1
|
Che S, Hall P. Spaghetti meat and woody breast myopathies in broiler chickens: similarities and differences. Front Physiol 2024; 15:1453322. [PMID: 39253020 PMCID: PMC11381254 DOI: 10.3389/fphys.2024.1453322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024] Open
Affiliation(s)
- Sunoh Che
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, United States
| | - Parker Hall
- Perdue Foods LLC, Salisbury, MD, United States
| |
Collapse
|
2
|
McMillan EA, Adams ES, Mitchell TR, Hawkins JA, Read QD, Pokoo-Aikins A, Berrang ME, Harris CE, Hughes MD, Glenn AE, Meinersmann RJ. Susceptibility of pESI positive Salmonella to treatment with biocide chemicals approved for use in poultry meat processing as compared to Salmonella without the pESI plasmid. Lett Appl Microbiol 2024; 77:ovae067. [PMID: 38986501 DOI: 10.1093/lambio/ovae067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/24/2024] [Accepted: 07/09/2024] [Indexed: 07/12/2024]
Abstract
Salmonella is a common cause of human foodborne illness, which is frequently associated with consumption of contaminated or undercooked poultry meat. Serotype Infantis is among the most common serotypes isolated from poultry meat products globally. Isolates of serotype Infantis carrying the pESI plasmid, the most dominant strain of Infantis, have been shown to exhibit oxidizer tolerance. Therefore, 16 strains of Salmonella with and without pESI carriage were investigated for susceptibility to biocide chemical processing aids approved for use in US poultry meat processing: peracetic acid (PAA), cetylpyridinium chloride (CPC), calcium hypochlorite, and sodium hypochlorite. Strains were exposed for 15 s to simulate spray application and 90 min to simulate application in an immersion chiller. All strains tested were susceptible to all concentrations of PAA, CPC, and sodium hypochlorite when applied for 90 min. When CPC, calcium hypochlorite, and sodium hypochlorite were applied for 15 s to simulate spray time, strains responded similarly to each other. However, strains responded variably to exposure to PAA. The variation was not statistically significant and appears unrelated to pESI carriage. Results highlight the necessity of testing biocide susceptibility in the presence of organic material and in relevant in situ applications.
Collapse
Affiliation(s)
- Elizabeth A McMillan
- United States Department of Agriculture, Agricultural Research Service, US National Poultry Research Center, Poultry Microbiological Safety and Processing Research Unit, Athens, GA 30605, United States
| | - Eric S Adams
- United States Department of Agriculture, Agricultural Research Service, US National Poultry Research Center, Poultry Microbiological Safety and Processing Research Unit, Athens, GA 30605, United States
| | - Trevor R Mitchell
- United States Department of Agriculture, Agricultural Research Service, US National Poultry Research Center, Toxicology and Mycotoxin Research Unit, Athens, GA 30605, United States
| | - Jaci A Hawkins
- United States Department of Agriculture, Agricultural Research Service, US National Poultry Research Center, Toxicology and Mycotoxin Research Unit, Athens, GA 30605, United States
| | - Quentin D Read
- United States Department of Agriculture, Agricultural Research Service, Southeast Area, Raleigh, NC 27606, United States
| | - Anthony Pokoo-Aikins
- United States Department of Agriculture, Agricultural Research Service, US National Poultry Research Center, Toxicology and Mycotoxin Research Unit, Athens, GA 30605, United States
| | - Mark E Berrang
- United States Department of Agriculture, Agricultural Research Service, US National Poultry Research Center, Poultry Microbiological Safety and Processing Research Unit, Athens, GA 30605, United States
| | - Caitlin E Harris
- United States Department of Agriculture, Agricultural Research Service, US National Poultry Research Center, Poultry Microbiological Safety and Processing Research Unit, Athens, GA 30605, United States
| | - Michael D Hughes
- United States Department of Agriculture, Agricultural Research Service, US National Poultry Research Center, Poultry Microbiological Safety and Processing Research Unit, Athens, GA 30605, United States
| | - Anthony E Glenn
- United States Department of Agriculture, Agricultural Research Service, US National Poultry Research Center, Toxicology and Mycotoxin Research Unit, Athens, GA 30605, United States
| | - Richard J Meinersmann
