1
|
Zhang H, Xi J, Liu Z, Chen M, Lu Z, Xue H, Bi Y. Isolation and Identification of Pathogens Causing Blue Mold of Lanzhou Lily during Postharvest Storage and Control of Disease and Mycotoxin Accumulation by Ozone Treatment. J Fungi (Basel) 2023; 9:1091. [PMID: 37998896 PMCID: PMC10672371 DOI: 10.3390/jof9111091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/29/2023] [Accepted: 11/05/2023] [Indexed: 11/25/2023] Open
Abstract
Blue mold (penicilliosis) is a common disease of Lanzhou lily (Lilium davidii var. willmottiae) during postharvest storage, which not only seriously affects the appearance and reduces the quality of lily bulbs, but also leads to the accumulation of mycotoxins in rotten lily tissues, seriously endangering human health. Therefore, it is of great significance to clarify the main isolates causing postharvest blue mold of fresh Lanzhou lily and put forward effective measures to control the disease caused by these pathogens. In this study, pathogens were isolated and purified from the naturally diseased blue-mold tissue of Lanzhou lily, and then morphological and molecular biology techniques were applied to identify the isolates, verify the pathogenicity, determine the disease index and disease incidence, and finally, to analyze the control effect of ozone treatment on the blue mold of lily scale and mycotoxin accumulation. The results indicated that the main isolates causing postharvest blue mold of lily were Talaromyces adpressus, Penicillium gladioli, T. calidominioluteus, and P. polonicum. The pathogenicity test showed that P. gladioli and P. polonicum had a higher disease index than T. calidominioluteus and T. adpressus. Ozone treatment significantly reduced the incidence of disease caused by P. gladioli and P. polonicum, and effectively controlled the accumulation of patulin. This study characterized the main pathogens causing blue mold of postharvest Lanzhou lily during storage, and confirmed ozone application has a significant inhibitory effect on blue mold development and patulin accumulation in Lanzhou lily, which could be helpful in commercially controlling blue mold of postharvest Lanzhou lily during storage.
Collapse
Affiliation(s)
- Hui Zhang
- College of Science, Gansu Agricultural University, Lanzhou 730070, China; (H.Z.)
| | - Jihui Xi
- College of Science, Gansu Agricultural University, Lanzhou 730070, China; (H.Z.)
| | - Zhiguang Liu
- College of Science, Gansu Agricultural University, Lanzhou 730070, China; (H.Z.)
| | - Minxuan Chen
- College of Science, Gansu Agricultural University, Lanzhou 730070, China; (H.Z.)
| | - Zhenhang Lu
- College of Science, Gansu Agricultural University, Lanzhou 730070, China; (H.Z.)
| | - Huali Xue
- College of Science, Gansu Agricultural University, Lanzhou 730070, China; (H.Z.)
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
2
|
Palmieri D, Miccoli C, Notardonato I, Avino P, Lima G, De Curtis F, Ianiri G, Castoria R. Modulation of extracellular Penicillium expansum-driven acidification by Papiliotrema terrestris affects biosynthesis of patulin and has a possible role in biocontrol activity. Front Microbiol 2022; 13:973670. [PMID: 35979494 PMCID: PMC9377529 DOI: 10.3389/fmicb.2022.973670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/13/2022] [Indexed: 12/03/2022] Open
Abstract
The active regulation of extracellular pH is critical for the virulence of fungal pathogens. Penicillium expansum is the causal agent of green-blue mold on stored pome fruits and during its infection process acidifies the host tissues by secreting organic acids. P. expansum is also the main producer of patulin (PAT), a mycotoxin found in pome fruit-based products and that represents a serious health hazard for its potential carcinogenicity. While it is known that PAT biosynthesis in P. expansum is regulated by nutritional factors such as carbon and nitrogen and by the pH, the mechanistic effects of biocontrol on PAT production by P. expansum are not known. In this work, we assessed how optimal and suboptimal concentrations of the biocontrol agent (BCA) Papiliotrema terrestris LS28 affect both extracellular pH and PAT biosynthesis in P. expansum. In wounded apples, the optimal and suboptimal concentrations of the BCA provided almost complete and partial protection from P. expansum infection, respectively, and reduced PAT contamination in both cases. However, the suboptimal concentration of the BCA increased the specific mycotoxigenic activity by P. expansum. In vitro, the rate of PAT biosynthesis was strictly related to the extracellular pH, with the highest amount of PAT detected in the pH range 4–7, whereas only traces were detectable at pH 3. Moreover, both in vitro and in apple wounds the BCA counteracted the extracellular P. expansum-driven acidification maintaining extracellular pH around 4, which is within the pH range that is optimal for PAT biosynthesis. Conversely, in the absence of LS28 the pathogen-driven acidification led to rapidly achieving acidic pH values (<3) that lie outside of the optimal pH range for PAT biosynthesis. Taken together, these results suggest that pH modulation by LS28 is important to counteract the host tissue acidification and, therefore, the virulence of P. expansum. On the other hand, the buffering of P. expansum-driven acidification provided by the BCA increases the specific rate of PAT biosynthesis through the extension of the time interval at which the pH value lies within the optimal range for PAT biosynthesis. Nevertheless, the antagonistic effect provided by the BCA greatly reduced the total amount of PAT.
