1
|
Deiana G, He J, Cabrera-Mendoza B, Ciccocioppo R, Napolioni V, Polimanti R. Brain-wide pleiotropy investigation of alcohol drinking and tobacco smoking behaviors. Transl Psychiatry 2025; 15:61. [PMID: 39979292 PMCID: PMC11842717 DOI: 10.1038/s41398-025-03288-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/13/2025] [Accepted: 02/12/2025] [Indexed: 02/22/2025] Open
Abstract
To investigate the pleiotropic mechanisms linking brain structure and function to alcohol drinking and tobacco smoking, we integrated genome-wide data generated by the GWAS and Sequencing Consortium of Alcohol and Nicotine use (GSCAN; up to 805,431 participants) with information related to 3935 brain imaging-derived phenotypes (IDPs) available from UK Biobank (N = 33,224). We observed global genetic correlation of smoking behaviors with white matter hyperintensities, the morphology of the superior longitudinal fasciculus, and the mean thickness of pole-occipital. With respect to the latter brain IDP, we identified a local genetic correlation with age at which the individual began smoking regularly (hg38 chr2:35,895,678-36,640,246: rho = 1, p = 1.01 × 10-5). This region has been previously associated with smoking initiation, educational attainment, chronotype, and cortical thickness. Our genetically informed causal inference analysis using both latent causal variable approach and Mendelian randomization linked the activity of prefrontal and premotor cortex and that of superior and inferior precentral sulci, and cingulate sulci to the number of alcoholic drinks per week (genetic causality proportion, gcp = 0.38, p = 8.9 × 10-4, rho = -0.18 ± 0.07; inverse variance weighting, IVW beta = -0.04, 95%CI = -0.07--0.01). This relationship could be related to the role of these brain regions in the modulation of reward-seeking motivation and the processing of social cues. Overall, our brain-wide investigation highlighted that different pleiotropic mechanisms likely contribute to the relationship of brain structure and function with alcohol drinking and tobacco smoking, suggesting decision-making activities and chemosensory processing as modulators of propensity towards alcohol and tobacco consumption.
Collapse
Affiliation(s)
- Giovanni Deiana
- Center for Neuroscience, Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Jun He
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- VA CT Healthcare System, West Haven, CT, USA
| | - Brenda Cabrera-Mendoza
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- VA CT Healthcare System, West Haven, CT, USA
| | - Roberto Ciccocioppo
- Center for Neuroscience, Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Valerio Napolioni
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Renato Polimanti
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA.
- VA CT Healthcare System, West Haven, CT, USA.
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT, USA.
- Wu Tsai Institute, Yale University, New Haven, CT, 06511, USA.
| |
Collapse
|
2
|
Mekic R, Zolotovskaia MA, Sorokin M, Mohammad T, Shaban N, Musatov I, Tkachev V, Modestov A, Simonov A, Kuzmin D, Buzdin A. Number of human protein interactions correlates with structural, but not regulatory conservation of the respective genes. Front Genet 2024; 15:1472638. [PMID: 39534081 PMCID: PMC11554504 DOI: 10.3389/fgene.2024.1472638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction The differential ratio of nonsynonymous to synonymous nucleotide substitutions (dN/dS) is a common measure of the rate of structural evolution in proteincoding genes. In addition, we recently suggested that the proportion of transposable elements in gene promoters that host functional genomic sites serves as a marker of the rate of regulatory evolution of genes. Such functional genomic regions may include transcription factor binding sites and modified histone binding loci. Methods Here, we constructed a model of the human interactome based on 600,136 documented molecular interactions and investigated the overall relationship between the number of interactions of each protein and the rate of structural and regulatory evolution of the corresponding genes. Results By evaluating a total of 4,505 human genes and 1,936 molecular pathways we found a general correlation between structural and regulatory evolution rate metrics (Spearman 0.08-0.16 and 0.25-0.37 for gene and pathway levels, respectively, p < 0.01). Further exploration revealed in the established human interactome model lack of correlation between the rate of gene regulatory evolution and the number of protein interactions on gene level, and weak negative correlation (∼0.15) on pathway level. We also found a statistically significant negative correlation between the rate of gene structural evolution and the number of protein interactions (Spearman -0.11 and -0.3 for gene and pathway levels, respectively, p < 0.01). Discussion Our result suggests stronger structural rather than regulatory conservation of genes whose protein products have multiple interaction partners.
