1
|
Goyal A, Afzal M, Khan NH, Goyal K, Srinivasamurthy SK, Gupta G, Benod Kumar K, Ali H, Rana M, Wong LS, Kumarasamy V, Subramaniyan V. Targeting p53-p21 signaling to enhance mesenchymal stem cell regenerative potential. Regen Ther 2025; 29:352-363. [PMID: 40248767 PMCID: PMC12004386 DOI: 10.1016/j.reth.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/09/2025] [Accepted: 03/18/2025] [Indexed: 04/19/2025] Open
Abstract
Mesenchymal stem cells (MSCs) are properties of self-renewal and differentiation potentials and thus are very appealing to regenerative medicine. Nevertheless, their therapeutic potential is frequently constrained by senescence, limited proliferation, and stress-induced apoptosis. The key role of the p53-p21 biology in MSC biology resides in safeguarding genomic stability while promoting senescence and limiting regenerative capacity upon over-activation demonstrated. This pathway is a key point for improving MSC function and exploiting the inherent limitations. Recent advances indicate that senescence can be delayed by targeting the p53-p21 signaling and improved MSC proliferation and differentiation capacity. PFT-α pharmacological agents transiently inhibit p53 from increasing proliferation and lineage-specific differentiation, while antioxidants such as hydrogen-rich saline and epigallocatechin 3 gallate (EGCG) suppress oxidative stress and attenuate p53 p21 signaling. Genetic tools like CRISPR-Cas9 and RNA interference also precisely modulate TP53 and CDKN1A expression to optimize MSC functionality. The interplay of p53-p21 with pathways like Wnt/β-catenin and MAPK further highlights opportunities for combinatorial therapies to enhance MSC resilience and regenerative outcomes. This review aims to offer a holistic view of how p53-p21 targeting can further the regenerative potential of MSCs, resolving senescence, proliferation, and stress resilience towards advanced therapeutics built on MSCs.
Collapse
Affiliation(s)
- Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Nawaid Hussain Khan
- Faculty of Medicine, Ala-Too International University, Bishkek, Kyrgyz Republic
| | - Kavita Goyal
- Department of Biotechnology, Graphic Era (Deemed to be University), Clement Town, Dehradun 248002, India
| | - Suresh Kumar Srinivasamurthy
- Department of Pharmacology, Ras Al Khaimah College of Medical Sciences, Ras Al Khaimah Medical & Health Sciences University, P.O. Box 11172, Ras Al Khaimah, United Arab Emirates
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - K. Benod Kumar
- Department of General Surgery, Consultant Head and Neck Surgical Oncology, Dr.D.Y.Patil Medical College, Hospital and Research Centre, Pimpri, Pune, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Mohit Rana
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Ling Shing Wong
- Faculty of Health and Life Sciences, INTI International University, Nilai 71800, Malaysia
| | - Vinoth Kumarasamy
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Vetriselvan Subramaniyan
- Division of Pharmacology, Faculty of Medical and Life Sciences, Sunway University, Bandar Sunway, 47500 Selangor Darul Ehsan, Malaysia
| |
Collapse
|
2
|
Putra MA, Sandora N, Soetisna TW, Kusuma TR, Fitria NA, Karimah B, Noviana D, Gunanti, Busro PW, Supomo, Alwi I. Cocultured amniotic stem cells and cardiomyocytes in a 3-D acellular heart patch reduce the infarct size and left ventricle remodeling: promote angiogenesis in a porcine acute myocardial infarction model. J Cardiothorac Surg 2025; 20:229. [PMID: 40340905 PMCID: PMC12063456 DOI: 10.1186/s13019-025-03453-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 04/06/2025] [Indexed: 05/10/2025] Open
Abstract
BACKGROUND Acute myocardial infarction (AMI) induces significant myocardial damage, ultimately leading to heart failure as the surrounding healthy myocardial tissue undergoes progressive deterioration due to excessive mechanical stress. METHODS This study aimed to investigate myocardial regeneration in a porcine model of AMI using an acellular amniotic membrane with fibrin-termed an amnion bilayer (AB) or heart patch-as a cellular delivery system using porcine amniotic stem cells (pASCs) and autologous porcine cardiomyocytes (pCardios). Fifteen pigs (aged 2-4 months, weighing 50-60 kg) were randomly assigned to three experimental groups (n = 5): control group (AMI induction only), pASC group (pASC transplantation only), and coculture group (pASC and pCardio transplantation). AMI was induced via posterior left ventricular artery ligation and confirmed through standard biomarkers. After eight weeks, histological and molecular analyses were conducted to assess myocardial regeneration. RESULTS Improvement in regional wall motion abnormality (RWMA) was observed in 60% of the coculture group, 25% of the pASC group, and none in the control group. Histological analysis of the control group revealed extensive fibrosis with pronounced lipomatosis, particularly at the infarct center. In contrast, pASC and coculture groups exhibited minimal fibrotic scarring at both the infarct center and border regions. Immunofluorescence analysis demonstrated positive α-actinin expression in both the pASC and coculture groups, with the coculture group displaying sarcomeric structures-an organization absent in control group. RNA expression levels of key cardiomyogenic markers, including cardiac troponin T (cTnT), myosin heavy chain (MHC), and Nkx2.5, were significantly elevated in the treatment groups compared to the controls, with the coculture group exhibiting the highest MHC expression. The expression of c-Kit was also increased in both treatment groups relative to the control. Conversely, apoptotic markers p21 and Caspase-9 were highest in the control group, while coculture group exhibited the lowest p53 expression. CONCLUSION Epicardial transplantation of an acellular amniotic heart patch cocultured with cardiomyocytes and pASCs demonstrated superior cardiomyogenesis after eight weeks compared to pASC transplantation alone or control conditions. The coculture system was found to enhance the cardiac regeneration process, as evidenced by improved RWMA, distinct sarcomeric organization, reduced fibrotic scarring, and lower apoptotic gene expression.
Collapse
Affiliation(s)
- Muhammad Arza Putra
- Division of Thoracic, Cardiac and Vascular Surgery, Department of Surgery, Faculty of Medicine, Universitas Indonesia, Jakarta, 10430, Indonesia.
| | - Normalina Sandora
- Indonesian Medical Education and Research Institute, Universitas Indonesia, Jakarta, 10430, Indonesia.
