1
|
Wang H, Alsanea FM, Rhee DJ, Zhang X, Liu W, Yang J, Wen Z, Zhao Y, Williamson TD, Hunter RA, Balter PA, Briere TM, Zhu RX, Lee A, Moreno AC, Reddy JP, Garden AS, Rosenthal DI, Gunn GB, Phan J. Advanced External Beam Stereotactic Radiotherapy for Skull Base Reirradiation. Cancers (Basel) 2025; 17:540. [PMID: 39941906 PMCID: PMC11817895 DOI: 10.3390/cancers17030540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/29/2025] [Accepted: 01/31/2025] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND/OBJECTIVES Stereotactic body radiation therapy (SBRT) for skull base reirradiation is particularly challenging, as patients have already received substantial radiation doses to the region, and nearby normal organs may have approached their tolerance limit from prior treatments. In this study, we reviewed the characteristics and capabilities of four advanced external beam radiation delivery systems and four modern treatment planning systems and evaluated the treatment plan quality of each technique using skull base reirradiation patient cases. METHODS SBRT plans were generated for sixteen skull base reirradiation patients using four modalities: the GK plan for the Elekta Leksell Gamma Knife Perfexion/ICON, the CyberKnife (CK) plan for the Accuray CyberKnife, the intensity-modulated proton therapy (IMPT) plan for the Hitachi ProBeat-FR proton therapy machine, and the volumetric-modulated arc therapy (VMAT) plan for the Varian TrueBeam STx. These plans were evaluated and compared using two novel gradient indices in addition to traditional dosimetry metrics for targets and organs at risk (OARs). The steepest border gradient quantified the percent prescription dose fall-off per millimeter at the boundary between the target and adjacent critical structures. This gradient index highlighted the system's ability to spare nearby critical OARs. The volume gradient assessed the extent of dose spread outside the target toward the patient's body. RESULTS All plans achieved comparable target coverage and conformity, while IMPT and VMAT demonstrated significantly better uniformity. The GK plans exhibited the highest border gradient, up to 20.9%/mm, followed by small-spot-size IMPT plans and CK plans. Additionally, IMPT plans showed the benefit of reduced dose spread in low-dose regions and the lowest maximum and mean doses to the brainstem and carotid artery. CONCLUSIONS The advanced external beam radiotherapy modalities evaluated in this study are well-suited for SBRT in skull base reirradiation, which demands precise targeting of tumors with highly conformal doses and steep dose gradients to protect nearby normal structures.
Collapse
Affiliation(s)
- He Wang
- Radiation Physics, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA; (F.M.A.); (D.J.R.); (X.Z.); (J.Y.); (Y.Z.)
| | - Fahed M. Alsanea
- Radiation Physics, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA; (F.M.A.); (D.J.R.); (X.Z.); (J.Y.); (Y.Z.)
| | - Dong Joo Rhee
- Radiation Physics, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA; (F.M.A.); (D.J.R.); (X.Z.); (J.Y.); (Y.Z.)
| | - Xiaodong Zhang
- Radiation Physics, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA; (F.M.A.); (D.J.R.); (X.Z.); (J.Y.); (Y.Z.)
| | - Wei Liu
- Medical Physics, Mayo Clinic College of Medicine and Science, Phoenix, AZ 85054, USA
| | - Jinzhong Yang
- Radiation Physics, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA; (F.M.A.); (D.J.R.); (X.Z.); (J.Y.); (Y.Z.)
| | - Zhifei Wen
- Radiation Oncology, Hoag Memorial Hospital, Hoag Cancer Center, Newport Beach, CA 92663, USA
| | - Yao Zhao
- Radiation Physics, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA; (F.M.A.); (D.J.R.); (X.Z.); (J.Y.); (Y.Z.)
| | - Tyler D. Williamson
- Radiation Therapeutic Physics, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Rachel A. Hunter
- Radiation Therapeutic Physics, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Peter A. Balter
- Radiation Physics, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA; (F.M.A.); (D.J.R.); (X.Z.); (J.Y.); (Y.Z.)
| | - Tina M. Briere
- Radiation Physics, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA; (F.M.A.); (D.J.R.); (X.Z.); (J.Y.); (Y.Z.)
| | - Ronald X. Zhu
- Radiation Physics, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA; (F.M.A.); (D.J.R.); (X.Z.); (J.Y.); (Y.Z.)
| | - Anna Lee
- Radiation Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA (J.P.)
| | - Amy C. Moreno
- Radiation Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA (J.P.)
| | - Jay P. Reddy
- Radiation Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA (J.P.)
| | - Adam S. Garden
- Radiation Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA (J.P.)
| | - David I. Rosenthal
- Radiation Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA (J.P.)
| | - Gary B. Gunn
- Radiation Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA (J.P.)
| | - Jack Phan
- Radiation Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA (J.P.)
| |
Collapse
|
2
|
Raghavi S, Sadoughi HR, Ravari ME, Behmadi M. Evaluation of Dose Calculation Algorithms Accuracy for ISOgray Treatment Planning System in Motorized Wedged Treatment Fields. JOURNAL OF MEDICAL SIGNALS & SENSORS 2024; 14:31. [PMID: 39691405 PMCID: PMC11651387 DOI: 10.4103/jmss.jmss_28_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/17/2024] [Accepted: 08/12/2024] [Indexed: 12/19/2024]
Abstract
Background Different dose calculation methods vary in accuracy and speed. While most methods sacrifice precision for efficiency Monte Carlo (MC) simulation offers high accuracy but slower calculation. ISOgray treatment planning system (TPS) uses Clarkson, collapsed cone convolution (CCC), and fast Fourier transform (FFT) algorithms for dose distribution. This study's primary goal is to evaluate the dose calculation accuracy for ISOgray TPS algorithms in the presence of a wedge. Methods This study evaluates the dose calculation algorithms using the ISOgray TPS in the context of radiation therapy. The authors compare ISOgray TPS algorithms on an Elekta Compact LINAC through MC simulations. The study compares MC simulations for open and wedge fields with ISOgray algorithms by using gamma index analysis for validation. Results The percentage depth dose results for all open and wedge fields showed a more than 98% pass rate for points. However, there were differences in the dose profile gamma index results. Open fields passed the gamma index analysis in the in-plane direction, but not all points passed in the cross-plane direction. Wedge fields passed in the cross-plane direction, but not all in the in-plane direction, except for the Clarkson algorithms. Conclusion In all investigated algorithms, error increases in the penumbra areas, outside the field, and at cross-plane of open fields and in-plane direction of wedged fields. By increasing the wedge angle, the discrepancy between the TPS algorithms and MC simulations becomes more pronounced. This discrepancy is attributed to the increased presence of scattered photons and the variation in the delivered dose within the wedge field, consequently impacts the beam quality. While the CCC and FFT algorithms had better accuracy, the Clarkson algorithm, particularly at larger effective wedge angles, exhibited greater effectiveness than the two mentioned algorithms.
Collapse
Affiliation(s)
- Sajjad Raghavi
- Department of Medical Physics, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Hamid-Reza Sadoughi
- Department of Medical Physics and Radiology, Faculty of Paramedicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mohammad Ehsan Ravari
- Department of Medical Physics, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Marziyeh Behmadi
- Department of Medical Physics, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
3
|
Seravalli E, Bosman ME, Han C, Losert C, Pazos M, Engström PE, Engellau J, Fulcheri CPL, Zucchetti C, Saldi S, Ferrer C, Ocanto A, Hiniker SM, Clark CH, Hussein M, Misson-Yates S, Kobyzeva DA, Loginova AA, Hoeben BAW. Technical recommendations for implementation of Volumetric Modulated Arc Therapy and Helical Tomotherapy Total Body Irradiation. Radiother Oncol 2024; 197:110366. [PMID: 38830537 DOI: 10.1016/j.radonc.2024.110366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/10/2024] [Accepted: 05/27/2024] [Indexed: 06/05/2024]
Abstract
As a component of myeloablative conditioning before allogeneic hematopoietic stem cell transplantation (HSCT), Total Body Irradiation (TBI) is employed in radiotherapy centers all over the world. In recent and coming years, many centers are changing their technical setup from a conventional TBI technique to multi-isocenter conformal arc therapy techniques such as Volumetric Modulated Arc Therapy (VMAT) or Helical Tomotherapy (HT). These techniques allow better homogeneity and control of the target prescription dose, and provide more freedom for individualized organ-at-risk sparing. The technical design of multi-isocenter/multi-plan conformal TBI is complex and should be developed carefully. A group of early adopters with conformal TBI experience using different treatment machines and treatment planning systems came together to develop technical recommendations and share experiences, in order to assist departments wishing to implement conformal TBI, and to provide ideas for standardization of practices.