Collapse
Affiliation(s)
- Davide Palmieri
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
- Davide Palmieri,
| | - Cecilia Miccoli
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
- Department of Agricultural and Forestry Sciences, University of Tuscia, Viterbo, Italy
| | - Ivan Notardonato
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
| | - Pasquale Avino
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
| | - Giuseppe Lima
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
| | - Filippo De Curtis
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
| | - Giuseppe Ianiri
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
- Giuseppe Ianiri,
| | - Raffaello Castoria
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
- *Correspondence: Raffaello Castoria,
| |
Collapse
|
3
|
Hernandez-Montiel LG, Droby S, Preciado-Rangel P, Rivas-García T, González-Estrada RR, Gutiérrez-Martínez P, Ávila-Quezada GD. A Sustainable Alternative for Postharvest Disease Management and Phytopathogens Biocontrol in Fruit: Antagonistic Yeasts. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122641. [PMID: 34961112 PMCID: PMC8708500 DOI: 10.3390/plants10122641] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/18/2021] [Accepted: 11/26/2021] [Indexed: 05/06/2023]
Abstract
Postharvest diseases of fruits caused by phytopathogens cause losses up to 50% of global production. Phytopathogens control is performed with synthetic fungicides, but the application causes environmental contamination problems and human and animal health in addition to generating resistance. Yeasts are antagonist microorganisms that have been used in the last years as biocontrol agents and in sustainable postharvest disease management in fruits. Yeast application for biocontrol of phytopathogens has been an effective action worldwide. This review explores the sustainable use of yeasts in each continent, the main antagonistic mechanisms towards phytopathogens, their relationship with OMIC sciences, and patents at the world level that involve yeast-based-products for their biocontrol.
Collapse
Affiliation(s)
- Luis G. Hernandez-Montiel
- Centro de Investigaciones Biológicas del Noroeste, Calle Instituto Politécnico Nacional 195, Col. Playa Palo de Santa Rita Sur, La Paz 23096, Mexico
- Correspondence: (L.G.H.-M.); (G.D.Á.-Q.)
| | - Samir Droby
- Department of Postharvest Science, Agricultural Research Organization, The Volcani Center, P.O. Box 15159, Rishon LeZion 7505101, Israel;
| | - Pablo Preciado-Rangel
- Tecnológico Nacional de México, Instituto Tecnológico de Torreón, Carretera Torreón-San Pedro, Km 7.5, Ejido Ana, Torreón 27170, Mexico;
| | - Tomás Rivas-García
- Departamento de Sociología Rural, Universidad Autónoma Chapingo, Carr. Federal México-Texcoco, Km 38.5, San Diego 56230, Mexico;
| | - Ramsés R. González-Estrada
- Tecnológico Nacional de México, Instituto Tecnológico de Tepic, Avenida Tecnológico 2595, Col. Lagos del Country, Tepic 63175, Mexico; (R.R.G.-E.); (P.G.-M.)
| | - Porfirio Gutiérrez-Martínez
- Tecnológico Nacional de México, Instituto Tecnológico de Tepic, Avenida Tecnológico 2595, Col. Lagos del Country, Tepic 63175, Mexico; (R.R.G.-E.); (P.G.-M.)
| | - Graciela D. Ávila-Quezada
- Facultad de Ciencias Agrotecnológicas, Universidad Autónoma de Chihuahua, Escorza 900, Col. Centro, Chihuahua 31000, Mexico
- Correspondence: (L.G.H.-M.); (G.D.Á.-Q.)
