1
|
Liu J, Wu Y, Cai Y, Tan Z, Deng N. Long-term consumption of different doses of Grifola frondosa affects immunity and metabolism: correlation with intestinal mucosal microbiota and blood lipids. 3 Biotech 2023; 13:189. [PMID: 37193332 PMCID: PMC10183060 DOI: 10.1007/s13205-023-03617-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/06/2023] [Indexed: 05/18/2023] Open
Abstract
Grifola frondosa (GF) is an edible mushroom with hypoglycemic and hypolipidemic effects. In this study, the specific pathogen-free male mice were randomized into the normal (NM), low-dose GF (LGF), medium-dose GF (MGF), and high-dose GF (HGF) groups. The LGF, MGF, and HGF groups were fed with 1.425 g/(kg d), 2.85 g/(kg d), and 5.735 g/(kg d) of GF solution for 8 weeks. After feeding with GF solution, compared with the NM group, the thymus index was significantly increased in the LGF group, and TC, TG, and LDL of mice were significantly increased in the HGF group, while HDL was significantly decreased. Compared with the NM group, the uncultured Bacteroidales bacterium, Ligilactobacillus increased in the LGF group, and Candidatus Arthromitus increased in the MGF group. The characteristic bacteria of the HGF group included Christensenellaceae R7, unclassified Clostridia UCG 014, unclassified Eubacteria coprostanoligenes, and Prevotellaceae Ga6A1. Among them, Ligilactobacillus showed a negative correlation with HDL. Unclassified Eubacterium coprostanoligenes group and Ligilactobacillus showed a positive correlation with TG. In summary, our experiments evidenced that GF improves lipid metabolism disorders by regulating the intestinal microbiota, providing a new pathway for hypolipidemic using GF dietary.
Collapse
Affiliation(s)
- Jing Liu
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208 Hunan Province China
| | - Yi Wu
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208 Hunan Province China
| | - Ying Cai
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208 Hunan Province China
| | - Zhoujin Tan
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208 Hunan Province China
| | - Na Deng
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208 Hunan Province China
| |
Collapse
|
2
|
Mansouri E, Esmaeili F, Montaseri M, Emami MA, Koochakkhani S, Khayatian M, Zarei H, Turki H, Eftekhar E. Association of methylation status of ABCA1/G1 genes with the risk of coronary artery disease. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00381-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Abstract
Background
ATP-binding cassette transporters A1/G1 (ABCA1/G1) is a main regulator of HDL (high-density lipoprotein) formation and reverse cholesterol transport. Impaired ABCA1/G1 genes function may seriously affect cholesterol homeostasis, leading to increased risk of cardiovascular disease. In the present study, the association of ABCA1/G1 genes methylation status with the risk of coronary artery disease (CAD), risk factors of CAD, and serum level of lipid parameters was investigated.
This study was conducted on 70 CAD patients and 40 control subjects. All CAD subjects with diabetes mellitus were excluded. The promoter methylation status of ABCA1/G1 genes was determined by the methylation-specific polymerase chain reaction (MS-PCR) method and serum lipid parameters were assessed using commercial kits.
Results
ABCA1 promoter methylation was higher in CAD group compared to the control participants (80% vs. 60%). Hypermethylation of the ABCA1 gene significantly increases the risk of CAD in the total population (OR 3.886, 95% CI (1.181–12.791), p = 0.026). ABCG1 methylation status showed no difference between CAD and control subjects. In addition, no significant association was noted between methylation status of ABCA1/G1 and serum level of lipid profile.
Conclusions
Altogether, our study shows that ABCA1 gene promoter hypermethylation may increase the risk of CAD, which may help identify people at risk of developing CAD.
