1
|
Balagurusamy R, Gopi L, Kumar DSS, Viswanathan K, Meganathan V, Sathiyamurthy K, Athmanathan B. Significance of Viable But Non-culturable (VBNC) State in Vibrios and Other Pathogenic Bacteria: Induction, Detection and the Role of Resuscitation Promoting Factors (Rpf). Curr Microbiol 2024; 81:417. [PMID: 39432128 DOI: 10.1007/s00284-024-03947-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/09/2024] [Indexed: 10/22/2024]
Abstract
Still, it remains a debate after four decades of research on surviving cells, several bacterial species were naturally inducted and found to exist in a viable but non-culturable (VBNC) state, an adaptive strategy executed by most bacterial species under different stressful conditions. VBNC state are generally attributed when the cells lose its culturability on standard culture media, diminish in conventional detection methods, but retaining its viability, virulence and antibiotic resistance over a period of years and may poses a risk to marine animals as well as public health and food safety. In this present review, we mainly focus the VBNC state of Vibrios and other human bacterial pathogens. Exposure to several factors like nutrient depletion, temperature fluctuation, changes in salinity and oxidative stress, antibiotic and other chemical stress can induce the cells to VBNC state. The transcriptomic and proteomic changes during VBNC, modification in detection techniques and the most significant role of Rpf in conversion of VBNC into culturable cells. Altogether, detection of unculturable VBNC forms has significant importance, since it may not only regain its culturability, but also reactivate its putative virulence determinants causing serious outbreaks and illness to the individual.
Collapse
Affiliation(s)
- Rakshana Balagurusamy
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, GST Road, Vandalur, Chennai, Tamil Nadu, 600048, India
| | - Lekha Gopi
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, GST Road, Vandalur, Chennai, Tamil Nadu, 600048, India
| | - Dhivya Shre Senthil Kumar
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, GST Road, Vandalur, Chennai, Tamil Nadu, 600048, India
| | - Kamalalakshmi Viswanathan
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, GST Road, Vandalur, Chennai, Tamil Nadu, 600048, India
| | - Velmurugan Meganathan
- Department of Cellular and Molecular Biology Lab, University of Texas Health Science Center at Tyler, Tyler, USA
| | - Karuppanan Sathiyamurthy
- Department of Bio Medical Science, School of Biotechnology and Genetic Engineering, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - Baskaran Athmanathan
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, GST Road, Vandalur, Chennai, Tamil Nadu, 600048, India.
| |
Collapse
|
2
|
Debnath A, Miyoshi SI. Effect of physicochemical and microbiological factors on the development of viable but non-culturable and resuscitation states of Vibrio cholerae. Arch Microbiol 2024; 206:224. [PMID: 38642319 DOI: 10.1007/s00203-024-03956-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/22/2024]
Abstract
BACKGROUND Vibrio cholerae can endure harsh environmental conditions by transitioning into viable but non-culturable (VBNC) form and resuscitate upon return of appropriate conditions. METHOD In this study, we assessed the impact of physicochemical and microbiological factors, on the development of low temperature-induced VBNC state and subsequent recovery by temperature upshift. RESULTS In estuarine water, Vibrio cholerae exhibits a slower decline in culturability over a period of 77 days as compared to 10 days in fresh water. When variable cell numbers from different growth phases were used for VBNC induction, it was observed that the higher inoculum size (106-107 cfu ml-1) from the late log phase culture appears to be crucial for entering the VBNC state. Conversely, starved cells could enter the VBNC state with an initial inoculum of 104-105 cfu ml-1, followed by resuscitation as well. The addition of glucose, GlcNAc and mannitol differentially affects progression into VBNC, while the addition of tryptone, yeast extract and casamino acid facilitated early entry into the VBNC state and shortened the length of the recovery period. CONCLUSION Altogether these findings demonstrated that the ionic strength of water, inoculum size and the availability of nutrients played distinct roles during VBNC induction and resuscitation.
Collapse
Affiliation(s)
- Anusuya Debnath
- Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1, Tsushimanaka, Kita-ku, 700-8530, Japan.
- Department of Biotechnology, Brainware University, Kolkata, India.
