1
|
Trapella G, Cinti N, Parma L, De Marco A, Dell'Acqua AN, Turroni S, Rampelli S, Scicchitano D, Iuffrida L, Bonaldo A, Franzellitti S, Candela M, Palladino G. Microbiome variation at the clam-sediment interface may explain changes in local productivity of Chamelea gallina in the North Adriatic sea. BMC Microbiol 2023; 23:402. [PMID: 38114947 PMCID: PMC10729368 DOI: 10.1186/s12866-023-03146-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/07/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND The clam Chamelea gallina is an ecologically and economically important marine species in the Northwestern Adriatic Sea, which currently suffers from occasional, and still unexplained, widespread mortality events. In order to provide some glimpses in this direction, this study explores the connections between microbiome variations at the clam-sediment interface and the nutritional status of clams collected at four Italian production sites along the Emilia Romagna coast, with different mortality incidence, higher in the Northern sites and lower in the Southern sites. RESULTS According to our findings, each production site showed a peculiar microbiome arrangement at the clam-sediment interface, with features that clearly differentiate the Northern and Southern sites, with the latter also being associated with a better nutritional status of the animal. Interestingly, the C. gallina digestive gland microbiome from the Southern sites was enriched in some health-promoting microbiome components, capable of supplying the host with essential nutrients and defensive molecules. Furthermore, in experiments conducted under controlled conditions in aquaria, we provided preliminary evidence of the prebiotic action of sediments from the Southern sites, allowing to boost the acquisition of previously identified health-promoting components of the digestive gland microbiome by clams from the Northern sites. CONCLUSIONS Taken together, our findings may help define innovative microbiome-based management strategies for the preservation of the productivity of C. gallina clams in the Adriatic Sea, through the identification and maintenance of a probiotic niche at the animal-sediment interface.
Collapse
Affiliation(s)
- Giulia Trapella
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Bologna, 40126, Italy
- Fano Marine Center, The Inter-Institute Center for Research on Marine Bioaffiliationersity, Resources and Biotechnologies, Fano, 61032, Italy
| | - Nicolò Cinti
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Bologna, 40126, Italy
- Fano Marine Center, The Inter-Institute Center for Research on Marine Bioaffiliationersity, Resources and Biotechnologies, Fano, 61032, Italy
| | - Luca Parma
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia (Bologna), 40064, Italy
| | - Antonina De Marco
- Fano Marine Center, The Inter-Institute Center for Research on Marine Bioaffiliationersity, Resources and Biotechnologies, Fano, 61032, Italy
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia (Bologna), 40064, Italy
| | - Andrea Nicolò Dell'Acqua
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Bologna, 40126, Italy
- Fano Marine Center, The Inter-Institute Center for Research on Marine Bioaffiliationersity, Resources and Biotechnologies, Fano, 61032, Italy
| | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Bologna, 40126, Italy
| | - Simone Rampelli
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Bologna, 40126, Italy
- Fano Marine Center, The Inter-Institute Center for Research on Marine Bioaffiliationersity, Resources and Biotechnologies, Fano, 61032, Italy
| | - Daniel Scicchitano
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Bologna, 40126, Italy
- Fano Marine Center, The Inter-Institute Center for Research on Marine Bioaffiliationersity, Resources and Biotechnologies, Fano, 61032, Italy
| | - Letizia Iuffrida
- Fano Marine Center, The Inter-Institute Center for Research on Marine Bioaffiliationersity, Resources and Biotechnologies, Fano, 61032, Italy
- Animal and Environmental Physiology Laboratory, Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Ravenna, 48123, Italy
| | - Alessio Bonaldo
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia (Bologna), 40064, Italy
| | - Silvia Franzellitti
- Fano Marine Center, The Inter-Institute Center for Research on Marine Bioaffiliationersity, Resources and Biotechnologies, Fano, 61032, Italy
- Animal and Environmental Physiology Laboratory, Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Ravenna, 48123, Italy
| | - Marco Candela
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Bologna, 40126, Italy
- Fano Marine Center, The Inter-Institute Center for Research on Marine Bioaffiliationersity, Resources and Biotechnologies, Fano, 61032, Italy
| | - Giorgia Palladino
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Bologna, 40126, Italy.