| | - Tri Wisesa Soetisna
- Division of Adult Cardiac Surgery, Harapan Kita National Cardiovascular Center, Jakarta, 11420, Indonesia
| | - Tyas Rahmah Kusuma
- Indonesian Medical Education and Research Institute, Universitas Indonesia, Jakarta, 10430, Indonesia
| | - Nur Amalina Fitria
- Indonesian Medical Education and Research Institute, Universitas Indonesia, Jakarta, 10430, Indonesia
| | - Benati Karimah
- Indonesian Medical Education and Research Institute, Universitas Indonesia, Jakarta, 10430, Indonesia
| | - Deni Noviana
- Division of Surgery and Radiology, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, 16680, Indonesia
| | - Gunanti
- Division of Surgery and Radiology, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, 16680, Indonesia
| | - Pribadi Wiranda Busro
- Division of Pediatric and Congenital Cardiac Surgery, Harapan Kita National Cardiovascular Center, Jakarta, 11420, Indonesia
| | - Supomo
- Division of Cardiothoracic Surgery, Department of Surgery, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, 55284, Indonesia
| | - Idrus Alwi
- Division of Cardiology, Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia, Jakarta, 10430, Indonesia
| |
Collapse
|
3
|
Laowtammathron C, Chingsuwanrote P, Srisook P, Klaihmon P, Meaunpim P, Lorthongpanich C, Kheolamai P, Issaragrisil S. The novel combination of small-molecule inhibitors increases the survival and colony formation capacity of human induced pluripotent stem cells after single-cell dissociation. Sci Prog 2025; 108:368504251330956. [PMID: 40356532 PMCID: PMC12075979 DOI: 10.1177/00368504251330956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
ObjectivesHuman induced pluripotent stem cells (hiPSCs) hold significant promise in regenerative medicine and drug discovery. However, single-cell dissociation, essential for genetic modification and clonal selection, often reduces hiPSC viability and colony formation. While various methods, including small molecules and feeder cells, have been developed to address this, their outcomes remain inconsistent. This study aims to develop more efficient methods to enhance hiPSC survival post-dissociation using a novel combination of well-characterized small-molecule inhibitors.MethodsHuman induced pluripotent stem cells were pretreated with Rho-associated protein kinase inhibitor (Y27632), SMC4 (PD0325901 + CHIR99021 + thiazovivin + SB431542), or SiM5 (PD0325901 + CHIR99021 + Thiazovivin + SB431542 + Pifithrin-α) for 1 h before subjected to single-cell dissociation by accutase. The dissociated single hiPSCs were then cultured in NutriStem or StemFlex medium supplemented with Y27632, SMC4, or SiM5. Cell viability, pluripotency marker expression, colony formation capacity, and karyotype were then compared between various treatments. The effect of SiM5 treatment on hiPSCs survival and colony formation capacity was also tested under hypoxic conditions and after fluorescence-activated cell sorting.ResultsThe results show that SiM5 treatment significantly increases hiPSCs survival by approximately 2.5 and 25 times compared to those treated with SMC4 and Y27632, respectively. These results were consistently observed across different cell lines and culture media. Furthermore, SiM5 treatment also increased hiPSCs survival and proliferation after single-cell dissociation under hypoxic conditions. The withdrawal of SiM5 after treatment only temporarily hinders hiPSCs cell cycle progression, without impairing their subsequent expansion. Fluorescence-activated cell sorting analysis revealed that SiM5 does not affect the pluripotency of hiPSCs following treatment. Additionally, it was found that SiM5 has no effect on the colony-forming ability or chromosomal stability of hiPSCs.ConclusionSiM5 treatment significantly improves hiPSCs survival and colony formation after single-cell dissociation across various conditions. This approach could enhance the efficiency of genetic manipulation and single-cell cloning, advancing hiPSCs applications in research and clinical settings.
Collapse
Affiliation(s)
- Chuti Laowtammathron
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pimjai Chingsuwanrote
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pimonwan Srisook
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Phatchanat Klaihmon
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Patcharee Meaunpim
- Flow Cytometry Laboratory, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Chanchao Lorthongpanich
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Blood Products and Cellular Immunotherapy Research Group, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pakpoom Kheolamai
- Center of Excellence in Stem Cell Research and Innovation, Faculty of Medicine, Thammasat University, Pathumthani, Thailand
| | - Surapol Issaragrisil
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Division of Hematology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- BDMS Center of Excellence for Hematology, Wattanosoth Cancer Hospital, Bangkok, Thailand
| |
Collapse
|
4
|
Karmakar A, Augustine ABHR, Thummer RP. Genes as Genome Stabilizers in Pluripotent Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025. [PMID: 40095244 DOI: 10.1007/5584_2025_853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Pluripotent stem cells, comprising embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), are characterized by their self-renewal capacity and the ability to differentiate into cells of all three germ layers of an adult animal. Out of the two, iPSCs are generated through the reprogramming of somatic cells by inducing a pluripotency-specific transcriptional program. This process requires a resetting of the somatic cell genome to a pluripotent cell-specific genome, resulting in cellular stress at genomic, epigenetic, and transcriptional levels. Notably, in contrast to the predominant compact and inactive organization of chromatin in somatic cells, the chromatin in ESCs and iPSCs is open. Furthermore, maintaining a pluripotent state needs a plethora of changes in the genetic landscape of the cells. Here, we attempt to elucidate how certain genes safeguard genomic stability in ESCs and iPSCs, aiding in the complex cellular mechanisms that regulate self-renewal, pluripotency, and somatic reprogramming.
Collapse
Affiliation(s)
- Asmita Karmakar
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Allan Blessing Harison Raj Augustine
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Rajkumar P Thummer
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India.
| |
Collapse
|
5
|
Atia MM, Badr EL-Deen AA, Abdel-Tawab H, Alghriany A. Rehabilitation of N, N'-methylenebisacrylamide-induced DNA destruction in the testis of adult rats by adipose-derived mesenchymal stem cells and conditional medium. Heliyon 2024; 10:e40380. [PMID: 39669145 PMCID: PMC11636104 DOI: 10.1016/j.heliyon.2024.e40380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 12/14/2024] Open
Abstract
Environmental pollutant acrylamide has toxic effect on human health. Numerous industries such as the paper, and cosmetics, use acrylamide in their manufacturing. In certain foods, acrylamide arises at extremely high temperatures. Mesenchymal stem cells can shield different tissues from the damaging effects of free radicals induced by acrylamide. This study aimed to compare the therapeutic efficacy against acrylamide-induced toxicity between adipose-derived mesenchymal stem cells (MSCs) and their conditioned media (CM), evaluating which is more effective. Seventy adult male rats were employed in this study, distributed among 5 groups. The control group consisted of 10 rats, while each of the other four groups comprised 15 rats. The AC group received a daily oral acrylamide (AC) dosage of 3 mg/kg. In the AC + AD-MSCs and AC + AD-MSCs CM groups, after 4 weeks of AC administration, rats were injected with 0.65 × 106 AD-MSCs/0.5 ml PBS and 0.5 ml of AD-MSCs CM, respectively, via the caudal vein, and were observed for 15 days. The recovery group (Rec.), subjected to 4 weeks of AC treatment, and was allowed an additional 15 days for recuperation. The result in AC and Rec. groups revealed elevated DNA damage, P53 protein levels, apoptosis, LPO, and testosterone (free and total). In contrast, the administration of CM and the transplanting of AD-MSCs decreased the levels of these proteins. According to histological analysis, treating testicular cells with AD-MSCs mitigated histopathological lesions, fibrosis, and toxicity caused by AC. The regulation of P53, LPO protein levels, and testosterone levels, supported the function of AD-MSCs in lowering testis DNA damage and apoptosis.