| | - Shin-Ichi Miyoshi
- Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1, Tsushimanaka, Kita-ku, 700-8530, Japan
| |
Collapse
|
3
|
Ma Z, Xu W, Li S, Chen S, Yang Y, Li Z, Xing T, Zhao Z, Hou D, Li Q, Lu Z, Zhang H. Effect of RpoS on the survival, induction, resuscitation, morphology, and gene expression of viable but non-culturable Salmonella Enteritidis in powdered infant formula. Int J Food Microbiol 2024; 410:110463. [PMID: 38039925 DOI: 10.1016/j.ijfoodmicro.2023.110463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/19/2023] [Accepted: 10/27/2023] [Indexed: 12/03/2023]
Abstract
Involvement of the transcriptional regulator RpoS in the persistence of viable but non-culturable (VBNC) state has been demonstrated in several species of bacteria. This study investigated the role of the RpoS in the formation and resuscitation of VBNC state in Salmonella enterica serovar Enteritidis CICC 21482 by measuring bacterial survival, morphology, physiological characteristics, and gene expression in wild-type (WT) and rpoS-deletion (ΔrpoS) strains during long-term storage in powdered infant formula (PIF). The ΔrpoS strain was produced by allelic exchange using a suicide plasmid. Bacteria were inoculated into PIF for 635-day storage. Survival, morphology, intracellular reactive oxygen species (ROS) levels and intercellular quorum sensing autoinducer-2 (AI-2) contents were regularly measured. Resuscitation assays were conducted after obtaining VBNC cells. Gene expression was measured using real-time quantitative polymerase chain reaction (qPCR). The results showed that RpoS and low temperature conditions were associated with enhanced culturability and recoverability of Salmonella Enteritidis after desiccation storage in low water activity (aw) PIF. In addition, the synthesis of intracellular ROS and intercellular quorum sensing AI-2 was regulated by RpoS, inducing the formation and resuscitation of VBNC cells. Gene expression of soxS, katG and relA was found strongly associated with RpoS. Due to the lack of RpoS factor, the ΔrpoS strain could not normally synthesize SoxS, catalase and (p)ppGpp, resulting in its early shift to the VBNC state. This study elucidates the role of rpoS in desiccation stress and the formation and resuscitation mechanism of VBNC cells under desiccation stress. It serves as the basis for preventing and controlling the recovery of pathogenic bacteria in VBNC state in low aw foods.
Collapse
Affiliation(s)
- Zhuolin Ma
- College of Biological and Pharmaceutical Science, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, China
| | - Weiying Xu
- College of Biological and Pharmaceutical Science, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, China
| | - Shaoting Li
- College of Biological and Pharmaceutical Science, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, China
| | - Siyi Chen
- College of Biological and Pharmaceutical Science, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, China
| | - Yuheng Yang
- College of Biological and Pharmaceutical Science, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, China
| | - Zefeng Li
- College of Biological and Pharmaceutical Science, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, China
| | - Tong Xing
- College of Biological and Pharmaceutical Science, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, China
| | - Zepeng Zhao
- College of Biological and Pharmaceutical Science, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, China
| | - Dongping Hou
- College of Biological and Pharmaceutical Science, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, China
| | - Qingqing Li
- College of Biological and Pharmaceutical Science, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, China
| | - Ziying Lu
- College of Biological and Pharmaceutical Science, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, China
| | - Hongmei Zhang
- College of Biological and Pharmaceutical Science, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, China.
| |
Collapse
|
4
|
Pan H, Ren Q. Wake Up! Resuscitation of Viable but Nonculturable Bacteria: Mechanism and Potential Application. Foods 2022; 12:82. [PMID: 36613298 PMCID: PMC9818539 DOI: 10.3390/foods12010082] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 12/29/2022] Open
Abstract
The viable but nonculturable (VBNC) state is a survival strategy for bacteria when encountered with unfavorable conditions. Under favorable environments such as nutrient supplementation, external stress elimination, or supplementation with resuscitation-promoting substances, bacteria will recover from the VBNC state, which is termed "resuscitation". The resuscitation phenomenon is necessary for proof of VBNC existence, which has been confirmed in different ways to exclude the possibility of culturable-cell regrowth. The resuscitation of VBNC cells has been widely studied for the purpose of risk control of recovered pathogenic or spoilage bacteria. From another aspect, the resuscitation of functional bacteria can also be considered a promising field to explore. To support this point, the resuscitation mechanisms were comprehensively reviewed, which could provide the theoretical foundations for the application of resuscitated VBNC cells. In addition, the proposed applications, as well as the prospects for further applications of resuscitated VBNC bacteria in the food industry are discussed in this review.
Collapse
Affiliation(s)
| | - Qing Ren
- School of Light Industry, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
5
|
Lee JI, Kim SS, Kang DH. Stress response of Salmonella Montevideo adapted to red pepper powders at various humidities and resistance to near-infrared heating. Food Res Int 2022; 162:111972. [DOI: 10.1016/j.foodres.2022.111972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/18/2022] [Accepted: 09/21/2022] [Indexed: 11/04/2022]
|
6
|
Rocha ADDL, Ferrari RG, Pereira WE, de Lima LA, Givisiez PEN, Moreno-Switt AI, Toro M, Delgado-Suárez EJ, Meng J, de Oliveira CJB. Revisiting the Biological Behavior of Salmonella enterica in Hydric Resources: A Meta-Analysis Study Addressing the Critical Role of Environmental Water on Food Safety and Public Health. Front Microbiol 2022; 13:802625. [PMID: 35722289 PMCID: PMC9201643 DOI: 10.3389/fmicb.2022.802625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
The increasing number of studies reporting the presence of Salmonella in environmental water sources suggests that it is beyond incidental findings originated from sparse fecal contamination events. However, there is no consensus on the occurrence of Salmonella as its relative serovar representation across non-recycled water sources. We conducted a meta-analysis of proportions by fitting a random-effects model using the restricted maximum-likelihood estimator to obtain the weighted average proportion and between-study variance associated with the occurrence of Salmonella in water sources. Moreover, meta-regression and non-parametric supervised machine learning method were performed to predict the effect of moderators on the frequency of Salmonella in non-recycled water sources. Three sequential steps (identification of information sources, screening and eligibility) were performed to obtain a preliminary selection from identified abstracts and article titles. Questions related to the frequency of Salmonella in aquatic environments, as well as putative differences in the relative frequencies of the reported Salmonella serovars and the role of potential variable moderators (sample source, country, and sample volume) were formulated according to the population, intervention, comparison, and outcome method (PICO). The results were reported according to the Preferred Reporting Items for Systematic Review and Meta-Analyzes statement (PRISMA). A total of 26 eligible papers reporting 148 different Salmonella serovars were retrieved. According to our model, the Salmonella frequency in non-recycled water sources was 0.19 [CI: 0.14; 0.25]. The source of water was identified as the most import variable affecting the frequency of Salmonella, estimated as 0.31 and 0.17% for surface and groundwater, respectively. There was a higher frequency of Salmonella in countries with lower human development index (HDI). Small volume samples of surface water resulted in lower detectable Salmonella frequencies both in high and low HDI regions. Relative frequencies of the 148 serovars were significantly affected only by HDI and volume. Considering that serovars representation can also be affected by water sample volume, efforts toward the standardization of water samplings for monitoring purposes should be considered. Further approaches such as metagenomics could provide more comprehensive insights about the microbial ecology of fresh water and its importance for the quality and safety of agricultural products.