Collapse
|
3
|
HDL Mimetic Peptides. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1377:141-151. [DOI: 10.1007/978-981-19-1592-5_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
He Y, Yu H, Zhao H, Zhu H, Zhang Q, Wang A, Shen Y, Xu X, Li J. Transcriptomic analysis to elucidate the effects of high stocking density on grass carp (Ctenopharyngodon idella). BMC Genomics 2021; 22:620. [PMID: 34399686 PMCID: PMC8369720 DOI: 10.1186/s12864-021-07924-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/06/2021] [Indexed: 01/23/2023] Open
Abstract
Background Grass carp (Ctenopharyngodon idella) is one of the most widely cultivated fishes in China. High stocking density can reportedly affect fish growth and immunity. Herein we performed PacBio long-read single-molecule real-time (SMRT) sequencing and Illumina RNA sequencing to evaluate the effects of high stocking density on grass carp transcriptome. Results SMRT sequencing led to the identification of 33,773 genes (14,946 known and 18,827 new genes). From the structure analysis, 8,009 genes were detected with alternative splicing events, 10,219 genes showed alternative polyadenylation sites and 15,521 long noncoding RNAs. Further, 1,235, 962, and 213 differentially expressed genes (DEGs) were identified in the intestine, muscle, and brain tissues, respectively. We performed functional enrichment analyses of DEGs, and they were identified to be significantly enriched in nutrient metabolism and immune function. The expression levels of several genes encoding apolipoproteins and activities of enzymes involved in carbohydrate enzymolysis were found to be upregulated in the high stocking density group, indicating that lipid metabolism and carbohydrate decomposition were accelerated. Besides, four isoforms of grass carp major histocompatibility complex class II antigen alpha and beta chains in the aforementioned three tissue was showed at least a 4-fold decrease. Conclusions The results suggesting that fish farmed at high stocking densities face issues associated with the metabolism and immune system. To conclude, our results emphasize the importance of maintaining reasonable density in grass carp aquaculture. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07924-4.
Collapse
Affiliation(s)
- Yan He
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.,Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Hongyan Yu
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Honggang Zhao
- Department of Natural Resources, Cornell University, 14853, Ithaca, New York, USA
| | - Hua Zhu
- Beijing Key Laboratory of Fishery Biotechnology, Beijing Fisheries Research Institute, 100068, Beijing, China
| | - Qingjing Zhang
- Beijing Key Laboratory of Fishery Biotechnology, Beijing Fisheries Research Institute, 100068, Beijing, China
| | - Anqi Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
| | - Yubang Shen
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Xiaoyan Xu
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China. .,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China. .,Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China.
| | - Jiale Li
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China. .,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China. .,Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
5
|
The Association between Decreased Kidney Function and FIB-4 Index Value, as Indirect Liver Fibrosis Indicator, in Middle-Aged and Older Subjects. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18136980. [PMID: 34209974 PMCID: PMC8297372 DOI: 10.3390/ijerph18136980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 02/06/2023]
Abstract
Liver fibrosis might be linked to the prevalence of chronic kidney disease (CKD). However, there is little information about the association between liver fibrosis and decreased kidney function in middle-aged and older subjects. We aimed to evaluate the influence of liver fibrosis on the incidence or prevalence of CKD stage 3–5 in a retrospective cross-sectional study (Study 1, n = 806) and a 6-year longitudinal study (Study 2, n = 380) of middle-aged and older subjects. We evaluated liver fibrosis using the Fibrosis-4 (FIB-4) index and kidney function using the estimated glomerular filtration rate (eGFR) of all subjects. All subjects were divided into four groups on the basis of their FIB-4 score quartiles (low to high). In the Jonckheere–Terpstra trend test of Study 1, the eGFR decreased significantly from the lowest group to the highest group (p < 0.001). The Kaplan–Meier survival curve in Study 2 showed that the cumulative prevalence of CKD stage 3–5 was higher in the third quartile than the other quartiles. Our results suggest that liver fibrosis could be a useful indicator for the prevalence of CKD, even within a relatively healthy population, although liver fibrosis was not an independent risk factor.
Collapse
|
6
|
Bostan C, Kaya A, Yigit Z. Differences Between Morbid Obesity With Metabolic Syndrome and Overweight Turkish Adult Participants in Multiple Atherosclerotic Cardiovascular Disease Risk Factors. Angiology 2020; 72:131-137. [PMID: 33143460 DOI: 10.1177/0003319720970161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Obesity and metabolic syndrome (MetS) are public health problems and are increasing globally. We assessed the differences in lipid profiles through lipid testing, thrombotic and inflammatory parameters, and oxidative stress indexes between overweight and obese patients with MetS in a Turkish adult population. We included 100 obese (body mass index [BMI] >30 kg/m2) patients with MetS (66 women, 34 men, mean age 54.0 ± 10.1 years) and 15 overweight (BMI 25-30 kg/m2) individuals (11 women, 4 men, mean age 50.2 ± 14.5 years) as controls. The group with MetS had significantly higher levels of glycaemia, uric acid, high-sensitivity C-reactive protein, homocysteine, fibrinogen, total cholesterol, low-density lipoprotein cholesterol (LDL-C), triglycerides, small dense LDL, oxidized LDL, apolipoprotein B (Apo B), lipoprotein (a), small and intermediate high-density lipoprotein (HDL) particles, oxidative stress index, and significantly lower levels of HDL-cholesterol (HDL-C), Apo A, and large HDL particles. In conclusion, obesity with MetS increase atherogenic dyslipidemia and thrombotic, inflammatory and oxidative stress biomarkers. Furthermore, obesity with MetS decreases protective mechanisms of atherosclerosis. We should at least try to prevent overweight individuals from becoming obese with MetS.