Collapse
Affiliation(s)
- Mona M. Atia
- Laboratory of Molecular Cell Biology and Laboratory of Histology, Zoology and Entomology Department, Faculty of Science, Assiut University, 71516, Egypt
- Department of Biology, Faculty of Biotechnology, Badr University in Assiut (BUA), Egypt
| | - Aya Ahmed Badr EL-Deen
- Laboratory of Molecular Cell Biology and Laboratory of Histology, Zoology and Entomology Department, Faculty of Science, Assiut University, 71516, Egypt
| | - Hanem.S. Abdel-Tawab
- Laboratory of Molecular Cell Biology and Laboratory of Histology, Zoology and Entomology Department, Faculty of Science, Assiut University, 71516, Egypt
| | - Alshaimaa.A.I. Alghriany
- Laboratory of Molecular Cell Biology and Laboratory of Histology, Zoology and Entomology Department, Faculty of Science, Assiut University, 71516, Egypt
| |
Collapse
|
6
|
Shoemaker R, Huang MF, Wu YS, Huang CS, Lee DF. Decoding the molecular symphony: interactions between the m 6A and p53 signaling pathways in cancer. NAR Cancer 2024; 6:zcae037. [PMID: 39329012 PMCID: PMC11426327 DOI: 10.1093/narcan/zcae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/05/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
The p53 tumor suppressor gene governs a multitude of complex cellular processes that are essential for anti-cancer function and whose dysregulation leads to aberrant gene transcription, activation of oncogenic signaling and cancer development. Although mutations can occur at any point in the genetic sequence, missense mutations comprise the majority of observed p53 mutations in cancers regardless of whether the mutation is germline or somatic. One biological process involved in both mutant and wild-type p53 signaling is the N 6-methyladenosine (m6A) epitranscriptomic network, a type of post-transcriptional modification involved in over half of all eukaryotic mRNAs. Recently, a significant number of findings have demonstrated unique interactions between p53 and the m6A epitranscriptomic network in a variety of cancer types, shedding light on a previously uncharacterized connection that causes significant dysregulation. Cross-talk between wild-type or mutant p53 and the m6A readers, writers and erasers has been shown to impact cellular function and induce cancer formation by influencing various cancer hallmarks. Here, this review aims to summarize the complex interplay between the m6A epitranscriptome and p53 signaling pathway, highlighting its effects on tumorigenesis and other hallmarks of cancer, as well as identifying its therapeutic implications for the future.
Collapse
Affiliation(s)
- Rachel Shoemaker
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center, UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Mo-Fan Huang
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center, UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Ying-Si Wu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan
| | - Cheng-Shuo Huang
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan
| | - Dung-Fang Lee
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center, UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
7
|
Cho CJ, Brown JW, Mills JC. Origins of cancer: ain't it just mature cells misbehaving? EMBO J 2024; 43:2530-2551. [PMID: 38773319 PMCID: PMC11217308 DOI: 10.1038/s44318-024-00099-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 03/15/2024] [Accepted: 03/22/2024] [Indexed: 05/23/2024] Open
Abstract
A pervasive view is that undifferentiated stem cells are alone responsible for generating all other cells and are the origins of cancer. However, emerging evidence demonstrates fully differentiated cells are plastic, can be coaxed to proliferate, and also play essential roles in tissue maintenance, regeneration, and tumorigenesis. Here, we review the mechanisms governing how differentiated cells become cancer cells. First, we examine the unique characteristics of differentiated cell division, focusing on why differentiated cells are more susceptible than stem cells to accumulating mutations. Next, we investigate why the evolution of multicellularity in animals likely required plastic differentiated cells that maintain the capacity to return to the cell cycle and required the tumor suppressor p53. Finally, we examine an example of an evolutionarily conserved program for the plasticity of differentiated cells, paligenosis, which helps explain the origins of cancers that arise in adults. Altogether, we highlight new perspectives for understanding the development of cancer and new strategies for preventing carcinogenic cellular transformations from occurring.
Collapse
Affiliation(s)
- Charles J Cho
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Jeffrey W Brown
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Jason C Mills
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
8
|
Dynamics of neurodegeneration in the hippocampus of Krushinsky-Molodkina rats correlates with the progression of limbic seizures. Epilepsy Behav 2022; 134:108846. [PMID: 35849865 DOI: 10.1016/j.yebeh.2022.108846] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/17/2022] [Accepted: 07/04/2022] [Indexed: 11/21/2022]
Abstract
Audiogenic seizures (AGS) (audiogenic kindling) in genetically selected audiogenic rodents are a reliable model of temporal lobe epilepsy (TLE). Temporal lobe epilepsy is accompanied with neurodegeneration in the hippocampus, but how the cells die is not fully understood. We analyzed the dynamics and mechanisms of cell loss in the hippocampus of audiogenic Krushinsky-Molodkina (KM) rats during the development of TLE. Audiogenic kindling of different durations was carried out to reproduce TLE progression in KM rats. Behavioral analysis showed the development of post-tonic clonus, the main indicator of TLE, by the 14th AGS. The severity and duration of post-tonic clonus positively correlated with the increase in the number of AGS. Temporal lobe epilepsy development was accompanied with two peaks of cell loss. The first peak was detected after 7 AGS in the dentate gyrus (DG) granular layer and associated with activation of p53- and mitochondria-dependent apoptosis. After a 7-day rest period, activation of autophagy and restoration of cell number were revealed. The second peak occurred after 14 AGS, affected both granular and hilar mossy cells and persisted further after 21 AGS, but no compensation was observed. Thus, activation of autophagy probably plays a neuroprotective role and supports survival of hippocampal cells at the beginning of epileptogenesis, but exacerbation of limbic seizures during TLE development causes irreversible neurodegeneration.
Collapse
|
9
|
Kukolj T, Lazarević J, Borojević A, Ralević U, Vujić D, Jauković A, Lazarević N, Bugarski D. A Single-Cell Raman Spectroscopy Analysis of Bone Marrow Mesenchymal Stem/Stromal Cells to Identify Inter-Individual Diversity. Int J Mol Sci 2022; 23:4915. [PMID: 35563306 PMCID: PMC9103070 DOI: 10.3390/ijms23094915] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 12/15/2022] Open
Abstract
The heterogeneity of stem cells represents the main challenge in regenerative medicine development. This issue is particularly pronounced when it comes to the use of primary mesenchymal stem/stromal cells (MSCs) due to a lack of identification markers. Considering the need for additional approaches in MSCs characterization, we applied Raman spectroscopy to investigate inter-individual differences between bone marrow MSCs (BM-MSCs). Based on standard biological tests, BM-MSCs of analyzed donors fulfill all conditions for their characterization, while no donor-related specifics were observed in terms of BM-MSCs morphology, phenotype, multilineage differentiation potential, colony-forming capacity, expression of pluripotency-associated markers or proliferative capacity. However, examination of BM-MSCs at a single-cell level by Raman spectroscopy revealed that despite similar biochemical background, fine differences in the Raman spectra of BM-MSCs of each donor can be detected. After extensive principal component analysis (PCA) of Raman spectra, our study revealed the possibility of this method to diversify BM-MSCs populations, whereby the grouping of cell populations was most prominent when cell populations were analyzed in pairs. These results indicate that Raman spectroscopy, as a label-free assay, could have a huge potential in understanding stem cell heterogeneity and sorting cell populations with a similar biochemical background that can be significant for the development of personalized therapy approaches.
Collapse
Affiliation(s)
- Tamara Kukolj
- Group for Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia; (A.J.); (D.B.)
| | - Jasmina Lazarević
- Center for Solid State Physics and New Materials, Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia; (J.L.); (U.R.); (N.L.)
| | - Ana Borojević
- Mother and Child Health Care Institute of Serbia ‘’Dr Vukan Čupić’’, 11000 Belgrade, Serbia; (A.B.); (D.V.)
| | - Uroš Ralević
- Center for Solid State Physics and New Materials, Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia; (J.L.); (U.R.); (N.L.)
| | - Dragana Vujić
- Mother and Child Health Care Institute of Serbia ‘’Dr Vukan Čupić’’, 11000 Belgrade, Serbia; (A.B.); (D.V.)