- Fano Marine Center, The Inter-Institute Center for Research on Marine Bioaffiliationersity, Resources and Biotechnologies, Fano, 61032, Italy.
| |
Collapse
|
2
|
Milan M, Bernardini I, Bertolini C, Dalla Rovere G, Manuzzi A, Pastres R, Peruzza L, Smits M, Fabrello J, Breggion C, Sambo A, Boffo L, Gallocchio L, Carrer C, Sorrentino F, Bettiol C, Lodi GC, Semenzin E, Varagnolo M, Matozzo V, Bargelloni L, Patarnello T. Multidisciplinary long-term survey of Manila clam grown in farming sites subjected to different environmental conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160796. [PMID: 36528093 DOI: 10.1016/j.scitotenv.2022.160796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/14/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
In recent years recurrent bivalve mass mortalities considerably increased around the world, causing the collapse of natural and farmed populations. Venice Lagoon has historically represented one of the major production areas of the Manila clam Ruditapes philippinarum in Europe. However, in the last 20 years a 75 % decrease in the annual production has been experienced. While climate change and anthropogenic interventions may have played a key role in natural and farmed stocks reductions, no studies investigated at multiple levels the environmental stressors affecting farmed Manila clam to date. In this work we carried out a long-term monitoring campaign on Manila clam reared in four farming sites located at different distances from the southern Venice Lagoon inlet, integrating (meta)genomic approaches (i.e. RNA-seq; microbiota characterization), biometric measurements and chemical-physical parameters. Our study allowed to characterize the molecular mechanisms adopted by this species to cope with the different environmental conditions characterizing farming sites and to propose hypotheses to explain mortality events observed in recent years. Among the most important findings, the disruption of clam's immune response, the spread of Vibrio spp., and the up-regulation of molecular pathways involved in xenobiotic metabolism suggested major environmental stressors affecting clams farmed in sites placed close to Chioggia's inlet, where highest mortality was also observed. Overall, our study provides knowledge-based tools for managing Manila clam farming on-growing areas. In addition, the collected data is a snapshot of the time immediately before the commissioning of MoSE, a system of mobile barriers aimed at protecting Venice from high tides, and will represent a baseline for future studies on the effects of MoSE on clams farming and more in general on the ecology of the Venice Lagoon.
Collapse
Affiliation(s)
- Massimo Milan
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, Agripolis, 35020 Legnaro, PD, Italy.
| | - Ilaria Bernardini
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, Agripolis, 35020 Legnaro, PD, Italy
| | - Camilla Bertolini
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via torino 155, 30170 Venezia, Italy
| | - Giulia Dalla Rovere
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, Agripolis, 35020 Legnaro, PD, Italy
| | - Alice Manuzzi
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, Agripolis, 35020 Legnaro, PD, Italy
| | - Roberto Pastres
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via torino 155, 30170 Venezia, Italy
| | - Luca Peruzza
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, Agripolis, 35020 Legnaro, PD, Italy
| | - Morgan Smits