Collapse
Affiliation(s)
- Enrica Seravalli
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Mirjam E Bosman
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Chunhui Han
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA, USA
| | - Christoph Losert
- Department of Radiation Oncology, University Hospital, LMU Munich, Germany
| | - Montserrat Pazos
- Department of Radiation Oncology, University Hospital, LMU Munich, Germany
| | - Per E Engström
- Department of Haematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Jacob Engellau
- Department of Radiation Oncology, Skåne University Hospital, Lund, Sweden
| | | | - Claudio Zucchetti
- Section of Medical Physics, Perugia General Hospital, Perugia, Italy
| | - Simonetta Saldi
- Section of Radiation Oncology, Perugia General Hospital, Perugia, Italy
| | - Carlos Ferrer
- Department of Medical Physics and Radiation Protection, La Paz University Hospital, Madrid, Spain
| | - Abrahams Ocanto
- Department of Radiation Oncology, San Francisco de Asís University Hospital, GenesisCare, Madrid, Spain
| | - Susan M Hiniker
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | - Catharine H Clark
- Radiotherapy Physics, National Radiotherapy Trials Quality Assurance Group (RTTQA), Mount Vernon Cancer Centre, Northwood, UK; Metrology for Medical Physics Centre, National Physical Laboratory, Teddington, UK; Radiotherapy Physics, University College London Hospitals NHS Foundation Trust, London, UK; Medical Physics and Bioengineering Department, University College London, London, UK
| | - Mohammad Hussein
- Metrology for Medical Physics Centre, National Physical Laboratory, Teddington, UK
| | - Sarah Misson-Yates
- Medical Physics Department, Guy's and St Thomas' Hospital, London, UK; UK School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK; National Physical Laboratory, Metrology for Medical Physics Centre, London, UK
| | - Daria A Kobyzeva
- Deptartment of Radiation Oncology, Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Anna A Loginova
- Deptartment of Radiation Oncology, Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Bianca A W Hoeben
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, the Netherlands; Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.
| |
Collapse
|
4
|
Callens D, Aerts K, Berkovic P, Vandewinckele L, Lambrecht M, Crijns W. Are offline ART decisions for NSCLC impacted by the type of dose calculation algorithm? Tech Innov Patient Support Radiat Oncol 2024; 29:100236. [PMID: 38313556 PMCID: PMC10835600 DOI: 10.1016/j.tipsro.2024.100236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 02/06/2024] Open
Abstract
Introduction Decisions for plan-adaptations may be impacted by a transitioning from one dose-calculation algorithm to another. This study examines the impact on dosimetric-triggered offline adaptation in LA-NSCLC in the context of a transition from superposition/convolution dose calculation algorithm (Type-B) to linear Boltzmann equation solver dose calculation algorithms (Type-C). Materials & Methods Two dosimetric-triggered offline adaptive treatment workflows are compared in a retrospective planning study on 30 LA-NSCLC patients. One workflow uses a Type-B dose calculation algorithm and the other uses Type-C. Treatment plans were re-calculated on the anatomy of a mid-treatment synthetic-CT utilizing the same algorithm utilized for pre-treatment planning. Assessment for plan-adaptation was evaluated through a decision model based on target coverage and OAR constraint violation. The impact of algorithm during treatment planning was controlled for by recalculating the Type-B plan with Type-C. Results In the Type-B approach, 13 patients required adaptation due to OAR-constraint violations, while 15 patients required adaptation in the Type-C approach. For 8 out of 30 cases, the decision to adapt was opposite in both approaches. None of the patients in our dataset encountered CTV-target underdosage that necessitated plan-adaptation. Upon recalculating the Type-B approach with the Type-C algorithm, it was shown that 10 of the original Type-B plans revealed clinically relevant dose reductions (≥3%) on the CTV in their original plans. This re-calculation identified 21 plans in total that required ART. Discussion In our study, nearly one-third of the cases would have a different decision for plan-adaption when utilizing Type-C instead of Type-B. There was no substantial increase in the total number of plan-adaptations for LA-NSCLC. However, Type-C is more sensitive to altered anatomy during treatment compared to Type-B. Recalculating Type-B plans with the Type-C algorithm revealed an increase from 13 to 21 cases triggering ART.
Collapse
Affiliation(s)
- Dylan Callens
- Laboratory of Experimental Radiotherapy, KU Leuven, Leuven, Belgium
- Department of Radiation Oncology, UZ Leuven, Leuven, Belgium
| | - Karel Aerts
- Laboratory of Experimental Radiotherapy, KU Leuven, Leuven, Belgium
| | - Patrick Berkovic
- Laboratory of Experimental Radiotherapy, KU Leuven, Leuven, Belgium
- Department of Radiation Oncology, UZ Leuven, Leuven, Belgium
| | - Liesbeth Vandewinckele
- Laboratory of Experimental Radiotherapy, KU Leuven, Leuven, Belgium
- Department of Radiation Oncology, UZ Leuven, Leuven, Belgium
| | - Maarten Lambrecht
- Laboratory of Experimental Radiotherapy, KU Leuven, Leuven, Belgium
- Department of Radiation Oncology, UZ Leuven, Leuven, Belgium
| | - Wouter Crijns
- Laboratory of Experimental Radiotherapy, KU Leuven, Leuven, Belgium
- Department of Radiation Oncology, UZ Leuven, Leuven, Belgium
| |
Collapse
|
5
|
Chen D, Cai SB, Soon YY, Cheo T, Vellayappan B, Tan CW, Ho F. Dosimetric comparison between Intensity Modulated Radiation Therapy (IMRT) vs dual arc Volumetric Arc Therapy (VMAT) for nasopharyngeal cancer (NPC): Systematic review and meta-analysis. J Med Imaging Radiat Sci 2023; 54:167-177. [PMID: 36456460 DOI: 10.1016/j.jmir.2022.10.195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 12/03/2022]
Abstract
BACKGROUND AND PURPOSE Previous non-randomised studies comparing dosimetric outcomes between advanced techniques such as IMRT and VMAT reported conflicting findings. We thus sought to perform a systematic review and meta-analysis to consolidate the findings of these studies. MATERIALS AND METHODS We searched PUBMED and EMBASE for eligible studies from their time of inception to 10 March 2022. A random effects model was used to estimate the pooled mean differences (MDs) and their 95% confidence intervals(CIs) for target volume coverage, organ-at-risk(OAR) doses, monitor units(MUs) and treatment delivery times. We also performed a subgroup analysis to evaluate if different treatment planning systems (TPS) (Eclipse, Monaco and Pinnacle) used affected the pooled mean differences. RESULTS A total of 17 studies (383 patients) were eligible to be included. The pooled results showed that dual arc VMAT reduced D2% of PTV (MD=0.71Gy,95%CI=0.14-1.27,P=0.01), mean left cochlea dose (MD=2.6Gy,95%CI=0.03-5.16,P=0.05), mean right cochlea dose (MD=3.4Gy,95%CI=0.7-6.1,P=0.01), MUs (MD=554.9,95%CI=245.8-863.9,P=0.0004), treatment delivery times (MD=6.7mins,95%CI=4.5-8.9,P<0.0001) and integral dose (MD=0.97Gy,95%CI=0.28-1.67,P=0.006). None of the other indices were significantly better for the IMRT plans. The subgroup analysis showed that the integral dose was significantly lower only for Eclipse (MD=0.88Gy, 95%CI=0.14-1.63, P=0.02). The total MUs was significantly lower only for Eclipse (MD=1035.2, 95%CI=624.6-1445.9, P<0.0001) and Pinnacle (MD=293, 95%CI=15.6-570.5, P=0.04). Similarly, delivery time was also significantly lower only for Eclipse (MD=6.1mins, 95%CI=5.7-6.5, P<0.0001) and Pinnacle (MD=4.9mins, 95%CI=2.6-7.2, P<0.0001). The subgroup analysis however showed that target coverage was superior for the IMRT plans for both Pinnacle (MD=0.48Gy, 95%CI=0.31-0.66, P<0.0001) and Monaco (MD=0.12Gy, 95%CI=0.07-0.17, P<0.0001). CONCLUSION Dual-arc VMAT plans improved OAR doses, MUs and treatment times as compared to IMRT plans. The different TPS used may modify dosimetric outcomes.