- School of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Aleksandra Jauković
- Group for Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia; (A.J.); (D.B.)
| | - Nenad Lazarević
- Center for Solid State Physics and New Materials, Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia; (J.L.); (U.R.); (N.L.)
| | - Diana Bugarski
- Group for Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia; (A.J.); (D.B.)
| |
Collapse
|
10
|
MiR-200c-3p maintains stemness and proliferative potential in adipose-derived stem cells by counteracting senescence mechanisms. PLoS One 2021; 16:e0257070. [PMID: 34534238 PMCID: PMC8448302 DOI: 10.1371/journal.pone.0257070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/24/2021] [Indexed: 01/22/2023] Open
Abstract
Adipose-derived mesenchymal stem cells (ASCs) are promising therapeutic tools in regenerative medicine because they possess self-renewal, differentiation and immunomodulatory capacities. After isolation, ASCs are passaged multiple times in vitro passages to obtain a sufficient amount of cells for clinical applications. During this time-consuming procedure, ASCs become senescent and less proliferative, compromising their clinical efficacy. Here, we sought to investigate how in vitro passages impact ASC proliferation/senescence and expression of immune regulatory proteins. MicroRNAs are pivotal regulators of ASC physiology. Particularly, miR-200c is known to maintain pluripotency and targets the immune checkpoint Programmed death-ligand 1 (PD-L1). We therefore investigated its involvement in these critical characteristics of ASCs during in vitro passages. We found that when transiently expressed, miR-200c-3p promotes proliferation, maintains stemness, and contrasts senescence in late passaged ASCs. Additionally, this miRNA modulates PD-L1 and Indoleamine 2,3-Dioxygenase (IDO1) expression, thus most likely interfering with the immunoregulatory capacity of ASCs. Based on our results, we suggest that expression of miR-200c-3p may prime ASC towards a self-renewing phenotype by improving their in vitro expansion. Contrarily, its inhibition is associated with senescence, reduced proliferation and induction of immune regulators. Our data underline the potential use of miR-200c-3p as a switch for ASCs reprogramming and their clinical application.
Collapse
|
11
|
Alvarado-Ortiz E, de la Cruz-López KG, Becerril-Rico J, Sarabia-Sánchez MA, Ortiz-Sánchez E, García-Carrancá A. Mutant p53 Gain-of-Function: Role in Cancer Development, Progression, and Therapeutic Approaches. Front Cell Dev Biol 2021; 8:607670. [PMID: 33644030 PMCID: PMC7905058 DOI: 10.3389/fcell.2020.607670] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/23/2020] [Indexed: 02/05/2023] Open
Abstract
Frequent p53 mutations (mutp53) not only abolish tumor suppressor capacities but confer various gain-of-function (GOF) activities that impacts molecules and pathways now regarded as central for tumor development and progression. Although the complete impact of GOF is still far from being fully understood, the effects on proliferation, migration, metabolic reprogramming, and immune evasion, among others, certainly constitute major driving forces for human tumors harboring them. In this review we discuss major molecular mechanisms driven by mutp53 GOF. We present novel mechanistic insights on their effects over key functional molecules and processes involved in cancer. We analyze new mechanistic insights impacting processes such as immune system evasion, metabolic reprogramming, and stemness. In particular, the increased lipogenic activity through the mevalonate pathway (MVA) and the alteration of metabolic homeostasis due to interactions between mutp53 and AMP-activated protein kinase (AMPK) and Sterol regulatory element-binding protein 1 (SREBP1) that impact anabolic pathways and favor metabolic reprograming. We address, in detail, the impact of mutp53 over metabolic reprogramming and the Warburg effect observed in cancer cells as a consequence, not only of loss-of-function of p53, but rather as an effect of GOF that is crucial for the imbalance between glycolysis and oxidative phosphorylation. Additionally, transcriptional activation of new targets, resulting from interaction of mutp53 with NF-kB, HIF-1α, or SREBP1, are presented and discussed. Finally, we discuss perspectives for targeting molecules and pathways involved in chemo-resistance of tumor cells resulting from mutp53 GOF. We discuss and stress the fact that the status of p53 currently constitutes one of the most relevant criteria to understand the role of autophagy as a survival mechanism in cancer, and propose new therapeutic approaches that could promote the reduction of GOF effects exercised by mutp53 in cancer.
Collapse
Affiliation(s)
- Eduardo Alvarado-Ortiz
- Programa de Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Secretaría de Salud, Mexico City, Mexico
| | - Karen Griselda de la Cruz-López
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Secretaría de Salud, Mexico City, Mexico
- Doctorado en Ciencias Biomédicas, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jared Becerril-Rico
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Secretaría de Salud, Mexico City, Mexico
| | - Miguel Angel Sarabia-Sánchez
- Programa de Posgrado en Ciencias Bioquímicas, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Elizabeth Ortiz-Sánchez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Secretaría de Salud, Mexico City, Mexico
| | - Alejandro García-Carrancá
- Laboratorio de Virus and Cáncer, Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México and Instituto Nacional de Cancerología, Secretaría de Salud, Mexico City, Mexico
| |
Collapse
|
12
|
Xu Y, Nasri M, Dannenmann B, Mir P, Zahabi A, Welte K, Morishima T, Skokowa J. NAMPT/SIRT2-mediated inhibition of the p53-p21 signaling pathway is indispensable for maintenance and hematopoietic differentiation of human iPS cells. Stem Cell Res Ther 2021; 12:112. [PMID: 33546767 PMCID: PMC7863436 DOI: 10.1186/s13287-021-02144-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 01/05/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Nicotinamide phosphoribosyltransferase (NAMPT) regulates cellular functions through the protein deacetylation activity of nicotinamide adenine dinucleotide (NAD+)-dependent sirtuins (SIRTs). SIRTs regulate functions of histones and none-histone proteins. The role of NAMPT/SIRT pathway in the regulation of maintenance and differentiation of human-induced pluripotent stem (iPS) cells is not fully elucidated. METHODS We evaluated the effects of specific inhibitors of NAMPT or SIRT2 on the pluripotency, proliferation, survival, and hematopoietic differentiation of human iPS cells. We also studied the molecular mechanism downstream of NAMPT/SIRTs in iPS cells. RESULTS We demonstrated that NAMPT is indispensable for the maintenance, survival, and hematopoietic differentiation of iPS cells. We found that inhibition of NAMPT or SIRT2 in iPS cells induces p53 protein by promoting its lysine acetylation. This leads to activation of the p53 target, p21, with subsequent cell cycle arrest and induction of apoptosis in iPS cells. NAMPT and SIRT2 inhibition also affect hematopoietic differentiation of iPS cells in an embryoid body (EB)-based cell culture system. CONCLUSIONS Our data demonstrate the essential role of the NAMPT/SIRT2/p53/p21 signaling axis in the maintenance and hematopoietic differentiation of iPS cells.
Collapse
Affiliation(s)
- Yun Xu
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| | - Masoud Nasri
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| | - Benjamin Dannenmann
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| | - Perihan Mir
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Tübingen, Germany
- University Children's Hospital Tübingen, Tübingen, Germany
| | - Azadeh Zahabi
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| | - Karl Welte
- University Children's Hospital Tübingen, Tübingen, Germany
| | - Tatsuya Morishima
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Tübingen, Germany.
