1
|
Jimenez-Tellez N, Williams D, Liu Y, Wang M, Chandy M, Wu JC. Transcriptomic analysis of nicotine on the cardiovascular system using a diverse population of human induced pluripotent stem cell-derived endothelial cells. J Mol Cell Cardiol 2024; 198:21-23. [PMID: 39608091 DOI: 10.1016/j.yjmcc.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 11/07/2024] [Accepted: 11/09/2024] [Indexed: 11/30/2024]
Affiliation(s)
- Nerea Jimenez-Tellez
- Stanford Cardiovascular Institute, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Damon Williams
- Stanford Cardiovascular Institute, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Yu Liu
- Stanford Cardiovascular Institute, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Mingqiang Wang
- Stanford Cardiovascular Institute, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Mark Chandy
- Stanford Cardiovascular Institute, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA; Department of Medicine, Western University, London, ON, Canada.
| | - Joseph C Wu
- Stanford Cardiovascular Institute, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
2
|
Wu XY, Lee YK, Lau YM, Au KW, Tse YL, Ng KM, Wong CK, Tse HF. The Pathogenic Mechanisms of and Novel Therapies for Lamin A/C-Related Dilated Cardiomyopathy Based on Patient-Specific Pluripotent Stem Cell Platforms and Animal Models. Pharmaceuticals (Basel) 2024; 17:1030. [PMID: 39204134 PMCID: PMC11357512 DOI: 10.3390/ph17081030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 09/03/2024] Open
Abstract
Variants (pathogenic) of the LMNA gene are a common cause of familial dilated cardiomyopathy (DCM), which is characterised by early-onset atrioventricular (AV) block, atrial fibrillation and ventricular tachyarrhythmias (VTs), and progressive heart failure. The unstable internal nuclear lamina observed in LMNA-related DCM is a consequence of the disassembly of lamins A and C. This suggests that LMNA variants produce truncated or alternative forms of protein that alter the nuclear structure and the signalling pathway related to cardiac muscle diseases. To date, the pathogenic mechanisms and phenotypes of LMNA-related DCM have been studied using different platforms, such as patient-specific induced pluripotent stem-cell-derived cardiomyocytes (iPSC-CMs) and transgenic mice. In this review, point variants in the LMNA gene that cause autosomal dominantly inherited forms of LMNA-related DCM are summarised. In addition, potential therapeutic targets based on preclinical studies of LMNA variants using transgenic mice and human iPSC-CMs are discussed. They include mitochondria deficiency, variants in nuclear deformation, chromatin remodelling, altered platelet-derived growth factor and ERK1/2-related pathways, and abnormal calcium handling.
Collapse
Affiliation(s)
- Xin-Yi Wu
- Cardiology Division, Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (X.-Y.W.); (Y.-K.L.); (Y.-M.L.); (K.-W.A.); (Y.-L.T.); (K.-M.N.); (C.-K.W.)
| | - Yee-Ki Lee
- Cardiology Division, Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (X.-Y.W.); (Y.-K.L.); (Y.-M.L.); (K.-W.A.); (Y.-L.T.); (K.-M.N.); (C.-K.W.)
| | - Yee-Man Lau
- Cardiology Division, Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (X.-Y.W.); (Y.-K.L.); (Y.-M.L.); (K.-W.A.); (Y.-L.T.); (K.-M.N.); (C.-K.W.)
| | - Ka-Wing Au
- Cardiology Division, Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (X.-Y.W.); (Y.-K.L.); (Y.-M.L.); (K.-W.A.); (Y.-L.T.); (K.-M.N.); (C.-K.W.)
| | - Yiu-Lam Tse
- Cardiology Division, Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (X.-Y.W.); (Y.-K.L.); (Y.-M.L.); (K.-W.A.); (Y.-L.T.); (K.-M.N.); (C.-K.W.)
| | - Kwong-Man Ng
- Cardiology Division, Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (X.-Y.W.); (Y.-K.L.); (Y.-M.L.); (K.-W.A.); (Y.-L.T.); (K.-M.N.); (C.-K.W.)
- Centre for Stem Cell Translational Biology, Hong Kong SAR, China
| | - Chun-Ka Wong
- Cardiology Division, Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (X.-Y.W.); (Y.-K.L.); (Y.-M.L.); (K.-W.A.); (Y.-L.T.); (K.-M.N.); (C.-K.W.)
| | - Hung-Fat Tse
- Cardiology Division, Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (X.-Y.W.); (Y.-K.L.); (Y.-M.L.); (K.-W.A.); (Y.-L.T.); (K.-M.N.); (C.-K.W.)