Collapse
Affiliation(s)
- Desiree Chen
- Department of Radiation Oncology, National University Health System, Singapore.
| | - Shao Bin Cai
- Department of Radiation Oncology, National University Health System, Singapore
| | - Yu Yang Soon
- Department of Radiation Oncology, National University Health System, Singapore
| | - Timothy Cheo
- Department of Radiation Oncology, National University Health System, Singapore
| | | | - Chek Wee Tan
- Department of Radiation Oncology, National University Health System, Singapore
| | - Francis Ho
- Department of Radiation Oncology, National University Health System, Singapore
| |
Collapse
|
6
|
Tseng W, Liu H, Yang Y, Liu C, Lu B. An ultra-fast deep-learning-based dose engine for prostate VMAT via knowledge distillation framework with limited patient data. Phys Med Biol 2022; 68. [PMID: 36533689 DOI: 10.1088/1361-6560/aca5eb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/24/2022] [Indexed: 11/25/2022]
Abstract
Objective. Deep-learning (DL)-based dose engines have been developed to alleviate the intrinsic compromise between the calculation accuracy and efficiency of the traditional dose calculation algorithms. However, current DL-based engines typically possess high computational complexity and require powerful computing devices. Therefore, to mitigate their computational burdens and broaden their applicability to a clinical setting where resource-limited devices are available, we proposed a compact dose engine via knowledge distillation (KD) framework that offers an ultra-fast calculation speed with high accuracy for prostate Volumetric Modulated Arc Therapy (VMAT).Approach. The KD framework contains two sub-models: a large pre-trained teacher and a small to-be-trained student. The student receives knowledge transferred from the teacher for better generalization. The trained student serves as the final engine for dose calculation. The model input is patient computed tomography and VMAT dose in water, and the output is DL-calculated patient dose. The ground-truth \dose was computed by the Monte Carlo module of the Monaco treatment planning system. Twenty and ten prostate cases were included for model training and assessment, respectively. The model's performance (teacher/student/student-only) was evaluated by Gamma analysis and inference efficiency.Main results. The dosimetric comparisons (input/DL-calculated/ground-truth doses) suggest that the proposed engine can effectively convert low-accuracy doses in water to high-accuracy patient doses. The Gamma passing rate (2%/2 mm, 10% threshold) between the DL-calculated and ground-truth doses was 98.64 ± 0.62% (teacher), 98.13 ± 0.76% (student), and 96.95 ± 1.02% (student-only). The inference time was 16 milliseconds (teacher) and 11 milliseconds (student/student-only) using a graphics processing unit device, while it was 936 milliseconds (teacher) and 374 milliseconds (student/student-only) using a central processing unit device.Significance. With the KD framework, a compact dose engine can achieve comparable accuracy to that of a larger one. Its compact size reduces the computational burdens and computing device requirements, and thus such an engine can be more clinically applicable.
Collapse
Affiliation(s)
- Wenchih Tseng
- Department of Radiation Oncology, University of Florida, Gainesville, FL 32610-0385, United States of America
| | - Hongcheng Liu
- Department of Industrial and Systems Engineering, University of Florida, Gainesville, FL 32611-6595, United States of America
| | - Yu Yang
- Department of Industrial and Systems Engineering, University of Florida, Gainesville, FL 32611-6595, United States of America
| | - Chihray Liu
- Department of Radiation Oncology, University of Florida, Gainesville, FL 32610-0385, United States of America
| | - Bo Lu
- Department of Radiation Oncology, University of Florida, Gainesville, FL 32610-0385, United States of America
| |
Collapse
|
7
|
Can S, Şahi̇ner E, Karaçetin D, Meriç N. Developing a new Monte Carlo algorithm as an alternative tool to simulate virtual source model on an Elekta Versa HD Linac. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2022. [DOI: 10.1016/j.jrras.2022.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Validation and comparison of radiograph-based organ dose reconstruction approaches for Wilms’ tumor radiation treatment plans. Adv Radiat Oncol 2022; 7:101015. [PMID: 36060631 PMCID: PMC9429523 DOI: 10.1016/j.adro.2022.101015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 06/22/2022] [Indexed: 11/22/2022] Open
|
9
|
Gong H, Tao S, Gagneur JD, Liu W, Shen J, McCollough CH, Hu Y, Leng S. Implementation and experimental evaluation of Mega-voltage fan-beam CT using a linear accelerator. Radiat Oncol 2021; 16:139. [PMID: 34321029 PMCID: PMC8317342 DOI: 10.1186/s13014-021-01862-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 07/19/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mega-voltage fan-beam Computed Tomography (MV-FBCT) holds potential in accurate determination of relative electron density (RED) and proton stopping power ratio (SPR) but is not widely available. OBJECTIVE To demonstrate the feasibility of MV-FBCT using a medical linear accelerator (LINAC) with a 2.5 MV imaging beam, an electronic portal imaging device (EPID) and multileaf collimators (MLCs). METHODS MLCs were used to collimate MV beam along z direction to enable a 1 cm width fan-beam. Projection data were acquired within one gantry rotation and preprocessed with in-house developed artifact correction algorithms before the reconstruction. MV-FBCT data were acquired at two dose levels: 30 and 60 monitor units (MUs). A Catphan 604 phantom was used to evaluate basic image quality. A head-sized CIRS phantom with three configurations of tissue-mimicking inserts was scanned and MV-FBCT Hounsfield unit (HU) to RED calibration was established for each insert configuration using linear regression. The determination coefficient ([Formula: see text]) was used to gauge the accuracy of HU-RED calibration. Results were compared with baseline single-energy kilo-voltage treatment planning CT (TP-CT) HU-RED calibration which represented the current standard clinical practice. RESULTS The in-house artifact correction algorithms effectively suppressed ring artifact, cupping artifact, and CT number bias in MV-FBCT. Compared to TP-CT, MV-FBCT was able to improve the prediction accuracy of the HU-RED calibration curve for all three configurations of insert materials, with [Formula: see text] > 0.9994 and [Formula: see text] < 0.9990 for MV-FBCT and TP-CT HU-RED calibration curves of soft-tissue inserts, respectively. The measured mean CT numbers of blood-iodine mixture inserts in TP-CT drastically deviated from the fitted values but not in MV-FBCT. Reducing the radiation level from 60 to 30 MU did not decrease the prediction accuracy of the MV-FBCT HU-RED calibration curve. CONCLUSION We demonstrated the feasibility of MV-FBCT and its potential in providing more accurate RED estimation.
Collapse
Affiliation(s)
- Hao Gong
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Shengzhen Tao
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Justin D Gagneur
- Department of Radiology, Mayo Clinic Arizona, 5881 East Mayo Blvd, Phoenix, AZ, 85258, USA
| | - Wei Liu
- Department of Radiology, Mayo Clinic Arizona, 5881 East Mayo Blvd, Phoenix, AZ, 85258, USA
| | - Jiajian Shen
- Department of Radiology, Mayo Clinic Arizona, 5881 East Mayo Blvd, Phoenix, AZ, 85258, USA
| | - Cynthia H McCollough
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Yanle Hu
- Department of Radiology, Mayo Clinic Arizona, 5881 East Mayo Blvd, Phoenix, AZ, 85258, USA.
| | - Shuai Leng
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
10
|
Report dose-to-medium in clinical trials where available; a consensus from the Global Harmonisation Group to maximize consistency. Radiother Oncol 2021; 159:106-111. [PMID: 33741471 DOI: 10.1016/j.radonc.2021.03.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/05/2021] [Accepted: 03/06/2021] [Indexed: 11/22/2022]
Abstract
PURPOSE To promote consistency in clinical trials by recommending a uniform framework as it relates to radiation transport and dose calculation in water versus in medium. METHODS The Global Quality Assurance of Radiation Therapy Clinical Trials Harmonisation Group (GHG; www.rtqaharmonization.org) compared the differences between dose to water in water (Dw,w), dose to water in medium (Dw,m), and dose to medium in medium (Dm,m). This was done based on a review of historical frameworks, existing literature and standards, clinical issues in the context of clinical trials, and the trajectory of radiation dose calculations. Based on these factors, recommendations were developed. RESULTS No framework was found to be ideal or perfect given the history, complexity, and current status of radiation therapy. Nevertheless, based on the evidence available, the GHG established a recommendation preferring dose to medium in medium (Dm,m). CONCLUSIONS Dose to medium in medium (Dm,m) is the preferred dose calculation and reporting framework. If an institution's planning system can only calculate dose to water in water (Dw,w), this is acceptable.
Collapse
|
11
|
Saini A, Pandey VP, Kumar P, Singh A, Pasricha R. Investigation of tube voltage dependence on CT number and its effect on dose calculation algorithms using thorax phantom in Monaco treatment planning system for external beam radiation therapy. J Med Phys 2021; 46:315-323. [PMID: 35261502 PMCID: PMC8853450 DOI: 10.4103/jmp.jmp_124_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 08/29/2021] [Accepted: 08/29/2021] [Indexed: 11/10/2022] Open
Abstract
Introduction The accuracy of dose calculation algorithms depends on the electron density and computed tomography (CT) number of medium scanned. Our study aimed to verify the impact of different CT scanning protocols on Hounsfield unit (HU) and effect on dose calculation algorithms. Materials and Methods CIRS thorax phantom with different density material plugs was scanned at varying tube voltages from CT scanner and HU values were measured in treatment planning system (TPS). Calibration curves of electron density at different tube voltages were plotted and used for dose calculation with different calculation algorithms at varying high energy megavoltage photon energies. Results Insignificant difference is obtained in electron density curves plotted at different tube voltages. The mean variation in HU values was found at different tube voltages for bone, lung, and water are 896.75 (standard deviation [SD] 122.88), -799.25 (SD 5.74), and -17.5 (SD 0.57), respectively. The estimated P values for change in HU values were 0.089, 0.258, and 0.121 for bone, lung, and water, respectively. Pencil beam (PB) convolution and collapsed cone algorithms show no significant dose difference, i.e., <1% variation and Monte Carlo (MC) shows maximum dose difference up to 1.4%. Conclusion Third-generation algorithms such as MC shows dependence on varying tube voltages in dose calculation. Calibration curves plotted at different kVp in TPS advised to be chosen wisely to avoid any dosimetric errors in different medium.