- present address: International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan.
| | - Julia Skokowa
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Tübingen, Germany.
| |
Collapse
|
13
|
Nita A, Muto Y, Katayama Y, Matsumoto A, Nishiyama M, Nakayama KI. The autism-related protein CHD8 contributes to the stemness and differentiation of mouse hematopoietic stem cells. Cell Rep 2021; 34:108688. [PMID: 33535054 DOI: 10.1016/j.celrep.2021.108688] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 10/26/2020] [Accepted: 12/30/2020] [Indexed: 01/26/2023] Open
Abstract
Chromodomain helicase DNA-binding protein 8 (CHD8) is an ATP-dependent chromatin-remodeling factor that is encoded by the most frequently mutated gene in individuals with autism spectrum disorder. CHD8 is expressed not only in neural tissues but also in many other organs; however, its functions are largely unknown. Here, we show that CHD8 is highly expressed in and maintains the stemness of hematopoietic stem cells (HSCs). Conditional deletion of Chd8 specifically in mouse bone marrow induces cell cycle arrest, apoptosis, and a differentiation block in HSCs in association with upregulation of the expression of p53 target genes. A colony formation assay and bone marrow transplantation reveal that CHD8 deficiency also compromises the stemness of HSCs. Furthermore, additional ablation of p53 rescues the impaired stem cell function and differentiation block of CHD8-deficient HSCs. Our results thus suggest that the CHD8-p53 axis plays a key role in regulation of the stemness and differentiation of HSCs.
Collapse
Affiliation(s)
- Akihiro Nita
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | - Yoshiharu Muto
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | - Yuta Katayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | - Akinobu Matsumoto
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | - Masaaki Nishiyama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan.
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan.
| |
Collapse
|
14
|
Ghatak D, Das Ghosh D, Roychoudhury S. Cancer Stemness: p53 at the Wheel. Front Oncol 2021; 10:604124. [PMID: 33505918 PMCID: PMC7830093 DOI: 10.3389/fonc.2020.604124] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022] Open
Abstract
The tumor suppressor p53 maintains an equilibrium between self-renewal and differentiation to sustain a limited repertoire of stem cells for proper development and maintenance of tissue homeostasis. Inactivation of p53 disrupts this balance and promotes pluripotency and somatic cell reprogramming. A few reports in recent years have indicated that prevalent TP53 oncogenic gain-of-function (GOF) mutations further boosts the stemness properties of cancer cells. In this review, we discuss the role of wild type p53 in regulating pluripotency of normal stem cells and various mechanisms that control the balance between self-renewal and differentiation in embryonic and adult stem cells. We also highlight how inactivating and GOF mutations in p53 stimulate stemness in cancer cells. Further, we have explored the various mechanisms of mutant p53-driven cancer stemness, particularly emphasizing on the non-coding RNA mediated epigenetic regulation. We have also analyzed the association of cancer stemness with other crucial gain-of-function properties of mutant p53 such as epithelial to mesenchymal transition phenotypes and chemoresistance to understand how activation of one affects the other. Given the critical role of cancer stem-like cells in tumor maintenance, cancer progression, and therapy resistance of mutant p53 tumors, targeting them might improve therapeutic efficacy in human cancers with TP53 mutations.
Collapse
Affiliation(s)
- Dishari Ghatak
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Damayanti Das Ghosh
- Division of Research, Saroj Gupta Cancer Centre and Research Institute, Kolkata, India
| | - Susanta Roychoudhury
- Division of Research, Saroj Gupta Cancer Centre and Research Institute, Kolkata, India
| |
Collapse
|
15
|
MicroRNAomic Transcriptomic Analysis Reveal Deregulation of Clustered Cellular Functions in Human Mesenchymal Stem Cells During in Vitro Passaging. Stem Cell Rev Rep 2020; 16:222-238. [PMID: 31848878 DOI: 10.1007/s12015-019-09924-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Clinical trials using human mesenchymal stem/stromal cells (hMSCs) for cell replacement therapy showed varied outcomes, where cells' efficacy has been perceived as the limiting factor. In particular, the quality and number of the expanded cells in vitro. In this study, we aimed to determine molecular signatures of hMSCs derived from the pulp of extracted deciduous teeth (SHED) and Wharton's jelly (WJSCs) that associated with cellular ageing during in vitro passaging. We observed distinct phenotypic changes resembling proliferation reduction, cell enlargement, an increase cell population in G2/M phase, and differentially expressed of tumor suppressor p53 in passage (P) 6 as compared to P3, which indicating in vitro cell senescence. The subsequent molecular analysis showed a set of diverse differentially expressed miRNAs and mRNAs involved in maintaining cell proliferation and stemness properties. Considering the signaling pathway related to G2/M DNA damage regulation is widely recognized as part of anti-proliferation mechanism controlled by p53, we explored possible miRNA-mRNA interaction in this regulatory pathway based on genomic coordinates retrieved from miRanda. Our work reveals the potential reason for SHED underwent proliferation arrest due to the direct impinge on the expression of CKS1 by miRNAs specifically miR-22 and miR-485-5p which lead to down regulation of CDK1 and Cyclin B. It is intended that our study will contribute to the understanding of these miRNA/mRNA driving the biological process and regulating different stages of cell cycle is beneficial in developing effective rejuvenation strategies in order to obtain quality stem cells for transplantation.
Collapse
|
16
|
Li ASW, Marikawa Y. Methoxyacetic acid inhibits histone deacetylase and impairs axial elongation morphogenesis of mouse gastruloids in a retinoic acid signaling-dependent manner. Birth Defects Res 2020; 112:1043-1056. [PMID: 32496642 DOI: 10.1002/bdr2.1712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Teratogenic potential has been linked to various industrial compounds. Methoxyacetic acid (MAA) is a primary metabolite of the widely used organic solvent and plasticizer, methoxyethanol and dimethoxyethyl phthalate, respectively. Studies using model animals have shown that MAA acts as the proximate teratogen that causes various malformations in developing embryos. Nonetheless, the molecular mechanisms by which MAA exerts its teratogenic effects are not fully understood. METHODS Gastruloids of mouse P19C5 pluripotent stem cells, which recapitulate axial elongation morphogenesis of gastrulation-stage embryos, were explored as an in vitro model to investigate the teratogenic action of MAA. Morphometric parameters of gastruloids were measured to evaluate the morphogenetic effect, and transcript levels of various developmental regulator genes were examined to assess the impact on gene expression patterns. The effects of MAA on the level of retinoic acid (RA) signaling and histone deacetylase activity were also measured. RESULTS MAA reduced axial elongation of gastruloids at concentrations comparable to the teratogenic plasma level (5 mM) in vivo. MAA at 4 mM significantly altered the expression profiles of developmental regulator genes. In particular, it upregulated the RA signaling target genes. The concomitant suppression of RA signaling using a pharmacological agent alleviated the morphogenetic effect of MAA. MAA at 4 mM also significantly reduced the activity of purified histone deacetylase protein. CONCLUSIONS MAA impaired axial elongation morphogenesis in a RA signaling-dependent manner in mouse gastruloids, possibly through the inhibition of histone deacetylase.