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, Agripolis, 35020 Legnaro, PD, Italy
| | - Jacopo Fabrello
- Department of Biology, University of Padova, Via Bassi 58/B, 35131 Padova, Italy
| | - Cristina Breggion
- Department of Biology, University of Padova, Via Bassi 58/B, 35131 Padova, Italy
| | - Andrea Sambo
- Department of Biology, University of Padova, Via Bassi 58/B, 35131 Padova, Italy
| | | | - Loretta Gallocchio
- Thetis s.p.a., c /o Provveditorato Interregionale OO.PP. - Ufficio Tecnico Antinquinamento Laboratorio CSMO, Via Asconio Pediano, 9, 35127 Padova, PD, Italy
| | - Claudio Carrer
- Thetis s.p.a., c /o Provveditorato Interregionale OO.PP. - Ufficio Tecnico Antinquinamento Laboratorio CSMO, Via Asconio Pediano, 9, 35127 Padova, PD, Italy
| | - Francesco Sorrentino
- Provveditorato Interregionale OO.PP. - Ufficio Tecnico Antinquinamento, San Polo 19, 30124 Venezia, Italy)
| | - Cinzia Bettiol
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via torino 155, 30170 Venezia, Italy
| | - Giulia Carolina Lodi
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via torino 155, 30170 Venezia, Italy
| | - Elena Semenzin
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via torino 155, 30170 Venezia, Italy
| | - Maurizio Varagnolo
- Societa' Agricola Kappa S. S. di Varagnolo Maurizio E. C., Chioggia, VE, Italy
| | - Valerio Matozzo
- Department of Biology, University of Padova, Via Bassi 58/B, 35131 Padova, Italy
| | - Luca Bargelloni
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, Agripolis, 35020 Legnaro, PD, Italy
| | - Tomaso Patarnello
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, Agripolis, 35020 Legnaro, PD, Italy
| |
Collapse
|
3
|
Esposito M, Canzanella S, Danese A, Pepe A, Gallo P. Essential and Non-Essential Elements in Razor Clams ( Solen marginatus, Pulteney, 1799) from the Domitio Littoral in Campania (Southwestern Tyrrhenian Sea, Italy). TOXICS 2022; 10:toxics10080452. [PMID: 36006131 PMCID: PMC9413232 DOI: 10.3390/toxics10080452] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 07/30/2022] [Accepted: 08/02/2022] [Indexed: 05/22/2023]
Abstract
The levels of essential (Cu, Cr, Co, Mn, Se, Zn) and non-essential (As, Be, Bi, Cd, Cs, Ga, Ni, Pb, Sr, Tl, U, V) trace elements were studied in razor clams (Solen marginatus) collected from the Tyrrhenian coast of Southern Italy at five selected sites along the Domitio littoral in the Campania region. The main objectives of this study were to assess the contamination status of these bivalve mollusks and to evaluate the risks to the environment and consumers due to metal contamination. The concentrations of 18 trace elements were determined after microwave-assisted mineralization and by inductively coupled plasma mass spectrometry (ICP-MS). Concentrations of the toxic elements Pb and Cd were below the maximum levels established by Commission Regulation (EC) 1881/2006, while higher average concentrations of arsenic were found at each of the five sites studied. Regarding the other trace elements, contamination levels followed the order: Zn > Sr > Mn > Cu > Se > Cr > V > Ni > Co > Ga > Cs > Be > U > Bi > Tl. No significant differences among the sites were found with regard to any of the trace elements analyzed, and element levels in razor clams did not reflect sediment contamination. The results demonstrated the substantial food safety of the razor clams in this area with respect to heavy metals but revealed a potential health risk due to arsenic contamination in all the areas sampled.