Collapse
Affiliation(s)
- Amit Saini
- Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, India,Department of Medical Physics, Tata Memorial Center, Homi Bhabha Cancer Hospital, Sangrur, Punjab, India
| | - V P Pandey
- Department of Medical Physics, Hind Institute of Medical Sciences, Safedabad, Barabanki, Uttar Pradesh, India,Address for correspondence: Dr. V. P. Pandey, Department of Medical Physics, Hind Institute of Medical Sciences, Safedabad, Barabanki, U.P, India E-mail: aryanbarc@gmailcom
Dr. Pankaj Kumar Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, India Centre for Liquid Crystal Research, Chitkara University Research and Innovation Network, Chitkara University, Punjab, India E-mail:
| | - Pankaj Kumar
- Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, India,Centre for Liquid Crystal Research, Chitkara University Research and Innovation Network, Chitkara University, Punjab, India,Address for correspondence: Dr. V. P. Pandey, Department of Medical Physics, Hind Institute of Medical Sciences, Safedabad, Barabanki, U.P, India E-mail: aryanbarc@gmailcom
Dr. Pankaj Kumar Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, India Centre for Liquid Crystal Research, Chitkara University Research and Innovation Network, Chitkara University, Punjab, India E-mail:
| | - Avtar Singh
- Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, India,Department of Medical Physics, Tata Memorial Center, Homi Bhabha Cancer Hospital, Sangrur, Punjab, India
| | - Rajesh Pasricha
- Department of Radiotherapy, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
| |
Collapse
|
12
|
Roy S, Grimes S, Morgan SC, Spratt DE, Eapen L, Mac Rae RM, Malone J, Craig J, Malone S. Impact of Treating Physician on Radiation Therapy Related Severe Toxicities in Men with Prostate Cancer. Pract Radiat Oncol 2020; 11:e292-e300. [PMID: 33068792 DOI: 10.1016/j.prro.2020.09.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 12/25/2022]
Abstract
PURPOSE The impact of treating physician on radiation therapy (RT) related toxicity is unclear. We carried out a secondary analysis of a randomized controlled study to determine whether the risk of RT-related late toxicities in patients with prostate cancer varies depending on the treating radiation oncologist. METHODS AND MATERIALS This is a secondary analysis of a phase 3 randomized controlled study in which patients with prostate cancer with Gleason score ≤7, clinical stage T1b-T3a, and prostate-specific antigen <30 ng/mL were randomized to receive androgen suppression for 6 months, starting either 4 months before or concurrently with definitive prostate radiation therapy. Incidence of late RT-related toxicity was estimated using Kaplan-Meier methods. We applied multivariable semiparametric shared frailty models with gamma distribution to determine the between-physician variation in the hazard of late RT-related grade ≥3 gastrointestinal, genitourinary, or overall toxicity. Patient level covariables included age, risk group, year of enrollment, and treatment regimen. Frailty variance, a measure of unexplained heterogeneity, was estimated with 95% confidence intervals (CIs). Statistical significance was suggested when the lower limit of the 95% CI for the frailty variance was >0. The Commenges-Andersen test was used for P value estimation. RESULTS Overall, 426 patients were treated by 9 radiation oncologists. On log-rank test, there was a significant difference in the cumulative incidence of overall grade ≥3 toxicities (P = .001) and grade ≥3 gastrointestinal toxicity (P = .01) among the physician-based clusters. The frailty variance for overall late grade ≥3 toxicity was 0.31 (95% CI, 0.02-1.39; P = .01). The frailty variance for the grade ≥3 gastrointestinal and genitourinary toxicity was 0.84 (95% CI, 0.00-4.20; P = .11) and 0.11 (95% CI, 0.00-1.13; P = .31), respectively. CONCLUSIONS In our study, the hazard of overall RT-related late grade ≥3 toxicity varied significantly depending on treating radiation oncologist. Further studies are required to explore the underlying processes that lead to such variations in clinical trials involving radiation therapy in prostate cancer.
Collapse
Affiliation(s)
- Soumyajit Roy
- New York Medical College, New York, New York; The Ottawa Hospital Cancer Centre, Ottawa, Canada; Division of Radiation Oncology, Department of Radiology, University of Ottawa, Ontario, Canada
| | - Scott Grimes
- The Ottawa Hospital Cancer Centre, Ottawa, Canada
| | - Scott C Morgan
- The Ottawa Hospital Cancer Centre, Ottawa, Canada; Division of Radiation Oncology, Department of Radiology, University of Ottawa, Ontario, Canada
| | - Daniel E Spratt
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Libni Eapen
- The Ottawa Hospital Cancer Centre, Ottawa, Canada; Division of Radiation Oncology, Department of Radiology, University of Ottawa, Ontario, Canada
| | - Robert M Mac Rae
- The Ottawa Hospital Cancer Centre, Ottawa, Canada; Division of Radiation Oncology, Department of Radiology, University of Ottawa, Ontario, Canada
| | - Julia Malone
- The Ottawa Hospital Cancer Centre, Ottawa, Canada
| | - Julia Craig
- The Ottawa Hospital Cancer Centre, Ottawa, Canada
| | - Shawn Malone
- The Ottawa Hospital Cancer Centre, Ottawa, Canada; Division of Radiation Oncology, Department of Radiology, University of Ottawa, Ontario, Canada.
| |
Collapse
|
13
|
Bosse C, Narayanasamy G, Saenz D, Myers P, Kirby N, Rasmussen K, Mavroidis P, Papanikolaou N, Stathakis S. Dose Calculation Comparisons between Three Modern Treatment Planning Systems. J Med Phys 2020; 45:143-147. [PMID: 33487926 PMCID: PMC7810148 DOI: 10.4103/jmp.jmp_111_19] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/20/2020] [Accepted: 05/20/2020] [Indexed: 11/24/2022] Open
Abstract
Purpose: Monaco treatment planning system (TPS) version 5.1 uses a Monte-Carlo (MC)-based dose calculation engine. The aim of this study is to verify and compare the Monaco-based dose calculations with both Pinnacle3 collapsed cone convolution superposition (CCCS) and Eclipse anisotropic analytical algorithm (AAA) calculations. Materials and Methods: For this study, 18 previously treated lung and head-and-neck (HN) cancer patients were chosen to compare the dose calculations between Pinnacle, Monaco, and Eclipse. Plans were chosen from those that had been treated using the Elekta VersaHD or a Novalis Tx linac. All of the treated volumetric-modulated arc therapy plans used 6 MV or 10 MV photon beams. The original plans calculated with CCCS or AAA along with the recalculated ones using MC from the three TPS were exported into Velocity software for intercomparison. Results: To compare the dose calculations, Planning target volume (PTV) heterogeneity indexes and conformity indexes were calculated from the dose volume histograms (DVH) of all plans. While mean lung dose (MLD), lung V5 and V20 values were recorded for lung plans, the computed dose to parotids, brainstem, and mandible were documented for HN plans. In plan evaluation, percent differences of the above dosimetric values in Monaco computation were compared against each of the other TPS computations. Conclusion: It could be concluded through this research that there can be differences in the calculation of dose across different TPSs. Although relatively small, these differences could become apparent when compared using DVH. These differences most likely arise from the different dose calculation algorithms used in each TPS. Monaco employs the MC allowing it to have much more detailed calculations that result in it being seen as the most accurate and the gold standard.
Collapse
Affiliation(s)
- Courtney Bosse
- Radiation Oncology, Colorado Associates in Medical Physics, Colorado Springs, CO 80907, USA
| | - Ganesh Narayanasamy
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Daniel Saenz
- Mays Cancer Center, MD Anderson Cancer Center, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| | - Pamela Myers
- Mays Cancer Center, MD Anderson Cancer Center, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| | - Neil Kirby
- Mays Cancer Center, MD Anderson Cancer Center, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| | - Karl Rasmussen
- Mays Cancer Center, MD Anderson Cancer Center, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| | - Panayiotis Mavroidis
- Department of Radiation Oncology, University of North Carolina, Chapel Hill, NC, USA
| | - Niko Papanikolaou
- Mays Cancer Center, MD Anderson Cancer Center, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| | - Sotirios Stathakis
- Mays Cancer Center, MD Anderson Cancer Center, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| |
Collapse
|
14
|
Dosimetric comparison of 3-dimensional conformal radiotherapy (3D-CRT) and volumetric-modulated arc therapy (VMAT) in locally advanced cancer cervix. JOURNAL OF RADIOTHERAPY IN PRACTICE 2020. [DOI: 10.1017/s1460396920000849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractIntroduction:Dosimetric advantages of volumetric-modulated arc therapy (VMAT) over three-dimensional conformal radiotherapy (3D-CRT) are not established in a head-on comparison of a uniform group of locally advanced carcinoma of the cervix (LACC). Therefore, we conducted a dosimetric comparison of these two techniques in LACC patients.Materials and methods:Computed tomography (CT) data of histologically proven de novo LACC, including Stage IIB–IIIB and earlier stages deemed inoperable, were included in this prospective observational dosimetric study. Planning was initially done by 3D-CRT technique (dose of 45–50·4 Gy @ 1·8–2 Gy/# was used in the actual treatment), followed by VMAT planning and appropriate dosimetric comparisons were done in 39 cases.Results:For planning target volume coverage, D95, D98 and D100 (p < 0·0001 for all parameters) and V95 and V100 (p = 0·002 and <0·0001, respectively) were significantly improved with VMAT. The conformity index (CI) was significantly better with VMAT (p = 0·03), while 3D-CRT had a significantly better homogeneity index (HI)(p = 0·003). Dose to the urinary bladder was significantly reduced with VMAT compared to 3D-CRT for V20–V50, except V10. The doses to the rectum and abdominal cavity were significantly reduced with VMAT compared to 3D-CRT plans for all parameters (V10–V50). The number of organs at risks (OARs) for which constraints were met was higher with VMAT plans than with 3D-CRT plans, with at least four out of the five OARs protected in 46·1 versus 5·1% and all constraints achieved in 15·4% versus none.Conclusion:We conclude that in dosimetric terms, VMAT is superior to 3D-CRT for LACC.