Collapse
Affiliation(s)
- Aileen S W Li
- Developmental and Reproductive Biology Graduate Program, Institute for Biogenesis Research, University of Hawaii John A. Burns School of Medicine, Honolulu, Hawaii, USA
| | - Yusuke Marikawa
- Developmental and Reproductive Biology Graduate Program, Institute for Biogenesis Research, University of Hawaii John A. Burns School of Medicine, Honolulu, Hawaii, USA
| |
Collapse
|
17
|
Yu C, Liu Q, Chen C, Wang J. Quantification of the Underlying Mechanisms and Relationships Among Cancer, Metastasis, and Differentiation and Development. Front Genet 2020; 10:1388. [PMID: 32194614 PMCID: PMC7061528 DOI: 10.3389/fgene.2019.01388] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 12/19/2019] [Indexed: 12/28/2022] Open
Abstract
Recurrence and metastasis have been regarded as two of the greatest obstacles to cancer therapy. Cancer stem cells (CSCs) contribute to cancer development, with the distinctive features of recurrence and resistance to popular treatments such as drugs and chemotherapy. In addition, recent discoveries suggest that the epithelial mesenchymal transition (EMT) is an essential process in normal embryogenesis and tissue repair, as well as being a required step in cancer metastasis. Although there are many indications of the connections between metastasis and stem cells, these have often been studied separately or at most bi-laterally, not in an integrated way. In this study, we aimed to explore the global mechanisms and interrelationships among cancer, development, and metastasis, which are currently poorly understood. First, we constructed a core gene regulatory network containing specific genes and microRNAs of CSCs, EMT, and cancer. We uncovered seven distinct states emerging from the underlying landscape, denoted normal, premalignant, cancer, stem cell, CSC, lesion, and hyperplasia. Given the biological definition of each state, we also discuss the metastasis ability of each state. We show how and which types of cells can be transformed to a cancer state, and the connections among cancer, CSCs, and EMT. The barrier height and flux of the kinetic paths are explored to quantify how and which cells switch stochastically between the states. Our landscape model provides a quantitative approach to reveal the global mechanisms of cancer, development, and metastasis.
Collapse
Affiliation(s)
- Chong Yu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China.,University of Science and Technology of China, Hefei, China
| | - Qiong Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Cong Chen
- Department of Chemistry and of Physics and Astronomy, State University of New York at Stony Brook, Stony Brook, NY, United States
| | - Jin Wang
- Department of Chemistry and of Physics and Astronomy, State University of New York at Stony Brook, Stony Brook, NY, United States
| |
Collapse
|
18
|
Hardiany NS, Yo EC, Ngadiono E, Wanandi SI. Gene Expression of Molecules Regulating Apoptotic Pathways in Glioblastoma Multiforme Treated with Umbilical Cord Stem Cell Conditioned Medium. Malays J Med Sci 2020; 26:35-45. [PMID: 31908585 PMCID: PMC6939736 DOI: 10.21315/mjms2019.26.6.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 11/29/2019] [Indexed: 12/03/2022] Open
Abstract
Background Glioblastoma multiforme (GBM) is the most malignant primary brain tumour and there is no definite cure. It has been suggested that there are significant interactions among mesenchymal stem cells (MSCs), their released factors and tumour cells that ultimately determine GBM’s growth pattern. This study aims to analyse the expression of molecules involved in GBM cell apoptotic pathways following treatment with the MSC secretome. Methods A conditioned medium of umbilical cord-derived MSCs (UCMSC-CM) was generated by culturing the cells on serum-free αMEM for 24 h. Following this, human GBM T98G cells were treated with UCMSC-CM for 24 h. Quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) was then performed to measure the mRNA expression of survivin, caspase-9, TNF-related apoptosis-inducing ligand (TRAIL), DR4 and DcR1. Results mRNA expression of caspase-9 in CM-treated T98G cells increased 1.6-fold (P = 0.017), whereas mRNA expression of survivin increased 3.5-fold (P = 0.002). On the other hand, TRAIL protein expression was upregulated (1.2-fold), whereas mRNA expression was downregulated (0.4-fold), in CM-treated cells. Moreover, there was an increase in the mRNA expression of both DR4 (3.5-fold) and DcR1 (1,368.5-fold) in CM-treated cells. Conclusion The UCMSC-CM was able to regulate the expression of molecules involved in GBM cell apoptotic pathways. However, the expression of anti-apoptotic molecules was more upregulated than that of pro-apoptotic molecules.
Collapse
Affiliation(s)
- Novi Silvia Hardiany
- Department of Biochemistry & Molecular Biology, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | | | - Eko Ngadiono
- Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | - Septelia Inawati Wanandi
- Department of Biochemistry & Molecular Biology, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
19
|
Wang AYL, Loh CYY. Episomal Induced Pluripotent Stem Cells: Functional and Potential Therapeutic Applications. Cell Transplant 2019; 28:112S-131S. [PMID: 31722555 PMCID: PMC7016470 DOI: 10.1177/0963689719886534] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 06/11/2019] [Accepted: 10/07/2019] [Indexed: 12/19/2022] Open
Abstract
The term episomal induced pluripotent stem cells (EiPSCs) refers to somatic cells that are reprogrammed into induced pluripotent stem cells (iPSCs) using non-integrative episomal vector methods. This reprogramming process has a better safety profile compared with integrative methods using viruses. There is a current trend toward using episomal plasmid reprogramming to generate iPSCs because of the improved safety profile. Clinical reports of potential human cell sources that have been successfully reprogrammed into EiPSCs are increasing, but no review or summary has been published. The functional applications of EiPSCs and their potential uses in various conditions have been described, and these may be applicable to clinical scenarios. This review summarizes the current direction of EiPSC research and the properties of these cells with the aim of explaining their potential role in clinical applications and functional restoration.
Collapse
Affiliation(s)
- Aline Yen Ling Wang
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- *Both the authors contributed equally to this article
| | - Charles Yuen Yung Loh
- St Andrew’s Center for Burns and Plastic Surgery, Chelmsford, United Kingdom
- *Both the authors contributed equally to this article
| |
Collapse
|
20
|
Cozene B, Antonucci I, Stuppia L. Activity of p53 in human amniotic fluid stem cells increases their potentiality as a candidate for stem cell therapy. Brain Circ 2019; 5:134-139. [PMID: 31620661 PMCID: PMC6785949 DOI: 10.4103/bc.bc_35_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/01/2019] [Accepted: 09/03/2019] [Indexed: 12/19/2022] Open
Abstract
The potential use of stem cells as a therapeutic treatment for many neurological disorders, such as stroke, has spiked an interest in their properties. Due to limitations of the present-day treatments, regenerative and protective therapies could prove very beneficial if a safe and effective treatment is identified. Using human amniotic fluid stem (hAFS) cells could theoretically provide both neuroprotective and regenerative properties to patients, and knowledge of p53's activity and function could be a key component in understanding the behavior and characteristics of these stem cells to harness their full potential. Many recent studies on p53 have provided new and valuable information that could give rise to new ideas for treatment options. More specifically, p53's activity inside hAFS cells lead them closer to becoming a potential therapeutic stem cell. Other neuroprotective treatments, such as hyperoxia and hypoxia sessions, are showing positive results. In combination, these data are helping to get closer to an effective treatment for neurological disorders.