- Centre for Stem Cell Translational Biology, Hong Kong SAR, China
- Cardiac and Vascular Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
- Hong Kong-Guangdong Stem Cell and Regenerative Medicine Research Centre, The University of Hong Kong and Guangzhou Institutes of Biomedicine and Health, Hong Kong SAR, China
- Advanced Biomedical Instrumentation Centre, Hong Kong SAR, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| |
Collapse
|
3
|
Mensah IK, Gowher H. Signaling Pathways Governing Cardiomyocyte Differentiation. Genes (Basel) 2024; 15:798. [PMID: 38927734 PMCID: PMC11202427 DOI: 10.3390/genes15060798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Cardiomyocytes are the largest cell type that make up the heart and confer beating activity to the heart. The proper differentiation of cardiomyocytes relies on the efficient transmission and perception of differentiation cues from several signaling pathways that influence cardiomyocyte-specific gene expression programs. Signaling pathways also mediate intercellular communications to promote proper cardiomyocyte differentiation. We have reviewed the major signaling pathways involved in cardiomyocyte differentiation, including the BMP, Notch, sonic hedgehog, Hippo, and Wnt signaling pathways. Additionally, we highlight the differences between different cardiomyocyte cell lines and the use of these signaling pathways in the differentiation of cardiomyocytes from stem cells. Finally, we conclude by discussing open questions and current gaps in knowledge about the in vitro differentiation of cardiomyocytes and propose new avenues of research to fill those gaps.
Collapse
Affiliation(s)
| | - Humaira Gowher
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
4
|
Vaziri N, Marques D, Greenway SC, Bousman CA. The cellular mechanism of antipsychotic-induced myocarditis: A systematic review. Schizophr Res 2023; 261:206-215. [PMID: 37797362 DOI: 10.1016/j.schres.2023.09.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 04/23/2023] [Accepted: 09/24/2023] [Indexed: 10/07/2023]
Abstract
Antipsychotic drug-induced myocarditis is a serious and potentially fatal adverse drug reaction characterized by inflammation of the heart muscle (myocardium) that typically develops within the first month after commencing an antipsychotic drug. Although the precise mechanism of this severe adverse drug reaction is unknown, multiple theories have been proposed with varying levels of support from cellular or animal studies. We conducted a systematic review, in accordance with PRISMA guidelines, of published preclinical and clinical studies investigating the cellular mechanism by which antipsychotic drugs induce myocarditis. A literature search including all studies available before December 10, 2022, yielded 15 studies that met our inclusion criteria. Antipsychotics examined in the included studies included clozapine (n = 13), ziprasidone (n = 1), amisulpride (n = 1), haloperidol (n = 1), levomepromazine (n = 1), olanzapine (n = 1), and sertindole (n = 1). The evidence suggests several overlapping mechanistic cascades involving: (1) increased levels of catecholamines, (2) increased proinflammatory cytokines, (3) increased reactive oxygen species (ROS), (4) reduced antioxidant levels and activity, and (5) mitochondrial damage. Notable limitations such as, a focus on clozapine, sample heterogeneity, and use of supratherapeutic doses will need to be addressed in future studies. Discovery of the mechanism by which antipsychotic drugs induce myocarditis will allow the development of clinically-useful biomarkers to identify those patients at increased risk prior to drug exposure. The development or repurposing of therapeutics to prevent or treat drug-induced myocarditis will also be possible and this will enable increased and safe use of antipsychotics for those patients in need.
Collapse
Affiliation(s)
- Nazanin Vaziri
- Department of Medical Genetics, University of Calgary, Calgary, AB, Canada
| | - Diogo Marques
- Department of Medical Genetics, University of Calgary, Calgary, AB, Canada
| | - Steven C Greenway
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Chad A Bousman
- Department of Medical Genetics, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Psychiatry, University of Calgary, Calgary, AB, Canada; Department of Physiology & Pharmacology, University of Calgary, Calgary, AB, Canada; Department of Community Health Sciences, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
5
|
Krajčová A, Němcová V, Halačová M, Waldauf P, Balík M, Duška F. Amiodarone but not propafenone impairs bioenergetics and autophagy of human myocardial cells. Toxicol Appl Pharmacol 2023; 477:116676. [PMID: 37661063 DOI: 10.1016/j.taap.2023.116676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
Cardiac and extra-cardiac side effects of common antiarrhythmic agents might be related to drug-induced mitochondrial dysfunction. Supratherapeutic doses of amiodarone have been shown to impair mitochondria in animal studies, whilst influence of propafenone on cellular bioenergetics is unknown. We aimed to assess effects of protracted exposure to pharmacologically relevant doses of amiodarone and propafenone on cellular bioenergetics and mitochondrial biology of human and mouse cardiomyocytes. In this study, HL-1 mouse atrial cardiomyocytes and primary human cardiomyocytes derived from the ventricles of the adult heart were exposed to 2 and 7 μg/mL of either amiodarone or propafenone. After 24 h, extracellular flux analysis and confocal laser scanning microscopy were used to measure mitochondrial functions. Autophagy was assessed by western blots and live-cell imaging of lysosomes. In human cardiomyocytes, amiodarone significantly reduced mitochondrial membrane potential and ATP production, in association with an inhibition of fatty acid oxidation and impaired complex I- and II-linked respiration in the electron transport chain. Expectedly, this led to increased anaerobic glycolysis. Amiodarone increased the production of reactive oxygen species and autophagy was also markedly affected. In contrast, propafenone-exposed cardiomyocytes did not exert any impairment of cellular bioenergetics. Similar changes after amiodarone treatment were observed during identical experiments performed on HL-1 mouse cardiomyocytes, suggesting a comparable pharmacodynamics of amiodarone among mammalian species. In conclusion, amiodarone but not propafenone in near-therapeutic concentrations causes a pattern of mitochondrial dysfunction with affected autophagy and metabolic switch from oxidative metabolism to anaerobic glycolysis in human cardiomyocytes.
