their presence, even if not considered a public health problem, should be monitored by food industry operators in self-control plans.
Collapse
|
13
|
|
14
|
Quintieri L, Fanelli F, Caputo L. Antibiotic Resistant Pseudomonas Spp. Spoilers in Fresh Dairy Products: An Underestimated Risk and the Control Strategies. Foods 2019; 8:E372. [PMID: 31480507 PMCID: PMC6769999 DOI: 10.3390/foods8090372] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 01/14/2023] Open
Abstract
Microbial multidrug resistance (MDR) is a growing threat to public health mostly because it makes the fight against microorganisms that cause lethal infections ever less effective. Thus, the surveillance on MDR microorganisms has recently been strengthened, taking into account the control of antibiotic abuse as well as the mechanisms underlying the transfer of antibiotic genes (ARGs) among microbiota naturally occurring in the environment. Indeed, ARGs are not only confined to pathogenic bacteria, whose diffusion in the clinical field has aroused serious concerns, but are widespread in saprophytic bacterial communities such as those dominating the food industry. In particular, fresh dairy products can be considered a reservoir of Pseudomonas spp. resistome, potentially transmittable to consumers. Milk and fresh dairy cheeses products represent one of a few "hubs" where commensal or opportunistic pseudomonads frequently cohabit together with food microbiota and hazard pathogens even across their manufacturing processes. Pseudomonas spp., widely studied for food spoilage effects, are instead underestimated for their possible impact on human health. Recent evidences have highlighted that non-pathogenic pseudomonads strains (P. fluorescens, P. putida) are associated with some human diseases, but are still poorly considered in comparison to the pathogen P. aeruginosa. In addition, the presence of ARGs, that can be acquired and transmitted by horizontal genetic transfer, further increases their risk and the need to be deeper investigated. Therefore, this review, starting from the general aspects related to the physiological traits of these spoilage microorganisms from fresh dairy products, aims to shed light on the resistome of cheese-related pseudomonads and their genomic background, current methods and advances in the prediction tools for MDR detection based on genomic sequences, possible implications for human health, and the affordable strategies to counteract MDR spread.
Collapse
Affiliation(s)
- Laura Quintieri
- Institute of Sciences of Food Production, National Research Council of Italy, Via G. Amendola 122/O, 70126 Bari, Italy
| | - Francesca Fanelli
- Institute of Sciences of Food Production, National Research Council of Italy, Via G. Amendola 122/O, 70126 Bari, Italy.
| | - Leonardo Caputo
- Institute of Sciences of Food Production, National Research Council of Italy, Via G. Amendola 122/O, 70126 Bari, Italy
| |
Collapse
|
15
|
Kamelamela N, Zalesne M, Morimoto J, Robbat A, Wolfe BE. Indigo- and indirubin-producing strains of Proteus and Psychrobacter are associated with purple rind defect in a surface-ripened cheese. Food Microbiol 2018; 76:543-552. [PMID: 30166186 DOI: 10.1016/j.fm.2018.07.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 06/17/2018] [Accepted: 07/19/2018] [Indexed: 01/28/2023]
Abstract
The rinds of surface-ripened cheeses have expected aesthetic properties, including distinct colors, that contribute to overall quality and consumer acceptance. Atypical rind pigments are frequently reported in small-scale cheese production, but the causes of these color defects are largely unknown. We provide a potential microbial explanation for a striking purple rind defect in a surface-ripened cheese. A cheese producer in the United States reported to us several batches of a raw-milk washed-rind cheese with a distinctly purple rind. We isolated a Proteus species from samples with purple rind defect, but not from samples with typical rind pigments, suggesting that this strain of Proteus could be causing the defect. When provided tryptophan, a precursor in the indigo and indirubin biosynthesis pathway, the isolated strain of Proteus secreted purple-red pigments. A Psychrobacter species isolated from both purple and normal rinds also secreted purple-red pigments. Using thin-layer chromatography and liquid chromatography-mass spectrometry, we confirmed that these bacteria produced indigo and indirubin from tryptophan just as closely related bacteria make these compounds in purple urine bag syndrome in medical settings. Experimental cheese communities with or without Proteus and Psychrobacter confirmed that these Proteobacteria cause purple pigmentation of cheese rinds. Reports of purple rinds in two other cheeses from Europe and the observation of pigment production by Proteus and Psychrobacter strains isolated from other cheese rinds suggest that purple rind defect has the potential to be widespread in surface-ripened cheeses.