Collapse
|
15
|
Xing Y, Zhang Y, Nguyen D, Lin MH, Lu W, Jiang S. Boosting radiotherapy dose calculation accuracy with deep learning. J Appl Clin Med Phys 2020; 21:149-159. [PMID: 32559018 PMCID: PMC7484829 DOI: 10.1002/acm2.12937] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/09/2020] [Accepted: 05/11/2020] [Indexed: 12/26/2022] Open
Abstract
In radiotherapy, a trade‐off exists between computational workload/speed and dose calculation accuracy. Calculation methods like pencil‐beam convolution can be much faster than Monte‐Carlo methods, but less accurate. The dose difference, mostly caused by inhomogeneities and electronic disequilibrium, is highly correlated with the dose distribution and the underlying anatomical tissue density. We hypothesize that a conversion scheme can be established to boost low‐accuracy doses to high‐accuracy, using intensity information obtained from computed tomography (CT) images. A deep learning‐driven framework was developed to test the hypothesis by converting between two commercially available dose calculation methods: Anisotropic analytic algorithm (AAA) and Acuros XB (AXB). A hierarchically dense U‐Net model was developed to boost the accuracy of AAA dose toward the AXB level. The network contained multiple layers of varying feature sizes to learn their dose differences, in relationship to CT, both locally and globally. Anisotropic analytic algorithm and AXB doses were calculated in pairs for 120 lung radiotherapy plans covering various treatment techniques, beam energies, tumor locations, and dose levels. For each case, the CT and the AAA dose were used as the input and the AXB dose as the “ground‐truth” output, to train and test the model. The mean squared errors (MSEs) and gamma passing rates (2 mm/2% & 1 mm/1%) were calculated between the boosted AAA doses and the “ground‐truth” AXB doses. The boosted AAA doses demonstrated substantially improved match to the “ground‐truth” AXB doses, with average (± s.d.) gamma passing rate (1 mm/1%) 97.6% (±2.4%) compared to 87.8% (±9.0%) of the original AAA doses. The corresponding average MSE was 0.11(±0.05) vs 0.31(±0.21). Deep learning is able to capture the differences between dose calculation algorithms to boost the low‐accuracy algorithms. By combining a less accurate dose calculation algorithm with a trained deep learning model, dose calculation can potentially achieve both high accuracy and efficiency.
Collapse
Affiliation(s)
- Yixun Xing
- Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - You Zhang
- Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Dan Nguyen
- Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Mu-Han Lin
- Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Weiguo Lu
- Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Steve Jiang
- Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| |
Collapse
|
16
|
Investigation of central electrode artefacts of ionisation chamber effect on dose calculation using advanced calculation algorithms AAA and Acuros XB. JOURNAL OF RADIOTHERAPY IN PRACTICE 2020. [DOI: 10.1017/s1460396920000448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractAim:To investigate the central electrode artefact effect of different ion chambers in the verification phantom using the dose calculation algorithms Analytical Anisotropic Algorithm (AAA) and Acuros XB.Materials and methods:The dosimetric study was conducted using an in-house fabricated polymethyl methacrylate head phantom. The treatment planning system (TPS)-calculated doses in the phantom with detectors were compared against the dummy detector fillets using AAA and Acuros XB algorithm. The planned and measured doses were compared for the study.Results:The mean percentage variation in volumetric-modulated arc therapy plans using Acuros XB and the measurement in the head phantom are statistically significant (p-value = 0.001) for FC65 and CC13 chambers. In small volume chambers (A14SL and CC01), the measured and TPS-calculated dose shows a good agreement.Findings:The study confirmed the CT set of the phantom with detectors (FC65 and CC13) give more artefacts/heterogeneity caused a significant variation in dose calculation using Acuros XB. Therefore, the study suggests a method of using phantom CT set with the dummy detector for mean dose calculation for the Acuros XB algorithm.
Collapse
|
17
|
Ayadi M, Baudier T, Bouilhol G, Dupuis P, Boissard P, Pinho R, Krason A, Rit S, Claude L, Sarrut D. Mid-position treatment strategy for locally advanced lung cancer: a dosimetric study. Br J Radiol 2020; 93:20190692. [PMID: 32293191 PMCID: PMC10993224 DOI: 10.1259/bjr.20190692] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 03/20/2020] [Accepted: 03/30/2020] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE The internal target volume (ITV) strategy generates larger planning target volumes (PTVs) in locally advanced non-small cell lung cancer (LA-NSCLC) than the Mid-position (Mid-p) strategy. We investigated the benefit of the Mid-p strategy regarding PTV reduction and dose to the organs at risk (OARs). METHODS 44 patients with LA-NSCLC were included in a randomized clinical study to compare ITV and Mid-p strategies. GTV were delineated by a physician on maximum intensity projection images and on Mid-p images from four-dimensional CTs. CTVs were obtained by adding 6 mm uniform margin for microscopic extension. CTV to PTV margins were calculated using the van Herk's recipe for setup and delineation errors. For the Mid-p strategy, the mean target motion amplitude was added as a random error. For both strategies, three-dimensional conformal plans delivering 60-66 Gy to PTV were performed. PTVs, dose-volume parameters for OARs (lung, esophagus, heart, spinal cord) were reported and compared. RESULTS With the Mid-p strategy, the median of volume reduction was 23.5 cm3 (p = 0.012) and 8.8 cm3 (p = 0.0083) for PTVT and PTVN respectively; the median mean lung dose reduction was 0.51 Gy (p = 0.0057). For 37.1% of the patients, delineation errors led to smaller PTV with the ITV strategy than with the Mid-p strategy. CONCLUSION PTV and mean lung dose were significantly reduced using the Mid-p strategy. Delineation uncertainty can unfavorably impact the advantage. ADVANCES IN KNOWLEDGE To the best of our knowledge, this is the first dosimetric comparison study between ITV and Mid-p strategies for LA-NSCLC.
Collapse
Affiliation(s)
- M. Ayadi
- Radiotherapy and Physics Department, Leon Berard Cancer Center,
28, rue Laennec F-69373, Lyon,
France
| | - T. Baudier
- Univ Lyon, INSA-Lyon, Université Lyon 1, CNRS, Inserm,
Centre Léon Bérard, CREATIS UMR 5220, U1206,
F-69373, Lyon,
France
| | - G. Bouilhol
- Department of Radiotherapy, Hartmann Radiotherapy Center,
American Hospital of Paris,
Neuilly, France
| | - P. Dupuis
- Radiotherapy and Physics Department, Leon Berard Cancer Center,
28, rue Laennec F-69373, Lyon,
France
| | - P. Boissard
- Radiotherapy and Physics Department, Leon Berard Cancer Center,
28, rue Laennec F-69373, Lyon,
France
| | - R. Pinho
- Univ Lyon, INSA-Lyon, Université Lyon 1, CNRS, Inserm,
Centre Léon Bérard, CREATIS UMR 5220, U1206,
F-69373, Lyon,
France
| | - A. Krason
- Univ Lyon, INSA-Lyon, Université Lyon 1, CNRS, Inserm,
Centre Léon Bérard, CREATIS UMR 5220, U1206,
F-69373, Lyon,
France
| | - S. Rit
- Univ Lyon, INSA-Lyon, Université Lyon 1, CNRS, Inserm,
Centre Léon Bérard, CREATIS UMR 5220, U1206,
F-69373, Lyon,
France
| | - L. Claude
- Radiotherapy and Physics Department, Leon Berard Cancer Center,
28, rue Laennec F-69373, Lyon,
France
| | - D. Sarrut
- Univ Lyon, INSA-Lyon, Université Lyon 1, CNRS, Inserm,
Centre Léon Bérard, CREATIS UMR 5220, U1206,
F-69373, Lyon,
France
| |
Collapse
|
18
|
Migration of treatment planning system using existing commissioned planning system. JOURNAL OF RADIOTHERAPY IN PRACTICE 2020. [DOI: 10.1017/s1460396920000199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractIntroduction:Commissioning of a new planning system involves extensive data acquisition which can be onerous involving significant clinic downtime. This could be circumvented by extracting data from existing treatment planning system (TPS) to speed up the process.Material and methods:In this study, commissioning beam data was obtained from a clinically commissioned TPS (Pinnacle™) using Matlab™ generated Pinnacle™ executable scripts to commission an independent 3D dose verification TPS (Eclipse™). Profiles and output factors for commissioning as required by Eclipse™ were computed on a 50 × 50 × 50 cm3 water phantom at a dose grid resolution of 2 mm3. Verification doses were computed and compared to clinical TPS dose profiles based on TG-106 guidelines. Standard patient plans from Pinnacle™ including intensity modulated radiation therapy and volumetric modulated arc therapy were re-computed on Eclipse™ TPS while maintaining the same monitor units. Computed dose was exported back to Pinnacle for comparison with the original plans. This methodology enabled us to alleviate all ambiguities that arise in such studies.Results:Profile analysis using in-house software showed that for all field sizes including small multi-leaf collimator-generated fields, >95% of infield and penumbra data points of Eclipse™ match Pinnacle™ generated and measured profiles with 2%/2 mm gamma criteria. Excellent agreement was observed in the penumbra regions, with >95% of the data points passing distance to agreement criteria for complex C-shaped and S-shaped profiles. Dose volume histograms and isodose lines of patient plans agreed well to within a 0·5% for target coverage.Findings:Migration of TPS is possible without compromising accuracy or enduring the cumbersome measurement of commissioning data. Economising time for commissioning such a verification system or for migration of TPS can add great QA value and minimise downtime.