Collapse
Affiliation(s)
- Mauro Esposito
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Department of Chemistry, Via Salute 2, 80055 Portici, Italy
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Centro di Referenza Nazionale per l’Analisi e Studio di Correlazione tra Ambiente, Animale e Uomo, Via Salute 2, 80055 Portici, Italy
| | - Silvia Canzanella
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Department of Chemistry, Via Salute 2, 80055 Portici, Italy
- Correspondence:
| | - Amalia Danese
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Department of Chemistry, Via Salute 2, 80055 Portici, Italy
| | - Angela Pepe
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Department of Chemistry, Via Salute 2, 80055 Portici, Italy
| | - Pasquale Gallo
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Department of Chemistry, Via Salute 2, 80055 Portici, Italy
| |
Collapse
|
4
|
Zini S, Mouhanni H, Besombes C. Effect of Argan oil, thyme, and rosemary on the drying process of
Sardina Pilchardus
fillets. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Soukaina Zini
- Research team: Materials, Mechanics and Civil Engineering ENSA, Ibn Zohr University Agadir Tan‐Tan Morocco
| | - Hind Mouhanni
- Research team: Materials, Mechanics and Civil Engineering ENSA, Ibn Zohr University Agadir Tan‐Tan Morocco
| | - Colette Besombes
- Laboratory of Engineering Science for Environment University Rochelle La Rochelle France
| |
Collapse
|
5
|
Tian Y, Pan L, Miao J, Lei F, Xu R, Zhang X. The mechanism of apoptosis of Chlamys farreri hemocytes under benzopyrene stress in vitro. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 794:148731. [PMID: 34217077 DOI: 10.1016/j.scitotenv.2021.148731] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Hemocytes are critical to the immune defense system of bivalves, and polycyclic aromatic hydrocarbons (PAHs) can mediate the immunity of bivalves by affecting the apoptosis of hemocytes. However, the underlying mechanism is still unclear. Chlamys farreri, as an important economic bivalve, was selected as the research subject for this experimentation. The hemocytes were exposed to typical PAHs-benzopyrene (B[a]P) in vitro to explore the apoptosis mechanism through detecting oxidative stress and oxidative damage-related indicators, apoptosis pathway factors, and apoptosis rate within 24 h. The results showed that the reactive oxygen species (ROS) and benzo[a]pyrene-7,8-diol-9,10-epoxide (BPDE) content in hemocytes increased significantly under B[a]P exposure, while antioxidant genes, glutathione peroxidase content and total antioxidant capacity all showed a trend of first rising and subsequent falling. B[a]P also caused serious damage to DNA and lysosomal membrane stability. The proapoptotic factors genes in the mitochondrial apoptosis pathway were significantly up-regulated, and the anti-apoptotic gene Bcl-2 was significantly down-regulated. Besides, mitochondrial membrane potential stability was significantly reduced and caspase 9 enzyme activity was significantly improved with the B[a]P stimulation. The factors of death receptor pathway were also significantly up-regulated by B[a]P. Moreover, the expression levels of Mitogen-Activated Protein Kinases were also induced. The gene expression and enzyme activity of the caspase 3 and the apoptosis rate were significantly increased under B[a]P exposure. In conclusion, these results indicated that ROS was induced by B[a]P, and further triggered the oxidative stress and oxidative damage in hemocytes. B[a]P induced hemocyte apoptosis was mediated by both mitochondrial apoptosis pathway and death receptor apoptosis, and the activation of mitochondrial apoptosis pathway was affected by ROS. In addition, BPDE and MAPKs may play important roles in the B[a]P-mediated apoptosis pathway. This study deepens understanding of the apoptosis pathway and the immunotoxicity mechanism in bivalves hemocytes stimulated by persistent organic pollutants.
Collapse
Affiliation(s)
- Yimeng Tian
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China.
| | - Jingjing Miao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Fengjun Lei
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Ruiyi Xu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Xin Zhang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| |
Collapse
|
6
|
Carducci F, Biscotti MA, Trucchi E, Giuliani ME, Gorbi S, Coluccelli A, Barucca M, Canapa A. Omics approaches for conservation biology research on the bivalve Chamelea gallina. Sci Rep 2020; 10:19177. [PMID: 33154500 PMCID: PMC7645701 DOI: 10.1038/s41598-020-75984-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/30/2020] [Indexed: 12/27/2022] Open
Abstract
The striped venus (Chamelea gallina) is an important economic resource in the Mediterranean Basin; this species has exhibited a strong quantitative decline in the Adriatic Sea. The aim of this work was to provide a comprehensive view of the biological status of C. gallina to elucidate the bioecological characteristics and genetic diversity of wild populations. To the best of our knowledge, this investigation is the first to perform a multidisciplinary study on C. gallina based on two omics approaches integrated with histological, ecotoxicological, and chemical analyses and with the assessment of environmental parameters. The results obtained through RNA sequencing indicated that the striped venus has a notable ability to adapt to different environmental conditions. Moreover, the stock reduction exhibited by this species in the last 2 decades seems not to have negatively affected its genetic diversity. Indeed, the high level of genetic diversity that emerged from our ddRAD dataset analyses is ascribable to the high larval dispersal rate, which might have played a “compensatory role” on local fluctuations, conferring to this species a good adaptive potential to face the environmental perturbations. These findings may facilitate the efforts of conservation biologists to adopt ad hoc management plans for this fishery resource.