Collapse
Affiliation(s)
- Rijalda Mekic
- Laboratory for Translational Genomic Bioinformatics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Marianna A. Zolotovskaia
- Laboratory for Translational Genomic Bioinformatics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Moscow Center for Advanced Studies, Moscow, Russia
- Laboratory of Bioinformatics, Endocrinology Research Center, Moscow, Russia
- Laboratory of Clinical and Genomic Bioinformatics, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Maksim Sorokin
- Laboratory for Translational Genomic Bioinformatics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Moscow Center for Advanced Studies, Moscow, Russia
- Laboratory of Bioinformatics, Endocrinology Research Center, Moscow, Russia
- Laboratory of Clinical and Genomic Bioinformatics, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Tharaa Mohammad
- Laboratory for Translational Genomic Bioinformatics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Moscow Center for Advanced Studies, Moscow, Russia
- Laboratory of Bioinformatics, Endocrinology Research Center, Moscow, Russia
| | - Nina Shaban
- Laboratory for Translational Genomic Bioinformatics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Laboratory of Bioinformatics, Endocrinology Research Center, Moscow, Russia
- Laboratory of Systems Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Ivan Musatov
- Laboratory for Translational Genomic Bioinformatics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | | | - Alexander Modestov
- Laboratory for Translational Genomic Bioinformatics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Laboratory of Clinical and Genomic Bioinformatics, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Alexander Simonov
- Laboratory for Translational Genomic Bioinformatics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Denis Kuzmin
- Laboratory for Translational Genomic Bioinformatics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Anton Buzdin
- Laboratory for Translational Genomic Bioinformatics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Moscow Center for Advanced Studies, Moscow, Russia
- Laboratory of Bioinformatics, Endocrinology Research Center, Moscow, Russia
- Laboratory of Clinical and Genomic Bioinformatics, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
- Laboratory of Systems Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- PathoBiology Group, European Organization for Research and Treatment of Cancer (EORTC), Brussels, Belgium
| |
Collapse
|
3
|
Deiana G, He J, Cabrera-Mendoza B, Ciccocioppo R, Napolioni V, Polimanti R. Brain-wide pleiotropy investigation of alcohol drinking and tobacco smoking behaviors. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.27.24307989. [PMID: 38854122 PMCID: PMC11160805 DOI: 10.1101/2024.05.27.24307989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
To investigate the pleiotropic mechanisms linking brain structure and function to alcohol drinking and tobacco smoking, we integrated genome-wide data generated by the GWAS and Sequencing Consortium of Alcohol and Nicotine use (GSCAN; up to 805,431 participants) with information related to 3,935 brain imaging-derived phenotypes (IDPs) available from UK Biobank (N=33,224). We observed global genetic correlation of smoking behaviors with white matter hyperintensities, the morphology of the superior longitudinal fasciculus, and the mean thickness of pole-occipital. With respect to the latter brain IDP, we identified a local genetic correlation with age at which the individual began smoking regularly (hg38 chr2:35,895,678-36,640,246: rho=1, p=1.01×10 -5 ). This region has been previously associated with smoking initiation, educational attainment, chronotype, and cortical thickness. Our genetically informed causal inference analysis using both latent causal variable approach and Mendelian randomization linked the activity of prefrontal and premotor cortex and that of superior and inferior precentral sulci, and cingulate sulci to the number of alcoholic drinks per week (genetic causality proportion, gcp=0.38, p=8.9×10 -4 , rho=-0.18±0.07; inverse variance weighting, IVW beta=-0.04, 95%CI=-0.07 - -0.01). This relationship could be related to the role of these brain regions in the modulation of reward-seeking motivation and the processing of social cues. Overall, our brain-wide investigation highlighted that different pleiotropic mechanisms likely contribute to the relationship of brain structure and function with alcohol drinking and tobacco smoking, suggesting decision-making activities and chemosensory processing as modulators of propensity towards alcohol and tobacco consumption.