Collapse
Affiliation(s)
- Alan Douglas de Lima Rocha
- Departamento de Zootecnia, Laboratório de Avaliação de Produtos de Origem Animal (LAPOA), Centro de Ciências Agrárias, Universidade Federal da Paraíba (UFPB), Areia, Brazil
| | - Rafaela Gomes Ferrari
- Departamento de Zootecnia, Laboratório de Avaliação de Produtos de Origem Animal (LAPOA), Centro de Ciências Agrárias, Universidade Federal da Paraíba (UFPB), Areia, Brazil
| | - Walter Esfrain Pereira
- Departamento de Ciências Fundamentais e Sociais, Centro de Ciências Agrárias, Universidade Federal da Paraíba (UFPB), Areia, Brazil
| | - Laiorayne Araújo de Lima
- Departamento de Zootecnia, Laboratório de Avaliação de Produtos de Origem Animal (LAPOA), Centro de Ciências Agrárias, Universidade Federal da Paraíba (UFPB), Areia, Brazil
| | - Patrícia Emília Naves Givisiez
- Departamento de Zootecnia, Laboratório de Avaliação de Produtos de Origem Animal (LAPOA), Centro de Ciências Agrárias, Universidade Federal da Paraíba (UFPB), Areia, Brazil
| | - Andrea Isabel Moreno-Switt
- Escuela de Medicina Veterinaria, Facultad de Agronomía e Ingeniería Forestla, Facultad de Ciencias Biológicas, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Magaly Toro
- Laboratorio de Microbiologia y Probioticos, Instituto de Nutricion y Tecnologia de los Alimentos, Universidad de Chile, Santiago, Chile
| | | | - Jianghong Meng
- Joint Institute for Food Safety and Applied Nutrition (JIFSAN), University of Maryland, College Park, College Park, MD, United States
| | - Celso José Bruno de Oliveira
- Departamento de Zootecnia, Laboratório de Avaliação de Produtos de Origem Animal (LAPOA), Centro de Ciências Agrárias, Universidade Federal da Paraíba (UFPB), Areia, Brazil
| |
Collapse
|
7
|
Carvacrol and Thymol Combat Desiccation Resistance Mechanisms in Salmonella enterica Serovar Tennessee. Microorganisms 2021; 10:microorganisms10010044. [PMID: 35056493 PMCID: PMC8779931 DOI: 10.3390/microorganisms10010044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 11/16/2022] Open
Abstract
Some Salmonella enterica serovars are frequently associated with disease outbreaks in low-moisture foods (LMF) due to their ability to adapt efficiently to desiccation stress. These serovars are often persistent during food processing. Disruption of these resistance responses was accomplished previously using the membrane-active lipopeptide, paenibacterin. This study was initiated to determine how desiccation resistance mechanisms are overcome when Salmonella Tennessee, a known resistant serovar, is treated with the membrane-active food additives carvacrol and thymol. Knowing that the minimum inhibitory concentrations (MICs) of carvacrol and thymol against Salmonella Tennessee are 200 and 100 µg/mL, the concentrations tested were 100–400 and 50–200 µg/mL, respectively. Results show that desiccation-adapted Salmonella Tennessee, prepared by air drying at 40% relative humidity and 22–25 °C for 24 h, was not inactivated when exposed for 4.0 h to less than 2xMIC of the two additives. Additionally, treatment of desiccation-adapted Salmonella Tennessee for 120 min with carvacrol and thymol at the MIC-level sensitized the cells (1.4–1.5 log CFU/mL reduction) to further desiccation stress. Treating desiccation-adapted Salmonella Tennessee with carvacrol and thymol induced leakage of intracellular potassium ions, reduced the biosynthesis of the osmoprotectant trehalose, reduced respiratory activity, decreased ATP production, and caused leakage of intracellular proteins and nucleic acids. Carvacrol, at 200–400 µg/mL, significantly downregulated the transcription of desiccation-related genes (proV, STM1494, and kdpA) as determined by the reverse-transcription quantitative PCR. The current study revealed some of the mechanisms by which carvacrol and thymol combat desiccation-resistant Salmonella Tennessee, raising the feasibility of using these additives to control desiccation-adapted S. enterica in LMF.