Collapse
Affiliation(s)
- Noelani Kamelamela
- Department of Biology, Tufts University, 200 Boston Ave., Medford, MA, 02155, USA
| | - Michael Zalesne
- Department of Biology, Tufts University, 200 Boston Ave., Medford, MA, 02155, USA
| | - Joshua Morimoto
- Tufts University Sensory and Science Center, Tufts University, 200 Boston Ave., Medford, MA 02155, USA; Department of Chemistry, Tufts University, 62 Talbot Ave., Medford, MA, 02155, USA
| | - Albert Robbat
- Tufts University Sensory and Science Center, Tufts University, 200 Boston Ave., Medford, MA 02155, USA; Department of Chemistry, Tufts University, 62 Talbot Ave., Medford, MA, 02155, USA
| | - Benjamin E Wolfe
- Department of Biology, Tufts University, 200 Boston Ave., Medford, MA, 02155, USA; Tufts University Sensory and Science Center, Tufts University, 200 Boston Ave., Medford, MA 02155, USA.
| |
Collapse
|
16
|
Enterococci and pseudomonads as quality indicators in industrial production and storage of mozzarella cheese from raw cow milk. Int Dairy J 2018. [DOI: 10.1016/j.idairyj.2018.02.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
17
|
Reichler SJ, Trmčić A, Martin NH, Boor KJ, Wiedmann M. Pseudomonas fluorescens group bacterial strains are responsible for repeat and sporadic postpasteurization contamination and reduced fluid milk shelf life. J Dairy Sci 2018; 101:7780-7800. [PMID: 29960782 DOI: 10.3168/jds.2018-14438] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 05/11/2018] [Indexed: 01/18/2023]
Abstract
Postpasteurization contamination (PPC) of high temperature, short time-pasteurized fluid milk by gram-negative (GN) bacteria continues to be an issue for processors. To improve PPC control, a better understanding of PPC patterns in dairy processing facilities over time and across equipment is needed. We thus collected samples from 10 fluid milk processing facilities to (1) detect and characterize PPC patterns over time, (2) determine the efficacy of different media to detect PPC, and (3) characterize sensory defects associated with PPC. Specifically, we collected 280 samples of high temperature, short time-pasteurized milk representing different products (2%, skim, and chocolate) and different fillers over 4 samplings performed over 11 mo at each of the 10 facilities. Standard plate count (SPC) as well as total GN, coliform, and Enterobacteriaceae (EB) counts were performed upon receipt and after 7, 10, 14, 17, and 21 d of storage at 6°C. We used 16S rDNA sequencing to characterize representative bacterial isolates from (1) test days with SPC >20,000 cfu/mL and (2) all samples with presumptive GN, coliforms, or EB. Day-21 samples were also evaluated by a trained defect judging panel. By d 21, 226 samples had SPC >20,000 cfu/mL on at least 1 d of shelf life; GN bacteria were found in 132 of these 226 samples, indicating PPC. Crystal violet tetrazolium agar detected PPC with the greatest sensitivity. Spoilage due to PPC was predominantly associated with Pseudomonas (isolated from 101 of the 132 samples with PPC); coliforms and EB were found in 27 and 37 samples with spoilage due to PPC, respectively. Detection of Pseudomonas and Acinetobacter was associated with lower flavor scores; coagulated, fruity fermented, and unclean defects were more prevalent in d-21 samples with PPC. Repeat isolation of Pseudomonas fluorescens group strains with identical partial 16S rDNA sequence types was observed in 8 facilities. In several facilities, specific lines, products, or processing days were linked to repeat product contamination with Pseudomonas with identical sequence types. Our data show that PPC due to Pseudomonas remains a major challenge for fluid milk processors; the inability of coliform and EB tests to detect Pseudomonas may contribute to this. Our data also provide important initial insights into PPC patterns (e.g., line-specific contamination), supporting the importance of molecular subtyping methods for identification of PPC sources.