Collapse
Affiliation(s)
- Cem Bostan
- Department of Cardiology, 532719Istanbul University-Cerrahpaşa Institute of Cardiology, Istanbul, Turkey
| | - Aysem Kaya
- Department of Biochemistry, 532719Istanbul University-Cerrahpaşa Institute of Cardiology, Istanbul, Turkey
| | - Zerrin Yigit
- Department of Cardiology, 532719Istanbul University-Cerrahpaşa Institute of Cardiology, Istanbul, Turkey
| |
Collapse
|
7
|
Frambach SJCM, de Haas R, Smeitink JAM, Rongen GA, Russel FGM, Schirris TJJ. Brothers in Arms: ABCA1- and ABCG1-Mediated Cholesterol Efflux as Promising Targets in Cardiovascular Disease Treatment. Pharmacol Rev 2020; 72:152-190. [PMID: 31831519 DOI: 10.1124/pr.119.017897] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis is a leading cause of cardiovascular disease worldwide, and hypercholesterolemia is a major risk factor. Preventive treatments mainly focus on the effective reduction of low-density lipoprotein cholesterol, but their therapeutic value is limited by the inability to completely normalize atherosclerotic risk, probably due to the disease complexity and multifactorial pathogenesis. Consequently, high-density lipoprotein cholesterol gained much interest, as it appeared to be cardioprotective due to its major role in reverse cholesterol transport (RCT). RCT facilitates removal of cholesterol from peripheral tissues, including atherosclerotic plaques, and its subsequent hepatic clearance into bile. Therefore, RCT is expected to limit plaque formation and progression. Cellular cholesterol efflux is initiated and propagated by the ATP-binding cassette (ABC) transporters ABCA1 and ABCG1. Their expression and function are expected to be rate-limiting for cholesterol efflux, which makes them interesting targets to stimulate RCT and lower atherosclerotic risk. This systematic review discusses the molecular mechanisms relevant for RCT and ABCA1 and ABCG1 function, followed by a critical overview of potential pharmacological strategies with small molecules to enhance cellular cholesterol efflux and RCT. These strategies include regulation of ABCA1 and ABCG1 expression, degradation, and mRNA stability. Various small molecules have been demonstrated to increase RCT, but the underlying mechanisms are often not completely understood and are rather unspecific, potentially causing adverse effects. Better understanding of these mechanisms could enable the development of safer drugs to increase RCT and provide more insight into its relation with atherosclerotic risk. SIGNIFICANCE STATEMENT: Hypercholesterolemia is an important risk factor of atherosclerosis, which is a leading pathological mechanism underlying cardiovascular disease. Cholesterol is removed from atherosclerotic plaques and subsequently cleared by the liver into bile. This transport is mediated by high-density lipoprotein particles, to which cholesterol is transferred via ATP-binding cassette transporters ABCA1 and ABCG1. Small-molecule pharmacological strategies stimulating these transporters may provide promising options for cardiovascular disease treatment.