| |
Collapse
|
4
|
Kosakonia radicincitans and Cryptococcus laurentii controlled Penicillium expansum rot and decreased patulin production at 4 and 25 °C. Food Microbiol 2021; 100:103863. [PMID: 34416963 DOI: 10.1016/j.fm.2021.103863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 11/24/2022]
Abstract
In the present work, we evaluated the effects of a mixture of biocontrol agents against two toxigenic strains of Penicillium expansum isolated in Argentine Patagonia from pome fruits. The two strains, INTA-5 and INTA-10, were previusly selected among ten strains coming from the Alto Valle (Rio Negro-Argentina) for their high production of patulin. For the biocontrol, Kosakonia radicincitans, Cryptococcus laurentii, and Rhodosporidium fluviale were tested in vitro experiments on Potato Dextrose Agar (PDA) dishes against the INTA-5 and INTA-10 strains. The bacterium K. radicincitans and the yeast C. laurentii were selected to be used in a mixture due to their capacity to control the fungus and reduce the mycotoxin severely. In vitro assays with the mixture showed a high antagonism against P. expansum INTA-5 and INTA-10, at 21 d of incubation at 25 °C and a patulin reduction of 98%. The mixture of microorganisms was also effective in apples stored at 25 °C for 10 d and 4 °C for 30 d. At cold storage, the mixture controlled moderately the development of rot and decreased patulin concentration. At 25 °C, the pathogen's optimal growth temperature, the mixture of Biological Control Agent (BCAs) assured both the control of rot and decrease of patulin concentration. The combination of two microorganisms, with different requirements and abilities, resulted in a mix with a strong antagonism against P. expansum with the capability to decrease the patulin concentration. Treatment with the selected mixture could be a good option for controlling strains with different behaviours and in different environmental conditions.
Collapse
|
5
|
Zheng X, Wei W, Zhou W, Li H, Rao S, Gao L, Yang Z. Prevention and detoxification of patulin in apple and its products: A review. Food Res Int 2020; 140:110034. [PMID: 33648261 DOI: 10.1016/j.foodres.2020.110034] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/19/2020] [Accepted: 12/14/2020] [Indexed: 01/09/2023]
Abstract
Patulin-producing fungi pose an unavoidable problem for apple and its product quality, thereby threatening human and/or animal health. Studies on controlling the patulin-producing fungal growth and patulin contamination in apple and its products by physical methods, chemical fungicides, and biological methods have been performed for decades, but patulin contamination has not been addressed. Here, the important of studying regulation mechanism of patulin production in apple at the protein expression and metabolism levels is proposed, which will facilitate the development of controlling patulin production by using physical, chemical, and biological methods. Furthermore, the advantages or disadvantages and effects or mechanisms of using physical, chemical, biological methods to control the decay caused by Penicillium expansum and to remove patulin in food was discussed. The development of physical methods to remove patulin depends on the development of special equipment. Chemical methods are economical and efficient, if we have ensured that there are no unknown reactions or toxic by-products by using these chemicals. The biological method not only effectively controls the decay caused by Penicillium espansum, but also removes the toxins that already exist in the food. Degradation of patulin by microorganisms or biodegradation enzymes is an efficient and promising method to remove patulin in food if the microorganisms used and the degradation products are completely non-toxic.
Collapse
Affiliation(s)
- Xiangfeng Zheng
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Wanning Wei
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Wenyuan Zhou
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Huaxiang Li
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Shengqi Rao
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Lu Gao
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Zhenquan Yang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
6
|
Díaz MA, Pereyra MM, Santander FFS, Perez MF, Córdoba JM, Alhussein M, Karlovsky P, Dib JR. Protection of Citrus Fruits from Postharvest Infection with Penicillium digitatum and Degradation of Patulin by Biocontrol Yeast Clavispora lusitaniae 146. Microorganisms 2020; 8:E1477. [PMID: 32993018 PMCID: PMC7601000 DOI: 10.3390/microorganisms8101477] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 01/31/2023] Open
Abstract
Fungal rots are one of the main causes of large economic losses and deterioration in the quality and nutrient composition of fruits during the postharvest stage. The yeast Clavispora lusitaniae 146 has previously been shown to efficiently protect lemons from green mold caused by Penicillium digitatum. In this work, the effect of yeast concentration and exposure time on biocontrol efficiency was assessed; the protection of various citrus fruits against P. digitatum by C. lusitaniae 146 was evaluated; the ability of strain 146 to degrade mycotoxin patulin was tested; and the effect of the treatment on the sensory properties of fruits was determined. An efficient protection of lemons was achieved after minimum exposure to a relatively low yeast cell concentration. Apart from lemons, the yeast prevented green mold in grapefruits, mandarins, oranges, and tangerines, implying that it can be used as a broad-range biocontrol agent in citrus. The ability to degrade patulin indicated that strain 146 may be suitable for the control of further Penicillium species. Yeast treatment did not alter the sensory perception of the aroma of fruits. These results corroborate the potential of C. lusitaniae 146 for the control of postharvest diseases of citrus fruits and indicate its suitability for industrial-scale fruit processing.