- United States Department of Agriculture, Agricultural Research Service, US National Poultry Research Center, Poultry Microbiological Safety and Processing Research Unit, Athens, GA 30605, United States
| |
Collapse
|
3
|
Obe T, Kiess AS, Nannapaneni R. Antimicrobial Tolerance in Salmonella: Contributions to Survival and Persistence in Processing Environments. Animals (Basel) 2024; 14:578. [PMID: 38396546 PMCID: PMC10886206 DOI: 10.3390/ani14040578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Salmonella remains a top bacterial pathogen implicated in several food-borne outbreaks, despite the use of antimicrobials and sanitizers during production and processing. While these chemicals have been effective, Salmonella has shown the ability to survive and persist in poultry processing environments. This can be credited to its microbial ability to adapt and develop/acquire tolerance and/or resistance to different antimicrobial agents including oxidizers, acids (organic and inorganic), phenols, and surfactants. Moreover, there are several factors in processing environments that can limit the efficacy of these antimicrobials, thus allowing survival and persistence. This mini-review examines the antimicrobial activity of common disinfectants/sanitizers used in poultry processing environments and the ability of Salmonella to respond with innate or acquired tolerance and survive exposure to persists in such environments. Instead of relying on a single antimicrobial agent, the right combination of different disinfectants needs to be developed to target multiple pathways within Salmonella.
Collapse
Affiliation(s)
- Tomi Obe
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - Aaron S. Kiess
- Prestage Department of Poultry Science, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC 27695, USA;
| | - Ramakrishna Nannapaneni
- Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi, MS 39762, USA;
| |
Collapse
|
4
|
Response to Questions Posed by the Food Safety and Inspection Service: Enhancing Salmonella Control in Poultry Products. J Food Prot 2024; 87:100168. [PMID: 37939849 DOI: 10.1016/j.jfp.2023.100168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 11/10/2023]
|
5
|
Riesberg LA, Brookhouser-Sisney A, Mansaray M, Johnson A, Sanchez R. Research Note: Reducing food loss in the manufacturing process of chickens by reconditioning dropped raw poultry carcasses with peroxyacetic acid and sodium hypochlorite (chlorine) solution. Poult Sci 2024; 103:103213. [PMID: 37980760 PMCID: PMC10684803 DOI: 10.1016/j.psj.2023.103213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 11/21/2023] Open
Abstract
Food waste and food loss has been a growing concern in the manufacturing industry with a gap between identifying the problem and implementing a solution. The manufacturing process of chicken is largely automated by conveyor belts and machines in which initial application of either peroxyacetic acid (PAA) or sodium hypochlorite (chlorine) solution is utilized to reduce the microbial load and prevent food borne illnesses on the chicken products as they are processed and packaged for distribution. However, during this automated process whole chickens can drop from the manufacturing line and become contaminated leading to the disposal and waste of the product. A solution to reduce food waste was to analyze a reconditioning procedure within the manufacturing process. The study evaluated the aerobic microbial growth on salvaged marinated deli raw whole chickens without giblets (WOGs) from conveyor belt loss reconditioned in either PAA or sodium hypochlorite (chlorine) solution to undropped chicken WOGs. Chicken rinsate and segmented samples were collected from each parameter and tested for microbial growth using Petrifilm aerobic plate count (APC) plates and converting results into log colony forming units (CFU). A difference (P < 0.05) was observed with the reconditioning of the WOGs in PAA (0.71 log10 CFU/mL) compared to the control (1.45 ± 0.26 log10 CFU/mL), for rinses. Of the segmented samples, the trussing strings displayed a significant decrease in APC counts for both chlorine (2.30 ± 0.49 log10 CFU/g) and PAA (2.3 ± 0.49 log10 CFU/g) reconditioning compared to the control (2.72 ± 0.39 log10 CFU/g). Reconditioning of salvaged deli chicken WOGs in chlorine or PAA is comparable to or better than the conventional process for the reduction of APC, it is an effective strategy to reintroduce dropped marinated deli chicken WOGs to the manufacturing line and can reduce food waste at a manufacturing level.