Collapse
|
4
|
Alhesain M, Ronan H, LeBeau FEN, Clowry GJ. Expression of the schizophrenia associated gene FEZ1 in the early developing fetal human forebrain. Front Neurosci 2023; 17:1249973. [PMID: 37746155 PMCID: PMC10514365 DOI: 10.3389/fnins.2023.1249973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/15/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction The protein fasciculation and elongation zeta-1 (FEZ1) is involved in axon outgrowth but potentially interacts with various proteins with roles ranging from intracellular transport to transcription regulation. Gene association and other studies have identified FEZ1 as being directly, or indirectly, implicated in schizophrenia susceptibility. To explore potential roles in normal early human forebrain neurodevelopment, we mapped FEZ1 expression by region and cell type. Methods All tissues were provided with maternal consent and ethical approval by the Human Developmental Biology Resource. RNAseq data were obtained from previously published sources. Thin paraffin sections from 8 to 21 post-conceptional weeks (PCW) samples were used for RNAScope in situ hybridization and immunohistochemistry against FEZ1 mRNA and protein, and other marker proteins. Results Tissue RNAseq revealed that FEZ1 is highly expressed in the human cerebral cortex between 7.5-17 PCW and single cell RNAseq at 17-18 PCW confirmed its expression in all neuroectoderm derived cells. The highest levels were found in more mature glutamatergic neurons, the lowest in GABAergic neurons and dividing progenitors. In the thalamus, single cell RNAseq similarly confirmed expression in multiple cell types. In cerebral cortex sections at 8-10 PCW, strong expression of mRNA and protein appeared confined to post-mitotic neurons, with low expression seen in progenitor zones. Protein expression was observed in some axon tracts by 16-19 PCW. However, in sub-cortical regions, FEZ1 was highly expressed in progenitor zones at early developmental stages, showing lower expression in post-mitotic cells. Discussion FEZ1 has different expression patterns and potentially diverse functions in discrete forebrain regions during prenatal human development.
Collapse
Affiliation(s)
| | | | | | - Gavin J. Clowry
- Centre for Transformative Research in Neuroscience, Newcastle University Biosciences Institute, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
5
|
Wang X, Liu Q, Li J, Zhou L, Wang T, Zhao N. Dynamic cellular and molecular characteristics of spermatogenesis in the viviparous marine teleost Sebastes schlegelii†. Biol Reprod 2023; 108:338-352. [PMID: 36401879 DOI: 10.1093/biolre/ioac203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 07/13/2022] [Accepted: 11/02/2022] [Indexed: 11/21/2022] Open
Abstract
Spermatogenesis is a dynamic cell developmental process that is essential for reproductive success. Vertebrates utilize a variety of reproductive strategies, including sperm diversity, and internal and external fertilization. Research on the cellular and molecular dynamic changes involved in viviparous teleost spermatogenesis, however, is currently lacking. Here, we combined cytohistology, 10 × genomic single-cell RNA-seq, and transcriptome technology to determine the dynamic development characteristics of the spermatogenesis of Sebastes schlegelii. The expressions of lhcgr (Luteinizing hormone/Choriogonadotropin receptor), fshr (follicle-stimulating hormone receptor), ar (androgen receptor), pgr (progesterone receptor), and cox (cyclo-oxygen-ase), as well as the prostaglandin E and F levels peaked during the maturation period, indicating that they were important for sperm maturation and mating. Fifteen clusters were identified based on the 10 × genomic single-cell results. The cell markers of the sub-cluster were identified by their upregulation; piwil, dazl, and dmrt1 were upregulated and identified as spermatogonium markers, and sycp1/3 and spo11 were identified as spermatocyte markers. For S. schlegelii, the sperm head nucleus was elongated (spherical to streamlined in shape), which is a typical characteristic for sperm involved in internal fertilization. We also identified a series of crucial genes associated with spermiogenesis, such as spata6, spag16, kif20a, trip10, and klf10, while kif2c, kifap3, fez2, and spaca6 were found to be involved in nucleus elongation. The results of this study will enrich our cellular and molecular knowledge of spermatogenesis and spermiogenesis in fish that undergo internal fertilization.