Collapse
Affiliation(s)
- Mariana Andrea Díaz
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Belgrano y Pje. Caseros, 4000 Tucumán, Argentina; (M.A.D.); (M.M.P.); (F.F.S.S.); (M.F.P.); (J.M.C.)
| | - Martina María Pereyra
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Belgrano y Pje. Caseros, 4000 Tucumán, Argentina; (M.A.D.); (M.M.P.); (F.F.S.S.); (M.F.P.); (J.M.C.)
| | - Fabricio Fabián Soliz Santander
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Belgrano y Pje. Caseros, 4000 Tucumán, Argentina; (M.A.D.); (M.M.P.); (F.F.S.S.); (M.F.P.); (J.M.C.)
| | - María Florencia Perez
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Belgrano y Pje. Caseros, 4000 Tucumán, Argentina; (M.A.D.); (M.M.P.); (F.F.S.S.); (M.F.P.); (J.M.C.)
| | - Josefina María Córdoba
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Belgrano y Pje. Caseros, 4000 Tucumán, Argentina; (M.A.D.); (M.M.P.); (F.F.S.S.); (M.F.P.); (J.M.C.)
| | - Mohammad Alhussein
- Molecular Phytopathology and Mycotoxin Research, University of Goettingen, Grisebachstrasse 6, D-37077 Göttingen, Germany;
| | - Petr Karlovsky
- Molecular Phytopathology and Mycotoxin Research, University of Goettingen, Grisebachstrasse 6, D-37077 Göttingen, Germany;
| | - Julián Rafael Dib
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Belgrano y Pje. Caseros, 4000 Tucumán, Argentina; (M.A.D.); (M.M.P.); (F.F.S.S.); (M.F.P.); (J.M.C.)
- Instituto de Microbiología, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 471, 4000 Tucumán, Argentina
| |
Collapse
|
7
|
Wei C, Yu L, Qiao N, Zhao J, Zhang H, Zhai Q, Tian F, Chen W. Progress in the distribution, toxicity, control, and detoxification of patulin: A review. Toxicon 2020; 184:83-93. [DOI: 10.1016/j.toxicon.2020.05.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 04/24/2020] [Accepted: 05/15/2020] [Indexed: 01/09/2023]
|
8
|
Yu L, Qiao N, Zhao J, Zhang H, Tian F, Zhai Q, Chen W. Postharvest control of Penicillium expansum in fruits: A review. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100633] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
9
|
Protein Expression Profile and Transcriptome Characterization of Penicillium expansum Induced by Meyerozyma guilliermondii. J FOOD QUALITY 2020. [DOI: 10.1155/2020/8056767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Antagonistic yeasts can inhibit fungal growth. In our previous research, Meyerozyma guilliermondii, one of the antagonistic yeasts, exhibited antagonistic activity against Penicillium expansum. However, the mechanisms, especially the molecular mechanisms of inhibiting activity of M. guilliermondii, are not clear. In this study, the protein expression profile and transcriptome characterization of P. expansum induced by M. guilliermondii were investigated. In P. expansum induced by M. guilliermondii, 66 proteins were identified as differentially expressed, among them six proteins were upregulated and 60 proteins were downregulated, which were associated with oxidative phosphorylation, ATP synthesis, basal metabolism, and response regulation. Simultaneously, a transcriptomic approach based on RNA-Seq was applied to annotate the genome of P. expansum and then studied the changes of gene expression in P. expansum treated with M. guilliermondii. The results showed that differentially expressed genes such as HEAT, Phosphoesterase, Polyketide synthase, ATPase, and Ras-association were significantly downregulated, in contrast to Cytochromes P450, Phosphatidate cytidylyltransferase, and Glutathione S-transferase, which were significantly upregulated. Interestingly, the downregulated differentially expressed proteins and genes have a corresponding relationship; these results revealed that these proteins and genes were important in the growth of P. expansum treated with M. guilliermondii.