Collapse
|
6
|
Dittoe DK, Olson EG, Wythe LA, Lawless ZG, Thompson DR, Perry LM, Ricke SC. Mitigating the attachment of Salmonella Infantis on isolated poultry skin with cetylpyridinium chloride. PLoS One 2023; 18:e0293549. [PMID: 38127975 PMCID: PMC10735015 DOI: 10.1371/journal.pone.0293549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/15/2023] [Indexed: 12/23/2023] Open
Abstract
To provide the poultry industry with effective mitigation strategies, the effects of cetylpyridinium chloride (CPC) on the reduction of Salmonella Infantis, hilA expression, and chicken skin microbiota were evaluated. Chicken breast skins (4×4 cm; N = 100, n = 10, k = 5) were inoculated with Salmonella (Typhimurium or Infantis) at 4°C (30min) to obtain 108 CFU/g attachment. Skins were shaken (30s), with remaining bacteria being considered firmly attached. Treatments were applied as 30s dips in 50 mL: no inocula-no-treatment control (NINTC), no treatment control (NTC), tap water (TW), TW+600 ppm PAA (PAA), or TW+0.5% CPC (CPC). Excess fluid was shaken off (30s). Samples were homogenized in nBPW (1 min). Samples were discarded. Salmonella was enumerated and Log10 transformed. Reverse transcriptase-qPCR (rt-qPCR) was performed targeting hilA gene and normalized using the 2-ΔΔCt method. Data were analyzed using one-way ANOVA in RStudio with means separated by Tukey's HSD (P≤0.05). Genomic DNA of rinsates was extracted, 16S rRNA gene (V4) was sequenced (MiSeq), and data analyzed in QIIME2 (P≤0.05 and Q≤0.05). CPC and PAA affected Salmonella levels differently with CPC being effective against S. Infantis compared to TW (P<0.05). Treatment with CPC on S. Infantis-infected skin altered the hilA expression compared to TW (P<0.05). When inoculated with S. Typhimurium, there was no difference between the microbiota diversity of skins treated with PAA and CPC; however, when inoculated with S. Infantis, there was a difference in the Shannon's Entropy and Jaccard Dissimilarity between the two treatments (P<0.05). Using ANCOM at the genus level, Brochothrix was significant (W = 118) among skin inoculated with S. Typhimurium. Among S. Infantis inoculated, Yersiniaceae, Enterobacterales, Lachnospiraceae CHKCI001, Clostridia vadinBB60 group, Leuconostoc, Campylobacter, and bacteria were significant (408). CPC and PAA-treated skins had lowest relative abundance of the genera. In conclusion, CPC mitigated Salmonella Infantis, altered hilA expression, and influenced the chicken skin microbiota.
Collapse
Affiliation(s)
- Dana K. Dittoe
- Department of Animal Science, University of Wyoming, Laramie, Wyoming, United States of America
| | - Elena G. Olson
- Department of Animal and Dairy Science, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Lindsey A. Wythe
- Department of Animal and Dairy Science, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Zachary G. Lawless
- Department of Computer Science and Computer Engineering, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Dale R. Thompson
- Department of Computer Science and Computer Engineering, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Lindsey M. Perry
- Safe Foods Corporation, Little Rock, Arkansas, United States of America
| | - Steven C. Ricke
- Department of Animal and Dairy Science, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
7
|
Obe T, Boltz T, Kogut M, Ricke SC, Brooks LA, Macklin K, Peterson A. Controlling Salmonella: strategies for feed, the farm, and the processing plant. Poult Sci 2023; 102:103086. [PMID: 37839165 PMCID: PMC10587538 DOI: 10.1016/j.psj.2023.103086] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 10/17/2023] Open
Abstract
Controlling Salmonella in poultry is an ongoing food safety measure and while significant progress has been made, there is a need to continue to evaluate different strategies that include understanding Salmonella-poultry interaction, Salmonella-microbiota interactions, Salmonella genetics and response to adverse conditions, and preharvest and postharvest parameters that enable persistence. The purpose of this symposium is to discuss different strategies to consider from feed milling to the farm to the processing environment. This Poultry Science Association symposium paper is divided into 5 different sections that covers 1) immunological aspects of Salmonella control, 2) application of Salmonella genetics for targeted control strategies in poultry production, 3) improving poultry feed hygienics: utilizing feed manufacture techniques and equipment to improve feed hygienics, 4) practical on farm interventions for controlling Salmonella-what works and what may not work, and 5) monitoring and mitigating Salmonella in poultry. These topics elucidate the critical need to establish control strategies that will improve poultry gut health and limit conditions that exposes Salmonella to stress causing alterations to virulence and pathogenicity both at preharvest and postharvest poultry production. This information is relevant to the poultry industry's continued efforts to ensure food safety poultry production.