Collapse
Affiliation(s)
- Adéla Krajčová
- Department of Anaesthesia and Intensive Care of The Third Faculty of Medicine and Královské Vinohrady University Hospital, OXYLAB-Laboratory for Mitochondrial Physiology, Charles University, Prague, Czech Republic
| | - Vlasta Němcová
- Department of Biochemistry, Cell and Molecular Biology and Centre for Research on Nutrition, Metabolism and Diabetes, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Milada Halačová
- Department of Anaesthesia and Intensive Care of The Third Faculty of Medicine and Královské Vinohrady University Hospital, OXYLAB-Laboratory for Mitochondrial Physiology, Charles University, Prague, Czech Republic; Department of Pharmacology of The Second Medical Faculty, Charles University, Prague, Czech Republic
| | - Petr Waldauf
- Department of Anaesthesia and Intensive Care of The Third Faculty of Medicine and Královské Vinohrady University Hospital, OXYLAB-Laboratory for Mitochondrial Physiology, Charles University, Prague, Czech Republic
| | - Martin Balík
- Department of Anaesthesia and Intensive Care of The First Faculty of Medicine and General University Hospital, Charles University, Prague, Czech Republic
| | - František Duška
- Department of Anaesthesia and Intensive Care of The Third Faculty of Medicine and Královské Vinohrady University Hospital, OXYLAB-Laboratory for Mitochondrial Physiology, Charles University, Prague, Czech Republic.
| |
Collapse
|
6
|
Correia CD, Ferreira A, Fernandes MT, Silva BM, Esteves F, Leitão HS, Bragança J, Calado SM. Human Stem Cells for Cardiac Disease Modeling and Preclinical and Clinical Applications—Are We on the Road to Success? Cells 2023; 12:1727. [DOI: https:/doi.org/10.3390/cells12131727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
Cardiovascular diseases (CVDs) are pointed out by the World Health Organization (WHO) as the leading cause of death, contributing to a significant and growing global health and economic burden. Despite advancements in clinical approaches, there is a critical need for innovative cardiovascular treatments to improve patient outcomes. Therapies based on adult stem cells (ASCs) and embryonic stem cells (ESCs) have emerged as promising strategies to regenerate damaged cardiac tissue and restore cardiac function. Moreover, the generation of human induced pluripotent stem cells (iPSCs) from somatic cells has opened new avenues for disease modeling, drug discovery, and regenerative medicine applications, with fewer ethical concerns than those associated with ESCs. Herein, we provide a state-of-the-art review on the application of human pluripotent stem cells in CVD research and clinics. We describe the types and sources of stem cells that have been tested in preclinical and clinical trials for the treatment of CVDs as well as the applications of pluripotent stem-cell-derived in vitro systems to mimic disease phenotypes. How human stem-cell-based in vitro systems can overcome the limitations of current toxicological studies is also discussed. Finally, the current state of clinical trials involving stem-cell-based approaches to treat CVDs are presented, and the strengths and weaknesses are critically discussed to assess whether researchers and clinicians are getting closer to success.
Collapse
Affiliation(s)
- Cátia D. Correia
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| | - Anita Ferreira
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| | - Mónica T. Fernandes
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- School of Health, Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| | - Bárbara M. Silva
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Doctoral Program in Biomedical Sciences, Faculty of Medicine and Biomedical Sciences, Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| | - Filipa Esteves
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| | - Helena S. Leitão
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| | - José Bragança
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - Sofia M. Calado
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
7
|
Correia CD, Ferreira A, Fernandes MT, Silva BM, Esteves F, Leitão HS, Bragança J, Calado SM. Human Stem Cells for Cardiac Disease Modeling and Preclinical and Clinical Applications-Are We on the Road to Success? Cells 2023; 12:1727. [PMID: 37443761 PMCID: PMC10341347 DOI: 10.3390/cells12131727] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/08/2023] [Accepted: 06/15/2023] [Indexed: 07/15/2023] Open
Abstract
Cardiovascular diseases (CVDs) are pointed out by the World Health Organization (WHO) as the leading cause of death, contributing to a significant and growing global health and economic burden. Despite advancements in clinical approaches, there is a critical need for innovative cardiovascular treatments to improve patient outcomes. Therapies based on adult stem cells (ASCs) and embryonic stem cells (ESCs) have emerged as promising strategies to regenerate damaged cardiac tissue and restore cardiac function. Moreover, the generation of human induced pluripotent stem cells (iPSCs) from somatic cells has opened new avenues for disease modeling, drug discovery, and regenerative medicine applications, with fewer ethical concerns than those associated with ESCs. Herein, we provide a state-of-the-art review on the application of human pluripotent stem cells in CVD research and clinics. We describe the types and sources of stem cells that have been tested in preclinical and clinical trials for the treatment of CVDs as well as the applications of pluripotent stem-cell-derived in vitro systems to mimic disease phenotypes. How human stem-cell-based in vitro systems can overcome the limitations of current toxicological studies is also discussed. Finally, the current state of clinical trials involving stem-cell-based approaches to treat CVDs are presented, and the strengths and weaknesses are critically discussed to assess whether researchers and clinicians are getting closer to success.