Collapse
|
8
|
Debnath A, Miyoshi SI. The Impact of Protease during Recovery from Viable but Non-Culturable (VBNC) State in Vibrio cholerae. Microorganisms 2021; 9:microorganisms9122618. [PMID: 34946219 PMCID: PMC8707003 DOI: 10.3390/microorganisms9122618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022] Open
Abstract
Vibrio cholerae can survive cold stress by entering into a viable but non-culturable (VBNC) state, and resuscitation can be induced either by temperature upshift only or the addition of an anti-dormancy stimulant such as resuscitation-promoting factors (Rpfs) at suitable temperature. In this study, the role of proteinase K was analyzed as an Rpf in V. cholerae. A VBNC state was induced in V. cholerae AN59 in artificial seawater (ASW) media at 4 °C, and recovery could be achieved in filtered VBNC microcosm, called spent ASW media, merely by a temperature upshift to 37 °C. The resuscitation ability of spent ASW was further enhanced by the addition of proteinase K. The mode of action of proteinase K was investigated by comparing its effect on the growth of the VBNC and culturable state of V. cholerae in ASW and spent ASW media. The presence of proteinase K allowed culturable cells to grow faster in ASW by reducing the generation time. However, this effect of proteinase K was more pronounced in stressed VBNC cells. Moreover, proteinase K-supplemented spent ASW could also accelerate the transition of VBNC into recovered cells followed by rapid growth. Additionally, we found that dead bacterial cells were the substrate on which proteinase K acts to support high growth in spent ASW. So, the conclusion is that the proteinase K could efficiently promote the recovery and growth of dormant VBNC cells at higher temperatures by decreasing the duration of the initial lag phase required for transitioning from the VBNC to recovery state and increasing the growth rate of these recovered cells.
Collapse
|
9
|
Induction of the Viable but Non-Culturable State in Salmonella Contaminating Dried Fruit. Appl Environ Microbiol 2021; 88:e0173321. [PMID: 34731057 PMCID: PMC8788685 DOI: 10.1128/aem.01733-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Salmonella can become viable but nonculturable (VBNC) in response to environmental stressors, but the induction of the VBNC state in Salmonella contaminating ready-to-eat dried fruit is poorly characterized. Dried apples, strawberries, and raisins were mixed with a five-strain cocktail of Salmonella at 4% volume per weight of dried fruit at 109 CFU/g. The inoculated dried fruit were then dried in desiccators at 25°C until the water activity (aw) approximated that of the uninoculated dried fruit. However, Salmonella could not be recovered after drying, not even after enrichment, suggesting a population reduction of approximately 8 log CFU/g. To assess the potential impact of storage temperature on survival, dried apples were spot-inoculated with the Salmonella cocktail, dried under ambient atmosphere at 25°C, and stored at 4 and 25°C. Spot inoculation permitted recovery of Salmonella on dried apple after drying, with the population of Salmonella decreasing progressively on dried apples stored at 25°C until it was undetectable after about 46 days, even following enrichment. The population decline was noticeably slower at 4°C, with Salmonella being detected until 82 days. However, fluorescence microscopy and laser scanning confocal microscopy with the LIVE/DEAD BacLight bacterial viability system at time points at which no Salmonella could be recovered on growth media even following enrichment showed that a large proportion (56 to 85%) of the Salmonella cells on the dried fruit were viable. The data suggest that the unique combination of stressors in dried fruit can induce large numbers of VBNC cells of Salmonella. IMPORTANCESalmonella is a leading foodborne pathogen globally causing numerous outbreaks of foodborne illnesses and remains the leading contributor to deaths attributed to foodborne disease in the United States and other industrialized nations. Therefore, efficient detection methods for Salmonella contaminating food are critical for public health and food safety. Culture-based microbiological methods are considered the gold standard for the detection and enumeration of Salmonella in food. Findings from this study suggest that unique stressors on dried fruit can induce the VBNC state in Salmonella, thus rendering it undetectable with culture-based methods even though the bacteria remain viable. Therefore, strong consideration should be given to using, in addition to culture-based methods, microscopic and molecular methods for the accurate detection of all viable and/or culturable cells of Salmonella contaminating dried fruit, as all of these cells have the potential to cause human illness.