Collapse
|
10
|
Wang K, Zheng X, Yang Q, Zhang H, Apaliya MT, Dhanasekaran S, Zhang X, Zhao L, Li J, Jiang Z. S-Adenosylmethionine-Dependent Methyltransferase Helps Pichia caribbica Degrade Patulin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:11758-11768. [PMID: 31577438 DOI: 10.1021/acs.jafc.9b05144] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Patulin contamination not only is a menace to human health but also causes serious environmental problems worldwide due to the synthetic fungicides that are used to control it. This study focused on investigating the patulin degradation mechanism in Pichia caribbica at the molecular level. According to the results, P. caribbica (2 × 106 cells/mL) was able to degrade patulin from 20 μg/mL to an undetectable level in 72 h. The RNA-seq data showed patulin-induced oxidative stress and responses in P. caribbica. The deletion of PcCRG1 led to a significant decrease in patulin degradation by P. caribbica, whereas the overexpression of PcCRG1 accelerated the degradation of patulin. The study identified that PcCRG1 protein had the ability to degrade patulin in vitro. Overall, we demonstrated that the patulin degradation process in P. caribbica was more than one way; PcCRG1 was an S-adenosylmethionine-dependent methyltransferase and played an important role in the patulin degradation process in P. caribbica.
Collapse
Affiliation(s)
| | - Xiangfeng Zheng
- School of Food Science and Engineering , Yangzhou University , Yangzhou 225009 , Jiangsu , People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Zhong L, Carere J, Lu Z, Lu F, Zhou T. Patulin in Apples and Apple-Based Food Products: The Burdens and the Mitigation Strategies. Toxins (Basel) 2018; 10:E475. [PMID: 30445713 PMCID: PMC6267208 DOI: 10.3390/toxins10110475] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/09/2018] [Accepted: 11/09/2018] [Indexed: 01/09/2023] Open
Abstract
Apples and apple-based products are among the most popular foods around the world for their delightful flavors and health benefits. However, the commonly found mold, Penicillium expansum invades wounded apples, causing the blue mold decay and ensuing the production of patulin, a mycotoxin that negatively affects human health. Patulin contamination in apple products has been a worldwide problem without a satisfactory solution yet. A comprehensive understanding of the factors and challenges associated with patulin accumulation in apples is essential for finding such a solution. This review will discuss the effects of the pathogenicity of Penicillium species, quality traits of apple cultivars, and environmental conditions on the severity of apple blue mold and patulin contamination. Moreover, beyond the complicated interactions of the three aforementioned factors, patulin control is also challenged by the lack of reliable detection methods in food matrices, as well as unclear degradation mechanisms and limited knowledge about the toxicities of the metabolites resulting from the degradations. As apple-based products are mainly produced with stored apples, pre- and post-harvest strategies are equally important for patulin mitigation. Before storage, disease-resistance breeding, orchard-management, and elicitor(s) application help control the patulin level by improving the storage qualities of apples and lowering fruit rot severity. From storage to processing, patulin mitigation strategies could benefit from the optimization of apple storage conditions, the elimination of rotten apples, and the safe and effective detoxification or biodegradation of patulin.
Collapse
Affiliation(s)
- Lei Zhong
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Xuanwu District, Nanjing 210095, China.
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, ON N1G 5C9, Canada.
| | - Jason Carere
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, ON N1G 5C9, Canada.
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Xuanwu District, Nanjing 210095, China.
| | - Fengxia Lu
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Xuanwu District, Nanjing 210095, China.
| | - Ting Zhou
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, ON N1G 5C9, Canada.