Collapse
Affiliation(s)
- Cátia D. Correia
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal; (C.D.C.); (A.F.); (M.T.F.); (B.M.S.); (F.E.); (H.S.L.); (J.B.)
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| | - Anita Ferreira
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal; (C.D.C.); (A.F.); (M.T.F.); (B.M.S.); (F.E.); (H.S.L.); (J.B.)
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| | - Mónica T. Fernandes
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal; (C.D.C.); (A.F.); (M.T.F.); (B.M.S.); (F.E.); (H.S.L.); (J.B.)
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- School of Health, Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| | - Bárbara M. Silva
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal; (C.D.C.); (A.F.); (M.T.F.); (B.M.S.); (F.E.); (H.S.L.); (J.B.)
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Doctoral Program in Biomedical Sciences, Faculty of Medicine and Biomedical Sciences, Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| | - Filipa Esteves
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal; (C.D.C.); (A.F.); (M.T.F.); (B.M.S.); (F.E.); (H.S.L.); (J.B.)
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| | - Helena S. Leitão
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal; (C.D.C.); (A.F.); (M.T.F.); (B.M.S.); (F.E.); (H.S.L.); (J.B.)
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| | - José Bragança
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal; (C.D.C.); (A.F.); (M.T.F.); (B.M.S.); (F.E.); (H.S.L.); (J.B.)
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - Sofia M. Calado
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal; (C.D.C.); (A.F.); (M.T.F.); (B.M.S.); (F.E.); (H.S.L.); (J.B.)
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
8
|
Zhu K, Bao X, Wang Y, Lu T, Zhang L. Human induced pluripotent stem cell (hiPSC)-derived cardiomyocyte modelling of cardiovascular diseases for natural compound discovery. Biomed Pharmacother 2023; 157:113970. [PMID: 36371854 DOI: 10.1016/j.biopha.2022.113970] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 11/11/2022] Open
Abstract
Cardiovascular disease (CVD) remains the leading cause of death worldwide. Natural compounds extracted from medicinal plants characterized by diverse biological activities and low toxicity or side effects, are increasingly taking center stage in the search for new drugs. Currently, preclinical evaluation of natural products relies mainly on the use of immortalized cell lines of human origin or animal models. Increasing evidence indicates that cardiomyopathy models based on immortalized cell lines do not recapitulate pathogenic phenotypes accurately and a substantial physiological discrepancy between animals and humans casts doubt on the clinical relevance of animal models for these studies. The newly developed human induced pluripotent stem cell (hiPSC) technology in combination with highly-efficient cardiomyocyte differentiation methods provides an ideal tool for modeling human cardiomyopathies in vitro. Screening of drugs, especially screening of natural products, based on these models has been widely used and has shown that evaluation in such models can recapitulate important aspects of the physiological properties of drugs. The purpose of this review is to provide information on the latest developments in this area of research and to help researchers perform screening of natural products using the hiPSC-CM platform.
Collapse
Affiliation(s)
- Keyang Zhu
- Zhejiang Key Laboratory of Pathophysiology, School of Public Health, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Xiaoming Bao
- Department of Cardiology, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, PR China; Department of Global Health, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, PR China
| | - Yingchao Wang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Ting Lu
- Clinical Research Center of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China.
| | - Ling Zhang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, PR China.
| |
Collapse
|
9
|
Yang J, Chen S, Duan F, Wang X, Zhang X, Lian B, Kou M, Chiang Z, Li Z, Lian Q. Mitochondrial Cardiomyopathy: Molecular Epidemiology, Diagnosis, Models, and Therapeutic Management. Cells 2022; 11:cells11213511. [PMID: 36359908 PMCID: PMC9655095 DOI: 10.3390/cells11213511] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/15/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
Mitochondrial cardiomyopathy (MCM) is characterized by abnormal heart-muscle structure and function, caused by mutations in the nuclear genome or mitochondrial DNA. The heterogeneity of gene mutations and various clinical presentations in patients with cardiomyopathy make its diagnosis, molecular mechanism, and therapeutics great challenges. This review describes the molecular epidemiology of MCM and its clinical features, reviews the promising diagnostic tests applied for mitochondrial diseases and cardiomyopathies, and details the animal and cellular models used for modeling cardiomyopathy and to investigate disease pathogenesis in a controlled in vitro environment. It also discusses the emerging therapeutics tested in pre-clinical and clinical studies of cardiac regeneration.