Collapse
|
10
|
Chen G, Lin M, Chen Y, Xu W, Zhang H. Induction of a Viable but Nonculturable State, Thermal and Sanitizer Tolerance, and Gene Expression Correlation with Desiccation-Adapted Biofilm and Planktonic Salmonella in Powdered Infant Formula. J Food Prot 2021; 84:1194-1201. [PMID: 33770177 DOI: 10.4315/jfp-20-402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 03/19/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT This study was conducted to investigate the effects of the physiological state, desiccation adaptation, and storage of powdered infant formula on Salmonella cell survival and expression of desiccation stress-related genes. Powdered infant formula was inoculated with Salmonella Typhimurium in the biofilm state on beads and in the planktonic state on nitrocellulose filters and stored at 25°C for up to 270 days. Both 5-cyano-2,3-ditoyl tetrazolium chloride flow cytometry and xylose lysine deoxycholate agar plate counts revealed that biofilm-forming Salmonella cells tended to enter the viable but nonculturable (VBNC) state (P < 0.05). The population reduction of all desiccation-adapted Salmonella Typhimurium decreased significantly in both physiological states after exposure to mild heat (60°C) compared with nonadapted control cells (P < 0.05). Salmonella cells were cross-protected from heat in both physiological states, but cross-protection against hydrogen peroxide was induced for only planktonic Salmonella cells. The reverse transcription quantitative PCR results revealed that the rpoS gene in biofilm Salmonella cells on all desiccation adaption days and in planktonic Salmonella cells on day 7 of dry storage was significantly upregulated (P < 0.05). The rpoE, grpE, and invA genes in Salmonella cells in both physiological states were significantly down-regulated (P < 0.05). Physiological state and storage time might affect expression of these genes. Prior exposure to adverse conditions, including low water activity, and the physiological state impacted Salmonella survival, and its ability to enter the VBNC state and gene expression. HIGHLIGHTS
Collapse
Affiliation(s)
- Guiliu Chen
- College of Biological and Pharmaceutical Science, Guangdong University of Technology, 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, People's Republic of China
| | - Mengzhe Lin
- College of Biological and Pharmaceutical Science, Guangdong University of Technology, 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, People's Republic of China
| | - Yingqi Chen
- College of Biological and Pharmaceutical Science, Guangdong University of Technology, 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, People's Republic of China
| | - Weiying Xu
- College of Biological and Pharmaceutical Science, Guangdong University of Technology, 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, People's Republic of China
| | - Hongmei Zhang
- College of Biological and Pharmaceutical Science, Guangdong University of Technology, 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, People's Republic of China
| |
Collapse
|
11
|
Aguirre-Sanchez JR, Ibarra-Rodriguez JR, Vega-Lopez IF, Martínez-Urtaza J, Chaidez-Quiroz C. Genomic signatures of adaptation to natural settings in non-typhoidal Salmonella enterica Serovars Saintpaul, Thompson and Weltevreden. INFECTION GENETICS AND EVOLUTION 2021; 90:104771. [PMID: 33592318 DOI: 10.1016/j.meegid.2021.104771] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 02/04/2021] [Accepted: 02/11/2021] [Indexed: 10/22/2022]
Abstract
Salmonella enterica is a pathogenic bacterium responsible for intestinal illness and systemic diseases such as typhoid and paratyphoid fevers. Among clinical manifestation classification, non-typhoidal Salmonella is mainly known as foodborne pathogen associated with the consumption of fecal contaminated food and water. Even though Salmonella hosts include humans and warm-blooded animals, it has been found in non-host environments as river water where the bacteria use different strategies to fitness the environment persisting and establishment. Now with the availability of WGS and bioinformatics tools, we can explore bacterial genomes with higher resolution to increase our understanding of specific genetic signatures among environmental and clinical isolates, being the goal of this work. Pangenome construction allowed the detection of specific environmental and clinical gene clusters related to metabolism and secretion systems as the main signature respectively. Specifically, D-galactonate degradation pathway was observed mainly in environmental genomes while T3SS and flagellum genes were detected for all clinical but not for all environmental isolates. Gene duplication and pseudogenes accumulation were detected as the main adaptation strategy for environmental isolates; thus, isolation source may play an important role in genome plasticity, conferring a selective advantage to survive and persist for environmental Salmonella isolates. Intact prophage sequences with cargo genes were observable for both isolation sources playing an important role in virulence contribution.
Collapse
Affiliation(s)
| | | | - I F Vega-Lopez
- Parque de Innovación Tecnológica de la Universidad Autónoma de Sinaloa, Culiacán, Mexico
| | - J Martínez-Urtaza
- Departement of Genetics and Microbiology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - C Chaidez-Quiroz
- Centro de Investigación en Alimentación y Desarrollo, Culiacán, Mexico.
