1
|
Sagsoz ME, Korkut O, Gallo S. Advancements in Tissue-Equivalent Gel Dosimeters. Gels 2025; 11:81. [PMID: 39996624 PMCID: PMC11854564 DOI: 10.3390/gels11020081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/15/2025] [Accepted: 01/17/2025] [Indexed: 02/26/2025] Open
Abstract
Tissue-equivalent hydrogel dosimeters represent a class of tools that hold significant promise, particularly in the precise measurement of three-dimensional dose distributions in radiotherapy. Due to their physical properties closely resembling those of human soft tissue, these dosimeters effectively replicate the energy transfer phenomena resulting from radiation interactions, such as atomic ionization and scattering by nuclei or electrons. Consequently, tissue-equivalent dosimeters, characterized by their linear energy transfer properties, have been extensively applied in medical physics, radiation oncology, and nuclear safety. Future advancements focusing on developing more stable, less toxic, normoxic, and cost-effective dosimeters could enable their broader adoption. This review provides a comprehensive overview of the key characteristics that make hydrogel dosimeters tissue-equivalent, highlighting their benefits, limitations, and primary application areas. Additionally, it explores current advancements in polymeric gel technology and discusses future directions aimed at optimizing their performance and accessibility for broader adoption.
Collapse
Affiliation(s)
- Mustafa Erdem Sagsoz
- Department of Biophysics, Faculty of Medicine, Atatürk University, 25050 Erzurum, Türkiye
| | - Ozlem Korkut
- Department of Chemical Engineering, Faculty of Engineering, Atatürk University, 25050 Erzurum, Türkiye
| | - Salvatore Gallo
- Department of Physics and Astronomy “Ettore Majorana”, Catania University, via Santa Sofia 64, 95123 Catania, Italy;
| |
Collapse
|
2
|
Malatesta T, Scaggion A, Giglioli FR, Belmonte G, Casale M, Colleoni P, Falco MD, Giuliano A, Linsalata S, Marino C, Moretti E, Richetto V, Sardo A, Russo S, Mancosu P. Patient specific quality assurance in SBRT: a systematic review of measurement-based methods. Phys Med Biol 2023; 68:21TR01. [PMID: 37625437 DOI: 10.1088/1361-6560/acf43a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/25/2023] [Indexed: 08/27/2023]
Abstract
This topical review focuses on Patient-Specific Quality Assurance (PSQA) approaches to stereotactic body radiation therapy (SBRT). SBRT requires stricter accuracy than standard radiation therapy due to the high dose per fraction and the limited number of fractions. The review considered various PSQA methods reported in 36 articles between 01/2010 and 07/2022 for SBRT treatment. In particular comparison among devices and devices designed for SBRT, sensitivity and resolution, verification methodology, gamma analysis were specifically considered. The review identified a list of essential data needed to reproduce the results in other clinics, highlighted the partial miss of data reported in scientific papers, and formulated recommendations for successful implementation of a PSQA protocol.
Collapse
Affiliation(s)
- Tiziana Malatesta
- Medical Physics Unit, Department of Radiotherapy and Medical Oncology and Radiology, Fatebenefratelli Isola Tiberina-Gemelli Isola Hospital, Rome, Italy
| | - Alessandro Scaggion
- Medical Physics Department, Veneto Institute of Oncology IOV - IRCCS, Padova, Italy
| | | | - Gina Belmonte
- Medical Physics Department, San Luca Hospital, Lucca, Italy
| | - Michelina Casale
- Medical Physics Unit, Azienda Ospedaliera 'Santa Maria', Terni, Italy
| | - Paolo Colleoni
- UOC Medical Physics Unit-ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Maria Daniela Falco
- Department of Radiation Oncology, 'SS. Annunziata' Hospital, 'G. D'Annunzio' University, Chieti, Italy
| | - Alessia Giuliano
- Medical Physics Unit, Pisa University Hospital 'Azienda Ospedaliero-Universitaria Pisana', Pisa, Italy
| | - Stefania Linsalata
- Medical Physics Unit, Pisa University Hospital 'Azienda Ospedaliero-Universitaria Pisana', Pisa, Italy
| | - Carmelo Marino
- Medical Physics and Radioprotection Unit, Humanitas Istituto Clinico Catanese, Misterbianco (CT), Italy
| | - Eugenia Moretti
- Division of Medical Physics, Department of Oncology, ASUFC Udine, Italy
| | - Veronica Richetto
- Medical Physics Unit, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy
| | - Anna Sardo
- UOSD Medical Physics, ASLCN2, Verduno, Italy
| | - Serenella Russo
- Medical Physics Unit, Azienda USL Toscana Centro, Florence, Italy
| | - Pietro Mancosu
- Medical Physics Unit of Radiotherapy Department, IRCCS Humanitas Research Hospital, Rozzano - Milano, Italy
| |
Collapse
|
3
|
Cho JD, Jin H, Jung S, Son J, Choi CH, Park JM, Kim JS, Kim JI. Development of a quasi-3D dosimeter using radiochromic plastic for patient-specific quality assurance. Med Phys 2023; 50:6624-6636. [PMID: 37408321 DOI: 10.1002/mp.16541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 05/01/2023] [Accepted: 05/17/2023] [Indexed: 07/07/2023] Open
Abstract
BACKGROUND Patient-specific QA verification ensures patient safety and treatment by verifying radiation delivery and dose calculations in treatment plans for errors. However, a two-dimensional (2D) dose distribution is insufficient for detecting information on the three-dimensional (3D) dose delivered to the patient. In addition, 3D radiochromic plastic dosimeters (RPDs) such as PRESAGE® represent the volume effect in which the dosimeters have different sensitivities according to the size of the dosimeters. Therefore, to solve the volume effect, a Quasi-3D dosimetry system was proposed to perform patient-specific QA using predetermined-sized and multiple RPDs. PURPOSE For patient-specific quality assurance (QA) in radiation treatment, this study aims to assess a quasi-3D dosimetry system using an RPD. METHODS Gamma analysis was performed to verify the agreement between the measured and estimated dose distributions of intensity-modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT). We fabricated cylindrical RPDs and a quasi-3D dosimetry phantom. A practicability test for a pancreatic patient utilized a quasi-3D dosimetry device, an in-house RPD, and a quasi-3D phantom. The dose distribution of the VMAT design dictated the placement of nine RPDs. Moreover, a 2D diode array detector was used for 2D gamma analysis (MapCHECK2). The patient-specific QA was performed for IMRT, VMAT, and stereotactic ablative radiotherapy (SABR) in 20 prostate and head-and-neck patients. For each patient, six RPDs were positioned according to the dose distribution. VMAT SABR and IMRT/VMAT plans employed a 2%/2 mm gamma criterion, whereas IMRT/VMAT plans used a 3%/2 mm gamma criterion, a 10% threshold value, and a 90% passing rate tolerance. 3D gamma analysis was conducted using the 3D Slicer software. RESULTS The average gamma passing rates with 2%/2 mm and 3%/3 mm criteria for relative dose distribution were 91.6% ± 1.4% and 99.4% ± 0.7% for the 3D gamma analysis using the quasi-3D dosimetry system, respectively, and 97.5% and 99.3% for 2D gamma analysis using MapCHECK2, respectively. The 3D gamma analysis for patient-specific QA of 20 patients showed passing rates of over 90% with 2%/2 mm, 3%/2 mm, and 3%/3 mm criteria. CONCLUSIONS The quasi-3D dosimetry system was evaluated by performing patient-specific QAs with RPDs and quasi-3D phantom. The gamma indices for all RPDs showed more than 90% for 2%/2 mm, 3%/2 mm, and 3%/3 mm criteria. We verified the feasibility of a quasi-3D dosimetry system by performing the conventional patient-specific QA with the quasi-3D dosimeters.
Collapse
Affiliation(s)
- Jin Dong Cho
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hyeongmin Jin
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Seongmoon Jung
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Jaeman Son
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Chang Heon Choi
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jong Min Park
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jin Sung Kim
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jung-In Kim
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
4
|
Maeyama T, Mochizuki A, Yoshida K, Fukunishi N, Ishikawa KL, Fukuda S. Radio-fluorogenic nanoclay gel dosimeters with reduced linear energy transfer dependence for carbon-ion beam radiotherapy. Med Phys 2023; 50:1073-1085. [PMID: 36335533 DOI: 10.1002/mp.16092] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 10/07/2022] [Accepted: 10/25/2022] [Indexed: 11/08/2022] Open
Abstract
PURPOSE The precise assessment of the dose distribution of high linear energy transfer (LET) radiation remains a challenge, because the signal of most dosimeters will be saturated due to the high ionization density. Such measurements are particularly important for heavy-ion beam cancer therapy. On this basis, the present work examined the high LET effect associated with three-dimensional gel dosimetry based on radiation-induced chemical reactions. The purpose of this study was to create an ion beam radio-fluorogenic gel dosimeter with a reduced effect of LET. METHODS Nanoclay radio-fluorogenic gel (NC-RFG) dosimeters were prepared, typically containing 100 μM dihydrorhodamine 123 (DHR123) and 2.0 wt% nanoclay together with catalytic additives promoting Fenton or Fenton-like reactions. The radiological properties of NC-RFG dosimeters having different compositions in response to a carbon-ion beam were investigated using a fluorescence gel scanner. RESULTS An NC-RFG dosimeter capable of generating a fluorescence intensity distribution reflecting the carbon-ion beam dose profile was obtained. It was clarified that the reduction of the unfavorable LET dependence results from an acceleration of the reactions between DHR123 and H2 O2 , which is a molecular radiolysis product. The effects of varying the preparation conditions on the radiological properties of these gels were also examined. The optimum H2 O2 catalyst was determined to include 1 mM Fe3+ ions, and the addition of 100 mM pyridine was also found to increase the sensitivity. CONCLUSIONS This technique allows the first-ever evaluation of the depth-dose profile of a carbon-ion beam at typical therapeutic levels of several Gy without LET effect.