Collapse
Affiliation(s)
- S J Reichler
- Milk Quality Improvement Program, Department of Food Science, Cornell University, Ithaca, NY 14853
| | - A Trmčić
- Milk Quality Improvement Program, Department of Food Science, Cornell University, Ithaca, NY 14853
| | - N H Martin
- Milk Quality Improvement Program, Department of Food Science, Cornell University, Ithaca, NY 14853
| | - K J Boor
- Milk Quality Improvement Program, Department of Food Science, Cornell University, Ithaca, NY 14853
| | - M Wiedmann
- Milk Quality Improvement Program, Department of Food Science, Cornell University, Ithaca, NY 14853.
| |
Collapse
|
18
|
del Olmo A, Calzada J, Nuñez M. The blue discoloration of fresh cheeses: A worldwide defect associated to specific contamination by Pseudomonas fluorescens. Food Control 2018. [DOI: 10.1016/j.foodcont.2017.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
19
|
Fasolato L, Andreani NA, Nardi RD, Nalotto G, Serva L, Cardazzo B, Balzan S, Carraro L, Fontana F, Novelli E. Spectrophotometric techniques for the characterization of strains involved in the blue pigmentation of food: Preliminary results. Ital J Food Saf 2018; 7:6928. [PMID: 29732328 PMCID: PMC5913702 DOI: 10.4081/ijfs.2018.6928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 11/10/2017] [Accepted: 11/11/2017] [Indexed: 11/23/2022] Open
Abstract
Near infrared spectroscopy (NIRs) and ultraviolet visible spectroscopy (UV-vis) have been investigated as rapid techniques to characterize foodborne bacteria through the analysis of the spectra of whole cells or microbial suspensions. The use of spectra collected from broth cultures could be used as a fingerprint for strain classification using a combined polyphasic approach. The aim of this study was to evaluate the feasibility of NIRs and UV-vis for the characterization of blue strains belonging to the Pseudomonas fluorescens group. The bacteria were isolated from different food matrices, including some spoiled samples (blue discoloration). Eightyone strains previously identified at the species level were grown in Minimal Bacterial Medium broth under standard conditions at 22°C. Two biological replicates were centrifuged in order to separate the bacterial cells from the extracellular products. Six aliquots per strain were analyzed on a small ring cup in transflectance mode (680-2500 nm, gap 2 nm). A subset of 39 strains was evaluated by UV-vis to determine changes in the spectral characteristics at 48 and 72 hours. Several chemometric approaches were tested to assess the performance of NIRs and UVvis. According to the variable importance in projection (VIP), the 1892-2020 nm spectral region showed the highest level of discrimination between blue strains and others. Additional information was provided in the 680-886 and 1454-1768 nm regions (aromatic C-H bonds) and in the 2036-2134 nm region (fatty acids). Changes in UV-vis spectral data (at 48 and 72 hours) appear to indicate the presence of phenazine and catecholic compounds in extracellular products.