| |
Collapse
|
12
|
Effects of Sporidiobolus pararoseus Y16 on Postharvest Blue Mold Decay and the Defense Response of Apples. J FOOD QUALITY 2018. [DOI: 10.1155/2018/6731762] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The efficacy of Sporidiobolus pararoseus Y16 in controlling postharvest blue mold caused by Penicillium expansum on apples and the defense response involved were evaluated. The results suggested that the decay incidence of blue mold of apples treated by S. pararoseus Y16 was significantly reduced compared with the control. In vitro testing indicated that germination of spores and germ tube length of P. expansum were markedly inhibited by S. pararoseus Y16. Meanwhile, polyphenol oxidase (PPO), peroxidase (POD), phenylalanine ammonia lyase (PAL), and catalase (CAT) activities and several pathogenesis-related (PR) gene expression levels (including PR3, PR4, PR5, and PR9) were determined. In apples, the activities of PPO, POD, CAT, and PAL were significantly induced by S. pararoseus Y16 treatment compared with the control fruits. The relative expression levels of PR3 and PR4 were significantly induced at 4 and 6 d, while PR5 was significantly induced at 4 and 6 d and PR9 was significantly induced at 4 d. Therefore, the reduction in apple fruit decay by S. pararoseus Y16 treatment could be related to the increased activities of related enzymes and proteins involved in the defense against pathogens, which suggest that S. pararoseus Y16 is a potential antagonistic yeast.
Collapse
|
13
|
Zheng X, Yang Q, Zhang X, Apaliya MT, Ianiri G, Zhang H, Castoria R. Biocontrol Agents Increase the Specific Rate of Patulin Production by Penicillium expansum but Decrease the Disease and Total Patulin Contamination of Apples. Front Microbiol 2017; 8:1240. [PMID: 28713362 PMCID: PMC5492354 DOI: 10.3389/fmicb.2017.01240] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 06/19/2017] [Indexed: 11/13/2022] Open
Abstract
Synthetic fungicides are commonly employed for the control of postharvest diseases of fruits. However, due to health concerns about the use of these chemicals, alternative control methods including biocontrol based on antagonistic yeasts are gaining in popularity. In this study, we investigated the effects of two biocontrol yeasts, Rhodotorula mucilaginosa strain 3617 and Rhodotorula kratochvilovae strain LS11, on blue mold and patulin (PAT) contamination caused by Penicillium expansum strains PY and FS7 in artificially inoculated Fuji apples stored at 20°C for 9 days. To correlate the development of the P. expansum strains in yeast-treated and untreated apples with PAT production, we quantified their biomass in the infected fruits using a recently published quantitative real-time polymerase chain reaction method based on specific primers for patF, a gene from P. expansum that is involved in PAT biosynthesis. Both yeasts significantly reduced the disease incidence caused by the two strains of P. expansum up to 5–7 days of incubation, and lowered their biomass and the progression of symptoms up to 9 days. Interestingly, both yeasts strains increased the rate of PAT production (expressed as ng patulin/μg fungal DNA) by the two pathogenic strains. Nevertheless, both biocontrol agents reduced the total PAT contamination, especially in the case of P. expansum strain FS7, the higher PAT producer of the two tested P. expansum strains. Comparing between the yeast strains, R. kratochvilovae LS11 was more effective than R. mucilaginosa 3617 for the control of P. expansum.
Collapse
Affiliation(s)
- Xiangfeng Zheng
- School of Food and Biological Engineering, Jiangsu UniversityZhenjiang, China
| | - Qiya Yang
- School of Food and Biological Engineering, Jiangsu UniversityZhenjiang, China
| | - Xiaoyun Zhang
- School of Food and Biological Engineering, Jiangsu UniversityZhenjiang, China
| | - Maurice T Apaliya
- School of Food and Biological Engineering, Jiangsu UniversityZhenjiang, China
| | - Giuseppe Ianiri
- Department of Agricultural, Environmental and Food Sciences, University of MoliseCampobasso, Italy
| | - Hongyin Zhang
- School of Food and Biological Engineering, Jiangsu UniversityZhenjiang, China
| | - Raffaello Castoria
- School of Food and Biological Engineering, Jiangsu UniversityZhenjiang, China.,Department of Agricultural, Environmental and Food Sciences, University of MoliseCampobasso, Italy
| |
Collapse
|
14
|
Tannous J, Keller NP, Atoui A, El Khoury A, Lteif R, Oswald IP, Puel O. Secondary metabolism in Penicillium expansum: Emphasis on recent advances in patulin research. Crit Rev Food Sci Nutr 2017; 58:2082-2098. [DOI: 10.1080/10408398.2017.1305945] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Joanna Tannous
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, 1550 Linden Dr., Madison, Wisconsin, USA
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
- Université Saint-Joseph, Centre d'Analyses et de Recherche, Unité de Technologie et Valorisation Alimentaire, Campus des Sciences et Technologies, Mar Roukos, Mkallès, Riad El Solh, Beirut, Lebanon
| | - Nancy P. Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, 1550 Linden Dr., Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ali Atoui