Collapse
Affiliation(s)
- Federica Carducci
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Maria Assunta Biscotti
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Emiliano Trucchi
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Maria Elisa Giuliani
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Stefania Gorbi
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Alessandro Coluccelli
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Marco Barucca
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Adriana Canapa
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy.
| |
Collapse
|
7
|
Diletti G, Ceci R, De Benedictis A, Leva M, Migliorati G, Pirito L, Vairano I, Fernandes AR. Polybrominated dibenzo-p-dioxins and furans (PBDD/Fs) in Italian food: Occurrence and dietary exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 741:139916. [PMID: 32585481 DOI: 10.1016/j.scitotenv.2020.139916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/09/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
Human exposure to polychlorinated dioxins and furans (PCDD/Fs) through the dietary pathway is widely recognised and regulations in some regions of the world help to limit food contamination. Similar information on the analogous polybrominated dioxins and furans (PBDD/Fs) is scarce, partly due to the higher threshold to analytical access and unavailability of some standard materials. The analytical methodology developed here determined twelve planar PBDD/F congeners using 13Carbon labelled PBDD/F surrogates and high resolution mass spectrometric detection, and was extensively validated prior to the analysis of a range of commonly consumed Italian foods. The methodology also allowed simultaneous determination of PCDD/Fs and polychlorinated biphenyls (PCBs). The results show that PBDD/Fs occurred in different foods over a range of concentrations from <0.001 pg/g to 4.58 pg/g in fish. The dietary exposure (upper bound) of different Italian population groups, resulting from these occurrence levels was estimated using the toxic equivalency (TEQ) approach that is commonly used for dioxin-like contaminants and ranged from 0.17 to 0.42 pg TEQ/kg bodyweight/day (lower bound - 0.01 pg TEQ/kg bodyweight/day) depending on the population subgroup. Although precautionary, upper bound values may provide a more realistic estimate of toxicity as not all congeners and foods were measured. As expected, children were more highly exposed than adults due to lower body weight. These exposure levels were between a quarter and a third of that arising from the sum of PCDD/Fs and PCBs (0.61 to 1.38 pg WHO-TEQ/kg bodyweight/day), but they contribute to dioxin-like toxicity. If this data is considered in view of the revised tolerable dioxin-like dietary intake published by EFSA in 2018, it is evident that the tolerable weekly intake of 2 pg/kg bodyweight/week would be exceeded by some of the assessed population sub-groups, or all sub-groups if the cumulative intake is considered.
Collapse
Affiliation(s)
- Gianfranco Diletti
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, via Campo Boario, 64100 Teramo, TE, Italy
| | - Roberta Ceci
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, via Campo Boario, 64100 Teramo, TE, Italy
| | - Alfonso De Benedictis
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, via Campo Boario, 64100 Teramo, TE, Italy
| | - Manuela Leva
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, via Campo Boario, 64100 Teramo, TE, Italy
| | - Giacomo Migliorati
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, via Campo Boario, 64100 Teramo, TE, Italy
| | - Luigi Pirito
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, via Campo Boario, 64100 Teramo, TE, Italy
| | - Ilaria Vairano
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, via Campo Boario, 64100 Teramo, TE, Italy
| | - Alwyn R Fernandes
- School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, UK.