Collapse
Affiliation(s)
- Takuya Maeyama
- Department of Chemistry, School of Science, Kitasato University, Sagamihara, Kanagawa, Japan.,RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama, Japan
| | - Anri Mochizuki
- Department of Chemistry, School of Science, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Kazuki Yoshida
- Department of Chemistry, School of Science, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Nobuhisa Fukunishi
- RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama, Japan
| | - Kenichi L Ishikawa
- Department of Nuclear Engineering and Management, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Shigekazu Fukuda
- QST Hospital, National Institutes for Quantum Science and Technology, Inage-ku, Chiba, Japan
| |
Collapse
|
5
|
Průšová H, Dudáš D, Spěváček V, Průša P. Dose-response dependencies of Turnbull blue, modified Fricke, VIPET, and Presage® gel dosimeters in high-dose-rate radiation fields. RADIAT MEAS 2023. [DOI: 10.1016/j.radmeas.2023.106910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
6
|
Shin DS, Kim TH, Rah JE, Kim D, Yang HJ, Lee SB, Lim YK, Jeong J, Kim H, Shin D, Son J. Assessment of a Therapeutic X-ray Radiation Dose Measurement System Based on a Flexible Copper Indium Gallium Selenide Solar Cell. SENSORS (BASEL, SWITZERLAND) 2022; 22:5819. [PMID: 35957376 PMCID: PMC9370937 DOI: 10.3390/s22155819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/02/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Several detectors have been developed to measure radiation doses during radiotherapy. However, most detectors are not flexible. Consequently, the airgaps between the patient surface and detector could reduce the measurement accuracy. Thus, this study proposes a dose measurement system based on a flexible copper indium gallium selenide (CIGS) solar cell. Our system comprises a customized CIGS solar cell (with a size 10 × 10 cm2 and thickness 0.33 mm), voltage amplifier, data acquisition module, and laptop with in-house software. In the study, the dosimetric characteristics, such as dose linearity, dose rate independence, energy independence, and field size output, of the dose measurement system in therapeutic X-ray radiation were quantified. For dose linearity, the slope of the linear fitted curve and the R-square value were 1.00 and 0.9999, respectively. The differences in the measured signals according to changes in the dose rates and photon energies were <2% and <3%, respectively. The field size output measured using our system exhibited a substantial increase as the field size increased, contrary to that measured using the ion chamber/film. Our findings demonstrate that our system has good dosimetric characteristics as a flexible in vivo dosimeter. Furthermore, the size and shape of the solar cell can be easily customized, which is an advantage over other flexible dosimeters based on an a-Si solar cell.
Collapse
Affiliation(s)
- Dong-Seok Shin
- Proton Therapy Center, National Cancer Center, Goyang 10408, Korea
| | - Tae-Ho Kim
- Proton Therapy Center, National Cancer Center, Goyang 10408, Korea
| | - Jeong-Eun Rah
- Department of Radiation Oncology, Myongji Hospital, Goyang 10475, Korea
| | - Dohyeon Kim
- Proton Therapy Center, National Cancer Center, Goyang 10408, Korea
| | - Hye Jeong Yang
- Proton Therapy Center, National Cancer Center, Goyang 10408, Korea
| | - Se Byeong Lee
- Proton Therapy Center, National Cancer Center, Goyang 10408, Korea
| | - Young Kyung Lim
- Proton Therapy Center, National Cancer Center, Goyang 10408, Korea
| | - Jonghwi Jeong
- Proton Therapy Center, National Cancer Center, Goyang 10408, Korea
| | - Haksoo Kim
- Proton Therapy Center, National Cancer Center, Goyang 10408, Korea
| | - Dongho Shin
- Proton Therapy Center, National Cancer Center, Goyang 10408, Korea
| | - Jaeman Son
- Department of Radiation Oncology, Seoul National University Hospital, Seoul 03080, Korea
| |
Collapse
|
7
|
Mohyedin MZ, Zin HM, Adenan MZ, Abdul Rahman AT. A Review of PRESAGE Radiochromic Polymer and the Compositions for Application in Radiotherapy Dosimetry. Polymers (Basel) 2022; 14:2887. [PMID: 35890665 PMCID: PMC9320230 DOI: 10.3390/polym14142887] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/02/2022] [Accepted: 07/06/2022] [Indexed: 02/01/2023] Open
Abstract
Recent advances in radiotherapy technology and techniques have allowed a highly conformal radiation to be delivered to the tumour target inside the body for cancer treatment. A three-dimensional (3D) dosimetry system is required to verify the accuracy of the complex treatment delivery. A 3D dosimeter based on the radiochromic response of a polymer towards ionising radiation has been introduced as the PRESAGE dosimeter. The polyurethane dosimeter matrix is combined with a leuco-dye and a free radical initiator, whose colour changes in proportion to the radiation dose. In the previous decade, PRESAGE gained improvement and enhancement as a 3D dosimeter. Notably, PRESAGE overcomes the limitations of its predecessors, the Fricke gel and the polymer gel dosimeters, which are challenging to fabricate and read out, sensitive to oxygen, and sensitive to diffusion. This article aims to review the characteristics of the radiochromic dosimeter and its clinical applications. The formulation of PRESAGE shows a delicate balance between the number of radical initiators, metal compounds, and catalysts to achieve stability, optimal sensitivity, and water equivalency. The applications of PRESAGE in advanced radiotherapy treatment verifications are also discussed.
Collapse
Affiliation(s)
- Muhammad Zamir Mohyedin
- School of Physics and Material Studies, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam 40450, Selangor, Malaysia;
- Centre of Astrophysics & Applied Radiation, Institute of Science, Universiti Teknologi MARA, Shah Alam 40450, Selangor, Malaysia
| | - Hafiz Mohd Zin
- Advanced Medical & Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas 13700, Penang, Malaysia;
| | - Mohd Zulfadli Adenan
- Centre of Medical Imaging, Faculty of Health Sciences, Universiti Teknologi MARA, Cawangan Selangor Campus of Puncak Alam, Puncak Alam 42300, Selangor, Malaysia;
| | - Ahmad Taufek Abdul Rahman
- School of Physics and Material Studies, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam 40450, Selangor, Malaysia;
- Centre of Astrophysics & Applied Radiation, Institute of Science, Universiti Teknologi MARA, Shah Alam 40450, Selangor, Malaysia
| |
Collapse
|
8
|
Mohyedin MZ, Zin HM, Hashim S, Bradley DA, Aldawood S, Alkhorayef M, Sulieman A, Abdul Rahman AT. 2D and 3D dose analysis of PRESAGE® dosimeter using a prototype 3DmicroHD-OCT imaging system. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
9
|
Stasinou D, Patatoukas G, Kollaros N, Diamantopoulos S, Kypraiou E, Kougioumtzopoulou A, Kouloulias V, Efstathopoulos E, Platoni K. Implementation of TG-218 for patient specific QA Tolerance and Action Limits determination: Gamma passing rates evaluation using 3DVH software. Med Phys 2022; 49:4322-4334. [PMID: 35560362 DOI: 10.1002/mp.15703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/18/2022] [Accepted: 04/26/2022] [Indexed: 11/09/2022] Open
Abstract
PURPOSE To determine the tolerance (TL) and action limits (AL) of gamma passing rates (%GP) for Volumetric-Modulated Arc Therapy (VMAT) patient-specific quality assurance (PSQA), according to the AAPM TG-218 recommendations, and to evaluate comparatively the clinical relevance of 2D%GP and 3D%GP. MATERIALS AND METHODS PSQA was performed for 100 head and neck (H&N) and 73 prostate cancer VMAT treatment plans. Measurements were acquired using a cylindrical water equivalent phantom, hollow in the center, allowing measurements with homogeneous or heterogeneous inserts. LINAC delivered dose distributions were compared to the ones calculated from the treatment planning system (TPS) through gamma index. TL and AL were determined through the computation of 2D%GP, using the recommended acceptance criteria. Dose-volume histograms (DVH) were reconstructed from the measurements using a commercially available software, to detect the dosimetric differences (%DE) between the compared dose distributions. Utilizing the estimated dose on the patient anatomy, structure specific %GP (3D%GP) were calculated. The 3D%GP were compared to the 2D%GP ones, based on their correlation with the %DE. Each metric's sensitivity was determined through receiver operator characteristic (ROC) analysis. RESULTS TL and AL were in concordance with the universal ones, regarding the prostate cancer cases, but were lower for the H&N cases. Evaluation of %DE did not deem the plans unacceptable. The 2D%GP and the 3D%GP did not differ significantly regarding their correlation with %DE. For prostate plans, %GP sensitivity was higher than for H&N cases. CONCLUSIONS Determination of institutional specific TL and AL allow the monitoring of the PSQA procedure, yet for plans close to the limits clinically relevant metrics should be used before they are deemed unacceptable, for the process to be of higher sensitivity and efficiency. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Despoina Stasinou
- Medical Physics Unit, 2nd Department of Radiology, Medical School, National and Kapodistrian University of Athens, University General Hospital 'Attikon', 1 Rimini Street, Haidari, Athens, 124 62, Greece
| | - George Patatoukas
- Medical Physics Unit, 2nd Department of Radiology, Medical School, National and Kapodistrian University of Athens, University General Hospital 'Attikon', 1 Rimini Street, Haidari, Athens, 124 62, Greece
| | - Nikos Kollaros