Collapse
|
19
|
Tseng YD, Maes SM, Kicska G, Sponsellor P, Traneus E, Wong T, Stewart RD, Saini J. Comparative photon and proton dosimetry for patients with mediastinal lymphoma in the era of Monte Carlo treatment planning and variable relative biological effectiveness. Radiat Oncol 2019; 14:243. [PMID: 31888769 PMCID: PMC6937683 DOI: 10.1186/s13014-019-1432-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 11/27/2019] [Indexed: 12/25/2022] Open
Abstract
Background Existing pencil beam analytical (PBA) algorithms for proton therapy treatment planning are not ideal for sites with heterogeneous tissue density and do not account for the spatial variations in proton relative biological effectiveness (vRBE). Using a commercially available Monte Carlo (MC) treatment planning system, we compared various dosimetric endpoints between proton PBA, proton MC, and photon treatment plans among patients with mediastinal lymphoma. Methods Eight mediastinal lymphoma patients with both free breathing (FB) and deep inspiration breath hold (DIBH) CT simulation scans were analyzed. The original PBA plans were re-calculated with MC. New proton plans that used MC for both optimization and dose calculation with equivalent CTV/ITV coverage were also created. A vRBE model, which uses a published model for DNA double strand break (DSB) induction, was applied on MC plans to study the potential impact of vRBE on cardiac doses. Comparative photon plans were generated on the DIBH scan. Results Re-calculation of FB PBA plans with MC demonstrated significant under coverage of the ITV V99 and V95. Target coverage was recovered by re-optimizing the PT plan with MC with minimal change to OAR doses. Compared to photons with DIBH, MC-optimized FB and DIBH proton plans had significantly lower dose to the mean lung, lung V5, breast tissue, and spinal cord for similar target coverage. Even with application of vRBE in the proton plans, the putative increase in RBE at the end of range did not decrease the dosimetric advantages of proton therapy in cardiac substructures. Conclusions MC should be used for PT treatment planning of mediastinal lymphoma to ensure adequate coverage of target volumes. Our preliminary data suggests that MC-optimized PT plans have better sparing of the lung and breast tissue compared to photons. Also, the potential for end of range RBE effects are unlikely to be large enough to offset the dosimetric advantages of proton therapy in cardiac substructures for mediastinal targets, although these dosimetric findings require validation with late toxicity data.
Collapse
Affiliation(s)
- Yolanda D Tseng
- Department of Radiation Oncology, University of Washington, 1959 NE Pacific Street, Box 356043, Seattle, WA, 98195, USA. .,Seattle Cancer Care Alliance Proton Therapy Center, Seattle, WA, USA.
| | - Shadonna M Maes
- Seattle Cancer Care Alliance Proton Therapy Center, Seattle, WA, USA
| | - Gregory Kicska
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Patricia Sponsellor
- Department of Radiation Oncology, University of Washington, 1959 NE Pacific Street, Box 356043, Seattle, WA, 98195, USA
| | | | - Tony Wong
- Seattle Cancer Care Alliance Proton Therapy Center, Seattle, WA, USA
| | - Robert D Stewart
- Department of Radiation Oncology, University of Washington, 1959 NE Pacific Street, Box 356043, Seattle, WA, 98195, USA
| | - Jatinder Saini
- Seattle Cancer Care Alliance Proton Therapy Center, Seattle, WA, USA
| |
Collapse
|
20
|
Pergascript orange-based polymeric solution as a dosimeter for radiotherapy dosimetric validation. Phys Med 2019; 57:169-176. [DOI: 10.1016/j.ejmp.2019.01.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 12/31/2018] [Accepted: 01/04/2019] [Indexed: 10/27/2022] Open
|
21
|
Haefner MF, Verma V, Bougatf N, Mielke T, Tonndorf-Martini E, König L, Rwigema JCM, Simone 2nd CB, Uhlmann L, Eichhorn F, Winter H, Grosch H, Haberer T, Herfarth K, Debus J, Rieken S. Dosimetric comparison of advanced radiotherapy approaches using photon techniques and particle therapy in the postoperative management of thymoma. Acta Oncol 2018; 57:1713-1720. [PMID: 30264630 DOI: 10.1080/0284186x.2018.1502467] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND The purpose of this study was to compare dosimetric differences related to target volume and organs-at-risk (OAR) using 3D-conformal radiotherapy (3DCRT), volumetric modulated arc therapy (VMAT), TomoTherapy (Tomo), proton radiotherapy (PRT), and carbon ion radiotherapy (CIRT) as part of postoperative thymoma irradiation. MATERIAL AND METHODS This single-institutional analysis included 10 consecutive patients treated with adjuvant radiotherapy between December 2013 and September 2016. CT-datasets and respective RT-structures were anonymized and plans for all investigated RT modalities (3DCRT, VMAT, Tomo, PRT, CIRT) were optimized for a total dose of 50 Gy in 25 fractions. Comparisons between target volume and OAR dosimetric parameters were performed using the Wilcoxon rank-sum test. RESULTS The best target volume coverage (mean PTV V95% for all patients) was observed for Tomo (97.9%), PRT (97.6%), and CIRT (96.6%) followed by VMAT (85.4%) and 3DCRT (74.7%). PRT and CIRT both significantly reduced mean doses to the lungs, breasts, heart, and esophagus, as well as the spinal cord maximum dose compared with photon modalities. Among photon-based techniques, VMAT showed improved OAR sparing over 3DCRT. Tomo was associated with considerable low-dose exposure to the lungs, breasts, and heart. CONCLUSIONS Particle radiotherapy (PRT, CIRT) showed superior OAR sparing and optimal target volume coverage. The observed dosimetric advantages are expected to reduce toxicity rates. However, their clinical impact must be investigated prospectively.
Collapse
Affiliation(s)
- Matthias Felix Haefner
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany
- National Center of Radiation Research in Oncology (NCRO) Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Vivek Verma
- Department of Radiation Oncology, Allegheny General Hospital, Pittsburgh, PA, USA
| | - Nina Bougatf
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany
- National Center of Radiation Research in Oncology (NCRO) Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Thomas Mielke
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany
- National Center of Radiation Research in Oncology (NCRO) Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Eric Tonndorf-Martini
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany
| | - Laila König
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany
- National Center of Radiation Research in Oncology (NCRO) Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | | | - Charles B. Simone 2nd
- Department of Radiation Oncology, University of Maryland Medical Center, Baltimore, MD, USA
| | - Lorenz Uhlmann
- Institute of Medical Biometry and Informatics (IMBI), Heidelberg, Germany
| | - Florian Eichhorn
- Department of Thoracic Surgery, Thoraxklinik Heidelberg University Hospital, Heidelberg, Germany
| | - Hauke Winter
- Department of Thoracic Surgery, Thoraxklinik Heidelberg University Hospital, Heidelberg, Germany
| | - Heidrun Grosch
- Department of Thoracic Oncology, Thoraxklinik Heidelberg University Hospital, Heidelberg, Germany
| | - Thomas Haberer
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany
- National Center of Radiation Research in Oncology (NCRO) Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Klaus Herfarth
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany
- National Center of Radiation Research in Oncology (NCRO) Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany
- National Center of Radiation Research in Oncology (NCRO) Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Stefan Rieken
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany
- National Center of Radiation Research in Oncology (NCRO) Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| |
Collapse
|
22
|
Mohatt DJ, Ma T, Wiant DB, Islam NM, Gomez J, Singh AK, Malhotra HK. Technical and dosimetric implications of respiratory induced density variations in a heterogeneous lung phantom. Radiat Oncol 2018; 13:165. [PMID: 30180894 PMCID: PMC6124019 DOI: 10.1186/s13014-018-1110-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/21/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Stereotactic Body Radiotherapy (SBRT) is an ablative dose delivery technique which requires the highest levels of precision and accuracy. Modeling dose to a lung treatment volume has remained a complex and challenging endeavor due to target motion and the low density of the surrounding media. When coupled together, these factors give rise to pulmonary induced tissue heterogeneities which can lead to inaccuracies in dose computation. This investigation aims to determine which combination of imaging techniques and computational algorithms best compensates for time dependent lung target displacements. METHODS A Quasar phantom was employed to simulate respiratory motion for target ranges up to 3 cm. 4DCT imaging was used to generate Average Intensity Projection (AIP), Free Breathing (FB), and Maximum Intensity Projection (MIP) image sets. In addition, we introduce and compare a fourth dataset for dose computation based on a novel phase weighted density (PWD) technique. All plans were created using Eclipse version 13.6 treatment planning system and calculated using the Analytical Anisotropic Algorithm and Acuros XB. Dose delivery was performed using Truebeam STx linear accelerator where radiochromic film measurements were accessed using gamma analysis to compare planned versus delivered dose. RESULTS In the most extreme case scenario, the mean CT difference between FB and MIP datasets was found to be greater than 200 HU. The near maximum dose discrepancies between AAA and AXB algorithms were determined to be marginal (< 2.2%), with a greater variability occurring within the near minimum dose regime (< 7%). Radiochromatic film verification demonstrated all AIP and FB based computations exceeded 98% passing rates under conventional radiotherapy tolerances (gamma 3%, 3 mm). Under more stringent SBRT tolerances (gamma 3%, 1 mm), the AIP and FB based treatment plans exhibited higher pass rates (> 85%) when compared to MIP and PWD (< 85%) for AAA computations. For AXB, however, the delivery accuracy for all datasets were greater than 85% (gamma 3%,1 mm), with a corresponding reduction in overall lung irradiation. CONCLUSIONS Despite the substantial density variations between computational datasets over an extensive range of target movement, the dose difference between CT datasets is small and could not be quantified with ion chamber. Radiochromatic film analysis suggests the optimal CT dataset is dependent on the dose algorithm used for evaluation. With AAA, AIP and FB resulted in the best conformance between measured versus calculated dose for target motion ranging up to 3 cm under both conventional and SBRT tolerance criteria. With AXB, pass rates improved for all datasets with the PWD technique demonstrating slightly better conformity over AIP and FB based computations (gamma 3%, 1 mm). As verified in previous studies, our results confirm a clear advantage in delivery accuracy along with a relative decrease in calculated dose to the lung when using Acuros XB over AAA.