Collapse
Affiliation(s)
- Sanne J C M Frambach
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ria de Haas
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jan A M Smeitink
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gerard A Rongen
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frans G M Russel
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tom J J Schirris
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
8
|
Effects of phytoestrogen supplementation on intermediate cardiovascular disease risk factors among postmenopausal women: a meta-analysis of randomized controlled trials. ACTA ACUST UNITED AC 2020; 27:1081-1092. [DOI: 10.1097/gme.0000000000001566] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Vincent V, Thakkar H, Aggarwal S, Mridha AR, Ramakrishnan L, Singh A. ATP-binding cassette transporter A1 (ABCA1) expression in adipose tissue and its modulation with insulin resistance in obesity. Diabetes Metab Syndr Obes 2019; 12:275-284. [PMID: 30881070 PMCID: PMC6395069 DOI: 10.2147/dmso.s186565] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
PURPOSE Adipose tissue dysfunction is at the center of metabolic dysfunctions associated with obesity. Through studies in isolated adipocytes and mouse models, ATP-binding cassette transporter A1 (ABCA1) expression in the adipose tissue has been shown to regulate high-density lipoprotein (HDL) cholesterol levels in the circulation and insulin sensitivity at both adipose tissue and whole-body levels. We aimed to explore the possible link between ABCA1 expression in the adipose tissue and metabolic derangements associated with obesity in humans. PATIENTS AND METHODS This exploratory study among individuals who were lean (body mass index [BMI]: 22.3±0.34 kg/m2, n=28) and obese (BMI: 44.48±5.3 kg/m2, n=34) compared the expression of ABCA1, adiponectin and GLUT4 (SLC2A4) in visceral and subcutaneous adipose tissue using quantitative real-time PCR and immunohistochemistry. Homeostatic model assessment for insulin resistance (HOMA-IR) and adipose tissue insulin resistance (adipo-IR) were used as insulin resistance markers. RESULTS Visceral adipose tissue from individuals who were obese had significantly lower ABCA1 (P=0.04 for mRNA and protein) and adiponectin (P=0.001 for mRNA) expression compared to that from lean individuals. Subcutaneous adipose tissue did not show any significant difference in the expression. When individuals were divided into insulin-sensitive (IS) and insulin-resistant (IR) groups based on HOMA-IR, IR individuals had lower ABCA1 (P=0.0001 for mRNA and P=0.009 for protein) expression compared to IS individuals in visceral adipose tissue, but not in subcutaneous adipose tissue. The difference was significant after adjusting for age, gender and BMI. ABCA1 mRNA expression in visceral adipose tissue correlated negatively with both HOMA-IR (r=-0.44, P=0.0003) and adipo-IR (r=-0.35, P=0.005) after adjusting for age, gender and BMI. ABCA1 expression in either visceral or subcutaneous adipose tissue did not have any significant correlation with HDL cholesterol levels or mean adipocyte area. CONCLUSION Obesity and insulin resistance are associated with lower expression of ABCA1 in visceral adipose tissue in humans.
Collapse
Affiliation(s)
- Vinnyfred Vincent
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India,
| | - Himani Thakkar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India,
| | - Sandeep Aggarwal
- Department of Surgical Disciplines, All India Institute of Medical Sciences, New Delhi, India
| | - Asit Ranjan Mridha
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Lakshmy Ramakrishnan
- Department of Cardiac Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Archna Singh
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India,
| |
Collapse
|
10
|
Zhang Z, Zhang R, Qin ZZ, Chen JP, Xu JY, Qin LQ. Effects of Chronic Whey Protein Supplementation on Atherosclerosis in ApoE -/- Mice. J Nutr Sci Vitaminol (Tokyo) 2018; 64:143-150. [PMID: 29710032 DOI: 10.3177/jnsv.64.143] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Whey protein is associated with improvement of metabolic syndrome. This study aimed to evaluate effects of whey protein on atherosclerosis in ApoE-/- mice. Male ApoE-/- mice were fed with a high-fat/cholesterol diet (HFCD), or HFCD supplemented with 10% or 20% whey protein for 18 wk. At the end of experiment, serum lipid profiles and inflammatory cytokines were assayed. Livers were examined using HE staining and Oil Red O staining. Aortas were used for en face and cryosection analyses to observe aortic lesions. Western blotting analysis was used to assess relative protein expression of cholesterol metabolism in the liver and aorta. No significant differences were observed in body weight or food intake among the three groups. Liver examination demonstrated decreased lipid droplets and cholesterol content in the whey-protein-supplemented groups. En face lesion of the aorta revealed a 21.51% and 31.78% lesion reduction in the HFCD supplemented with 10% and 20% whey groups, respectively. Decreased lesion was also observed in cryosection analysis. Whey protein significantly increased the serum high-density lipoprotein cholesterol level by 46.43% and 67.86%. The 20% whey protein significantly decreased serum IL-6 (a proinflammatory cytokine) by 70.99% and increased serum IL-10 (an anti-inflammatory cytokine) by 83.35%. Whey protein potently decreased lipogenic enzymes (ACC and FAS) in the liver and NF-κB expression in the liver and aorta. Whey protein significantly increased protein expression of two major cholesterol transporters (ABCA1 and ABCG1) in the liver and aorta. Thus, chronic whey protein supplementation can improve HFCD-induced atherosclerosis in ApoE null mice by regulating circulating lipid and inflammatory cytokines and increasing expressions of ABCA1 and ABCG1.