Collapse
Affiliation(s)
- Luca Fasolato
- Department of Comparative Biomedicine and Food Science
| | | | - Roberta De Nardi
- Department of Animal Medicine, Productions and Health, University of Padua, Italy
| | | | - Lorenzo Serva
- Department of Animal Medicine, Productions and Health, University of Padua, Italy
| | | | | | - Lisa Carraro
- Department of Comparative Biomedicine and Food Science
| | | | | |
Collapse
|
20
|
Rossi C, Chaves‐López C, Serio A, Anniballi F, Valbonetti L, Paparella A. Effect of
Origanum vulgare
essential oil on biofilm formation and motility capacity of
Pseudomonas fluorescens
strains isolated from discoloured Mozzarella cheese. J Appl Microbiol 2018; 124:1220-1231. [DOI: 10.1111/jam.13707] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 12/20/2017] [Accepted: 01/11/2018] [Indexed: 01/24/2023]
Affiliation(s)
- C. Rossi
- Faculty of Bioscience and Technology for Food, Agriculture and Environment University of Teramo Teramo TE Italy
| | - C. Chaves‐López
- Faculty of Bioscience and Technology for Food, Agriculture and Environment University of Teramo Teramo TE Italy
| | - A. Serio
- Faculty of Bioscience and Technology for Food, Agriculture and Environment University of Teramo Teramo TE Italy
| | - F. Anniballi
- Department of Veterinary Public Health and Food Safety National Reference Centre for Botulism Istituto Superiore di Sanità Rome RM Italy
| | - L. Valbonetti
- Faculty of Bioscience and Technology for Food, Agriculture and Environment University of Teramo Teramo TE Italy
| | - A. Paparella
- Faculty of Bioscience and Technology for Food, Agriculture and Environment University of Teramo Teramo TE Italy
| |
Collapse
|
21
|
Martin NH, Boor KJ, Wiedmann M. Symposium review: Effect of post-pasteurization contamination on fluid milk quality. J Dairy Sci 2018; 101:861-870. [DOI: 10.3168/jds.2017-13339] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 09/14/2017] [Indexed: 02/04/2023]
|
22
|
Draft Genome Sequence of Pseudomonas fluorescens Strain ITEM 17298, Associated with Cheese Spoilage. GENOME ANNOUNCEMENTS 2017; 5:5/43/e01141-17. [PMID: 29074656 PMCID: PMC5658494 DOI: 10.1128/genomea.01141-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Pseudomonas fluorescens is a genetically and phenotypically heterogeneous species that is often reported as a spoiler of fresh foods, but it has recently been implicated in clinical infection. In this study, we sequenced the genome of P. fluorescens strain ITEM 17298, isolated from mozzarella cheese and able to cause several alterations under cold storage.
Collapse
|
23
|
Nowicki G, Walkowiak-Nowicka K, Zemleduch-Barylska A, Mleczko A, Frąckowiak P, Nowaczyk N, Kozdrowska E, Barylski J. Complete genome sequences of two novel autographiviruses infecting a bacterium from the Pseudomonas fluorescens group. Arch Virol 2017; 162:2907-2911. [PMID: 28551853 PMCID: PMC5563517 DOI: 10.1007/s00705-017-3419-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 05/15/2017] [Indexed: 01/11/2023]
Abstract
In this paper, we describe two independent isolates of a new member of the subfamily Autographivirinae, Pseudomonas phage KNP. The type strain (KNP) has a linear, 40,491-bp-long genome with GC content of 57.3%, and 50 coding DNA sequences (CDSs). The genome of the second strain (WRT) contains one CDS less, encodes a significantly different tail fiber protein and is shorter (40,214 bp; GC content, 57.4%). Phylogenetic analysis indicates that both KNP and WRT belong to the genus T7virus. Together with genetically similar Pseudomonas phages (gh-1, phiPSA2, phiPsa17, PPPL-1, shl2, phi15, PPpW-4, UNO-SLW4, phiIBB-PF7A, Pf-10, and Phi-S1), they form a divergent yet coherent group that stands apart from the T7-like viruses (sensu lato). Analysis of the diversity of this group and its relatedness to other members of the subfamily Autographivirinae led us to the conclusion that this group might be considered as a candidate for a new genus.