Collapse
Affiliation(s)
- Jinjuan Yang
- Cord Blood Bank Centre, Guangzhou Women and Children’s Medical Centre, Guangzhou Medical University, Guangzhou 510180, China
| | - Shaoxiang Chen
- Cord Blood Bank Centre, Guangzhou Women and Children’s Medical Centre, Guangzhou Medical University, Guangzhou 510180, China
| | - Fuyu Duan
- Cord Blood Bank Centre, Guangzhou Women and Children’s Medical Centre, Guangzhou Medical University, Guangzhou 510180, China
| | - Xiuxiu Wang
- Department of Laboratory Medicine, Pingyang People’s Hospital Affiliated to Wenzhou Medical University, Wenzhou 325499, China
| | - Xiaoxian Zhang
- Cord Blood Bank Centre, Guangzhou Women and Children’s Medical Centre, Guangzhou Medical University, Guangzhou 510180, China
| | - Boonxuan Lian
- Adelaide Medical School, University of Adelaide, 30 Frome Rd., Adelaide, SA 5000, Australia
| | - Meng Kou
- Cord Blood Bank Centre, Guangzhou Women and Children’s Medical Centre, Guangzhou Medical University, Guangzhou 510180, China
| | - Zhixin Chiang
- Department of Allied Health Science Faculty of Science, Tunku Abdul Rahman University, Ipoh 31900, Malaysia
| | - Ziyue Li
- Cord Blood Bank Centre, Guangzhou Women and Children’s Medical Centre, Guangzhou Medical University, Guangzhou 510180, China
| | - Qizhou Lian
- Cord Blood Bank Centre, Guangzhou Women and Children’s Medical Centre, Guangzhou Medical University, Guangzhou 510180, China
- Department of Surgery, Shenzhen Hong Kong University Hospital, Shenzhen 518053, China
- State Key Laboratory of Pharmaceutical Biotechnology, University of Hong Kong, Hong Kong 999077, China
- Correspondence: ; Tel.: +852-2831-5403
| |
Collapse
|
10
|
Gisone I, Cecchettini A, Ceccherini E, Persiani E, Morales MA, Vozzi F. Cardiac tissue engineering: Multiple approaches and potential applications. Front Bioeng Biotechnol 2022; 10:980393. [PMID: 36263357 PMCID: PMC9574555 DOI: 10.3389/fbioe.2022.980393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022] Open
Abstract
The overall increase in cardiovascular diseases and, specifically, the ever-rising exposure to cardiotoxic compounds has greatly increased in vivo animal testing; however, mainly due to ethical concerns related to experimental animal models, there is a strong interest in new in vitro models focused on the human heart. In recent years, human pluripotent stem cells-derived cardiomyocytes (hiPSC-CMs) emerged as reference cell systems for cardiac studies due to their biological similarity to primary CMs, the flexibility in cell culture protocols, and the capability to be amplified several times. Furthermore, the ability to be genetically reprogrammed makes patient-derived hiPSCs, a source for studies on personalized medicine. In this mini-review, the different models used for in vitro cardiac studies will be described, and their pros and cons analyzed to help researchers choose the best fitting model for their studies. Particular attention will be paid to hiPSC-CMs and three-dimensional (3D) systems since they can mimic the cytoarchitecture of the human heart, reproducing its morphological, biochemical, and mechanical features. The advantages of 3D in vitro heart models compared to traditional 2D cell cultures will be discussed, and the differences between scaffold-free and scaffold-based systems will also be spotlighted.
Collapse
Affiliation(s)
- Ilaria Gisone
- Institute of Clinical Physiology, National Research Council (CNR), Pisa, Italy
| | - Antonella Cecchettini
- Institute of Clinical Physiology, National Research Council (CNR), Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Elisa Ceccherini
- Institute of Clinical Physiology, National Research Council (CNR), Pisa, Italy
| | - Elisa Persiani
- Institute of Clinical Physiology, National Research Council (CNR), Pisa, Italy
| | | | - Federico Vozzi
- Institute of Clinical Physiology, National Research Council (CNR), Pisa, Italy
- *Correspondence: Federico Vozzi,
| |
Collapse
|
11
|
Positive effect of Periostin on repair of Isopreternol induced ischemic damaged cardiomyocyte: an in vitro model. Regen Ther 2022; 20:26-31. [PMID: 35402664 PMCID: PMC8943212 DOI: 10.1016/j.reth.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/26/2021] [Accepted: 03/02/2022] [Indexed: 11/20/2022] Open
|
12
|
Human Induced Pluripotent Stem Cell as a Disease Modeling and Drug Development Platform-A Cardiac Perspective. Cells 2021; 10:cells10123483. [PMID: 34943991 PMCID: PMC8699880 DOI: 10.3390/cells10123483] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 02/07/2023] Open
Abstract
A comprehensive understanding of the pathophysiology and cellular responses to drugs in human heart disease is limited by species differences between humans and experimental animals. In addition, isolation of human cardiomyocytes (CMs) is complicated because cells obtained by biopsy do not proliferate to provide sufficient numbers of cells for preclinical studies in vitro. Interestingly, the discovery of human-induced pluripotent stem cell (hiPSC) has opened up the possibility of generating and studying heart disease in a culture dish. The combination of reprogramming and genome editing technologies to generate a broad spectrum of human heart diseases in vitro offers a great opportunity to elucidate gene function and mechanisms. However, to exploit the potential applications of hiPSC-derived-CMs for drug testing and studying adult-onset cardiac disease, a full functional characterization of maturation and metabolic traits is required. In this review, we focus on methods to reprogram somatic cells into hiPSC and the solutions for overcome immaturity of the hiPSC-derived-CMs to mimic the structure and physiological properties of the adult human CMs to accurately model disease and test drug safety. Finally, we discuss how to improve the culture, differentiation, and purification of CMs to obtain sufficient numbers of desired types of hiPSC-derived-CMs for disease modeling and drug development platform.