- Medical Physics Unit, 2nd Department of Radiology, Medical School, National and Kapodistrian University of Athens, University General Hospital 'Attikon', 1 Rimini Street, Haidari, Athens, 124 62, Greece
| | - Stefanos Diamantopoulos
- Medical Physics Unit, 2nd Department of Radiology, Medical School, National and Kapodistrian University of Athens, University General Hospital 'Attikon', 1 Rimini Street, Haidari, Athens, 124 62, Greece
| | - Efrosyni Kypraiou
- Radiation Therapy Unit, 2nd Department of Radiology, Medical School, National and Kapodistrian University of Athens, University General Hospital 'Attikon', 1 Rimini Street, Haidari, Athens, 124 62, Greece
| | - Andromachi Kougioumtzopoulou
- Radiation Therapy Unit, 2nd Department of Radiology, Medical School, National and Kapodistrian University of Athens, University General Hospital 'Attikon', 1 Rimini Street, Haidari, Athens, 124 62, Greece
| | - Vasilios Kouloulias
- Radiation Therapy Unit, 2nd Department of Radiology, Medical School, National and Kapodistrian University of Athens, University General Hospital 'Attikon', 1 Rimini Street, Haidari, Athens, 124 62, Greece
| | - Efstathios Efstathopoulos
- Medical Physics Unit, 2nd Department of Radiology, Medical School, National and Kapodistrian University of Athens, University General Hospital 'Attikon', 1 Rimini Street, Haidari, Athens, 124 62, Greece
| | - Kalliopi Platoni
- Medical Physics Unit, 2nd Department of Radiology, Medical School, National and Kapodistrian University of Athens, University General Hospital 'Attikon', 1 Rimini Street, Haidari, Athens, 124 62, Greece
| |
Collapse
|
10
|
Merkis M, Urbonavicius BG, Adliene D, Laurikaitiene J, Puiso J. Pilot Study of Polymerization Dynamics in nMAG Dose Gel. Gels 2022; 8:gels8050288. [PMID: 35621587 PMCID: PMC9140482 DOI: 10.3390/gels8050288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 02/04/2023] Open
Abstract
The essential component of modern radiation therapy is the application of steep dose gradients during patient treatment in order to maximize the radiation dose to the target volume and protect neighboring heathy tissues. However, volumetric dose distribution in an irradiated target is still a bottleneck of dose verification in modern radiotherapy. Dose gels are almost the only known dosimetry tool which allows for the evaluation of dose distribution in the irradiated volume due to gel’s polymerization upon irradiation. The accuracy of dose gel dosimetry has its own obstacle, which is related to the continuation of the gel’s polymerization after the radiation treatment procedure is finished. In this article, a method to monitor the polymerization dynamics of dose gels in real-time is proposed using a modified optical spectrometry system. Using the proposed method, the changes of the optical characteristics of irradiated nMAG dose gels in situ were assessed. The investigation revealed that the detectable polymerization in dose gel proceeds up to 6 h after irradiation. This time is significantly shorter compared with a commonly recommended 24 h waiting time allocated for polymer gel to settle. It was also found that dose rate significantly influences the temporal response of the nMAG dosimeter. By increasing the irradiation dose rate by a factor of 2, the time needed for the polymerization process to settle was increased by 22%. Identification of the gel’s post-irradiation polymerization time interval and its dependence on irradiation parameters will contribute to more accurate dose verification using dose gel dosimetry.
Collapse
|
11
|
Azadeh P, Amiri S, Mostaar A, Yaghobi Joybari A, Paydar R. Evaluation of MAGIC-f polymer gel dosimeter for dose profile measurement in small fields and stereotactic irradiation. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.109991] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Jeong S, Cheon W, Shin D, Lim YK, Jeong J, Kim H, Yoon M, Lee SB. Development of a dosimetry system for therapeutic X-rays using a flexible amorphous silicon thin-film solar cell with a scintillator screen. Med Phys 2022; 49:4768-4779. [PMID: 35396722 DOI: 10.1002/mp.15664] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 04/01/2022] [Accepted: 04/03/2022] [Indexed: 11/10/2022] Open
Abstract
PURPOSE To evaluate the dosimetric characteristics and applications of a dosimetry system composed of a flexible amorphous silicon thin-film solar cell and scintillator screen (STFSC-SS) for therapeutic X-rays. METHODS The real-time dosimetry system was composed of a flexible a-Si thin film solar cell (0.2-mm thick), a scintillator screen to increase its efficiency, and an electrometer to measure the generated charge. The dosimetric characteristics of the developed system were evaluated, including its energy dependence, dose linearity, and angular dependence. Calibration factors for the signal measured by the system and absorbed dose-to-water were obtained by setting reference conditions. The application and correction accuracy of the developed system were evaluated by comparing the absorbed dose-to-water measured using a patient treatment beam with that measured using the ion chamber. RESULTS The responses of STFSC-SS to energy, field size, depth, and source-to-surface distance (SSD) were more dependent on measurement conditions than were the responses of the ion chamber, although the former dependence was due to the scintillator screen, not the solar cell. The signal of STFSC-SS were also dependent on dose rate, while the responses of solar cell alone and scintillator screen were not dependent on dose rate. The scintillator screen reduced the output of solar cell 6 and 15 MV by 0.60% and 0.55%, respectively. The absorbed doses-to-water measured using STFSC-SS for patient treatment beam differed by 0.4% compared to those measured using the ionization chamber. The uncertainties of the developed system for 6 and 15 MV photon beams were 1.8% and 1.7%, respectively, confirming the accuracy and applicability of this system. CONCLUSIONS ; The thin film solar cell-based detector developed in this study can accurately measure absorbed dose-to-water. The increased signal resulting from the use of the scintillator screen is advantageous for measuring low doses and stable signal output. In addition, this system is flexible, making it applicable to curved surfaces such as a patient's body, and is cost-effective. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Seonghoon Jeong
- Proton Therapy Center, National Cancer Center, Goyang, Korea
| | - Wonjoong Cheon
- Proton Therapy Center, National Cancer Center, Goyang, Korea
| | - Dongho Shin
- Proton Therapy Center, National Cancer Center, Goyang, Korea
| | - Young Kyung Lim
- Proton Therapy Center, National Cancer Center, Goyang, Korea
| | - Jonghwi Jeong
- Proton Therapy Center, National Cancer Center, Goyang, Korea
| | - Haksoo Kim
- Proton Therapy Center, National Cancer Center, Goyang, Korea
| | - Myonggeun Yoon
- Department of Bio-convergence Engineering, Korea University, Seoul, Korea
| | - Se Byeong Lee
- Proton Therapy Center, National Cancer Center, Goyang, Korea
| |
Collapse
|
13
|
Pushpavanam K, Dutta S, Inamdar S, Bista T, Sokolowski T, Rapchak A, Sadeghi A, Sapareto S, Rege K. Versatile Detection and Monitoring of Ionizing Radiation Treatment Using Radiation-Responsive Gel Nanosensors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:14997-15007. [PMID: 35316013 DOI: 10.1021/acsami.2c01019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Modern radiation therapy workflow involves complex processes intended to maximize the radiation dose delivered to tumors while simultaneously minimizing excess radiation to normal tissues. Safe and accurate delivery of radiation doses is critical to the successful execution of these treatment plans and effective treatment outcomes. Given extensive differences in existing dosimeters, the choice of devices and technologies for detecting biologically relevant doses of radiation has to be made judiciously, taking into account anatomical considerations and modality of treatment (invasive, e.g., interstitial brachytherapy vs noninvasive, e.g., external-beam therapy radiotherapy). Rapid advances in versatile radiation delivery technologies necessitate new detection platforms and devices that are readily adaptable into a multitude of form factors in order to ensure precision and safety in dose delivery. Here, we demonstrate the adaptability of radiation-responsive gel nanosensors as a platform technology for detecting ionizing radiation using three different form factors with an eye toward versatile use in the clinic. In this approach, ionizing radiation results in the reduction of monovalent gold salts leading to the formation of gold nanoparticles within gels formulated in different morphologies including one-dimensional (1D) needles for interstitial brachytherapy, two-dimensional (2D) area inserts for skin brachytherapy, and three-dimensional (3D) volumetric dose distribution in tissue phantoms. The formation of gold nanoparticles can be detected using distinct but complementary modes of readout including optical (visual) and photothermal detection, which further enhances the versatility of this approach. A linear response in the readout was seen as a function of radiation dose, which enabled straightforward calibration of each of these devices for predicting unknown doses of therapeutic relevance. Taken together, these results indicate that the gel nanosensor technology can be used to detect ionizing radiation in different morphologies and using different detection methods for application in treatment planning, delivery, and verification in radiotherapy and in trauma care.