Collapse
Affiliation(s)
- Xueying Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Qinghua Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jun Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Li Zhou
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,College of Marine Science, University of Chinese Academy of Sciences, Beijing, China
| | - Tao Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Ning Zhao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,College of Marine Science, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Breast Cancer Prognosis Prediction and Immune Pathway Molecular Analysis Based on Mitochondria-Related Genes. Genet Res (Camb) 2022; 2022:2249909. [PMID: 35707265 PMCID: PMC9174003 DOI: 10.1155/2022/2249909] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/18/2022] [Indexed: 11/30/2022] Open
Abstract
Background Mitochondria play an important role in breast cancer (BRCA). We aimed to build a prognostic model based on mitochondria-related genes. Method Univariate Cox regression analysis, random forest, and the LASSO method were performed in sequence on pretreated TCGA BRCA datasets to screen out genes from a Gene Set Enrichment Analysis, Gene Ontology: biological process gene set to build a prognosis risk score model. Survival analyses and ROC curves were performed to verify the model by using the GSE103091 dataset. The BRCA datasets were equally divided into high- and low-risk score groups. Comparisons between clinical features and immune infiltration related to different risk scores and gene mutation analysis and drug sensitivity prediction were performed for different groups. Result Four genes, MRPL36, FEZ1, BMF, and AFG1L, were screened to construct our risk score model in which the higher the risk score, the poorer the prognosis. Univariate and multivariate analyses showed that the risk score was significantly associated with age, M stage, and N stage. The gene mutation probability in the high-risk score group was significantly higher than that in the low-risk score group. Patients with higher risk scores were more likely to die. Drug sensitivity prediction in different groups indicated that PF-562271 and AS601245 might be new inhibitors of BRCA. Conclusion We developed a new workable risk score model based on mitochondria-related genes for BRCA prognosis and identified new targets and drugs for BRCA research.
Collapse
|
7
|
Qinlin F, Bingqiao W, Linlin H, Peixia S, Lexing X, Lijun Y, Qingwu Y. miR-129-5p targets FEZ1/SCOC/ULK1/NBR1 complex to restore neuronal function in mice with post-stroke depression. Bioengineered 2022; 13:9708-9728. [PMID: 35435132 PMCID: PMC9191875 DOI: 10.1080/21655979.2022.2059910] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Post-stroke depression (PSD) seriously affects the normal life of patients. Based on the previous sequencing results, this study selected miR-129-5p as the research object, which was significantly reduced in the PSD model by screening. To clarify the regulatory role of miR-129-5p, this study overexpressed and interfered with miR-129-5p in neuronal cells cultured in vitro, tested its effect on neuronal cell autophagy, and determined expressions of fasciculation and elongation protein zeta-1 (FEZ1), short coiled-coil protein (SCOC), unc-51 like autophagy activating kinase 1 (ULK1) and autophagy cargo receptor (NBR1) autophagy-related proteins. The dual-luciferase reporter system and immunoprecipitation were applied to detect the molecular regulatory mechanism of miR-129-5 and FEZ1, SCOC, ULK1 and NBR1. Findings of the present study revealed that the autophagy of neuronal cells was markedly decreased by overexpressing miR-129-5p (p < 0.05), and expressions of FEZ1, SCOC, ULK1 and NBR1 were substantially reduced (p < 0.05). The dual-luciferase reporter system results indicated that FEZ1, SCOC, ULK1 and NBR1 were all miR-129-5p target genes. Furthermore, immunoprecipitation assay revealed that SCOC, ULK1 and NBR1 could directly bind to the FEZ1 protein. The experiments at an animal level demonstrated that miR-129-5p could effectively alleviate the behavioral indicators of PSD model mice. Taken together, this study testified that SCOC/ULK1/NBR1 proteins could directly bind to FEZ1 to form protein complex, and all of the four proteins FEZ1/SCOC/ULK1/NBR1 were miR-129-5p target genes. miR-129-5p overexpression could effectively restore the behavioral characteristics of model mice, and reduce the autophagy-related proteins FEZ1/SCOC/ULK1/NBR1.
Collapse
Affiliation(s)
- Fan Qinlin
- Department of Neurology, Second Affiliated Hospital of Army Medical UniversityChongqing, China
| | - Wang Bingqiao
- Department of Neurology, Second Affiliated Hospital of Army Medical UniversityChongqing, China
| | - Hu Linlin
- Department of Neurology, Second Affiliated Hospital of Army Medical UniversityChongqing, China
| | - Shi Peixia
- Department of Neurology, Second Affiliated Hospital of Army Medical UniversityChongqing, China
| | - Xie Lexing
- Department of Neurology, Second Affiliated Hospital of Army Medical UniversityChongqing, China
| | - Yang Lijun
- Department of General orthopedics, Chongqing Public Health Medical Treatment Center, Chongqing, China
| | - Yang Qingwu
- Department of Neurology, Second Affiliated Hospital of Army Medical UniversityChongqing, China
| |
Collapse
|
8
|
Malikov V, Meade N, Simons LM, Hultquist JF, Naghavi MH. FEZ1 phosphorylation regulates HSPA8 localization and interferon-stimulated gene expression. Cell Rep 2022; 38:110396. [PMID: 35172151 PMCID: PMC8900055 DOI: 10.1016/j.celrep.2022.110396] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/16/2021] [Accepted: 01/25/2022] [Indexed: 01/06/2023] Open
Abstract
Fasciculation and elongation protein zeta-1 (FEZ1) is a multifunctional kinesin adaptor involved in processes ranging from neurodegeneration to retrovirus and polyomavirus infection. Here, we show that, although modulating FEZ1 expression also impacts infection by large DNA viruses in human microglia, macrophages, and fibroblasts, this broad antiviral phenotype is associated with the pre-induction of interferon-stimulated genes (ISGs) in a STING-independent manner. We further reveal that S58, a key phosphorylation site in FEZ1's kinesin regulatory domain, controls both binding to, and the nuclear-cytoplasmic localization of, heat shock protein 8 (HSPA8), as well as ISG expression. FEZ1- and HSPA8-induced changes in ISG expression further involved changes in DNA-dependent protein kinase (DNA-PK) accumulation in the nucleus. Moreover, phosphorylation of endogenous FEZ1 at S58 was reduced and HSPA8 and DNA-PK translocated to the nucleus in cells stimulated with DNA, suggesting that FEZ1 is a regulatory component of the recently identified HSPA8/DNA-PK innate immune pathway.