Collapse
Affiliation(s)
- Zheng Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University
| | - Ru Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University
| | - Zhi-Zhen Qin
- School of Public Health, Hebei Medical University
| | - Jia-Ping Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University
| | - Jia-Ying Xu
- Key Laboratory of Radiation Biology, School of Radiation Medicine and Protection, Soochow University
| | - Li-Qiang Qin
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease, School of Public Health, Soochow University
| |
Collapse
|
11
|
Jankowska I, Czubkowski P, Wierzbicka A, Pawłowska J, Kaliciński P, Socha P. Influence of Partial External Biliary Diversion on the Lipid Profile in Children With Progressive Familial Intrahepatic Cholestasis. J Pediatr Gastroenterol Nutr 2016; 63:598-602. [PMID: 27875503 DOI: 10.1097/mpg.0000000000001185] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVES The concentration of bile acids is highly increased in progressive familial intrahepatic cholestasis (PFIC). Bile acids are the end products of cholesterol metabolism, and aid in the absorption of fat-soluble vitamins and dietary fat. The aim of our study was to investigate lipid metabolism in patients with PFIC with focus on the effect of partial external biliary diversion (PEBD). METHODS In 26 patients with PFIC, who underwent PEBD surgery at the median age of 2.2 years (range: 0.4-16.6), we analyzed the concentrations of lipids and apolipoproteins both before and 6 months after PEBD. Patients were split into 2 groups according to the outcome of surgery (either "good" or "poor"), and were analyzed separately. A "good" result following surgery was defined as complete relief from pruritus, and normalization of total bilirubin (<1.0 mg/dL) and bile acid concentration in serum (<12 μmol/L). RESULTS We found abnormal lipid concentrations at baseline in all 26 patients: cholesterol was increased (>190 mg/dL) in 13 patients, phospholipids were increased (>250 mg/dL) in 5 patients, and triglyceride concentration was increased (>150 mg/dL) in 13 patients. After PEBD, the concentrations of plasma cholesterol, triglycerides, and phospholipids decreased significantly, whereas, ApoA-I and high-density lipoprotein cholesterol concentrations increased and the concentrations of apolipoprotein B, low-density lipoprotein cholesterol, and very low-density lipoprotein cholesterol significantly decreased. PEBD had neither an effect on ApoE concentration nor on lecithin-cholesterol acyl transferase activity. In the group with a "poor" outcome report following PEBD, total serum cholesterol concentration decreased significantly, and no effect on the concentrations of triglycerides and phospholipids were observed. CONCLUSIONS Patients with PFIC present with a high risk of lipid disturbances. PEBD has a beneficial effect on lipid profile in the majority of cases.
Collapse
Affiliation(s)
- Irena Jankowska
- *Department of Gastroenterology, Hepatology, Feeding Disorders and Pediatrics †Department of Biochemistry, Radioimmunology and Experimental Medicine ‡Department of Pediatric Surgery and Organ Transplantation, The Children's Memorial Health Institute, Warsaw, Poland
| | | | | | | | | | | |
Collapse
|
12
|
Leahy T, Gadella BM. New insights into the regulation of cholesterol efflux from the sperm membrane. Asian J Androl 2016; 17:561-7. [PMID: 25926609 PMCID: PMC4492045 DOI: 10.4103/1008-682x.153309] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Cholesterol is an essential component of the mammalian plasma membrane because it promotes membrane stability without comprising membrane fluidity. Given this important cellular role, cholesterol levels are tightly controlled at multiple levels. It has been clearly shown that cholesterol redistribution and depletion from the sperm membrane is a key part of the spermatozoon's preparation for fertilization. Some factors that regulate these events are described (e.g., bicarbonate, calcium) but the mechanisms underlying cholesterol export are poorly understood. How does a hydrophobic cholesterol molecule inserted in the sperm plasma membrane enter the energetically unfavorable aqueous surroundings? This review will provide an overview of knowledge in this area and highlight our gaps in understanding. The overall aim is to better understand cholesterol redistribution in the sperm plasma membrane, its relation to the possible activation of a cholesterol transporter and the role of cholesterol acceptors. Armed with such knowledge, sperm handling techniques can be adapted to better prepare spermatozoa for in vitro and in vivo fertilization.