Collapse
Affiliation(s)
- Karthik Pushpavanam
- Chemical Engineering, Arizona State University, Tempe, Arizona 85287, United States
| | - Subhadeep Dutta
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Sahil Inamdar
- Chemical Engineering, Arizona State University, Tempe, Arizona 85287, United States
| | - Tomasz Bista
- Banner-MD Anderson Cancer Center, Gilbert, Arizona 85234, United States
| | | | - Alek Rapchak
- Banner-MD Anderson Cancer Center, Gilbert, Arizona 85234, United States
| | - Amir Sadeghi
- Banner-MD Anderson Cancer Center, Gilbert, Arizona 85234, United States
| | - Stephen Sapareto
- Banner-MD Anderson Cancer Center, Gilbert, Arizona 85234, United States
| | - Kaushal Rege
- Chemical Engineering, Arizona State University, Tempe, Arizona 85287, United States
- Biological Design Graduate Program, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
14
|
Kudrevicius L, Jaselske E, Adliene D, Rudzianskas V, Radziunas A, Tamasauskas A. Application of 3D Gel Dosimetry as a Quality Assurance Tool in Functional Leksell Gamma Knife Radiosurgery. Gels 2022; 8:gels8020069. [PMID: 35200451 PMCID: PMC8871505 DOI: 10.3390/gels8020069] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/06/2022] [Accepted: 01/18/2022] [Indexed: 12/04/2022] Open
Abstract
Highly precise dose delivery to the target (tumor or cancerous tissue) is a key point when brain diseases are treated applying recent stereotactic techniques: intensity-modulated, image-guided radiotherapy, volumetric modulated arc therapy, Gamma knife radiosurgery. The doses in one single shot may vary between tens and hundreds of Gy and cause significant cell/tissue/organ damages. This indicates the need for implementation of quality assurance (QA) measures which are realized performing treatment dose verification with more than one calibrated quality assurance method or tool, especially when functional radiosurgery with a high dose (up to 40 Gy in our case) shall be delivered to the target using small 4 mm collimator. Application of two dosimetry methods: radiochromic film dosimetry using RTQA2 and EBT3 films and dose gel dosimetry using modified nPAG polymer gels for quality assurance purposes in stereotactic radiosurgery treatments using Leksell Gamma Knife© Icon™ facility is discussed in this paper. It is shown that due to their polymerization ability upon irradiation nPAG gels might be potentially used as a quality assurance tool in Gamma knife radiosurgery: they indicate well pronounced linear dose response in hypo-fractionated (up to 10 Gy) dose range and are sensitive enough to irradiation dose changes with a high (at least 0.2 mm) spatial resolution. Dose assessment sensitivity of gels depends on parameters of a dose evaluation method (optical or magnetic resonance imaging), however, is similar to this estimated using film dosimetry, which is set as a standard dosimetry method for dose verification in radiotherapy.
Collapse
Affiliation(s)
- Linas Kudrevicius
- Physics Department, Kaunas University of Technology, 44249 Kaunas, Lithuania; (L.K.); (V.R.)
- Neurosurgery Department, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (A.R.); (A.T.)
| | - Evelina Jaselske
- Physics Department, Kaunas University of Technology, 44249 Kaunas, Lithuania; (L.K.); (V.R.)
- Oncology Institute, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
- Correspondence: (E.J.); (D.A.)
| | - Diana Adliene
- Physics Department, Kaunas University of Technology, 44249 Kaunas, Lithuania; (L.K.); (V.R.)
- Correspondence: (E.J.); (D.A.)
| | - Viktoras Rudzianskas
- Physics Department, Kaunas University of Technology, 44249 Kaunas, Lithuania; (L.K.); (V.R.)
- Oncology Institute, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Andrius Radziunas
- Neurosurgery Department, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (A.R.); (A.T.)
| | - Arimantas Tamasauskas
- Neurosurgery Department, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (A.R.); (A.T.)
| |
Collapse
|
15
|
Mariotti V, Gayol A, Pianoschi T, Mattea F, Vedelago J, Pérez P, Valente M, Alva-Sánchez M. Radiotherapy dosimetry parameters intercomparison among eight gel dosimeters by Monte Carlo simulation. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2021.109782] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Bastidas-Bonilla KA, Podesta-Lerma PLM, Vega-Carrillo HR, Castañeda-Priego R, Sarmiento-Gómez E, Gómez-Solís C, Vallejo MA, Sosa MA. Fluorescent organic particle doped polymer-based gel dosimeter for neutron detection. Appl Radiat Isot 2021; 180:110067. [PMID: 34929612 DOI: 10.1016/j.apradiso.2021.110067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 12/07/2021] [Accepted: 12/13/2021] [Indexed: 11/28/2022]
Abstract
The purpose of this work is to develop a material capable of detecting neutrons produced by photodisintegration in a linear accelerator for its medical use. In this study, we have developed a gel-like material doped with fluorescent organic particles. PPO at 1 wt% is used as primary dopant and POPOP as secondary one at 0.03 wt%. A set of four samples is produced, with boric acid concentrations of 0, 400, 800 and 1200 ppm. The viscoelastic properties of the material are characterized with rheological measurements, finding a gel-like behavior, i.e., a material that can keep its original shape if no stresses are applied, but can also be deformed by applying a moderate shear rate. Furthermore, the material was irradiated with gamma, electron, and neutron emission sources from 137Cs, 22Na, 60Co, 210Po, 90Sr and 241AmBe, and its response was measured in two different experimental settings, in two different institutions, for comparative purposes. From these measurements, one can clearly establish that the new material detects neutrons, electrons, and gammas within the MeV regions and below. Thus, our findings show that the developed material and its properties make it a promising technology for its use in a neutron detector.
Collapse
Affiliation(s)
- Karla A Bastidas-Bonilla
- Universidad de Guanajuato, División de Ciencias e Ingenierías, Loma del Bosque 103, 37150, León, Gto, Mexico
| | - Pedro L M Podesta-Lerma
- Facultad de Ciencias Físico-Matemáticas, Universidad Autónoma de Sinaloa, Av. de las Américas y Blvd.Universitario, 80000, Culiacán, Sin, Mexico
| | - Hector R Vega-Carrillo
- Universidad Autónoma de Zacatecas, Unidad Académica de Estudios Nucleares, Ciprés 10, 98000, Zacatecas, Zac, Mexico
| | - Ramón Castañeda-Priego
- Universidad de Guanajuato, División de Ciencias e Ingenierías, Loma del Bosque 103, 37150, León, Gto, Mexico
| | - Erick Sarmiento-Gómez
- Universidad de Guanajuato, División de Ciencias e Ingenierías, Loma del Bosque 103, 37150, León, Gto, Mexico
| | - Christian Gómez-Solís
- Universidad de Guanajuato, División de Ciencias e Ingenierías, Loma del Bosque 103, 37150, León, Gto, Mexico
| | - Miguel A Vallejo
- Universidad de Guanajuato, División de Ciencias e Ingenierías, Loma del Bosque 103, 37150, León, Gto, Mexico
| | - Modesto A Sosa
- Universidad de Guanajuato, División de Ciencias e Ingenierías, Loma del Bosque 103, 37150, León, Gto, Mexico.
| |
Collapse
|
17
|
Alyani Nezhad Z, Geraily G. A review study on application of gel dosimeters in low energy radiation dosimetry. Appl Radiat Isot 2021; 179:110015. [PMID: 34753087 DOI: 10.1016/j.apradiso.2021.110015] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/16/2021] [Accepted: 11/01/2021] [Indexed: 11/02/2022]
Abstract
INTRODUCTION The accuracy of dose delivered to tumors and surrounding normal tissues is vital in either radiotherapy using low energy photons and radiological techniques as well as radiotherapy with mega voltage energies. This systematic review focuses on applications of gel dosimetry in low energy radiation contexts applied either through radiotherapy or interventional radiology. METHODS Literature was reviewed based on electronic databases: Google Scholar, Scopus, Embase, PubMed, Science Direct, Research Gate and IOP science. The search was conducted on relevant terms in the title and keywords. 82 articles related to our criteria has been extracted and included in the study. RESULTS The findings demonstrated that almost all types of gel dosimeters had an acceptable accuracy and high resolution in low energy radiation contexts with their own limitations and advantages. CONCLUSION Gel dosimeters compete well with other conventional dosimeters in terms of tissue equivalence and energy dependence; however, choosing the best gel dosimeter for use in low energy radiation dosimetry depends on their different limitation and advantages. There are some general features about each gel group which can help to select the suitable gel related to our work. For example, methacrylic acid based gel dosimeters show higher sensitivity compared to other types of gel dosimeters but have more toxicity and are dose rate dependent in the range of dose rates applied in low energy contexts. In addition, Fricke gel dosimeters exhibit less sensitivity while they are independent of dose rate and energy applied in low energy situations.