Collapse
Affiliation(s)
- Viacheslav Malikov
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Nathan Meade
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Lacy M Simons
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Judd F Hultquist
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Mojgan H Naghavi
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
9
|
Wirth M, Mouilleron S, Zhang W, Sjøttem E, Princely Abudu Y, Jain A, Lauritz Olsvik H, Bruun JA, Razi M, Jefferies HB, Lee R, Joshi D, O'Reilly N, Johansen T, Tooze SA. Phosphorylation of the LIR Domain of SCOC Modulates ATG8 Binding Affinity and Specificity. J Mol Biol 2021; 433:166987. [DOI: https:/doi.org/10.1016/j.jmb.2021.166987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
|
10
|
Phosphorylation of the LIR Domain of SCOC Modulates ATG8 Binding Affinity and Specificity. J Mol Biol 2021; 433:166987. [PMID: 33845085 PMCID: PMC8202330 DOI: 10.1016/j.jmb.2021.166987] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/27/2021] [Accepted: 04/04/2021] [Indexed: 12/15/2022]
Abstract
Autophagy is a highly conserved degradative pathway, essential for cellular homeostasis and implicated in diseases including cancer and neurodegeneration. Autophagy-related 8 (ATG8) proteins play a central role in autophagosome formation and selective delivery of cytoplasmic cargo to lysosomes by recruiting autophagy adaptors and receptors. The LC3-interacting region (LIR) docking site (LDS) of ATG8 proteins binds to LIR motifs present in autophagy adaptors and receptors. LIR-ATG8 interactions can be highly selective for specific mammalian ATG8 family members (LC3A-C, GABARAP, and GABARAPL1-2) and how this specificity is generated and regulated is incompletely understood. We have identified a LIR motif in the Golgi protein SCOC (short coiled-coil protein) exhibiting strong binding to GABARAP, GABARAPL1, LC3A and LC3C. The residues within and surrounding the core LIR motif of the SCOC LIR domain were phosphorylated by autophagy-related kinases (ULK1-3, TBK1) increasing specifically LC3 family binding. More distant flanking residues also contributed to ATG8 binding. Loss of these residues was compensated by phosphorylation of serine residues immediately adjacent to the core LIR motif, indicating that the interactions of the flanking LIR regions with the LDS are important and highly dynamic. Our comprehensive structural, biophysical and biochemical analyses support and provide novel mechanistic insights into how phosphorylation of LIR domain residues regulates the affinity and binding specificity of ATG8 proteins towards autophagy adaptors and receptors.
Collapse
|
11
|
Abstract
Age-associated changes in gene expression in skeletal muscle of healthy individuals reflect accumulation of damage and compensatory adaptations to preserve tissue integrity. To characterize these changes, RNA was extracted and sequenced from muscle biopsies collected from 53 healthy individuals (22-83 years old) of the GESTALT study of the National Institute on Aging-NIH. Expression levels of 57,205 protein-coding and non-coding RNAs were studied as a function of aging by linear and negative binomial regression models. From both models, 1134 RNAs changed significantly with age. The most differentially abundant mRNAs encoded proteins implicated in several age-related processes, including cellular senescence, insulin signaling, and myogenesis. Specific mRNA isoforms that changed significantly with age in skeletal muscle were enriched for proteins involved in oxidative phosphorylation and adipogenesis. Our study establishes a detailed framework of the global transcriptome and mRNA isoforms that govern muscle damage and homeostasis with age.