Collapse
|
13
|
Seguret M, Vermersch E, Jouve C, Hulot JS. Cardiac Organoids to Model and Heal Heart Failure and Cardiomyopathies. Biomedicines 2021; 9:563. [PMID: 34069816 PMCID: PMC8157277 DOI: 10.3390/biomedicines9050563] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/04/2021] [Accepted: 05/10/2021] [Indexed: 12/18/2022] Open
Abstract
Cardiac tissue engineering aims at creating contractile structures that can optimally reproduce the features of human cardiac tissue. These constructs are becoming valuable tools to model some of the cardiac functions, to set preclinical platforms for drug testing, or to alternatively be used as therapies for cardiac repair approaches. Most of the recent developments in cardiac tissue engineering have been made possible by important advances regarding the efficient generation of cardiac cells from pluripotent stem cells and the use of novel biomaterials and microfabrication methods. Different combinations of cells, biomaterials, scaffolds, and geometries are however possible, which results in different types of structures with gradual complexities and abilities to mimic the native cardiac tissue. Here, we intend to cover key aspects of tissue engineering applied to cardiology and the consequent development of cardiac organoids. This review presents various facets of the construction of human cardiac 3D constructs, from the choice of the components to their patterning, the final geometry of generated tissues, and the subsequent readouts and applications to model and treat cardiac diseases.
Collapse
Affiliation(s)
- Magali Seguret
- INSERM, PARCC, Université de Paris, F-75006 Paris, France; (M.S.); (E.V.); (C.J.)
| | - Eva Vermersch
- INSERM, PARCC, Université de Paris, F-75006 Paris, France; (M.S.); (E.V.); (C.J.)
| | - Charlène Jouve
- INSERM, PARCC, Université de Paris, F-75006 Paris, France; (M.S.); (E.V.); (C.J.)
| | - Jean-Sébastien Hulot
- INSERM, PARCC, Université de Paris, F-75006 Paris, France; (M.S.); (E.V.); (C.J.)
- CIC1418 and DMU CARTE, Assistance Publique Hôpitaux de Paris (AP-HP), Hôpital Européen Georges-Pompidou, F-75015 Paris, France
| |
Collapse
|
14
|
Dariolli R, Campana C, Gutierrez A, Sobie EA. In vitro and In silico Models to Study SARS-CoV-2 Infection: Integrating Experimental and Computational Tools to Mimic "COVID-19 Cardiomyocyte". Front Physiol 2021; 12:624185. [PMID: 33679437 PMCID: PMC7925402 DOI: 10.3389/fphys.2021.624185] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/25/2021] [Indexed: 01/08/2023] Open
Abstract
The rapid dissemination of SARS-CoV-2 has made COVID-19 a tremendous social, economic, and health burden. Despite the efforts to understand the virus and treat the disease, many questions remain unanswered about COVID-19 mechanisms of infection and progression. Severe Acute Respiratory Syndrome (SARS) infection can affect several organs in the body including the heart, which can result in thromboembolism, myocardial injury, acute coronary syndromes, and arrhythmias. Numerous cardiac adverse events, from cardiomyocyte death to secondary effects caused by exaggerated immunological response against the virus, have been clinically reported. In addition to the disease itself, repurposing of treatments by using "off label" drugs can also contribute to cardiotoxicity. Over the past several decades, animal models and more recently, stem cell-derived cardiomyocytes have been proposed for studying diseases and testing treatments in vitro. In addition, mechanistic in silico models have been widely used for disease and drug studies. In these models, several characteristics such as gender, electrolyte imbalance, and comorbidities can be implemented to study pathophysiology of cardiac diseases and to predict cardiotoxicity of drug treatments. In this Mini Review, we (1) present the state of the art of in vitro and in silico cardiomyocyte modeling currently in use to study COVID-19, (2) review in vitro and in silico models that can be adopted to mimic the effects of SARS-CoV-2 infection on cardiac function, and (3) provide a perspective on how to combine some of these models to mimic "COVID-19 cardiomyocytes environment.".
Collapse
Affiliation(s)
- Rafael Dariolli
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | | | | |
Collapse
|
15
|
Alonso-Barroso E, Pérez B, Desviat LR, Richard E. Cardiomyocytes Derived from Induced Pluripotent Stem Cells as a Disease Model for Propionic Acidemia. Int J Mol Sci 2021; 22:ijms22031161. [PMID: 33503868 PMCID: PMC7865492 DOI: 10.3390/ijms22031161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 12/13/2022] Open
Abstract
Propionic acidemia (PA), one of the most frequent life-threatening organic acidemias, is caused by mutations in either the PCCA or PCCB genes encoding both subunits of the mitochondrial propionyl-CoA carboxylase (PCC) enzyme. Cardiac alterations (hypertrophy, dilated cardiomyopathy, long QT) are one of the major causes of mortality in patients surviving the neonatal period. To overcome limitations of current cellular models of PA, we generated induced pluripotent stem cells (iPSCs) from a PA patient with defects in the PCCA gene, and successfully differentiated them into cardiomyocytes. PCCA iPSC-derived cardiomyocytes exhibited reduced oxygen consumption, an accumulation of residual bodies and lipid droplets, and increased ribosomal biogenesis. Furthermore, we found increased protein levels of HERP, GRP78, GRP75, SIG-1R and MFN2, suggesting endoplasmic reticulum stress and calcium perturbations in these cells. We also analyzed a series of heart-enriched miRNAs previously found deregulated in the heart tissue of a PA murine model and confirmed their altered expression. Our novel results show that PA iPSC-cardiomyocytes represent a promising model for investigating the pathological mechanisms underlying PA cardiomyopathies, also serving as an ex vivo platform for therapeutic evaluation.