Collapse
Affiliation(s)
- Zahra Alyani Nezhad
- Medical Physics and Medical Engineering Department, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghazale Geraily
- Medical Physics and Medical Engineering Department, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Ono K, Fujino K, Kurihara R, Hayashi SI, Akagi Y, Hirokawa Y. Three-dimensional Winston-Lutz test using reusable polyvinyl alcohol-iodide (PVA-I) radiochromic gel dosimeter. Phys Med Biol 2021; 66. [PMID: 34530407 DOI: 10.1088/1361-6560/ac279d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/16/2021] [Indexed: 01/01/2023]
Abstract
Medical linear-accelerator-based stereotactic radiosurgery (SRS) using a stereotactic apparatus or image-guided radiotherapy system for intracranial lesions is performed widely in clinical practice. In general, Winston-Lutz (WL) tests using films or electric portal imaging devices (EPIDs) have been performed as pre-treatment and routine quality assurance (QA) for the abovementioned treatment. Two-dimensional displacements between the radiation isocentre and mechanical isocentre are analysed from the test; therefore, it is difficult to identify the three-dimensional (3D) isocentre position intuitively. In this study, we developed an innovative 3D WL test for SRS-QA using a novel radiochromic gel dosimeter based on a polyvinyl alcohol-iodide (PVA-I) complex that can be reused after annealing. A WL gel phantom that was consisted of the PVA-I gel dosimeter poured into a tall acrylic container and an embedded small tungsten sphere was used as a position detector. A flatbed scanner was used to analyse the isocentre position. The measured 3D isocentre accuracy from the gel-based WL test was within 0.1 mm compared with that obtained from the EPID-based WL test. Furthermore, excellent reusability of the WL gel phantom was observed in long-term SRS isocentre verification, in which clinical SRS cases involving repeated irradiation and annealing were analysed. These results demonstrate the high accuracy and reliable evaluation of the isocentre position using an innovative test. In addition, the clinical-based routine SRS-QA using the PVA-I gel dosimeter demonstrates a highly convenience while affording an easy and fast analysis process.
Collapse
Affiliation(s)
- Kaoru Ono
- High-precision Radiotherapy Center, Hiroshima Heiwa Clinic, Japan
| | - Keisuke Fujino
- High-precision Radiotherapy Center, Hiroshima Heiwa Clinic, Japan
| | - Ryosuke Kurihara
- High-precision Radiotherapy Center, Hiroshima Heiwa Clinic, Japan
| | | | - Yukio Akagi
- High-precision Radiotherapy Center, Hiroshima Heiwa Clinic, Japan
| | - Yutaka Hirokawa
- High-precision Radiotherapy Center, Hiroshima Heiwa Clinic, Japan
| |
Collapse
|
19
|
Improvement of light stability of DHR123 radio fluorogenic nano clay gel dosimeter by incorporating a new dispersant. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Three-dimensional IMRT QA of Monte Carlo and full scatter convolution algorithms based on 3D film dosimetry. Radiat Phys Chem Oxf Engl 1993 2021. [DOI: 10.1016/j.radphyschem.2021.109528] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
21
|
Development and Application of MAGIC-f Gel in Cancer Research and Medical Imaging. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11177783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Much of the complex medical physics work requires radiation dose delivery, which requires dosimeters to accurately measure complex three-dimensional dose distribution with good spatial resolution. MAGIC-f polymer gel is one of the emerging new dosimeters widely used in medical physics research. The purpose of this study was to present an overview of polymer gel dosimetry, using MAGIC-f gel, including its composition, manufacture, imaging, calibration, and application to medical physics research. In this review, the history of polymer gel development is presented, along with the applications so far. Moreover, the most important experiments/applications of MAGIC-f polymer gel are discussed to illustrate the behavior of gel on different conditions of irradiation, imaging, and manufacturing techniques. Finally, various future works are suggested based on the past and present works on MAGIC-f gel and polymer gel in general, with the hope that these bits of knowledge can provide important clues for future research on MAGIC-f gel as a dosimeter.
Collapse
|
22
|
Moussous O. Characterization of ferrous-agarose-xylenol gel dosimeter at 60Co γ-rays beam therapy unit. Radiol Phys Technol 2021; 14:105-112. [PMID: 33387357 DOI: 10.1007/s12194-020-00600-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 11/23/2020] [Accepted: 12/07/2020] [Indexed: 01/31/2023]
Abstract
Fricke gel dosimetry is a valuable technique used for recording 3D dose distribution in radiotherapy. Herein, we present the dosimetric characteristics of a synthesized ferrous-agarose-xylenol orange gel dosimeter in a clinical 60Co beam. Experimental data were obtained using a secondary standards dosimetry laboratory 60Co therapy unit. The dosimeter was calibrated using the ionization chamber as a reference, and its total mass attenuation coefficient, absorption spectrum, optical density-dose relationship, sensitivity, and dose rate dependency were evaluated. The potentiality of the ferrous-agarose-xylenol gel dosimeter was investigated to measure output factors for different field sizes. The gel dosimeter readings were measured using a spectrophotometer. The ferrous-agarose-xylenol gel dosimeter exhibited a linearity in the range of 3-15 Gy, indicating that the dosimeter is tissue-equivalent and dose rate-independent and yield reproducible results. The measured output factors and those published in the literature showed good agreement.
Collapse
Affiliation(s)
- Ouiza Moussous
- Secondary Standard Dosimetry Laboratory, Nuclear Research Center of Algiers, 02 Boulevard Frantz Fanon, B.P.399, Algiers, Algeria.
| |
Collapse
|
23
|
Romero M, Macchione MA, Mattea F, Strumia M. The role of polymers in analytical medical applications. A review. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105366] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
Parwaie W, Geraily G, Shirazi A, Mehri-Kakavand G, Farzin M. Evaluation of ferrous benzoic methylthymol-blue gel as a dosimeter via magnetic resonance imaging. Phys Med 2020; 80:47-56. [DOI: 10.1016/j.ejmp.2020.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 09/21/2020] [Accepted: 10/10/2020] [Indexed: 11/29/2022] Open
|
25
|
Watanabe Y, Maeyama T, Mochizuki A, Mizukami S, Hayashi SI, Terazaki T, Muraishi H, Takei H, Gomi T, Shimono T. Verification of dose distribution in high-dose-rate brachytherapy using a nanoclay-based radio-fluorogenic gel dosimeter. Phys Med Biol 2020; 65:175008. [PMID: 32485693 DOI: 10.1088/1361-6560/ab98d2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Dose distributions have become more complex with the introduction of image-guided brachytherapy in high-dose-rate (HDR) brachytherapy treatments. Therefore, to correctly execute HDR, conducting a quality assurance programme for the remote after-loading system and verifying the dose distribution in the patient treatment plan are necessary. The characteristics of the dose distribution of HDR brachytherapy are that the dose is high near the source and rapidly drops when the distance from the source increases. Therefore, a measurement tool corresponding to the characteristic is required. In this study, using an Iridium-192 (Ir-192) source, we evaluated the basic characteristics of a nanoclay-based radio-fluorogenic gel (NC-RFG) dosimeter that is a fluorescent gel dosimeter using dihydrorhodamine 123 hydrochloride as a fluorescent probe. The two-dimensional dose distribution measurements were performed at multiple source positions to simulate a clinical plan. Fluorescence images of the irradiated NC-RFG were obtained at a high resolution (0.04 mm pixel-1) using a gel scanner with excitation at 465 nm. Good linearity was confirmed up to a dose range of 100 Gy without dose rate dependence. The dose distribution measurement at the five-point source position showed good agreement with the treatment planning system calculation. The pass ratio by gamma analysis was 92.1% with a 2%/1 mm criterion. The NC-RFG dosimeter demonstrates to have the potential of being a useful tool for quality assurance of the dose distribution delivered by HDR brachytherapy. Moreover, compared with conventional gel dosimeters such as polymer gel and Fricke gel dosimeters it solves the problems of diffusion, dose rate dependence and inhibition of oxygen-induced reactions. Furthermore, it facilitates dose data to be read in a short time after irradiation, which is useful for clinical use.