Collapse
Affiliation(s)
- Dennis J Mohatt
- Medical Physics Program, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14214-3005, USA. .,Department of Radiation Medicine, Roswell Park Cancer Institute, Buffalo, NY, 14293, USA.
| | - Tianjun Ma
- Medical Physics Program, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14214-3005, USA.,Department of Radiation Medicine, Roswell Park Cancer Institute, Buffalo, NY, 14293, USA
| | - David B Wiant
- Radiation Oncology, Cone Health Cancer Center, Greensboro, NC, 27403, USA
| | - Naveed M Islam
- Medical Physics Program, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14214-3005, USA.,Department of Radiation Medicine, Roswell Park Cancer Institute, Buffalo, NY, 14293, USA
| | - Jorge Gomez
- Department of Radiation Medicine, Roswell Park Cancer Institute, Buffalo, NY, 14293, USA
| | - Anurag K Singh
- Department of Radiation Medicine, Roswell Park Cancer Institute, Buffalo, NY, 14293, USA
| | - Harish K Malhotra
- Medical Physics Program, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14214-3005, USA.,Department of Radiation Medicine, Roswell Park Cancer Institute, Buffalo, NY, 14293, USA
| |
Collapse
|
23
|
Yegya-Raman N, Zou W, Nie K, Malhotra J, Jabbour SK. Advanced radiation techniques for locally advanced non-small cell lung cancer: intensity-modulated radiation therapy and proton therapy. J Thorac Dis 2018; 10:S2474-S2491. [PMID: 30206493 DOI: 10.21037/jtd.2018.07.29] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Radiation therapy (RT) represents an integral part of a multimodality treatment plan in the definitive, preoperative and postoperative management of non-small cell lung cancer (NSCLC). Technological advances in RT have enabled a shift from two-dimensional radiotherapy to more conformal techniques. Three-dimensional conformal radiotherapy (3DCRT), the current minimum technological standard for treating NSCLC, allows for more accurate delineation of tumor burden by using computed tomography-based treatment planning instead of two-dimensional radiographs. Intensity-modulated RT (IMRT) and proton therapy represent advancements over 3DCRT that aim to improve the conformity of RT and provide the possibility for dose escalation to the tumor by minimizing radiation dose to organs at risk. Both techniques likely confer benefits to certain anatomic subgroups of NSCLC requiring RT. This article reviews pertinent studies evaluating the use of IMRT and proton therapy in locally advanced NSCLC, and outlines challenges, indications for use, and areas for future research.
Collapse
Affiliation(s)
- Nikhil Yegya-Raman
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Wei Zou
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ke Nie
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Jyoti Malhotra
- Division of Medical Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Salma K Jabbour
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| |
Collapse
|
24
|
Slimani FAA, Hamdi M, Bentourkia M. G4DARI: Geant4/GATE based Monte Carlo simulation interface for dosimetry calculation in radiotherapy. Comput Med Imaging Graph 2018; 67:30-39. [PMID: 29738914 DOI: 10.1016/j.compmedimag.2018.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 03/15/2018] [Accepted: 04/24/2018] [Indexed: 11/17/2022]
Abstract
Monte Carlo (MC) simulation is widely recognized as an important technique to study the physics of particle interactions in nuclear medicine and radiation therapy. There are different codes dedicated to dosimetry applications and widely used today in research or in clinical application, such as MCNP, EGSnrc and Geant4. However, such codes made the physics easier but the programming remains a tedious task even for physicists familiar with computer programming. In this paper we report the development of a new interface GEANT4 Dose And Radiation Interactions (G4DARI) based on GEANT4 for absorbed dose calculation and for particle tracking in humans, small animals and complex phantoms. The calculation of the absorbed dose is performed based on 3D CT human or animal images in DICOM format, from images of phantoms or from solid volumes which can be made from any pure or composite material to be specified by its molecular formula. G4DARI offers menus to the user and tabs to be filled with values or chemical formulas. The interface is described and as application, we show results obtained in a lung tumor in a digital mouse irradiated with seven energy beams, and in a patient with glioblastoma irradiated with five photon beams. In conclusion, G4DARI can be easily used by any researcher without the need to be familiar with computer programming, and it will be freely available as an application package.
Collapse
Affiliation(s)
- Faiçal A A Slimani
- Faculty of Medicine and Health Sciences, Université de Sherbrooke, Canada
| | - Mahdjoub Hamdi
- Département de Génie Électrique, Université de Mostaganem, Algeria
| | - M'hamed Bentourkia
- Faculty of Medicine and Health Sciences, Université de Sherbrooke, Canada.
| |
Collapse
|
25
|
Saini J, Traneus E, Maes D, Regmi R, Bowen SR, Bloch C, Wong T. Advanced Proton Beam Dosimetry Part I: review and performance evaluation of dose calculation algorithms. Transl Lung Cancer Res 2018; 7:171-179. [PMID: 29876316 PMCID: PMC5960652 DOI: 10.21037/tlcr.2018.04.05] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/09/2018] [Indexed: 11/06/2022]
Abstract
The accuracy of dose calculation is vital to the quality of care for patients undergoing proton beam therapy (PBT). Currently, the dose calculation algorithms available in commercial treatment planning systems (TPS) in PBT are classified into two classes: pencil beam (PB) and Monte-Carlo (MC) algorithms. PB algorithms are still regarded as the standard of practice in PBT, but they are analytical approximations whereas MC algorithms use random sampling of interaction cross-sections that represent the underlying physics to simulate individual particles trajectories. This article provides a brief review of PB and MC dose calculation algorithms employed in commercial treatment planning systems and their performance comparison in phantoms through simulations and measurements. Deficiencies of PB algorithms are first highlighted by a simplified simulation demonstrating the transport of a single sub-spot of proton beam that is incident at an oblique angle in a water phantom. Next, more typical cases of clinical beams in water phantom are presented and compared to measurements. The inability of PB to correctly predict the range and subsequently distal fall-off is emphasized. Through the presented examples, it is shown how dose errors as high as 30% can result with use of a PB algorithm. These dose errors can be minimized to clinically acceptable levels of less than 5%, if MC algorithm is employed in TPS. As a final illustration, comparison between PB and MC algorithm is made for a clinical beam that is use to deliver uniform dose to a target in a lung section of an anthropomorphic phantom. It is shown that MC algorithm is able to correctly predict the dose at all depths and matched with measurements. For PB algorithm, there is an increasing mismatch with the measured doses with increasing tissue heterogeneity. The findings of this article provide a foundation for the second article of this series to compare MC vs. PB based lung cancer treatment planning.