| |
Collapse
|
12
|
Gao R, Liao X, Zhao X, Liu D, Ding T. The diagnostic tools for viable but nonculturable pathogens in the food industry: Current status and future prospects. Compr Rev Food Sci Food Saf 2021; 20:2146-2175. [PMID: 33484068 DOI: 10.1111/1541-4337.12695] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/21/2020] [Accepted: 12/28/2020] [Indexed: 12/21/2022]
Abstract
Viable but nonculturable (VBNC) microorganisms have been recognized as pathogenic contaminants in foods and environments. The failure of VBNC cells to form the visible colonies hinders the ability to use conventional media for their detection. Efficient and rapid detection of pathogens in the VBNC state is a prerequisite to ensure the food safety and public health. Despite their nonculturability, VBNC cells have distinct characteristics, such as morphology, metabolism, chemical composition, and gene and protein expression, that have been used as the basis for the development of abundant diagnostic tools. This review covers the current status and advances in various approaches for examining microorganisms in the VBNC state, including but not limited to the methodological aspects, advantages, and drawbacks of each technique. Existing methods, such as direct viable count, SYTO/PI dual staining, and propidium monoazide quantitative polymerase chain reaction (PCR), as well as some techniques with potential to be applied in the future, such as digital PCR, enhanced-surface Raman spectroscopy, and impedance-based techniques, are summarized in depth. Finally, future prospects for the one-step detection of VBNC bacteria are proposed and discussed. We believe that this review can provide more optional methods for researchers and promote the development of rapid, accurate detecting methods, and for inspectors, the diagnostic tools can provide data to undertake risk analysis of VBNC cells.
Collapse
Affiliation(s)
- Rui Gao
- Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xinyu Liao
- Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xihong Zhao
- Research Center for Environmental Ecology and Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Donghong Liu
- Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tian Ding
- Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
13
|
Ou A, Wang K, Ye Y, Chen L, Gong X, Qian L, Liu J. Direct Detection of Viable but Non-culturable (VBNC) Salmonella in Real Food System by a Rapid and Accurate PMA-CPA Technique. Front Microbiol 2021; 12:634555. [PMID: 33679667 PMCID: PMC7930388 DOI: 10.3389/fmicb.2021.634555] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 01/19/2021] [Indexed: 02/05/2023] Open
Abstract
Salmonella enterica is a typical foodborne pathogen with multiple toxic effects, including invasiveness, endotoxins, and enterotoxins. Viable but nonculturable (VBNC) is a type of dormant form preserving the vitality of microorganisms, but it cannot be cultured by traditional laboratory techniques. The aim of this study is to develop a propidium monoazide-crossing priming amplification (PMA-CPA) method that can successfully detect S. enterica rapidly with high sensitivity and can identify VBNC cells in food samples. Five primers (4s, 5a, 2a/1s, 2a, and 3a) were specially designed for recognizing the specific invA gene. The specificity of the CPA assay was tested by 20 different bacterial strains, including 2 standard S. enterica and 18 non-S. enterica bacteria strains covering Gram-negative and Gram-positive isolates. Except for the two standard S. enterica ATCC14028 and ATCC29629, all strains showed negative results. Moreover, PMA-CPA can detect the VBNC cells both in pure culture and three types of food samples with significant color change. In conclusion, the PMA-CPA assay was successfully applied on detecting S. enterica in VBNC state from food samples.
Collapse
Affiliation(s)
- Aifen Ou
- Department of Food, Guangzhou City Polytechnic, Guangzhou, China
| | - Kan Wang
- Center for Translational Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Yanrui Ye
- School of Biological Science and Engineering, South China University of Technology, Guangzhou, China
| | - Ling Chen
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, China
| | - Xiangjun Gong
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, China
| | - Lu Qian
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, China
- Lu Qian,
| | - Junyan Liu
- Department of Civil and Environmental Engineering, University of Maryland, College Park, College Park, MD, United States
- *Correspondence: Junyan Liu,
| |
Collapse
|
14
|
Abdelhamid AG, Yousef AE. Collateral adaptive responses induced by desiccation stress in Salmonella enterica. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.110089] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
15
|
Wan J, Lu Z, Bie X, Lv F, Zhao H. Improvement of a new selective enrichment broth for culturing
Salmonella
in ready‐to‐eat fruits and vegetables. J Food Saf 2020. [DOI: 10.1111/jfs.12817] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Jiajia Wan
- College of Food Science and Technology Nanjing Agricultural University Nanjing People's Republic of China
| | - Zhaoxin Lu
- College of Food Science and Technology Nanjing Agricultural University Nanjing People's Republic of China
| | - Xiaomei Bie
- College of Food Science and Technology Nanjing Agricultural University Nanjing People's Republic of China
| | - Fengxia Lv
- College of Food Science and Technology Nanjing Agricultural University Nanjing People's Republic of China
| | - Haizhen Zhao
- College of Food Science and Technology Nanjing Agricultural University Nanjing People's Republic of China
| |
Collapse
|
16
|
Li Y, Huang T, Bai C, Fu J, Chen L, Liang Y, Wang K, Liu J, Gong X, Liu J. Reduction, Prevention, and Control of Salmonella enterica Viable but Non-culturable Cells in Flour Food. Front Microbiol 2020; 11:1859. [PMID: 32973696 PMCID: PMC7472744 DOI: 10.3389/fmicb.2020.01859] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/15/2020] [Indexed: 02/05/2023] Open
Abstract
The processing and storage conditions of flour food inevitably pose environmental stress, which promote bacteria to enter a viable but non-culturable (VBNC) state. The existence of VBNC cells causes false-negative detection in traditional culture-based detection methods, resulting in food quality and safety issues. This study aimed at investigating the influence factors including nutrition, acid, salt, and temperature for the entry into a VBNC state of Salmonella enterica and an efficient detection method. During induction with multi-stress conditions, nutrition starvation antagonizes with low-level acidity. Besides, high-level acidity was considered as an inhibitor for VBNC induction. Four inducers including nutrition starvation, salt stress, low-level acidity, and low temperature were concluded for a VBNC state. In addition, the keynote conditions for S. enterica entering a VBNC state included (i) nutrient-rich acidic environment, (ii) oligotrophic low-acidity environment, and (iii) oligotrophic refrigerated environment. Based on the keynote conditions, the environmental conditions of high acidity (1.0% v/v acetate) with low temperature (-20°C) could successfully eliminate the formation of S. enterica VBNC cells in flour food. In addition, combining with propidium monoazide pretreatment, PCR technology was applied to detect S. enterica VBNC cells. The sensitivity of the PMA-PCR technology was 105 CFU/ml in an artificially simulated food system. The results derived from this study might aid in the detection and control of VBNC state S. enterica in flour food products.