Collapse
Affiliation(s)
- Yusuke Watanabe
- School of Allied Health Sciences, Kitasato University, Sagamihara, Kanagawa, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Mochizuki A, Maeyama T, Watanabe Y, Mizukami S. Sensitivity enhancement of DHR123 radio-fluorogenic nanoclay gel dosimeter by incorporating surfactants and halogenides. RSC Adv 2020; 10:28798-28806. [PMID: 35520075 PMCID: PMC9055799 DOI: 10.1039/d0ra02717k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 07/23/2020] [Indexed: 11/23/2022] Open
Abstract
Dosimetry of spatial dose distribution of ionizing radiation in tissue equivalent materials is particularly important for cancer radiotherapy. Here, we describe a radio-fluorogenic gel-based dosimeter that has achieved 16 times higher sensitivity by incorporating surfactants and halogenides. The gel dosimeters were prepared from dihydrorhodamine 123 (DHR123) and small amounts of nano-sized clay and a radiosensitizer. By comprehensively changing the type of additives for the sensitizer (three surfactants: Triton X-100, sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide, and three halogenides: trichloroacetic acid, tribromoacetic acid and 2,2,2-trichloroethanol), the increase in sensitivity can be explained by an increase in relative fluorescence quantum yield and an increase in radiation chemical yield. These highly sensitive gel dosimeters also show dose rate independent sensitivity under irradiation at 0.64 and 0.77 Gy min−1 using a 6 MV X-ray therapeutic beam from the medical linac. Dosimetry of spatial dose distribution of ionizing radiation in tissue equivalent materials using high sensitive radio-fluorogenic gel dosimeter using DHR123 with sensitizer. (Radiation therapy planning image courtesy of Varian Medical Systems, Inc. All rights reserved.)![]()
Collapse
Affiliation(s)
- Anri Mochizuki
- Department of Chemistry, School of Science, Kitasato University 1-15-1 Kitasato, Minami Sagamihara Kanagawa 252-0373 Japan
| | - Takuya Maeyama
- Department of Chemistry, School of Science, Kitasato University 1-15-1 Kitasato, Minami Sagamihara Kanagawa 252-0373 Japan
| | - Yusuke Watanabe
- School of Allied Health Sciences, Kitasato University 1-15-1 Kitasato, Minami Sagamihara Kanagawa 252-0373 Japan
| | - Shinya Mizukami
- School of Allied Health Sciences, Kitasato University 1-15-1 Kitasato, Minami Sagamihara Kanagawa 252-0373 Japan
| |
Collapse
|
27
|
Mustaqim A, Yahaya N, Razak N, Zin H. The dose enhancement of MAGAT gel dosimeter doped with zinc oxide at 6 MV photon beam. Radiat Phys Chem Oxf Engl 1993 2020. [DOI: 10.1016/j.radphyschem.2020.108739] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
28
|
Improvement in sensitivity of radiochromic 3D dosimeter based on rigid polyurethane resin by incorporating tartrazine. PLoS One 2020; 15:e0230410. [PMID: 32176733 PMCID: PMC7075553 DOI: 10.1371/journal.pone.0230410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 03/01/2020] [Indexed: 11/25/2022] Open
Abstract
We investigated the influence of incorporating tartrazine on the dose response characteristics of radiochromic 3D dosimeters based on polyurethane resin. We use three types of polyurethane resins with different Shore hardness values: 30 A, 50 A, and 80 D. PRESAGE dosimeters are fabricated with different chemical components and concentrations. Tartrazine (Yellow No. 5) helps incorporate a yellow dye to fabricate the dosimeter. Elemental composition is analyzed with the Zeff. Three sets of six different PRESAGE dosimeters were fabricated to investigate the effects of incorporating yellow dye on the dose response characteristics of the dosimeter. The dose response curve was obtained by measuring the optical absorbance using a spectrometer and optical density using optical CT, respectively. The energy and dose rate dependences are evaluated for the dosimeter with the highest sensitivity. For the optical density measurement, significant sensitivity enhancements of 36.6% and 32.7% were achieved in polyurethane having a high Shore hardness of 80 D and 50 A by incorporating tartrazine, respectively. The same results were obtained in the optical absorbance measurements. The ratio of the Zeff of the dosimeter with 80 D Shore hardness to water was 1.49. The polyurethane radiochromic dosimeter with a Shore hardness of 80 D showed the highest sensitivity and energy and dose rate independence upon the incorporation of tartrazine.
Collapse
|
29
|
New application of polymer gels in medical radiation dosimetry: Plasmonic sensors. Radiat Phys Chem Oxf Engl 1993 2020. [DOI: 10.1016/j.radphyschem.2019.108609] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
30
|
Hayashi SI, Ono K, Fujino K, Ikeda S, Tanaka K. Novel radiochromic gel dosimeter based on a polyvinyl alcohol – Iodide complex. RADIAT MEAS 2020. [DOI: 10.1016/j.radmeas.2019.106226] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
31
|
BrahimiMoussa S, Benamar M, LounisMokrani Z. Characterization of the chemical and structural modifications induced by gamma rays on the MAGIC polymer gel. Radiat Phys Chem Oxf Engl 1993 2020. [DOI: 10.1016/j.radphyschem.2019.108451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
32
|
Warman JM, de Haas MP, Luthjens LH, Yao T, Navarro-Campos J, Yuksel S, Aarts J, Thiele S, Houter J, In Het Zandt W. FluoroTome 1: An Apparatus for Tomographic Imaging of Radio-Fluorogenic (RFG) Gels. Polymers (Basel) 2019; 11:E1729. [PMID: 31652759 PMCID: PMC6918256 DOI: 10.3390/polym11111729] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/22/2019] [Accepted: 10/22/2019] [Indexed: 11/16/2022] Open
Abstract
Radio-fluorogenic (RFG) gels become permanently fluorescent when exposed to high-energy radiation with the intensity of the emission proportional to the local dose of radiation absorbed. An apparatus is described, FluoroTome 1, that is capable of taking a series of tomographic images (thin slices) of the fluorescence of such an irradiated RFG gel on-site and within minutes of radiation exposure. These images can then be compiled to construct a 3D movie of the dose distribution within the gel. The historical development via a laboratory-bench prototype to a readily transportable, user-friendly apparatus is described. Instrumental details and performance tests are presented.
Collapse
Affiliation(s)
- John M Warman
- Delft University of Technology, Faculty of Applied Sciences, Department of Radiation Science and Technology, Mekelweg 15, 2629 JB Delft, The Netherlands.
| | - Matthijs P de Haas
- Delft University of Technology, Faculty of Applied Sciences, Department of Radiation Science and Technology, Mekelweg 15, 2629 JB Delft, The Netherlands.
| | - Leonard H Luthjens
- Delft University of Technology, Faculty of Applied Sciences, Department of Radiation Science and Technology, Mekelweg 15, 2629 JB Delft, The Netherlands.
| | - Tiantian Yao
- Delft University of Technology, Faculty of Applied Sciences, Department of Radiation Science and Technology, Mekelweg 15, 2629 JB Delft, The Netherlands.
| | - Julia Navarro-Campos
- Delft University of Technology, Faculty of Applied Sciences, Department of Radiation Science and Technology, Mekelweg 15, 2629 JB Delft, The Netherlands.
| | - Sölen Yuksel
- Delft University of Technology, Faculty of Applied Sciences, Department of Radiation Science and Technology, Mekelweg 15, 2629 JB Delft, The Netherlands.
| | - Jan Aarts
- PICO B.V., Jan Tinbergenstraat 4B, 5491 DC Sint-Oedenrode, The Netherlands.
| | - Simon Thiele
- PICO B.V., Jan Tinbergenstraat 4B, 5491 DC Sint-Oedenrode, The Netherlands.
| | - Jacco Houter
- PICO B.V., Jan Tinbergenstraat 4B, 5491 DC Sint-Oedenrode, The Netherlands.
| | - Wilco In Het Zandt
- PICO B.V., Jan Tinbergenstraat 4B, 5491 DC Sint-Oedenrode, The Netherlands.