| |
Collapse
|
8
|
Tian Y, Liu J, Pan L. The mechanism of Mitogen-Activated Protein Kinases to mediate apoptosis and immunotoxicity induced by Benzo[a]pyrene on hemocytes of scallop Chlamys farreri in vitro. FISH & SHELLFISH IMMUNOLOGY 2020; 102:64-72. [PMID: 32268177 DOI: 10.1016/j.fsi.2020.04.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/30/2020] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
Benzo [a]pyrene (B [a]P) has received widespread attention for serious pollution in the sea, which may reduce immunity and lead to the outbreak of disease in bivalves. However, the mechanism of immunotoxicity induced by B [a]P in bivalves was still unclear. Previous studies have found that Mitogen-Activated Protein Kinases (MAPKs) including three classic pathways (ERK, p38 and JNK) play an important role in mediating this process. Thus, in order to explore the mechanism of immunotoxicity induced by B [a]P in scallop Chlamys farreri, hemocytes were treated with PD98059 (ERK inhibitor), SB203580 (p38 inhibitor) and SP600125 (JNK inhibitor) for 1 h and then incubation with B [a]P for 24 h at 1 μg/mL. Indexes including oxidative damage, apoptotic rate, and immune indicators were detected in the present study. The results showed that the increase of Reactive Oxygen Species (ROS) and DNA damage induced by B [a]P was inhibited with PD98059 and SB203580. Besides, lysosomal membrane stability (LMS) damage was promoted by PD98059, while it was opposite when treated with SB203580. Moreover, the ascended apoptosis rate induced by B [a]P was increased significantly after treatment with PD98059, but it was remarkably attenuated by SB203580 and SP600125. However, the opposite pattern was showed in phagocytosis compared with apoptosis rate in all of three inhibitors. In addition, antibacterial activity and bacteriolytic activity were enhanced by SB203580 while inhibited by PD98059. Therefore, these results showed that MAPKs directly or indirectly mediate the decrease of oxidative damage, apoptosis and immune defense ability of C. farreri hemocytes, which suggesting ERK/p38/JNK pathways have different functions in the apoptosis and immunity of C. farreri hemocytes after B [a]P exposure. In conclusion, this study intended to enrich the theoretical basis for immunotoxicology of bivalves exposed to pollutants.
Collapse
Affiliation(s)
- Yimeng Tian
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Jing Liu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China.
| |
Collapse
|
9
|
Milan M, Smits M, Dalla Rovere G, Iori S, Zampieri A, Carraro L, Martino C, Papetti C, Ianni A, Ferri N, Iannaccone M, Patarnello T, Brunetta R, Ciofi C, Grotta L, Arcangeli G, Bargelloni L, Cardazzo B, Martino G. Host-microbiota interactions shed light on mortality events in the striped venus clam Chamelea gallina. Mol Ecol 2019; 28:4486-4499. [PMID: 31482594 DOI: 10.1111/mec.15227] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 07/19/2019] [Accepted: 08/05/2019] [Indexed: 02/06/2023]
Abstract
Mass mortalities due to disease outbreaks have recently affected a number of major taxa in marine ecosystems. Climate- and pollution-induced stress may compromise host immune defenses, increasing the risk of opportunistic diseases. Despite growing evidence that mass mortality events affecting marine species worldwide are strongly influenced by the interplay of numerous environmental factors, the reductionist approaches most frequently used to investigate these factors hindered the interpretation of these multifactorial pathologies. In this study, we propose a broader approach based on the combination of RNA-sequencing and 16S microbiota analyses to decipher the factors underlying mass mortality in the striped venus clam, Chamelea gallina, along the Adriatic coast. On one hand, gene expression profiling and functional analyses of microbial communities showed the over-expression of several genes and molecular pathways involved in xenobiotic metabolism, suggesting potential chemical contamination in mortality sites. On the other hand, the down-regulation of several genes involved in immune and stress response, and the over-representation of opportunistic pathogens such as Vibrio and Photobacterium spp. indicates that these microbial species may take advantage of compromised host immune pathways and defense mechanisms that are potentially affected by chemical exposure, resulting in periodic mortality events. We propose the application of our approach to interpret and anticipate the risks inherent in the combined effects of pollutants and microbes on marine animals in today's rapidly changing environment.