Collapse
Affiliation(s)
| | - Bart M Gadella
- Department of Farm Animal Health and of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM Utrecht, The Netherlands
| |
Collapse
|
13
|
Ikenaga M, Higaki Y, Saku K, Uehara Y. High-Density Lipoprotein Mimetics: a Therapeutic Tool for Atherosclerotic Diseases. J Atheroscler Thromb 2016; 23:385-94. [PMID: 26830201 DOI: 10.5551/jat.33720] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Clinical trials and epidemiological studies have revealed a negative correlation between serum high-density lipoprotein (HDL) cholesterol levels and the risk of cardiovascular events. Currently, statin treatment is the standard therapy for cardiovascular diseases, reducing plasma low-density lipoprotein (LDL) cholesterol levels. However, more than half of the patients have not been able to receive the beneficial effects of this treatment.The reverse cholesterol transport pathway has several potential anti-atherogenic properties. An important approach to HDL-targeted therapy is the optimization of HDL cholesterol levels and function in the blood to enhance the removal of circulating cholesterol and to prevent or mitigate inflammation that causes atherosclerosis. Cholesteryl ester transfer protein inhibitors increase HDL cholesterol levels in humans, but whether they reduce the risk of atherosclerotic diseases is unknown. HDL therapies using HDL mimetics, including reconstituted HDL, apolipoprotein (Apo) A-IMilano, ApoA-I mimetic peptides, or full-length ApoA-I, are highly effective in animal models. In particular, the Fukuoka University ApoA-I-mimetic peptide (FAMP) effectively removes cholesterol via the ABCA1 transporter and acts as an anti-atherosclerotic agent by enhancing the biological functions of HDL without elevating HDL cholesterol levels.Our literature review suggests that HDL mimetics have significant atheroprotective potential and are a therapeutic tool for atherosclerotic diseases.
Collapse
|
14
|
Eftekhar S, Parsaei H, Keshavarzi Z, Yazdi AT, Hadjzadeh MAR, Rajabzadeh A, Malayeri SO. The prevention and treatment effects of egg yolk high density lipoprotein on the formation of atherosclerosis plaque in rabbits. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2015; 18:343-9. [PMID: 26019796 PMCID: PMC4439448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Accepted: 03/03/2015] [Indexed: 11/24/2022]
Abstract
OBJECTIVES Atherosclerosis is the main leading cause of cardiovascular diseases. The purpose of this study was to assess the potential preventive effect of egg yolk HDL on the atherosclerosis plaque formation. MATERIALS AND METHODS Thirty rabbits were divided into five groups: A; normal diet, B; hyper-cholesterolemic diet, C; hypercholesterolemic + 400 mg/kg egg yolk HDL D; hypercholesterolemic +100 mg/kg egg yolk HDL and E; 200 mg/kg egg yolk HDL. At the end of the experiment, the lipid profiles were measured by spectrophotometric method. The histological sections of thoracic aorta also were taken and analyzed under light microscope. RESULTS At the end of the 2(nd) and the 4(th) weeks, there was a significant increase of cholesterol level in groups B, C, and D compared to group A (P<0.05). Following HDL treatment, triglyceride (TG) levels increased significantly versus group A and also the TG level decreased significantly in group C, D, and E versus group B (P<0.01). Egg yolk HDL significantly increased HDL-C in groups C, D, and E (P<0.01) compared to groups A and B (P<0.05). The surface area of the atherosclerotic plaque was increased significantly in group B versus group A (P<0.001). Egg yolk HDL consumption reduced the plaque size significantly (P<0.001). CONCLUSION Our findings indicated that treatment with egg yolk HDL increased serum HDL-C and decreased atherosclerotic plaque size in rabbits. Thus, egg yolk HDL may be considered as an anti-atherosclerotic treatment for cardiovascular diseases.
Collapse
Affiliation(s)
- Shima Eftekhar
- Neurocognitive Research Center and Department of Physiology, College of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Heidar Parsaei
- Department of Pharmacology, College of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zakieh Keshavarzi
- Department of Physiology, College of Medicine, North Khorasan University of Medical Sciences, Bojnourd, Iran
| | - Abbas Tabatabaei Yazdi
- Department of Pathology, College of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mosa-Al-Reza Hadjzadeh
- Neurocognitive Research Center and Department of Physiology, College of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran,*Corresponding author: Mosa-Al-Reza Hadjzadeh. Neurocognitive Research Center and Department of Physiology, College of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran. Tel: +98-51-38002221;
| | - Aliakbar Rajabzadeh
- Department of Anatomy and Cell Biology, College of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sina Omid Malayeri
- Student Research Committee, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|