Collapse
Affiliation(s)
- Tomi Obe
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA.
| | - Timothy Boltz
- Department of Poultry Science, Mississippi State University, Mississippi State, MS, USA
| | - Mike Kogut
- Southern Plains Agricultural Research Center, USDA-ARS, College Station, TX, USA
| | - Steven C Ricke
- Meat Science and Animal Biologics Discovery Program, Department of Animal and Dairy Sciences, University of Wisconsin - Madison, Madison, WI, USA
| | | | - Ken Macklin
- Department of Poultry Science, Mississippi State University, Mississippi State, MS, USA
| | | |
Collapse
|
8
|
Logue CM, De Cesare A, Tast-Lahti E, Chemaly M, Payen C, LeJeune J, Zhou K. Salmonella spp. in poultry production-A review of the role of interventions along the production continuum. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 108:289-341. [PMID: 38461002 DOI: 10.1016/bs.afnr.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2024]
Abstract
Salmonella is a significant pathogen of human and animal health and poultry are one of the most common sources linked with foodborne illness worldwide. Global production of poultry meat and products has increased significantly over the last decade or more as a result of consumer demand and the changing demographics of the world's population, where poultry meat forms a greater part of the diet. In addition, the relatively fast growth rate of birds which is significantly higher than other meat species also plays a role in how poultry production has intensified. In an effort to meet the greater demand for poultry meat and products, modern poultry production and processing practices have changed and practices to target control and reduction of foodborne pathogens such as Salmonella have been implemented. These strategies are implemented along the continuum from parent and grandparent flocks to breeders, the farm and finished broilers to transport and processing and finally from retail to the consumer. This review focuses on common practices, interventions and strategies that have potential impact for the control of Salmonella along the poultry production continuum from farm to plate.
Collapse
Affiliation(s)
- Catherine M Logue
- Department of Population Health, College of Veterinary Medicine, University of Georgia, United States.