Collapse
Affiliation(s)
- Blaise Cozene
- Department of Neurosurgery and Brain Repair, College of Medicine, University of South Florida Morsani, Tampa, FL, USA
| | - Ivana Antonucci
- Department of Psychological, Health and Territorial Sciences, Laboratory of Molecular Genetics, School of Medicine and Health Sciences, G. d'Annunzio University, Chieti-Pescara, Italy
| | - Liborio Stuppia
- Department of Psychological, Health and Territorial Sciences, Laboratory of Molecular Genetics, School of Medicine and Health Sciences, G. d'Annunzio University, Chieti-Pescara, Italy
| |
Collapse
|
21
|
Li L, Bi Z, Wadgaonkar P, Lu Y, Zhang Q, Fu Y, Thakur C, Wang L, Chen F. Metabolic and epigenetic reprogramming in the arsenic-induced cancer stem cells. Semin Cancer Biol 2019; 57:10-18. [PMID: 31009762 PMCID: PMC6690805 DOI: 10.1016/j.semcancer.2019.04.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 04/18/2019] [Indexed: 12/19/2022]
Abstract
At present, the belief that genetic mutations control every aspect of tumorigenesis is still very popular. Even for the highly debated "bad luck" theory of cancers, it ascertained that random mutation of genes during the self-renewal of somatic stem cells is responsible for cancer initiation. Logically, most of the new therapeutic strategies so far, from molecular targeting to precision medicine or personalized medicine, are genome-obsessed and focused on identifying and targeting these mutated genes. Accordingly, a rather simplified therapeutic regimen was formulated: cancers with the same mutations, e.g., lung cancer, pancreatic cancer, breast cancer, ovarian cancer, etc, were managed with the same chemo or targeting medicine, whereas for a particular cancer, such as breast cancer or lung cancer, with different mutational spectrums was treated with different, so-called personalized medicine. The outcomes of this strategy, however, are mixed with encouraging and disappointing findings. In this review article, we will address the importance of non-genetic factors, the metabolic and epigenetic reprogramming, during the induction of cancer stem cells in response to arsenic, a major environmental human carcinogen. The information provided may not only advance our understanding of carcinogenic mechanism to a new level but also help in designing new strategies through targeting the metabolic and epigenetic signaling pathways for cancer therapy.
Collapse
Affiliation(s)
- Lingzhi Li
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI, 48201, USA; Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Zhuoyue Bi
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI, 48201, USA; School of Health Sciences, Wuhan University, No. 115, Donghu Road, Wuhan, 430071, Hubei, China; Hubei Provincial Key Laboratory of Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, 8 Zhuodaoquanbei Road, Wuhan, 430079, Hubei, China
| | - Priya Wadgaonkar
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI, 48201, USA
| | - Yongju Lu
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI, 48201, USA
| | - Qian Zhang
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI, 48201, USA
| | - Yao Fu
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI, 48201, USA
| | - Chitra Thakur
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI, 48201, USA
| | - Li Wang
- Department of Physiology and Neurobiology and Institute for Systems Genomics, University of Connecticut, Storrs, CT, 06269, USA
| | - Fei Chen
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI, 48201, USA.
| |
Collapse
|
22
|
Zhao J, Tian Y, Zhang H, Qu L, Chen Y, Liu Q, Luo Y, Wu X. p53 Mutant p53 N236S Induces Neural Tube Defects in Female Embryos. Int J Biol Sci 2019; 15:2006-2015. [PMID: 31523200 PMCID: PMC6743294 DOI: 10.7150/ijbs.31451] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 05/26/2019] [Indexed: 12/18/2022] Open
Abstract
The p53 is one of the most important tumor suppressors through surveillance of DNA damages and abnormal proliferation signals, and activation the cell cycle arrest and apoptosis in response to stress. However, the mutation of p53 is known to be oncogenic by both loss of function in inhibiting cell cycle progress and gain of function in promoting abnormal proliferation. In the present study, we have established a knock in mouse model containing an Asn-to-Ser substitution at p53 amino acid 236 by homologous recombination (p53N236S). Other than tumorigenesis phenotype, we found that p53S/S mice displayed female-specific phenotype of open neural tube in brain (exencephaly) and spinal cord (spina bifida). The occurrence rate for embryonic exencephaly is 68.5% in female p53S/S mice, which is much more than that of in p53-/- mice (37.1%) in the same genetic background. Further study found that p53N236S mutation increased neuronal proliferation and decreased neuronal differentiation and apoptosis. To rescue the phenotype, we inhibited cell proliferation by crossing Wrn-/- mice with p53S/S mice. The occurrence of NTDs in p53S/S Wrn-/- mice was 35.2%, thus suggesting that the inhibition of cell proliferation through a Wrn defect partially rescued the exencephaly phenotype in p53S/S mice. We also report that p53S decreased expression of UTX at mRNA and protein level via increasing Xist transcript, result in high female-specific H3K27me3 expression and repressed Mash1 transcription, which facilitating abnormal proliferation, differentiation, and apoptosis, result in the mis-regulation of neurodevelopment and neural tube defects (NTDs).
Collapse
Affiliation(s)
- Jinzhi Zhao
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Chenggong Campus, 727 South Jingming Road, Kunming, Yunnan 650500, China
| | - Yingbing Tian
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Chenggong Campus, 727 South Jingming Road, Kunming, Yunnan 650500, China
| | - Huihui Zhang
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Chenggong Campus, 727 South Jingming Road, Kunming, Yunnan 650500, China
| | - Lianhua Qu
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Chenggong Campus, 727 South Jingming Road, Kunming, Yunnan 650500, China
| | - Yu Chen
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Chenggong Campus, 727 South Jingming Road, Kunming, Yunnan 650500, China
| | - Qing Liu
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Chenggong Campus, 727 South Jingming Road, Kunming, Yunnan 650500, China
| | - Ying Luo
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Chenggong Campus, 727 South Jingming Road, Kunming, Yunnan 650500, China
| | - Xiaoming Wu
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Chenggong Campus, 727 South Jingming Road, Kunming, Yunnan 650500, China
| |
Collapse
|
23
|
Elabd S, Jabeen NA, Gerber V, Peravali R, Bourdon JC, Kancherla S, Vallone D, Blattner C. Delay in development and behavioural abnormalities in the absence of p53 in zebrafish. PLoS One 2019; 14:e0220069. [PMID: 31323059 PMCID: PMC6641203 DOI: 10.1371/journal.pone.0220069] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/07/2019] [Indexed: 12/21/2022] Open
Abstract
p53 is well-known for its tumour-suppressive activity. However, in the past decade it became clear that p53 is also involved in other processes including stem cell proliferation, differentiation and animal development. To investigate the role of p53 in early embryonic development, we targeted p53 by CRISPR/Cas9 to make a p53 knock-out zebrafish (Danio rerio). Our data show developmental and behavioural effects in p53-deficient zebrafish embryos and larvae. Specifically, we found that early development of zebrafish was clearly delayed in the absence of p53. However, after 1 day (1 dpf), the p53-deficient embryos appeared to recover, as evidenced by a similar level of pigmentation at 26 hpf, similar size of the eye at 4 dpf and only a minor difference in body size at 4 dpf compared to p53 wild-type siblings. The recovery of development after 1 dpf in p53-deficient embryos could be due to a compensatory mechanism involving other p53 family members. p63 and p73 were found over-expressed with respect to wild-type siblings. However, despite this adaptation, the hatching time remained delayed in p53-/- zebrafish. In addition to differences in development, p53-null zebrafish embryos also showed differences in behaviour. We observed an overall reduced activity and a reduced travel distance under non-stressed conditions and after exposing the larvae to vibration. We also observed a longer latency until the larvae started to move after touching with a needle. Overall, these data indicate that p53 is involved in early development and locomotion activities.