Collapse
Affiliation(s)
- Yanmei Li
- Department of Haematology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Tengyi Huang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Caiying Bai
- Guangdong Women and Children Hospital, Guangzhou, China
| | - Jie Fu
- Department of Haematology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Ling Chen
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China
| | - Yi Liang
- Guangdong Zhongqing Font Biochemical Science and Technology Co., Ltd., Maoming, China
| | - Kan Wang
- Research Center of Translational Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Jun Liu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, China
| | - Xiangjun Gong
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, China
- *Correspondence: Xiangjun Gong,
| | - Junyan Liu
- Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, United States
- Junyan Liu,
| |
Collapse
|
17
|
Dong K, Pan H, Yang D, Rao L, Zhao L, Wang Y, Liao X. Induction, detection, formation, and resuscitation of viable but non‐culturable state microorganisms. Compr Rev Food Sci Food Saf 2019; 19:149-183. [DOI: 10.1111/1541-4337.12513] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/21/2019] [Accepted: 11/14/2019] [Indexed: 01/05/2023]
Affiliation(s)
- Kai Dong
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthCollege of Food Science and Nutritional EngineeringChina Agricultural University Beijing China
- College of Food Science and Nutritional EngineeringChina Agricultural University Beijing China
- Key Lab of Fruit and Vegetable ProcessingMinistry of Agriculture and Rural Affairs Beijing China
| | - Hanxu Pan
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthCollege of Food Science and Nutritional EngineeringChina Agricultural University Beijing China
- College of Food Science and Nutritional EngineeringChina Agricultural University Beijing China
- Key Lab of Fruit and Vegetable ProcessingMinistry of Agriculture and Rural Affairs Beijing China
| | - Dong Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthCollege of Food Science and Nutritional EngineeringChina Agricultural University Beijing China
- College of Food Science and Nutritional EngineeringChina Agricultural University Beijing China
- Key Lab of Fruit and Vegetable ProcessingMinistry of Agriculture and Rural Affairs Beijing China
| | - Lei Rao
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthCollege of Food Science and Nutritional EngineeringChina Agricultural University Beijing China
- College of Food Science and Nutritional EngineeringChina Agricultural University Beijing China
- Key Lab of Fruit and Vegetable ProcessingMinistry of Agriculture and Rural Affairs Beijing China
| | - Liang Zhao
- College of Food Science and Nutritional EngineeringChina Agricultural University Beijing China
- Key Lab of Fruit and Vegetable ProcessingMinistry of Agriculture and Rural Affairs Beijing China
| | - Yongtao Wang
- College of Food Science and Nutritional EngineeringChina Agricultural University Beijing China
- Key Lab of Fruit and Vegetable ProcessingMinistry of Agriculture and Rural Affairs Beijing China
| | - Xiaojun Liao
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthCollege of Food Science and Nutritional EngineeringChina Agricultural University Beijing China
- College of Food Science and Nutritional EngineeringChina Agricultural University Beijing China
- Key Lab of Fruit and Vegetable ProcessingMinistry of Agriculture and Rural Affairs Beijing China
| |
Collapse
|
18
|
The Microbial Lipopeptide Paenibacterin Disrupts Desiccation Resistance in Salmonella enterica Serovars Tennessee and Eimsbuettel. Appl Environ Microbiol 2019; 85:AEM.00739-19. [PMID: 31101609 DOI: 10.1128/aem.00739-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 05/07/2019] [Indexed: 01/20/2023] Open
Abstract
Salmonella enterica is increasingly linked to disease outbreaks associated with consumption of low-water-activity (low-aw) foods. Persistence of the pathogen in these foods was attributed to its ability to implement desiccation resistance mechanisms. Published knowledge about methods that disrupt desiccation resistance in S. enterica is lacking. We hypothesize that strong membrane-active compounds disrupt the desiccation resistance that S. enterica may acquire in low-aw foods or environments. The newly discovered antimicrobial lipopeptide paenibacterin was the membrane-active agent investigated in this study. Strains of S. enterica serovars Tennessee and Eimsbuettel, with a history of association with low-moisture foods, were investigated. The viability of these strains did not decrease significantly during dehydration and subsequent storage in the dehydrated state. Considering that the paenibacterin MIC against S. enterica strains was 8 μg/ml, concentrations of 4 to 16 μg/ml paenibacterin were tested. Within this range, desiccation-adapted S. Eimsbuettel was much more tolerant to the antimicrobial agent than the desiccation-adapted S. Tennessee. Pretreatment with 8 μg/ml paenibacterin increased inactivation of S. enterica during desiccation. The use of paenibacterin at 16 μg/ml or higher concentrations resulted in leakage of intracellular potassium ions from desiccation-adapted cells. Paenibacterin significantly