Collapse
Affiliation(s)
- Jatinder Saini
- Seattle Cancer Care Alliance Proton Therapy Center, Seattle, WA, USA
| | | | - Dominic Maes
- Seattle Cancer Care Alliance Proton Therapy Center, Seattle, WA, USA
| | - Rajesh Regmi
- Seattle Cancer Care Alliance Proton Therapy Center, Seattle, WA, USA
| | - Stephen R. Bowen
- Seattle Cancer Care Alliance Proton Therapy Center, Seattle, WA, USA
- University of Washington School of Medicine, Departments of Radiation Oncology and Radiology, Seattle, WA, USA
| | - Charles Bloch
- Seattle Cancer Care Alliance Proton Therapy Center, Seattle, WA, USA
- University of Washington School of Medicine, Departments of Radiation Oncology, Seattle, WA, USA
| | - Tony Wong
- Seattle Cancer Care Alliance Proton Therapy Center, Seattle, WA, USA
| |
Collapse
|
26
|
Maes D, Saini J, Zeng J, Rengan R, Wong T, Bowen SR. Advanced proton beam dosimetry part II: Monte Carlo vs. pencil beam-based planning for lung cancer. Transl Lung Cancer Res 2018; 7:114-121. [PMID: 29876310 PMCID: PMC5960654 DOI: 10.21037/tlcr.2018.04.04] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/28/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND Proton pencil beam (PB) dose calculation algorithms have limited accuracy within heterogeneous tissues of lung cancer patients, which may be addressed by modern commercial Monte Carlo (MC) algorithms. We investigated clinical pencil beam scanning (PBS) dose differences between PB and MC-based treatment planning for lung cancer patients. METHODS With IRB approval, a comparative dosimetric analysis between RayStation MC and PB dose engines was performed on ten patient plans. PBS gantry plans were generated using single-field optimization technique to maintain target coverage under range and setup uncertainties. Dose differences between PB-optimized (PBopt), MC-recalculated (MCrecalc), and MC-optimized (MCopt) plans were recorded for the following region-of-interest metrics: clinical target volume (CTV) V95, CTV homogeneity index (HI), total lung V20, total lung VRX (relative lung volume receiving prescribed dose or higher), and global maximum dose. The impact of PB-based and MC-based planning on robustness to systematic perturbation of range (±3% density) and setup (±3 mm isotropic) was assessed. Pairwise differences in dose parameters were evaluated through non-parametric Friedman and Wilcoxon sign-rank testing. RESULTS In this ten-patient sample, CTV V95 decreased significantly from 99-100% for PBopt to 77-94% for MCrecalc and recovered to 99-100% for MCopt (P<10-5). The median CTV HI (D95/D5) decreased from 0.98 for PBopt to 0.91 for MCrecalc and increased to 0.95 for MCopt (P<10-3). CTV D95 robustness to range and setup errors improved under MCopt (ΔD95 =-1%) compared to MCrecalc (ΔD95 =-6%, P=0.006). No changes in lung dosimetry were observed for large volumes receiving low to intermediate doses (e.g., V20), while differences between PB-based and MC-based planning were noted for small volumes receiving high doses (e.g., VRX). Global maximum patient dose increased from 106% for PBopt to 109% for MCrecalc and 112% for MCopt (P<10-3). CONCLUSIONS MC dosimetry revealed a reduction in target dose coverage under PB-based planning that was regained under MC-based planning along with improved plan robustness. MC-based optimization and dose calculation should be integrated into clinical planning workflows of lung cancer patients receiving actively scanned proton therapy.
Collapse
Affiliation(s)
- Dominic Maes
- Seattle Cancer Care Alliance Proton Therapy Center, Seattle, WA, USA
| | - Jatinder Saini
- Seattle Cancer Care Alliance Proton Therapy Center, Seattle, WA, USA
| | - Jing Zeng
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, WA, USA
| | - Ramesh Rengan
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, WA, USA
| | - Tony Wong
- Seattle Cancer Care Alliance Proton Therapy Center, Seattle, WA, USA
| | - Stephen R. Bowen
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, WA, USA
- Department of Radiology, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
27
|
Mendes BM, Trindade BM, Fonseca TCF, de Campos TPR. Assessment of radiation-induced secondary cancer risk in the Brazilian population from left-sided breast-3D-CRT using MCNPX. Br J Radiol 2017; 90:20170187. [PMID: 28937271 PMCID: PMC6047661 DOI: 10.1259/bjr.20170187] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 09/06/2017] [Accepted: 09/08/2017] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE The aim of this work was to simulate a 6MV conventional breast 3D conformational radiation therapy (3D-CRT) with physical wedges (50 Gy/25#) in the left breast, calculate the mean absorbed dose in the body organs using robust models and computational tools and estimate the secondary cancer-incidence risk to the Brazilian population. METHODS The VW female phantom was used in the simulations. Planning target volume (PTV) was defined in the left breast. The 6MV parallel-opposed fields breast-radiotherapy (RT) protocol was simulated with MCNPx code. The absorbed doses were evaluated in all the organs. The secondary cancer-incidence risk induced by radiotherapy was calculated for different age groups according to the BEIR VII methodology. RESULTS RT quality indexes indicated that the protocol was properly simulated. Significant absorbed dose values in red bone marrow, RBM (0.8 Gy) and stomach (0.6 Gy) were observed. The contralateral breast presented the highest risk of incidence of a secondary cancer followed by leukaemia, lung and stomach. The risk of a secondary cancer-incidence by breast-RT, for the Brazilian population, ranged between 2.2-1.7% and 0.6-0.4%. CONCLUSION RBM and stomach, usually not considered as OAR, presented high second cancer incidence risks of 0.5-0.3% and 0.4-0.1%, respectively. This study may be helpful for breast-RT risk/benefit assessment. Advances in knowledge: MCNPX-dosimetry was able to provide the scatter radiation and dose for all body organs in conventional breast-RT. It was found a relevant risk up to 2.2% of induced-cancer from breast-RT, considering the whole thorax organs and Brazilian cancer-incidence.
Collapse
Affiliation(s)
| | - Bruno Machado Trindade
- Programa de Ciências e Técnicas Nucleares - Departamento de Engenharia Nuclear, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Telma Cristina Ferreira Fonseca
- Programa de Ciências e Técnicas Nucleares - Departamento de Engenharia Nuclear, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Tarcisio Passos Ribeiro de Campos
- Programa de Ciências e Técnicas Nucleares - Departamento de Engenharia Nuclear, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
28
|
Ricotti R, Ciardo D, Pansini F, Bazani A, Comi S, Spoto R, Noris S, Cattani F, Baroni G, Orecchia R, Vavassori A, Jereczek-Fossa BA. Dosimetric characterization of 3D printed bolus at different infill percentage for external photon beam radiotherapy. Phys Med 2017; 39:25-32. [PMID: 28711185 DOI: 10.1016/j.ejmp.2017.06.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/09/2017] [Accepted: 06/09/2017] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND AND PURPOSE 3D printing is rapidly evolving and further assessment of materials and technique is required for clinical applications. We evaluated 3D printed boluses with acrylonitrile butadiene styrene (ABS) and polylactide (PLA) at different infill percentage. MATERIAL AND METHODS A low-cost 3D printer was used. The influence of the air inclusion within the 3D printed boluses was assessed thoroughly both with treatment planning system (TPS) and with physical measurements. For each bolus, two treatment plans were calculated with Monte Carlo algorithm, considering the computed tomography (CT) scan of the 3D printed bolus or modelling the 3D printed bolus as a virtual bolus structure with a homogeneous density. Depth dose measurements were performed with Gafchromic films. RESULTS High infill percentage corresponds to high density and high homogeneity within bolus material. The approximation of the bolus in the TPS as a homogeneous material is satisfying for infill percentages greater than 20%. Measurements performed with PLA boluses are more comparable to the TPS calculated profiles. For boluses printed at 40% and 60% infill, the discrepancies between calculated and measured dose distribution are within 5%. CONCLUSIONS 3D printing technology allows modulating the shift of the build-up region by tuning the infill percentage of the 3D printed bolus in order to improve superficial target coverage.
Collapse
Affiliation(s)
- Rosalinda Ricotti
- Department of Radiation Oncology, European Institute of Oncology, Milan, Italy
| | - Delia Ciardo
- Department of Radiation Oncology, European Institute of Oncology, Milan, Italy.
| | - Floriana Pansini
- Unit of Medical Physics, European Institute of Oncology, Milan, Italy
| | - Alessia Bazani
- Unit of Medical Physics, European Institute of Oncology, Milan, Italy
| | - Stefania Comi
- Unit of Medical Physics, European Institute of Oncology, Milan, Italy
| | - Ruggero Spoto
- Department of Radiation Oncology, European Institute of Oncology, Milan, Italy; Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| | - Samuele Noris
- Corso di Laurea in Tecniche di radiologia medica, per immagini e radioterapia, University of Milan, Milan, Italy
| | - Federica Cattani
- Unit of Medical Physics, European Institute of Oncology, Milan, Italy
| | - Guido Baroni
- Dipartimento di Elettronica Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy; Bioengineering Unit, Centro Nazionale di Adroterapia Oncologica, Pavia, Italy
| | - Roberto Orecchia
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy; Department of Medical Imaging and Radiation Sciences, European Institute of Oncology, Milan, Italy
| | - Andrea Vavassori
- Department of Radiation Oncology, European Institute of Oncology, Milan, Italy
| | - Barbara Alicja Jereczek-Fossa
- Department of Radiation Oncology, European Institute of Oncology, Milan, Italy; Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| |
Collapse
|