- Laboratory of Microorganisms and Food Irradiation, Lebanese Atomic Energy Commission-CNRS, Riad El Solh, Beirut, Lebanon
- Laboratory of Microbiology, Department of Biology, Faculty of Sciences, Lebanese University, Hadath Campus, Beirut, Lebanon
| | - André El Khoury
- Université Saint-Joseph, Centre d'Analyses et de Recherche, Unité de Technologie et Valorisation Alimentaire, Campus des Sciences et Technologies, Mar Roukos, Mkallès, Riad El Solh, Beirut, Lebanon
| | - Roger Lteif
- Université Saint-Joseph, Centre d'Analyses et de Recherche, Unité de Technologie et Valorisation Alimentaire, Campus des Sciences et Technologies, Mar Roukos, Mkallès, Riad El Solh, Beirut, Lebanon
| | - Isabelle P. Oswald
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Olivier Puel
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| |
Collapse
|
15
|
Ioi JD, Zhou T, Tsao R, F Marcone M. Mitigation of Patulin in Fresh and Processed Foods and Beverages. Toxins (Basel) 2017; 9:E157. [PMID: 28492465 PMCID: PMC5450705 DOI: 10.3390/toxins9050157] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/13/2017] [Accepted: 05/03/2017] [Indexed: 11/16/2022] Open
Abstract
Patulin is a mycotoxin of food safety concern. It is produced by numerous species of fungi growing on fruits and vegetables. Exposure to the toxin is connected to issues neurological, immunological, and gastrointestinal in nature. Regulatory agencies worldwide have established maximum allowable levels of 50 µg/kg in foods. Despite regulations, surveys continue to find patulin in commercial food and beverage products, in some cases, to exceed the maximum limits. Patulin content in food can be mitigated throughout the food processing chain. Proper handling, storage, and transportation of food can limit fungal growth and patulin production. Common processing techniques including pasteurisation, filtration, and fermentation all have an effect on patulin content in food but individually are not sufficient safety measures. Novel methods to remove or detoxify patulin have been reviewed. Non-thermal processing techniques such as high hydrostatic pressure, UV radiation, enzymatic degradation, binding to microorganisms, and chemical degradation all have potential but have not been optimised. Until further refinement of these methods, the hurdle approach to processing should be used where food safety is concerned. Future development should focus on determining the nature and safety of chemicals produced from the breakdown of patulin in treatment techniques.
Collapse
Affiliation(s)
- J David Ioi
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G5C9, Canada.
- Department of Food Science, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| | - Ting Zhou
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G5C9, Canada.
| | - Rong Tsao
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G5C9, Canada.
| | - Massimo F Marcone
- Department of Food Science, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| |
Collapse
|
16
|
|
17
|
Karlovsky P, Suman M, Berthiller F, De Meester J, Eisenbrand G, Perrin I, Oswald IP, Speijers G, Chiodini A, Recker T, Dussort P. Impact of food processing and detoxification treatments on mycotoxin contamination. Mycotoxin Res 2016; 32:179-205. [PMID: 27554261 PMCID: PMC5063913 DOI: 10.1007/s12550-016-0257-7] [Citation(s) in RCA: 337] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 07/29/2016] [Accepted: 08/05/2016] [Indexed: 11/15/2022]
Abstract
Mycotoxins are fungal metabolites commonly occurring in food, which pose a health risk to the consumer. Maximum levels for major mycotoxins allowed in food have been established worldwide. Good agricultural practices, plant disease management, and adequate storage conditions limit mycotoxin levels in the food chain yet do not eliminate mycotoxins completely. Food processing can further reduce mycotoxin levels by physical removal and decontamination by chemical or enzymatic transformation of mycotoxins into less toxic products. Physical removal of mycotoxins is very efficient: manual sorting of grains, nuts, and fruits by farmers as well as automatic sorting by the industry significantly lowers the mean mycotoxin content. Further processing such as milling, steeping, and extrusion can also reduce mycotoxin content. Mycotoxins can be detoxified chemically by reacting with food components and technical aids; these reactions are facilitated by high temperature and alkaline or acidic conditions. Detoxification of mycotoxins can also be achieved enzymatically. Some enzymes able to transform mycotoxins naturally occur in food commodities or are produced during fermentation but more efficient detoxification can be achieved by deliberate introduction of purified enzymes. We recommend integrating evaluation of processing technologies for their impact on mycotoxins into risk management. Processing steps proven to mitigate mycotoxin contamination should be used whenever necessary. Development of detoxification technologies for high-risk commodities should be a priority for research. While physical techniques currently offer the most efficient post-harvest reduction of mycotoxin content in food, biotechnology possesses the largest potential for future developments.