Collapse
Affiliation(s)
- Grzegorz Nowicki
- Department of Molecular Virology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614, Poznań, Poland
| | - Karolina Walkowiak-Nowicka
- Department of Animal Physiology and Development, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614, Poznań, Poland
| | - Agata Zemleduch-Barylska
- Department of Molecular Virology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614, Poznań, Poland
| | - Anna Mleczko
- Department of Molecular Virology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614, Poznań, Poland
| | - Patryk Frąckowiak
- Department of Molecular Virology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614, Poznań, Poland
| | - Natalia Nowaczyk
- Department of Molecular Virology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614, Poznań, Poland
| | - Emilia Kozdrowska
- Department of Molecular Virology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614, Poznań, Poland
| | - Jakub Barylski
- Department of Molecular Virology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614, Poznań, Poland.
| |
Collapse
|
24
|
Stellato G, Utter DR, Voorhis A, De Angelis M, Eren AM, Ercolini D. A Few Pseudomonas Oligotypes Dominate in the Meat and Dairy Processing Environment. Front Microbiol 2017; 8:264. [PMID: 28303120 PMCID: PMC5332365 DOI: 10.3389/fmicb.2017.00264] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 02/07/2017] [Indexed: 11/13/2022] Open
Abstract
The occurrence of bacteria in the food processing environments plays a key role in food contamination and development of spoilage. Species of the genus Pseudomonas are recognized as major food spoilers and the capability to actually determine spoilage can be species- as well as strain-dependent. In order to improve the taxonomic resolution of 16S rRNA gene amplicons, in this study we used oligotyping to investigate the diversity of Pseudomonas populations in meat and dairy processing environments. Sequences of the V1-V3 regions from previous studies were used, including environmental swabs and food samples from both meat and dairy processing plants. We showed that the most frequently found oligotypes belonged to Pseudomonas fragi and P. fluorescens, that the most abundant oligotypes co-occurred, and were shared between the meat and dairy datasets. All the oligotypes occurring in foods were also identified in the environmental samples of the corresponding plants, highlighting the important role of the environment as a source of strains for food contamination. Oligotypes of the same species showed different levels depending on food processing and type of sample, suggesting that different strains of the same species can have different adaptation efficiency, leading to resilient bacterial associations.
Collapse
Affiliation(s)
- Giuseppina Stellato
- Division of Microbiology, Department of Agricultural Sciences, University of Naples Federico IIPortici, Italy
| | - Daniel R. Utter
- Department of Organismic and Evolutionary Biology, Harvard University, CambridgeMA, USA
| | - Andy Voorhis
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods HoleMA, USA
| | - Maria De Angelis
- Department of Soil, Plant and Food Science, University of Bari Aldo MoroBari, Italy
| | - A. Murat Eren
- Department of Medicine, University of Chicago, ChicagoIL, USA
| | - Danilo Ercolini
- Division of Microbiology, Department of Agricultural Sciences, University of Naples Federico IIPortici, Italy
| |
Collapse
|
25
|
Proulx J, Sullivan G, Marostegan L, VanWees S, Hsu L, Moraru C. Pulsed light and antimicrobial combination treatments for surface decontamination of cheese: Favorable and antagonistic effects. J Dairy Sci 2017; 100:1664-1673. [DOI: 10.3168/jds.2016-11582] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 11/21/2016] [Indexed: 11/19/2022]
|
26
|