| |
Collapse
|
33
|
Basic Properties of a New Polymer Gel for 3D-Dosimetry at High Dose-Rates Typical for FFF Irradiation Based on Dithiothreitol and Methacrylic Acid (MAGADIT): Sensitivity, Range, Reproducibility, Accuracy, Dose Rate Effect and Impact of Oxygen Scavenger. Polymers (Basel) 2019; 11:polym11101717. [PMID: 31635117 PMCID: PMC6835276 DOI: 10.3390/polym11101717] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/27/2019] [Accepted: 10/10/2019] [Indexed: 12/18/2022] Open
Abstract
The photon induced radical-initiated polymerization in polymer gels can be used for high-resolution tissue equivalent dosimeters in quality control of radiation therapy. The dose (D) distribution in radiation therapy can be measured as a change of the physical measurement parameter T2 using T2-weighted magnetic resonance imaging. The detection by T2 is relying on the local change of the molecular mobility due to local polymerization initiated by radicals generated by the ionizing radiation. The dosimetric signals R2 = 1/T2 of many of the current polymer gels are dose-rate dependent, which reduces the reliability of the gel for clinical use. A novel gel dosimeter, based on methacrylic acid, gelatin and the newly added dithiothreitol (MAGADIT) as an oxygen-scavenger was analyzed for basic properties, such as sensitivity, reproducibility, accuracy and dose-rate dependence. Dithiothreitol features no toxic classification with a difference to THPC and offers a stronger negative redox-potential than ascorbic acid. Polymer gels with three different concentration levels of dithiothreitol were irradiated with a preclinical research X-ray unit and MR-scanned (T2) for quantitative dosimetry after calibration. The polymer gel with the lowest concentration of the oxygen scavenger was about factor 3 more sensitive to dose as compared to the gel with the highest concentration. The dose sensitivity (α = ∆R2/∆D) of MAGADIT gels was significantly dependent on the applied dose rate D˙ (≈48% reduction between D˙ = 0.6 Gy/min and D˙ = 4 Gy/min). However, this undesirable dose-rate effect reduced between 4–8 Gy/min (≈23%) and almost disappeared in the high dose-rate range (8 ≤ D˙≤ 12 Gy/min) used in flattening-filter-free (FFF) irradiations. The dose response varied for different samples within one manufacturing batch within 3%–6% (reproducibility). The accuracy ranged between 3.5% and 7.9%. The impact of the dose rate on the spatial integrity is demonstrated in the example of a linear accelerator (LINAC) small sized 5 × 10 mm2 10 MV photon field. For MAGADIT the maximum shift in the flanks in this field is limited to about 0.8 mm at a FFF dose rate of 15 Gy/min. Dose rate sensitive polymer gels likely perform better at high dose rates; MAGADIT exhibits a slightly improved performance compared to the reference normoxic polymer gel methacrylic and ascorbic acid in gelatin initiated by copper (MAGIC) using ascorbic acid.
Collapse
|
34
|
Cobi AC, Gray L, Mittmann ER, Link SB, Hanumara NC, Lyatskaya Y, Roche E, Slocum AH, Zygmanski P. Design of a Reconfigurable Quality Assurance Phantom for Verifying the Spatial Accuracy of Radiosurgery Treatments for Multiple Brain Metastases. J Med Device 2019. [DOI: 10.1115/1.4044402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Abstract
Radiation therapy frequently involves highly customized and complex treatments, employing sophisticated equipment, that require extensive patient-specific validation to verify the accuracy of the treatment plan as part of the clinical quality assurance (QA) process. This paper introduces a novel, reconfigurable QA phantom developed for the spatial validation of radiosurgery treatments of multiple brain metastases (MBM). This phantom works in conjunction with existing electronic portal imaging detector (EPID) technology to rapidly verify MBM treatment plans with submillimeter accuracy. The device provides a 12 × 12 × 12 cm3 active volume and multiple, independently configurable markers, in the form of 3 mm diameter radiopaque spheres, which serve as surrogates for brain lesions. The device is lightweight, portable, can be setup by a single operator, and is adaptable for use with external beam radiotherapy (EBRT) techniques and stereotactic linear accelerators (LINACs). This paper presents the device design and fabrication, along with initial testing and validation results both in the laboratory, using a coordinate measuring machine (CMM) and under simulated clinical conditions, using a radiosurgery treatment plan with 15 lesions. The device has been shown to place markers in space with a 0.45 mm root-mean-square error, which is satisfactory for initial clinical use. The device is undergoing further testing under simulated clinical conditions and improvements to reduce marker positional error.
Collapse
Affiliation(s)
- Alban C. Cobi
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
| | - Luke Gray
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
| | - Elizabeth R. Mittmann
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
| | - Steven B. Link
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
| | - Nevan C. Hanumara
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
| | - Yulia Lyatskaya
- Department of Radiation Oncology, BWH/DFCI/HMS, Boston, MA 02115
| | - Ellen Roche
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
| | - Alexander H. Slocum
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
| | - Piotr Zygmanski
- Department of Radiation Oncology, BWH/DFCI/HMS, Boston, MA 02115
| |
Collapse
|
35
|
Goldmann AS, Boase NRB, Michalek L, Blinco JP, Welle A, Barner-Kowollik C. Adaptable and Reprogrammable Surfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1902665. [PMID: 31414512 DOI: 10.1002/adma.201902665] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/06/2019] [Indexed: 06/10/2023]
Abstract
Establishing control over chemical reactions on interfaces is a key challenge in contemporary surface and materials science, in particular when introducing well-defined functionalities in a reversible fashion. Reprogrammable, adaptable and functional interfaces require sophisticated chemistries to precisely equip them with specific functionalities having tailored properties. In the last decade, reversible chemistries-both covalent and noncovalent-have paved the way to precision functionalize 2 or 3D structures that provide both spatial and temporal control. A critical literature assessment reveals that methodologies for writing and erasing substrates exist, yet are still far from reaching their full potential. It is thus critical to assess the current status and to identify avenues to overcome the existing limitations. Herein, the current state-of-the-art in the field of reversible chemistry on surfaces is surveyed, while concomitantly identifying the challenges-not only synthetic but also in current surface characterization methods. The potential within reversible chemistry on surfaces to function as true writeable memories devices is identified, and the latest developments in readout technologies are discussed. Finally, we explore how spatial and temporal control over reversible, light-induced chemistries has the potential to drive the future of functional interface design, especially when combined with powerful laser lithographic applications.
Collapse
Affiliation(s)
- Anja S Goldmann
- School of Chemistry, Physics, and Mechanical Engineering, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
| | - Nathan R B Boase
- School of Chemistry, Physics, and Mechanical Engineering, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
| | - Lukas Michalek
- School of Chemistry, Physics, and Mechanical Engineering, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
| | - James P Blinco
- School of Chemistry, Physics, and Mechanical Engineering, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
| | - Alexander Welle
- Institute of Functional Interfaces, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Christopher Barner-Kowollik
- School of Chemistry, Physics, and Mechanical Engineering, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
- Macromolecular Architectures, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstr. 18, 76131, Karlsruhe, Germany
| |
Collapse
|
36
|
Awad SI, Moftah B, Basfer A, Almousa AA, Al Kafi M, Eyadeh MM, Rabaeh KA. 3-D Quality Assurance in CyberKnife Radiotherapy Using a Novel N-(3-methoxypropyl) Acrylamide Polymer Gel Dosimeter and Optical CT. Radiat Phys Chem Oxf Engl 1993 2019. [DOI: 10.1016/j.radphyschem.2019.03.045] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
37
|
Bernal-Zamorano M, Sanders N, Lindvold L, Andersen C. Radiochromic and radiofluorogenic solid state polymer dosimeter; a third signal: Electron Paramagnetic Resonance (EPR). Radiat Phys Chem Oxf Engl 1993 2019. [DOI: 10.1016/j.radphyschem.2019.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
38
|
Olaciregui‐Ruiz I, Vivas‐Maiques B, Kaas J, Perik T, Wittkamper F, Mijnheer B, Mans A. Transit and non-transit 3D EPID dosimetry versus detector arrays for patient specific QA. J Appl Clin Med Phys 2019; 20:79-90. [PMID: 31083776 PMCID: PMC6560233 DOI: 10.1002/acm2.12610] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/10/2019] [Accepted: 04/23/2019] [Indexed: 01/09/2023] Open
Abstract
PURPOSE Despite their availability and simplicity of use, Electronic Portal Imaging Devices (EPIDs) have not yet replaced detector arrays for patient specific QA in 3D. The purpose of this study is to perform a large scale dosimetric evaluation of transit and non-transit EPID dosimetry against absolute dose measurements in 3D. METHODS After evaluating basic dosimetric characteristics of the EPID and two detector arrays (Octavius 1500 and Octavius 1000SRS ), 3D dose distributions for 68 VMAT arcs, and 10 IMRT plans were reconstructed within the same phantom geometry using transit EPID dosimetry, non-transit EPID dosimetry, and the Octavius 4D system. The reconstructed 3D dose distributions were directly compared by γ-analysis (2L2 = 2% local/2 mm and 3G2 = 3% global/2 mm, 50% isodose) and by the percentage difference in median dose to the high dose volume (%∆HDVD 50 ). RESULTS Regarding dose rate dependency, dose linearity, and field size dependence, the agreement between EPID dosimetry and the two detector arrays was found to be within 1.0%. In the 2L2 γ-comparison with Octavius 4D dose distributions, the average γ-pass rate value was 92.2 ± 5.2%(1SD) and 94.1 ± 4.3%(1SD) for transit and non-transit EPID dosimetry, respectively. 3G2 γ-pass rate values were higher than 95% in 150/156 cases. %∆HDVD 50 values were within 2% in 134/156 cases and within 3% in 155/156 cases. With regard to the clinical classification of alerts, 97.5% of the treatments were equally classified by EPID dosimetry and Octavius 4D. CONCLUSION Transit and non-transit EPID dosimetry are equivalent in dosimetric terms to conventional detector arrays for patient specific QA. Non-transit 3D EPID dosimetry can be readily used for pre-treatment patient specific QA of IMRT and VMAT, eliminating the need of phantom positioning.