| | | | - Elina Tast-Lahti
- European Center for Disease Prevention and Control (ECDC), Sweden
| | - Marianne Chemaly
- Hygiene and Quality of Poultry and Pork Products, French Agency for Food, Environmental and Occupational Health and Safety, ANSES, France
| | - Cyrielle Payen
- Hygiene and Quality of Poultry and Pork Products, French Agency for Food, Environmental and Occupational Health and Safety, ANSES, France
| | - Jeff LeJeune
- Food System and Food Safety, Food and Agricultural Organization of the United Nations, Italy
| | - Kang Zhou
- Food System and Food Safety, Food and Agricultural Organization of the United Nations, Italy
| |
Collapse
|
9
|
Urrutia A, Orellana L, Sierra KS, Reina M, Figueroa JC, Jackson AP, Macklin KS, Buhr RJ, Bourassa DV. In vitro Effect of Photoactive Compounds Curcumin and Chlorophyllin Against Single Strains of Salmonella and Campylobacter. J Food Prot 2023; 86:100157. [PMID: 37729967 DOI: 10.1016/j.jfp.2023.100157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/22/2023]
Abstract
Salmonella and Campylobacter are two of the most common foodborne pathogens associated with poultry meat. Regulatory restrictions and consumer concerns have increased the interest for plant-derived antimicrobials and emerging novel technologies. The objective of this study was to determine the antimicrobial activity of photoactive compounds curcumin (CUR) and chlorophyllin (CH) followed by activating light exposure for the reduction of Salmonella and Campylobacter. Peroxyacetic acid (PAA) was also evaluated as a poultry industry standard antimicrobial processing aid. CUR and CH were evaluated in 96-well plates at concentrations of 100, 500, and 1,000 ppm, along with PAA at 100, 200, and 300 ppm, or distilled water (DW). Each well was inoculated with 105 CFU/mL of Salmonella Typhimurium or Campylobacter jejuni, and plates were exposed to activating light (430 nm) for 0 or 5 min. No detectable reductions were observed for Salmonella or Campylobacter when treated with CUR, CH, or 100 ppm PAA. However, when Salmonella was treated with 200 ppm PAA, counts were reduced from 4.57 to 2.52 log10 CFU/mL. When Salmonella was treated with 300 ppm PAA, counts were reduced to below detectable levels (5 CFU/mL). Campylobacter was reduced from 4.67 to 2.82 log10 CFU/mL when treated with 200 ppm PAA. However, no further reductions were observed when Campylobacter was treated with 300 ppm PAA (2.50 log10 CFU/mL). These results indicate that CUR and CH were not effective as antimicrobials under the evaluated conditions, particularly in comparison to the commonly used antimicrobial, PAA.
Collapse
Affiliation(s)
- Andrea Urrutia
- Department of Poultry Science, Auburn University, 260 Lem Morrison Dr., Auburn, AL 36849, United States
| | - Leticia Orellana
- Department of Poultry Science, Auburn University, 260 Lem Morrison Dr., Auburn, AL 36849, United States
| | - Katherine S Sierra
- Department of Poultry Science, Auburn University, 260 Lem Morrison Dr., Auburn, AL 36849, United States
| | - Marco Reina
- Department of Poultry Science, Auburn University, 260 Lem Morrison Dr., Auburn, AL 36849, United States
| | - Juan C Figueroa
- Department of Poultry Science, Auburn University, 260 Lem Morrison Dr., Auburn, AL 36849, United States
| | - Alexandra P Jackson
- Department of Poultry Science, Auburn University, 260 Lem Morrison Dr., Auburn, AL 36849, United States
| | - Kenneth S Macklin
- Department of Poultry Science, Mississippi State University, 325 Wise Center Dr., Mississippi State, MS 39762, United States
| | - R Jeffrey Buhr
- Poultry Microbiological Safety and Processing Research Unit, U.S. National Poultry Research Center, Richard B. Russell Agricultural Research Center, USDA-ARS, 950 College Station Rd., Athens, GA 30605-2702, United States
| | - Dianna V Bourassa
- Department of Poultry Science, Auburn University, 260 Lem Morrison Dr., Auburn, AL 36849, United States.