Collapse
Affiliation(s)
- Esmeralda Alonso-Barroso
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (E.A.-B.); (B.P.); (L.R.D.)
- Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), 28049 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital La Paz (IdiPaz), ISCIII, 28029 Madrid, Spain
| | - Belén Pérez
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (E.A.-B.); (B.P.); (L.R.D.)
- Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), 28049 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital La Paz (IdiPaz), ISCIII, 28029 Madrid, Spain
| | - Lourdes Ruiz Desviat
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (E.A.-B.); (B.P.); (L.R.D.)
- Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), 28049 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital La Paz (IdiPaz), ISCIII, 28029 Madrid, Spain
| | - Eva Richard
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (E.A.-B.); (B.P.); (L.R.D.)
- Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), 28049 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital La Paz (IdiPaz), ISCIII, 28029 Madrid, Spain
- Correspondence:
| |
Collapse
|
16
|
Nasser MI, Qi X, Zhu S, He Y, Zhao M, Guo H, Zhu P. Current situation and future of stem cells in cardiovascular medicine. Biomed Pharmacother 2020; 132:110813. [PMID: 33068940 DOI: 10.1016/j.biopha.2020.110813] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/22/2020] [Accepted: 09/25/2020] [Indexed: 12/21/2022] Open
Abstract
Cardiovascular disease (CVD) is one of the leading causes of death worldwide. Currently, many methods have been proposed by researchers for the prevention and treatment of CVD; among them, stem cell-based therapies are the most promising. As the cells of origin for various mature cells, stem cells have the ability to self-renew and differentiate. Stem cells have a powerful ability to regenerate biologically, self-repair, and enhance damaged functional tissues or organs. Allogeneic stem cells and somatic stem cells are two types of cells that can be used for cardiac repair. Theoretically, dilated cardiomyopathy and acute myocardial infarction can be treated with such cells. In addition, stem cell transplantation procedures, including intravenous, epicardial, cardiac, and endocardial injections, have been reported to provide significant benefits in clinical practice; however, there are still a number of issues that need further study and consideration, such as the form and quantity of transplanted cells and post-transplantation health. The goal of this analysis was to summarize the recent advances in stem cell-based therapies and their efficacy in cardiovascular regenerative medicine.
Collapse
Affiliation(s)
- M I Nasser
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510100, China. Address: 106 Zhongshan Er Road, Guangzhou, 510080, PR China
| | - Xiao Qi
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510100, China. Address: 106 Zhongshan Er Road, Guangzhou, 510080, PR China
| | - Shuoji Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510100, China. Address: 106 Zhongshan Er Road, Guangzhou, 510080, PR China
| | - Yin He
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510100, China. Address: 106 Zhongshan Er Road, Guangzhou, 510080, PR China
| | - Mingyi Zhao
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510100, China. Address: 106 Zhongshan Er Road, Guangzhou, 510080, PR China
| | - Huiming Guo
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510100, China. Address: 106 Zhongshan Er Road, Guangzhou, 510080, PR China
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510100, China. Address: 106 Zhongshan Er Road, Guangzhou, 510080, PR China.
| |
Collapse
|
17
|
Iwamiya T, Segard BD, Matsuoka Y, Imamura T. Human cardiac fibroblasts expressing VCAM1 improve heart function in postinfarct heart failure rat models by stimulating lymphangiogenesis. PLoS One 2020; 15:e0237810. [PMID: 32936824 PMCID: PMC7494079 DOI: 10.1371/journal.pone.0237810] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 08/02/2020] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular diseases are a leading cause of death worldwide. After an ischemic injury, the myocardium undergoes severe necrosis and apoptosis, leading to a dramatic degradation of function. Numerous studies have reported that cardiac fibroblasts (CFs) play a critical role in heart function even after injury. However, CFs present heterogeneous characteristics according to their development stage (i.e., fetal or adult), and the molecular mechanisms by which they maintain heart function are not fully understood. The aim of this study is to explore the hypothesis that a specific population of CFs can repair the injured myocardium in heart failure following ischemic infarction, and lead to a significant recovery of cardiac function. Flow cytometry analysis of CFs defined two subpopulations according to their relative expression of vascular cell adhesion molecule 1 (VCAM1). Whole-transcriptome analysis described distinct profiles for these groups, with a correlation between VCAM1 expression and lymphangiogenesis-related genes up-regulation. Vascular formation assays showed a significant stimulation of lymphatic cells network complexity by VCFs. Injection of human VCAM1-expressing CFs (VCFs) in postinfarct heart failure rat models (ligation of the left anterior descending artery) led to a significant restoration of the left ventricle contraction. Over the course of the experiment, left ventricular ejection fraction and fractional shortening increased by 16.65% ± 5.64% and 10.43% ± 6.02%, respectively, in VCF-treated rats. Histological examinations revealed that VCFs efficiently mobilized the lymphatic endothelial cells into the infarcted area. In conclusion, human CFs present heterogeneous expression of VCAM1 and lymphangiogenesis-promoting factors. VCFs restore the mechanical properties of ventricular walls by mobilizing lymphatic endothelial cells into the infarct when injected into a rat heart failure model. These results suggest a role of this specific population of CFs in the homeostasis of the lymphatic system in cardiac regeneration, providing new information for the study and therapy of cardiac diseases.