Collapse
Affiliation(s)
- Igor Olaciregui‐Ruiz
- Department of Radiation OncologyThe Netherlands Cancer Institute – Antoni van LeeuwenhoekAmsterdamThe Netherlands
| | - Begoña Vivas‐Maiques
- Department of Radiation OncologyThe Netherlands Cancer Institute – Antoni van LeeuwenhoekAmsterdamThe Netherlands
| | - Jochem Kaas
- Department of Radiation OncologyThe Netherlands Cancer Institute – Antoni van LeeuwenhoekAmsterdamThe Netherlands
| | - Thijs Perik
- Department of Radiation OncologyThe Netherlands Cancer Institute – Antoni van LeeuwenhoekAmsterdamThe Netherlands
| | - Frits Wittkamper
- Department of Radiation OncologyThe Netherlands Cancer Institute – Antoni van LeeuwenhoekAmsterdamThe Netherlands
| | - Ben Mijnheer
- Department of Radiation OncologyThe Netherlands Cancer Institute – Antoni van LeeuwenhoekAmsterdamThe Netherlands
| | - Anton Mans
- Department of Radiation OncologyThe Netherlands Cancer Institute – Antoni van LeeuwenhoekAmsterdamThe Netherlands
| |
Collapse
|
39
|
Vieira SL, de Oliveira LN, Carneiro AAO. Quantitative magnetic resonance elastography for polymer-gel dosimetry phantoms. Med Eng Phys 2019; 66:102-106. [PMID: 30846236 DOI: 10.1016/j.medengphy.2019.02.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 12/03/2018] [Accepted: 02/10/2019] [Indexed: 01/17/2023]
Abstract
Commonly dose-responses of conventional dosimetric methods are affected by a saturation dose and are known to be limited when the delivered dose is relatively high. In contrast, elastic properties of polymer-gel dosimeter phantoms play major roles in a new dosimetry technique using magnetic resonance elastography (MRE). A single volume of polymer-gel dosimeter solution containing methacrylic and ascorbic acid in gelatin initiated by copper was prepared. The material was subsequently stored in cylindrical containers for future use as a biological tissue-mimicking phantom material. The phantom material was irradiated with gamma rays, where absorbed doses of 10-50 Gy were delivered. To study the dynamic elastic behaviour, periodic mechanical external forces of 100-400 Hz were applied to generate shear waves in the samples. The radiation-induced changes in the shear modulus of the samples were estimated from wave-displacement images and converted to elastograms. The smallest and largest shear modulus values were approximately 2.10 ± 0.64 and 35.26 ± 2.85 kPa, respectively. The dynamic elastic response of the polymer-gel dosimeters showed an increased dependency with frequency. A linear relationship (R2 = 0.996) was observed between the integrated area and the absorbed dose of the samples. The elastograms clearly showed that the largest shear modulus values were in the irradiated region of the polymer-gel dosimeter phantoms. Quantitative values of the shear modulus of polymer-gel dosimeters were estimated using MRE.
Collapse
Affiliation(s)
- Sílvio Leão Vieira
- Instituto de Física, Universidade Federal de Goiás - UFG, Goiás, Brazil.
| | | | | |
Collapse
|
40
|
|
41
|
Luthjens LH, Yao T, Warman JM. A Polymer-Gel Eye-Phantom for 3D Fluorescent Imaging of Millimetre Radiation Beams. Polymers (Basel) 2018; 10:E1195. [PMID: 30961120 PMCID: PMC6290594 DOI: 10.3390/polym10111195] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 10/18/2018] [Accepted: 10/23/2018] [Indexed: 11/23/2022] Open
Abstract
We have filled a 24 mm diameter glass sphere with a transparent polymer-gel that is radio-fluorogenic, i.e., it becomes (permanently) fluorescent when irradiated, with an intensity proportional to the local dose deposited. The gel consists of >99.9% tertiary-butyl acrylate (TBA), pre-polymerized to ~15% conversion, and ~100 ppm maleimido-pyrene (MPy). Its dimensions and physical properties are close to those of the vitreous body of the human eye. We have irradiated the gel with a 3 mm diameter, 200 kVp X-ray beam with a dose rate of ~1 Gy/min. A three-dimensional (3D) (video) view of the beam within the gel has been constructed from tomographic images obtained by scanning the sample through a thin sheet of UV light. To minimize optical artefacts, the cell was immersed in a square tank containing a refractive-index-matching medium. The 20⁻80% penumbra of the beam was determined to be ~0.4 mm. This research was a preparatory investigation of the possibility of using this method to monitor the millimetre diameter proton pencil beams used in ocular radiotherapy.
Collapse
Affiliation(s)
- Leonard H Luthjens
- Delft University of Technology, Faculty of Applied Sciences, Department of Radiation Science and Technology, Section Radiation and Isotopes for Health, Mekelweg 15, 2629 JB Delft, The Netherlands.
| | - Tiantian Yao
- Delft University of Technology, Faculty of Applied Sciences, Department of Radiation Science and Technology, Section Radiation and Isotopes for Health, Mekelweg 15, 2629 JB Delft, The Netherlands.
| | - John M Warman
- Delft University of Technology, Faculty of Applied Sciences, Department of Radiation Science and Technology, Section Radiation and Isotopes for Health, Mekelweg 15, 2629 JB Delft, The Netherlands.
| |
Collapse
|
42
|
Maeyama T, Hase S. Nanoclay gel-based radio-fluorogenic gel dosimeters using various fluorescence probes. Radiat Phys Chem Oxf Engl 1993 2018. [DOI: 10.1016/j.radphyschem.2018.05.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
43
|
Warman JM, De Haas MP, Luthjens LH, Denkova AG, Yao T. A Radio-Fluorogenic Polymer-Gel Makes Fixed Fluorescent Images of Complex Radiation Fields. Polymers (Basel) 2018; 10:E685. [PMID: 30966719 PMCID: PMC6404135 DOI: 10.3390/polym10060685] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/13/2018] [Accepted: 06/16/2018] [Indexed: 11/23/2022] Open
Abstract
We review the development and application of an organic polymer-gel capable of producing fixed, three-dimensional fluorescent images of complex radiation fields. The gel consists for more than 99% of γ-ray-polymerized (~15% conversion) tertiary-butyl acrylate (TBA) containing ~100 ppm of a fluorogenic compound, e.g., maleimido-pyrene (MPy). The radio-fluorogenic effect depends on copolymerization of the MPy into growing chains of TBA on radiation-induced polymerization. This converts the maleimido residue, which quenches the pyrene fluorescence, into a succinimido moeity (SPy), which does not. The intensity of the fluorescence is proportional to the yield of free-radicals formed and hence to the local dose deposited. Because the SPy moieties are built into the polymer network, the image is fixed. The method of preparing the gel and imaging the radiation-induced fluorescence are presented and discussed. The effect is illustrated with fluorescent images of the energy deposited in the gel by beams of X-rays, electrons, and protons as well as a radioactive isotope.
Collapse
Affiliation(s)
- John M Warman
- Department of Radiation Science and Technology, Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, 2629 JB Delft, The Netherlands.
| | - Matthijs P De Haas
- Department of Radiation Science and Technology, Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, 2629 JB Delft, The Netherlands.
| | - Leonard H Luthjens
- Department of Radiation Science and Technology, Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, 2629 JB Delft, The Netherlands.
| | - Antonia G Denkova
- Department of Radiation Science and Technology, Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, 2629 JB Delft, The Netherlands.
| | - Tiantian Yao
- Department of Radiation Science and Technology, Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, 2629 JB Delft, The Netherlands.
| |
Collapse
|
44
|
Lee HJ, Kadbi M, Bosco G, Ibbott GS. Real-time volumetric relative dosimetry for magnetic resonance-image-guided radiation therapy (MR-IGRT). Phys Med Biol 2018; 63:045021. [PMID: 29384731 DOI: 10.1088/1361-6560/aaac22] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The integration of magnetic resonance imaging (MRI) with linear accelerators (linac) has enabled the use of 3D MR-visible gel dosimeters for real-time verification of volumetric dose distributions. Several iron-based radiochromic 3D gels were created in-house then imaged and irradiated in a pre-clinical 1.5 T-7 MV MR-Linac. MR images were acquired using a range of balanced-fast field echo (b-FFE) sequences during irradiation to assess the contrast and dose response in irradiated regions and to minimize the presence of MR artifacts. Out of four radiochromic 3D gel formulations, the FOX 3D gel was found to provide superior MR contrast in the irradiated regions. The FOX gels responded linearly with respect to real-time dose and the signal remained stable post-irradiation for at least 20 min. The response of the FOX gel also was found to be unaffected by the radiofrequency and gradient fields created by the b-FFE sequence during irradiation. A reusable version of the FOX gel was used for b-FFE sequence optimization to reduce artifacts by increasing the number of averages at the expense of temporal resolution. Regardless of the real-time MR sequence used, the FOX 3D gels responded linearly to dose with minimal magnetic field effects due to the strong 1.5 T field or gradient fields present during imaging. These gels can easily be made in-house using non-reusable and reusable formulations depending on the needs of the clinic, and the results of this study encourage further applications of 3D gels for MR-IGRT applications.
Collapse
Affiliation(s)
- Hannah J Lee
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America. The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States of America. The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Houston, TX 77030, United States of America
| | | | | | | |
Collapse
|