Collapse
Affiliation(s)
- Petr Karlovsky
- Molecular Phytopathology and Mycotoxin Research, Georg-August-University Göttingen, Grisebachstrasse6, 37077, Göttingen, Germany
| | - Michele Suman
- Barilla G. R. F.lli SpA, Advanced Laboratory Research, via Mantova 166, 43122, Parma, Italy
| | - Franz Berthiller
- Christian Doppler Laboratory for Mycotoxin Metabolism, Department IFA-Tulln, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Straße 20, 3430, Tulln, Austria
| | - Johan De Meester
- Cargill R&D Center Europe, Havenstraat 84, B-1800, Vilvoorde, Belgium
| | - Gerhard Eisenbrand
- Department of Chemistry, Division of Food Chemistry and Toxicology, Germany (retired), University of Kaiserslautern, P.O.Box 3049, 67653, Kaiserslautern, Germany
| | - Irène Perrin
- Nestlé Research Center, Vers-chez-les-Blanc, PO Box 44, 1000, Lausanne 26, Switzerland
| | - Isabelle P Oswald
- INRA, UMR 1331 ToxAlim, Research Center in Food Toxicology, 180 chemin de Tournefeuille, BP93173, 31027, Toulouse, France
- Université de Toulouse, INP, UMR1331, Toxalim, Toulouse, France
| | - Gerrit Speijers
- General Health Effects Toxicology Safety Food (GETS), Winterkoning 7, 34353 RN, Nieuwegein, The Netherlands
| | - Alessandro Chiodini
- International Life Sciences Institute-ILSI Europe, Avenue E. Mounier 83, Box 6, 1200, Brussels, Belgium
| | - Tobias Recker
- International Life Sciences Institute-ILSI Europe, Avenue E. Mounier 83, Box 6, 1200, Brussels, Belgium
| | - Pierre Dussort
- International Life Sciences Institute-ILSI Europe, Avenue E. Mounier 83, Box 6, 1200, Brussels, Belgium.
| |
Collapse
|
18
|
Zheng X, Yang Q, Zhang H, Cao J, Zhang X, Apaliya MT. The Possible Mechanisms Involved in Degradation of Patulin by Pichia caribbica. Toxins (Basel) 2016; 8:toxins8100289. [PMID: 27735830 PMCID: PMC5086649 DOI: 10.3390/toxins8100289] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 09/29/2016] [Accepted: 09/30/2016] [Indexed: 01/15/2023] Open
Abstract
In this work, we examined the mechanisms involved in the degradation of patulin by Pichia caribbica. Our results indicate that cell-free filtrate of P. caribbica reduced patutlin content. The heat-killed cells could not degrade patulin. However, the live cells significantly reduced the concentration of the patulin. In furtherance to this, it was observed that patulin was not detected in the broken yeast cells and cell wall. The addition of cycloheximide to the P. caribbica cells decreased the capacity of degradation of patulin. Proteomics analyses revealed that patulin treatment resulted in an upregulated protein which was involved in metabolism and stress response processes. Our results suggested that the mechanism of degradation of patulin by P. caribbica was not absorption; the presence of patulin can induce P. caribbica to produce associated intracellular and extracellular enzymes, both of which have the ability to degrade patulin. The result provides a new possible method that used the enzymes produced by yeast to detoxify patulin in food and feed.
Collapse
Affiliation(s)
- Xiangfeng Zheng
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China.
| | - Qiya Yang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China.
| | - Hongyin Zhang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China.
| | - Jing Cao
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China.
| | - Xiaoyun Zhang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China.
| | - Maurice Tibiru Apaliya
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China.
| |
Collapse
|
19
|
Hu H, Yan F, Wilson C, Shen Q, Zheng X. The ability of a cold-adapted Rhodotorula mucilaginosa strain from Tibet to control blue mold in pear fruit. Antonie van Leeuwenhoek 2015; 108:1391-1404. [DOI: 10.1007/s10482-015-0593-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/18/2015] [Indexed: 10/22/2022]
|