| |
Collapse
|
10
|
Rasamsetti S, Shariat NW. Biomapping salmonella serovar complexity in broiler carcasses and parts during processing. Food Microbiol 2023; 110:104149. [DOI: 10.1016/j.fm.2022.104149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/06/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022]
|
11
|
Cancio LPM, Danao MC, Sullivan GA, Chaves BD. Evaluation of peroxyacetic acid, liquid buffered vinegar, and cultured dextrose fermentate as potential antimicrobial interventions for raw chicken livers. J Food Saf 2023. [DOI: 10.1111/jfs.13054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
12
|
Gonzalez SV, Nair MN, Belk KE, Geornaras I. Efficacy of Antimicrobial Spray Treatments in Reducing Salmonella enterica Populations on Chilled Pork. J Food Prot 2023; 86:100068. [PMID: 36940659 DOI: 10.1016/j.jfp.2023.100068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 02/25/2023]
Abstract
Studies reporting on alternative antimicrobial interventions for pathogen control on chilled pork carcasses and cuts are limited. In this study, the antimicrobial effects of various spray treatments against Salmonella enterica inoculated on skin-on pork samples were evaluated. Chilled pork jowls were portioned (10 by 5 by 1 cm) and inoculated, on the skin side, with a mixture of six S. enterica serotype strains to target levels of 6 to 7 log CFU/cm2 (high inoculation level) or 3 to 4 log CFU/cm2 (low inoculation level). Samples were then left nontreated (control) or were treated (10 s) using a laboratory-scale spray cabinet with water, formic acid (1.5%), a proprietary blend of sulfuric acid and sodium sulfate (SSS, pH 1.2), peroxyacetic acid (PAA, 400 ppm), or PAA (400 ppm) that was pH-adjusted (acidified) with acetic acid (1.5%), formic acid (1.5%), or SSS (pH 1.2). Samples (n = 6) were analyzed for Salmonella populations after treatment application (0 h) and after 24 h of refrigerated (4°C) storage. Irrespective of inoculation level, all spray treatments effectively reduced (P < 0.05) Salmonella levels immediately following their application. Overall, pathogen reductions for the chemical treatments, compared to the respective high and low inoculation level nontreated controls, ranged from 1.2 to 1.9 log CFU/cm2 (high inoculation level) and 1.0 to 1.7 log CFU/cm2 (low inoculation level). Acidification of PAA with acetic acid, formic acid, or SSS did not (P ≥ 0.05) enhance the initial bactericidal effects of the nonacidified PAA treatment. Salmonella populations recovered from all treated samples following 24 h of storage were, in general, similar (P ≥ 0.05) or up to 0.6 log CFU/cm2 lower (P < 0.05) than those recovered from samples analyzed immediately after treatment application. The results of the study may be used by processing establishments to help identify effective decontamination interventions for reducing Salmonella contamination on pork.
Collapse
Affiliation(s)
- Sara V Gonzalez
- Center for Meat Safety & Quality, Department of Animal Sciences, Colorado State University, Fort Collins, CO 80523-1171, USA
| | - Mahesh N Nair
- Center for Meat Safety & Quality, Department of Animal Sciences, Colorado State University, Fort Collins, CO 80523-1171, USA
| | - Keith E Belk
- Center for Meat Safety & Quality, Department of Animal Sciences, Colorado State University, Fort Collins, CO 80523-1171, USA
| | - Ifigenia Geornaras
- Center for Meat Safety & Quality, Department of Animal Sciences, Colorado State University, Fort Collins, CO 80523-1171, USA.
| |
Collapse
|
13
|
Rebelo A, Duarte B, Ferreira C, Mourão J, Ribeiro S, Freitas AR, Coque TM, Willems R, Corander J, Peixe L, Antunes P, Novais C. Enterococcus spp. from chicken meat collected 20 years apart overcome multiple stresses occurring in the poultry production chain: Antibiotics, copper and acids. Int J Food Microbiol 2023; 384:109981. [DOI: 10.1016/j.ijfoodmicro.2022.109981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/03/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
|
14
|
Cano C, Sadat R, Chaves BD. Peroxyacetic Acid Effectiveness against Salmonella on Raw Poultry Parts Is Not Affected by Organic Matter. J Food Prot 2022; 85:1446-1451. [PMID: 35880909 DOI: 10.4315/jfp-22-123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 07/18/2022] [Indexed: 11/11/2022]
Abstract