Collapse
Affiliation(s)
- Massimo Milan
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Italy
| | - Morgan Smits
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Italy.,Marine Environmental Science Laboratory (LEMAR), IUEM Technopole Brest-Iroise, Université de Bretagne Occidentale -Rue Dumont d'Urville, Plouzané, France
| | - Giulia Dalla Rovere
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Italy
| | - Silvia Iori
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Italy
| | - Angela Zampieri
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Italy
| | - Lisa Carraro
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Italy
| | - Camillo Martino
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Chiara Papetti
- Department of Biology, University of Padova, Padua, Italy
| | - Andrea Ianni
- Faculty of BioSciences and Technologies for Agriculture Food and Environment, University of Teramo, Mosciano Sant'Angelo, Italy
| | - Nicola Ferri
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy
| | - Marco Iannaccone
- Faculty of BioSciences and Technologies for Agriculture Food and Environment, University of Teramo, Mosciano Sant'Angelo, Italy
| | - Tomaso Patarnello
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Italy
| | - Romina Brunetta
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università, Padova, Italy
| | - Claudio Ciofi
- Department of Biology, University of Florence, Sesto Fiorentino, Italy
| | - Lisa Grotta
- Faculty of BioSciences and Technologies for Agriculture Food and Environment, University of Teramo, Mosciano Sant'Angelo, Italy
| | - Giuseppe Arcangeli
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università, Padova, Italy
| | - Luca Bargelloni
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Italy
| | - Barbara Cardazzo
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Italy
| | - Giuseppe Martino
- Faculty of BioSciences and Technologies for Agriculture Food and Environment, University of Teramo, Mosciano Sant'Angelo, Italy
| |
Collapse
|
10
|
Lestingi C, Tavoloni T, Bardeggia V, Perugini M, Piersanti A. A fit-for-purpose method to monitor 16 European Union PAHs in food: results of five years of official food control in two Italian regions. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2017; 34:1140-1152. [PMID: 28513332 DOI: 10.1080/19440049.2017.1325969] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
A gas-chromatographic single-quadrupole analytical method for the analysis of the 16 priority European Union (EU) polycyclic aromatic hydrocarbons (PAHs) in food is presented. The method fulfils the request of Regulation EU 836/2011 for an analytical procedure to be used for official control of PAHs in food in EU member states. The sample preparation involves a pressurised liquid extraction (PLE) with an in-cell clean-up step followed by a lipid removal using solid-phase extraction (SPE) on a styrene divinylbenzene stationary phase (SDVB) and a final gel-permeation chromatography (GPC) step. To reach a better sensitivity for all the analytes, including the heaviest last eluting PAHs, 3 μl of the purified extract were injected in solvent vent mode using a programmable temperature vaporization (PTV) injector. The isobaric PAH isomers were successfully separated using an Agilent Technologies DB-17MS (20 m × 0.18 mm × 0.18 μm) column. The method was fully validated using an in-house approach and the sensitivity, accuracy and precision obtained were satisfactory. The method expanded uncertainty was estimated and it was verified that it was below the maximum standard measurement uncertainty. Moreover, the results of 347 samples of meat and meat products, fish and fish products and mussels collected from January 2012 to December 2016 in the Marche and Umbria regions of Italy are reported. None of the samples exceed the maximum levels fixed by EU Regulation 835/2011, and clams turned out to be the most contaminated among the food matrices analysed. Finally, an estimate of the sum of four marker PAHs (benzo[a]anthracene, benzo[b]fluoranthene, benzo[a]pyrene, chrysene) as indicator of the PAHs contamination was done by comparison with the 16 carcinogenic PAHs sum.
Collapse
Affiliation(s)
- Carmela Lestingi
- a Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche , Laboratorio Controllo Chimico e Biomonitoraggio , Ancona , Italy
| | - Tamara Tavoloni
- a Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche , Laboratorio Controllo Chimico e Biomonitoraggio , Ancona , Italy
| | - Valentina Bardeggia
- a Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche , Laboratorio Controllo Chimico e Biomonitoraggio , Ancona , Italy
| | - Monia Perugini
- b Università degli Studi di Teramo , Facoltà di Bioscienze e Tecnologie Agroalimentari ed Ambientali , Teramo , Italy
| | - Arianna Piersanti
- a Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche , Laboratorio Controllo Chimico e Biomonitoraggio , Ancona , Italy
| |
Collapse
|