Proulx J, Agustin M, Sullivan G, VanWees S, Jian J, Hilton S, Moraru C. Short communication: Influence of pulsed light treatment on the quality and sensory characteristics of Cheddar cheese. J Dairy Sci 2017; 100:1004-1008. [DOI: 10.3168/jds.2016-11579] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 11/04/2016] [Indexed: 11/19/2022]
|
27
|
Chierici M, Picozzi C, La Spina MG, Orsi C, Vigentini I, Zambrini V, Foschino R. Strain Diversity of Pseudomonas fluorescens Group with Potential Blue Pigment Phenotype Isolated from Dairy Products. J Food Prot 2016; 79:1430-5. [PMID: 27497132 DOI: 10.4315/0362-028x.jfp-15-589] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The blue discoloration in Mozzarella cheese comes from bacterial spoilage due to contamination with Pseudomonas. Fourteen Pseudomonas fluorescens strains from international collections and 55 new isolates of dominant bacterial populations from spoiled fresh cheese samples were examined to assess genotypic and phenotypic strain diversity. Isolates were identified by 16S rRNA gene sequencing and tested for the production of the blue pigment at various temperatures on Mascarpone agar and in Mozzarella preserving fluid (the salty water in which the cheese is conserved, which becomes enriched by cheese minerals and peptides during storage). Pulsed-field gel electrophoresis analysis after treatment with the endonuclease SpeI separated the isolates into 42 genotypes at a similarity level of 80%. Based on the pulsotype clustering, 12 representative strains producing the blue discoloration were chosen for the multilocus sequence typing targeting the gyrB, glnS, ileS, nuoD, recA, rpoB, and rpoD genes. Four new sequence typing profiles were discovered, and the concatenated sequences of the investigated loci grouped the tested strains into the so-called ''blue branch'' of the P. fluorescens phylogenetic tree, confirming the linkage between pigment production and a specific genomic cluster. Growth temperature affected pigment production; the blue discoloration appeared at 4 and 14°C but not at 30°C. Similarly, the carbon source influenced the phenomenon; the blue phenotype was generated in the presence of glucose but not in the presence of galactose, sodium succinate, sodium citrate, or sodium lactate.
Collapse
Affiliation(s)
- Margherita Chierici
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Via G. Celoria, 2-20133 Milano, Italy
| | - Claudia Picozzi
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Via G. Celoria, 2-20133 Milano, Italy
| | - Marisa Grazia La Spina
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Via G. Celoria, 2-20133 Milano, Italy
| | - Carla Orsi
- Department of Quality, Innovation, Safety, and Environment, Granarolo S.p.A., Via Cadriano, 27/2-40127 Bologna, Italy
| | - Ileana Vigentini
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Via G. Celoria, 2-20133 Milano, Italy
| | - Vittorio Zambrini
- Department of Quality, Innovation, Safety, and Environment, Granarolo S.p.A., Via Cadriano, 27/2-40127 Bologna, Italy
| | - Roberto Foschino
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Via G. Celoria, 2-20133 Milano, Italy.
| |
Collapse
|
28
|
Caldera L, Franzetti L, Van Coillie E, De Vos P, Stragier P, De Block J, Heyndrickx M. Identification, enzymatic spoilage characterization and proteolytic activity quantification of Pseudomonas spp. isolated from different foods. Food Microbiol 2016. [DOI: 10.1016/j.fm.2015.10.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Guidone A, Zotta T, Matera A, Ricciardi A, De Filippis F, Ercolini D, Parente E. The microbiota of high-moisture mozzarella cheese produced with different acidification methods. Int J Food Microbiol 2016; 216:9-17. [DOI: 10.1016/j.ijfoodmicro.2015.09.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 07/20/2015] [Accepted: 09/04/2015] [Indexed: 12/17/2022]
|
30
|
Caldera L, Arioli S, Stuknytė M, Scarpellini M, Franzetti L. Setup of a rapid method to distinguish among dead, alive, and viable but not cultivable cells of Pseudomonas spp. in mozzarella cheese. J Dairy Sci 2015; 98:8368-74. [DOI: 10.3168/jds.2015-9677] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 08/06/2015] [Indexed: 11/19/2022]