ABSTRACT Organic matter (OM) accumulation is common in chill tanks used to decontaminate raw poultry parts during processing. OM negatively affects the antimicrobial activity of chlorine-based compounds, but its effect on the antimicrobial effectiveness of peroxyacetic acid (PAA) on poultry meat has not been described. Therefore, this study evaluated the effect of OM on the efficacy of PAA solutions in simulated postchill tanks to reduce Salmonella artificially inoculated onto chicken parts. Chicken thighs were inoculated with a five-strain cocktail of poultry-borne Salmonella enterica serovars at ca. 6 log CFU/mL. Then, the thighs were immersed for 30 or 45 s in PAA solutions (500 or 1,000 ppm) with chicken slurry to simulate OM accumulation (0, 15, or 30 g/L). The thighs were rinsed with neutralizing buffered peptone water (100 mL), and rinsates were plated onto xylose lysine desoxycholate agar. Experiments were performed in triplicate (three thighs per treatment per replicate). Chemical oxygen demand, total nitrogen, and pH were measured as the water quality parameters of the PAA solutions before and after use. Chemical oxygen demand ranged from 2,905 mg/L in unused 500-ppm solutions without added OM to 6,290 mg/L in used 1,000-ppm solutions with 30 g/L OM. Initial total nitrogen was 42.5 ± 2.0 and 60.9 ± 8.3 mg/L for 15 and 30 g/L OM, which increased by 27 ± 17 mg/L after use. The pH of solutions ranged from 3.16 ± 0.14 to 3.42 ± 0.09 for the 1,000-ppm solutions and from 3.59 ± 0.06 to 3.96 ± 0.06 for the 500-ppm solutions. Mean Salmonella reductions were 0.9 ± 0.1 log CFU/mL of rinsate for the 500-ppm PAA treatment and 1.1 ± 0.1 log CFU/mL of rinsate for 1,000-ppm PAA treatment. Exposure time did not have a significant effect on the logarithmic reductions. There was no significant effect of OM concentration (P > 0.05) on the reductions, indicating that the antimicrobial efficacy was not affected and that PAA solutions may continue to be reused as long as the PAA concentration is actively monitored. HIGHLIGHTS
Collapse
Affiliation(s)
- Carmen Cano
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
| | - Raziya Sadat
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
| | - Byron D Chaves
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
| |
Collapse
|
15
|
De Villena JF, Vargas DA, Bueno López R, Chávez-Velado DR, Casas DE, Jiménez RL, Sanchez-Plata MX. Bio-Mapping Indicators and Pathogen Loads in a Commercial Broiler Processing Facility Operating with High and Low Antimicrobial Intervention Levels. Foods 2022; 11:foods11060775. [PMID: 35327198 PMCID: PMC8947298 DOI: 10.3390/foods11060775] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/02/2022] [Accepted: 03/06/2022] [Indexed: 01/01/2023] Open
Abstract
The poultry industry in the United States has traditionally implemented non-chemical and chemical interventions against Salmonella spp. and Campylobacter spp. on the basis of experience and word-of-mouth information shared among poultry processors. The effects of individual interventions have been assessed with microbiological testing methods for Salmonella spp. and Campylobacter spp. prevalence as well as quantification of indicator organisms, such as aerobic plate counts (APC), to demonstrate efficacy. The current study evaluated the loads of both indicators and pathogens in a commercial chicken processing facility, comparing the “normal chemical”, with all chemical interventions turned-on, at typical chemical concentrations set by the processing plant versus low-chemical process (“reduced chemical”), where all interventions were turned off or reduced to the minimum concentrations considered in the facility’s HACCP system. Enumeration and prevalence of Salmonella spp. and Campylobacter spp. as well as indicator organisms (APC and Enterobacteriaceae—EB) enumeration were evaluated to compare both treatments throughout a 25-month sampling period. Ten locations were selected in the current bio-mapping study, including live receiving, rehanger, post eviscerator, post cropper, post neck breaker, post IOBW #1, post IOBW #2, prechilling, post chilling, and parts (wings). Statistical process control parameters for each location and processing schemes were developed for each pathogen and indicator evaluated. Despite demonstrating significant statistical differences between the normal and naked processes in Salmonella spp. counts (“normal” significantly lower counts than the “reduced” at each location except for post-eviscerator and post-cropper locations), the prevalence of Salmonella spp. after chilling is comparable on both treatments (~10%), whereas for Campylobacter spp. counts, only at the parts’ location was there significant statistical difference between the “normal chemical” and the “reduced chemical”. Therefore, not all chemical intervention locations show an overall impact on Salmonella spp. or Campylobacter spp., and certain interventions can be turned off to achieve the same or better microbial performance if strategic intervention locations are enhanced.
Collapse
|