decreased the biosynthesis of the intracellular osmoprotectant solute, trehalose, in a concentration-dependent manner. Treatment with 64 μg/ml paenibacterin increased the permeability of the cytoplasmic membranes of desiccation-adapted cells. Transcription of the desiccation-related genes proV, STM1494, kdpA, and otsB in response to paenibacterin treatment was investigated using reverse transcription-quantitative PCR. Transcription of some of these genes was downregulated in a concentration- and strain-dependent manner.IMPORTANCE Salmonella enterica adapts effectively and persists for a long time in low-aw foods or environments through resistance mechanisms to desiccation stress. Desiccation-resistant cells compromise food safety and constitute a serious health hazard. Strategies to combat desiccation resistance in S. enterica are needed to sensitize the pathogen to lethal processes used in food preservation. The study proved that the membrane-active lipopeptide paenibacterin disrupts the resistance in desiccation-adapted S. enterica, as measured by phenotypic, biochemical, and genetic analyses. This study highlighted the role of the lipopeptide paenibacterin in disrupting mechanisms employed by S. enterica to resist desiccation. This knowledge may lead to the design of novel control measures to improve the safety of low-aw foods.
Collapse
|
19
|
Kumar SS, Ghosh AR. Assessment of bacterial viability: a comprehensive review on recent advances and challenges. Microbiology (Reading) 2019; 165:593-610. [DOI: 10.1099/mic.0.000786] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Shravanthi S. Kumar
- Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India
| | - Asit Ranjan Ghosh
- Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India
| |
Collapse
|
20
|
Trząskowska M, Dai Y, Delaquis P, Wang S. Pathogen reduction on mung bean reduction of Escherichia coli O157:H7, Salmonella enterica and Listeria monocytogenes on mung bean using combined thermal and chemical treatments with acetic acid and hydrogen peroxide. Food Microbiol 2018; 76:62-68. [DOI: 10.1016/j.fm.2018.04.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 04/14/2018] [Accepted: 04/15/2018] [Indexed: 12/01/2022]
|
21
|
Liu H, Whitehouse CA, Li B. Presence and Persistence of Salmonella in Water: The Impact on Microbial Quality of Water and Food Safety. Front Public Health 2018; 6:159. [PMID: 29900166 PMCID: PMC5989457 DOI: 10.3389/fpubh.2018.00159] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/10/2018] [Indexed: 01/23/2023] Open
Abstract
Salmonella ranks high among the pathogens causing foodborne disease outbreaks. According to the Centers for Disease Control and Prevention, Salmonella contributed to about 53.4% of all foodborne disease outbreaks from 2006 to 2017, and approximately 32.7% of these foodborne Salmonella outbreaks were associated with consumption of produce. Trace-back investigations have suggested that irrigation water may be a source of Salmonella contamination of produce and a vehicle for transmission. Presence and persistence of Salmonella have been reported in surface waters such as rivers, lakes, and ponds, while ground water in general offers better microbial quality for irrigation. To date, culture methods are still the gold standard for detection, isolation and identification of Salmonella in foods and water. In addition to culture, other methods for the detection of Salmonella in water include most probable number, immunoassay, and PCR. The U.S. Food and Drug Administration (FDA) issued the Produce Safety Rule (PSR) in January 2013 based on the Food Safety Modernization Act (FSMA), which calls for more efforts toward enhancing and improving approaches for the prevention of foodborne outbreaks. In the PSR, agricultural water is defined as water used for in a way that is intended to, or likely to, contact covered produce, such as spray, wash, or irrigation. In summary, Salmonella is frequently present in surface water, an important source of water for irrigation. An increasing evidence indicates irrigation water as a source (or a vehicle) for transmission of Salmonella. This pathogen can survive in aquatic environments by a number of mechanisms, including entry into the viable but nonculturable (VBNC) state and/or residing within free-living protozoa. As such, assurance of microbial quality of irrigation water is critical to curtail the produce-related foodborne outbreaks and thus enhance the food safety. In this review, we will discuss the presence and persistence of Salmonella in water and the mechanisms Salmonella uses to persist in the aquatic environment, particularly irrigation water, to better understand the impact on the microbial quality of water and food safety due to the presence of Salmonella in the water environment.
Collapse
Affiliation(s)
- Huanli Liu
- Branch of Microbiology, Arkansas Laboratory, Office of Regulatory Affairs, United States Food and Drug Administration, Jefferson, AR, United States
| | - Chris A. Whitehouse
- Division of Molecular Biology, Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, Laurel, MD, United States
| | - Baoguang Li
- Division of Molecular Biology, Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, Laurel, MD, United States
| |
Collapse
|