|
31
|
Proulx J, Hsu L, Miller B, Sullivan G, Paradis K, Moraru C. Pulsed-light inactivation of pathogenic and spoilage bacteria on cheese surface. J Dairy Sci 2015; 98:5890-8. [DOI: 10.3168/jds.2015-9410] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 05/23/2015] [Indexed: 11/19/2022]
|
32
|
Andreani N, Martino M, Fasolato L, Carraro L, Montemurro F, Mioni R, Bordin P, Cardazzo B. Reprint of ‘Tracking the blue: A MLST approach to characterise the Pseudomonas fluorescens group’. Food Microbiol 2015; 45:148-58. [DOI: 10.1016/j.fm.2014.11.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 11/18/2013] [Accepted: 11/20/2013] [Indexed: 01/20/2023]
|
33
|
Remenant B, Jaffrès E, Dousset X, Pilet MF, Zagorec M. Bacterial spoilers of food: Behavior, fitness and functional properties. Food Microbiol 2015; 45:45-53. [DOI: 10.1016/j.fm.2014.03.009] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 03/11/2014] [Accepted: 03/13/2014] [Indexed: 01/24/2023]
|
34
|
Caputo L, Quintieri L, Bianchi DM, Decastelli L, Monaci L, Visconti A, Baruzzi F. Pepsin-digested bovine lactoferrin prevents Mozzarella cheese blue discoloration caused by Pseudomonas fluorescens. Food Microbiol 2014; 46:15-24. [PMID: 25475261 DOI: 10.1016/j.fm.2014.06.021] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 06/06/2014] [Accepted: 06/20/2014] [Indexed: 11/17/2022]
Abstract
The aim of this work was to check the efficacy of bovine lactoferrin hydrolyzed by pepsin (LFH) to prevent blue discoloration of Mozzarella cheese delaying the growth of the related spoilage bacteria. Among 64 Pseudomonas fluorescens strains, isolated from 105 Mozzarella samples, only ten developed blue discoloration in cold-stored Mozzarella cheese slices. When Mozzarella cheese samples from dairy were treated with LFH and inoculated with a selected P. fluorescens strain, no pigmentation and changes in casein profiles were found up to 14 days of cold storage. In addition, starting from day 5, the count of P. fluorescens spoiling strain was steadily ca. one log cycle lower than that of LFH-free samples. ESI-Orbitrap-based mass spectrometry analyses allowed to reveal the pigment leucoindigoidine only in the blue LFH-free cheese samples indicating that this compound could be considered a chemical marker of this alteration. For the first time, an innovative mild approach, based on the antimicrobial activity of milk protein hydrolysates, for counteracting blue Mozzarella event and controlling psychrotrophic pigmenting pseudomonads, is here reported.
Collapse
Affiliation(s)
- Leonardo Caputo
- Institute of Sciences of Food Production, National Research Council of Italy, Via G. Amendola 122/O, 70126 Bari, Italy.
| | - Laura Quintieri
- Institute of Sciences of Food Production, National Research Council of Italy, Via G. Amendola 122/O, 70126 Bari, Italy
| | - Daniela Manila Bianchi
- S.C. Controllo Alimenti e Igiene delle Produzioni, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna, 148, 10154 Torino, Italy
| | - Lucia Decastelli
- S.C. Controllo Alimenti e Igiene delle Produzioni, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna, 148, 10154 Torino, Italy
| | - Linda Monaci
- Institute of Sciences of Food Production, National Research Council of Italy, Via G. Amendola 122/O, 70126 Bari, Italy
| | - Angelo Visconti
- Institute of Sciences of Food Production, National Research Council of Italy, Via G. Amendola 122/O, 70126 Bari, Italy
| | - Federico Baruzzi
- Institute of Sciences of Food Production, National Research Council of Italy, Via G. Amendola 122/O, 70126 Bari, Italy
| |
Collapse
|
35
|
Tracking the blue: A MLST approach to characterise the Pseudomonas fluorescens group. Food Microbiol 2014; 39:116-26. [DOI: 10.1016/j.fm.2013.11.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 11/18/2013] [Accepted: 11/20/2013] [Indexed: 11/17/2022]
|