Collapse
Affiliation(s)
- Takahiro Iwamiya
- Research & Development Department, Metcela Inc., Kawasaki, Kanagawa, Japan
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
- * E-mail:
| | | | - Yuimi Matsuoka
- Research & Development Department, Metcela Inc., Kawasaki, Kanagawa, Japan
| | - Tomomi Imamura
- Research & Development Department, Metcela Inc., Kawasaki, Kanagawa, Japan
| |
Collapse
|
18
|
Lippi M, Stadiotti I, Pompilio G, Sommariva E. Human Cell Modeling for Cardiovascular Diseases. Int J Mol Sci 2020; 21:E6388. [PMID: 32887493 PMCID: PMC7503257 DOI: 10.3390/ijms21176388] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 11/17/2022] Open
Abstract
The availability of appropriate and reliable in vitro cell models recapitulating human cardiovascular diseases has been the aim of numerous researchers, in order to retrace pathologic phenotypes, elucidate molecular mechanisms, and discover therapies using simple and reproducible techniques. In the past years, several human cell types have been utilized for these goals, including heterologous systems, cardiovascular and non-cardiovascular primary cells, and embryonic stem cells. The introduction of induced pluripotent stem cells and their differentiation potential brought new prospects for large-scale cardiovascular experiments, bypassing ethical concerns of embryonic stem cells and providing an advanced tool for disease modeling, diagnosis, and therapy. Each model has its advantages and disadvantages in terms of accessibility, maintenance, throughput, physiological relevance, recapitulation of the disease. A higher level of complexity in diseases modeling has been achieved with multicellular co-cultures. Furthermore, the important progresses reached by bioengineering during the last years, together with the opportunities given by pluripotent stem cells, have allowed the generation of increasingly advanced in vitro three-dimensional tissue-like constructs mimicking in vivo physiology. This review provides an overview of the main cell models used in cardiovascular research, highlighting the pros and cons of each, and describing examples of practical applications in disease modeling.
Collapse
Affiliation(s)
- Melania Lippi
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.L.); (I.S.); (G.P.)
| | - Ilaria Stadiotti
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.L.); (I.S.); (G.P.)
| | - Giulio Pompilio
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.L.); (I.S.); (G.P.)
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy
| | - Elena Sommariva
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.L.); (I.S.); (G.P.)
| |
Collapse
|
19
|
Cong S, Ramachandra CJ, Mai Ja KPM, Yap J, Shim W, Wei L, Hausenloy DJ. Mechanisms underlying diabetic cardiomyopathy: From pathophysiology to novel therapeutic targets. CONDITIONING MEDICINE 2020; 3:82-97. [PMID: 34169234 PMCID: PMC8221238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Diabetic cardiomyopathy (DC) is defined as a clinical condition of cardiac dysfunction that occurs in the absence of coronary atherosclerosis, valvular disease, and hypertension in patients with diabetes mellitus (DM). Despite the increasing worldwide prevalence of DC, due to the global epidemic of DM, the underlying pathophysiology of DC has not been fully elucidated. In addition, the clinical criteria for diagnosing DC have not been established, and specific therapeutic options are not currently available. The current paradigm suggests the impaired cardiomyocyte function arises due to a number of DM-related metabolic disturbances including hyperglycemia, hyperinsulinemia, and hyperlipidemia, which lead to diastolic dysfunction and signs and symptoms of heart failure. Other factors, which have been implicated in the progression of DC, include mitochondrial dysfunction, increased oxidative stress, impaired calcium handling, inflammation, and cardiomyocyte apoptosis. Herein, we review the current theories surrounding the occurrence and progression of DC, and discuss the recent advances in diagnostic methodologies and therapeutic strategies. Moreover, apart from conventional animal DC models, we highlight alternative disease models for studying DC such as the use of patient-derived human induced pluripotent stem cells (hiPSCs) for studying the mechanisms underlying DC. The ability to obtain hiPSC-derived cardiomyocytes from DM patients with a DC phenotype could help identify novel therapeutic targets for preventing and delaying the progression of DC, and for improving clinical outcomes in DM patients.
Collapse
Affiliation(s)
- Shuo Cong
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
| | - Chrishan J.A. Ramachandra
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
- Cardiovascular and Metabolic Disorders Programme, Duke-NUS Medical School, Singapore
| | - KP Myu Mai Ja
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
| | - Jonathan Yap
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, USA
| | - Winston Shim
- Health and Social Sciences Cluster, Singapore Institute of Technology, Singapore
| | - Lai Wei
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Engineering Research Centre of Cardiac Valve, Shanghai, China
| | - Derek J. Hausenloy
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
- Cardiovascular and Metabolic Disorders Programme, Duke-NUS Medical School, Singapore
- Yong Loo Lin Medical School, National University of Singapore, Singapore
- The Hatter Cardiovascular Institute, University College London, London, UK
- Cardiovascular Research Centre, College of Medical and Health Sciences, Asia University, Taiwan
| |
Collapse
|