Collapse
|
12
|
Jiang Q, Xue D, Shi F, Qiu J. Prognostic significance of an autophagy-related long non-coding RNA signature in patients with oral and oropharyngeal squamous cell carcinoma. Oncol Lett 2020; 21:29. [PMID: 33240435 PMCID: PMC7681235 DOI: 10.3892/ol.2020.12290] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 09/28/2020] [Indexed: 02/07/2023] Open
Abstract
Traditional clinicopathological indices are insufficient in predicting the prognosis of patients diagnosed with oral and oropharyngeal squamous cell carcinoma (OSCC/OPSCC). Notably, autophagy and long non-coding RNAs (lncRNAs) regulate the development and progression of various types of cancer. The present study aimed to assess the association between autophagy-related lncRNAs and the prognosis of patients diagnosed with OSCC/OPSCC. Gene sequencing and clinicopathological data of patients with OSCC/OPSCC were downloaded from The Cancer Genome Atlas database, while gene set functional classification was downloaded from the Gene Set Enrichment Analysis database. Out of the 413 transcriptome data samples and 402 clinicopathological data samples retrieved, a total of nine autophagy-related lncRNAs, including PTCSC2, AC099850.3, LINC01963, RTCA-AS1, AP002884.1, UBAC2-AS1, AL512274.1, MIR600HG and AL354733.3, were screened. This was geared towards establishing a signature through gene co-expression network, univariate and Least Absolute Shrinkage and Selection Operator Cox regression analyses. Based on this signature, the patients were subdivided into a high-risk group and a low-risk group. Kaplan-Meier survival analysis revealed that the overall survival of the high-risk group was significantly lower than that of the low-risk group. Furthermore, principal components analysis demonstrated that the patients diagnosed with OSCC/OPSCC could be distinguished into low-survival and high-survival groups according to the signature. Univariate and multivariate Cox regression analyses of clinicopathological data and the signature revealed that the signature could potentially be used as an independent prognostic factor for OSCC/OPSCC. In addition, reverse transcription-quantitative PCR analysis of clinical samples demonstrated the validity of the signature. In summary, the present study revealed that the signature based on autophagy-related lncRNAs potentially acts as an independent prognostic indicator for patients with OSCC/OPSCC. Furthermore, it promotes research on targeted diagnosis and treatment of patients diagnosed with OSCC/OPSCC.
Collapse
Affiliation(s)
- Qingkun Jiang
- Department of Oral and Maxillofacial Surgery, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Danfeng Xue
- Department of Oral and Maxillofacial Surgery, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Fanzhe Shi
- Department of Oral and Maxillofacial Surgery, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jiaxuan Qiu
- Department of Oral and Maxillofacial Surgery, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
13
|
Horníková L, Bruštíková K, Forstová J. Microtubules in Polyomavirus Infection. Viruses 2020; 12:E121. [PMID: 31963741 PMCID: PMC7019765 DOI: 10.3390/v12010121] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 12/12/2022] Open
Abstract
Microtubules, part of the cytoskeleton, are indispensable for intracellular movement, cell division, and maintaining cell shape and polarity. In addition, microtubules play an important role in viral infection. In this review, we summarize the role of the microtubules' network during polyomavirus infection. Polyomaviruses usurp microtubules and their motors to travel via early and late acidic endosomes to the endoplasmic reticulum. As shown for SV40, kinesin-1 and microtubules are engaged in the release of partially disassembled virus from the endoplasmic reticulum to the cytosol, and dynein apparently assists in the further disassembly of virions prior to their translocation to the cell nucleus-the place of their replication. Polyomavirus gene products affect the regulation of microtubule dynamics. Early T antigens destabilize microtubules and cause aberrant mitosis. The role of these activities in tumorigenesis has been documented. However, its importance for productive infection remains elusive. On the other hand, in the late phase of infection, the major capsid protein, VP1, of the mouse polyomavirus, counteracts T-antigen-induced destabilization. It physically binds microtubules and stabilizes them. The interaction results in the G2/M block of the cell cycle and prolonged S phase, which is apparently required for successful completion of the viral replication cycle.
Collapse
Affiliation(s)
| | | | - Jitka Forstová
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, 25250 Vestec, Czech Republic; (L.H.); (K.B.)
| |
Collapse
|