Collapse
Affiliation(s)
- Seham Elabd
- Karlsruhe Institute of Technology, Institute of Toxicology and Genetics, Eggenstein-Leopoldshafen, Germany
- Human Physiology Department, Medical Research Institute, Alexandria University, Hadara, Alexandria, Egypt
| | - Nuzhat Amna Jabeen
- Karlsruhe Institute of Technology, Institute of Toxicology and Genetics, Eggenstein-Leopoldshafen, Germany
| | - Vanessa Gerber
- Karlsruhe Institute of Technology, Institute of Toxicology and Genetics, Eggenstein-Leopoldshafen, Germany
| | - Ravindra Peravali
- Karlsruhe Institute of Technology, Institute of Toxicology and Genetics, Eggenstein-Leopoldshafen, Germany
| | - Jean-Christoph Bourdon
- Dundee Cancer Centre, University of Dundee, Ninewells Hospital and Medical School, Dundee, United Kingdom
| | - Shilpa Kancherla
- Karlsruhe Institute of Technology, Institute of Toxicology and Genetics, Eggenstein-Leopoldshafen, Germany
| | - Daniela Vallone
- Karlsruhe Institute of Technology, Institute of Toxicology and Genetics, Eggenstein-Leopoldshafen, Germany
| | - Christine Blattner
- Karlsruhe Institute of Technology, Institute of Toxicology and Genetics, Eggenstein-Leopoldshafen, Germany
- * E-mail:
| |
Collapse
|
24
|
Amniotic Fluid Cells, Stem Cells, and p53: Can We Stereotype p53 Functions? Int J Mol Sci 2019; 20:ijms20092236. [PMID: 31067653 PMCID: PMC6539965 DOI: 10.3390/ijms20092236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/20/2019] [Accepted: 04/30/2019] [Indexed: 12/30/2022] Open
Abstract
In recent years, great interest has been devoted to finding alternative sources for human stem cells which can be easily isolated, ideally without raising ethical objections. These stem cells should furthermore have a high proliferation rate and the ability to differentiate into all three germ layers. Amniotic fluid, ordinarily discarded as medical waste, is potentially such a novel source of stem cells, and these amniotic fluid derived stem cells are currently gaining a lot of attention. However, further information will be required about the properties of these cells before they can be used for therapeutic purposes. For example, the risk of tumor formation after cell transplantation needs to be explored. The tumor suppressor protein p53, well known for its activity in controlling Cell Prolif.eration and cell death in differentiated cells, has more recently been found to be also active in amniotic fluid stem cells. In this review, we summarize the major findings about human amniotic fluid stem cells since their discovery, followed by a brief overview of the important role played by p53 in embryonic and adult stem cells. In addition, we explore what is known about p53 in amniotic fluid stem cells to date, and emphasize the need to investigate its role, particularly in the context of cell tumorigenicity.
Collapse
|
25
|
Moreira BP, Oliveira PF, Alves MG. Molecular Mechanisms Controlled by mTOR in Male Reproductive System. Int J Mol Sci 2019; 20:ijms20071633. [PMID: 30986927 PMCID: PMC6480367 DOI: 10.3390/ijms20071633] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 03/27/2019] [Accepted: 03/28/2019] [Indexed: 12/21/2022] Open
Abstract
In recent years, the mammalian target of rapamycin (mTOR) has emerged as a master integrator of upstream inputs, such as amino acids, growth factors and insulin availability, energy status and many others. The integration of these signals promotes a response through several downstream effectors that regulate protein synthesis, glucose metabolism and cytoskeleton organization, among others. All these biological processes are essential for male fertility, thus it is not surprising that novel molecular mechanisms controlled by mTOR in the male reproductive tract have been described. Indeed, since the first clinical evidence showed that men taking rapamycin were infertile, several studies have evidenced distinct roles for mTOR in spermatogenesis. However, there is a lack of consensus whether mTOR inhibition, which remains the experimental approach that originates the majority of available data, has a negative or positive impact on male reproductive health. Herein we discuss the latest findings concerning mTOR activity in testes, particularly its role on spermatogonial stem cell (SSC) maintenance and differentiation, as well as in the physiology of Sertoli cells (SCs), responsible for blood–testis barrier maintenance/restructuring and the nutritional support of spermatogenesis. Taken together, these recent advances highlight a crucial role for mTOR in determining the male reproductive potential.
Collapse
Affiliation(s)
- Bruno P Moreira
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar (ICBAS) and Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, 4050-313 Porto, Portugal.
| | - Pedro F Oliveira
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar (ICBAS) and Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, 4050-313 Porto, Portugal.
- i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal.
- Department of Genetics, Faculty of Medicine, University of Porto, 4200-450 Porto, Portugal.
| | - Marco G Alves
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar (ICBAS) and Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
26
|
Izawa Y, Kashii-Magaribuchi K, Yoshida K, Nosaka M, Tsuji N, Yamamoto A, Kuroyanagi K, Tono K, Tanihata M, Imanishi M, Onishi M, Sakiyama M, Inoue S, Takahashi R. Stem-like Human Breast Cancer Cells Initiate Vasculogenic Mimicry on Matrigel. Acta Histochem Cytochem 2018; 51:173-183. [PMID: 30647492 PMCID: PMC6328367 DOI: 10.1267/ahc.18041] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 11/20/2018] [Indexed: 02/06/2023] Open
Abstract
Vasculogenic mimicry (VM), referring to vasculogenic structures lined by tumor cells, can be distinguished from angiogenesis, and is responsible for the aggressiveness and metastatic potential of tumors. HCC1937/p53 cells were derived from triple-negative breast cancer (TNBC), and used to investigate the roles of breast cancer stem cells (CSCs) in the formation of VM. HCC1937/p53 cells formed mesh-like structures on matrigel culture in which expression of VM-related genes, vascular endothelial (VE)-cadherin, matrix metalloproteinase (MMP)-2 and MMP-9 was confirmed by droplet digital polymerase chain reaction (PCR). In immunofluorescence microscopy, aldehyde dehydrogenase (ALDH)1A3+ cells with properties of CSCs or progenitors and GATA binding protein 3 (GATA3)+ cells with more differentiated characteristics were localized in the bridging region and aggregated region of VM structures, respectively. In fluorescence-activated cell sorting analysis, ALDH+ cells, considered to be a subpopulation of CSCs sorted by the aldefluor assay, exhibited marked VM formation on matrigel in 24 hr, whereas ALDH− cells did not form VM, indicating possible roles of CSCs in VM formation. The stem-like cancer cells resistant to p53-induced apoptosis, which expressed a high rate of ALDH1A3 and Sex-determining region Y (SRY)-box binding protein-2 (Sox-2), completed VM formation much faster than the control. These findings may provide clues to elucidate the significance of VM formed by treatment-resistant CSCs in the metastatic potential and poor prognosis associated with TNBC.
Collapse
Affiliation(s)
- Yuki Izawa
- Graduate School of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts
| | | | - Kana Yoshida
- Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts
| | - Mayu Nosaka
- Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts
| | - Nanami Tsuji
- Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts
| | - Ai Yamamoto
- Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts
| | - Kana Kuroyanagi
- Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts
| | - Kanoko Tono
- Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts
| | - Misato Tanihata
- Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts
| | - Moe Imanishi
- Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts
| | - Momoka Onishi
- Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts
| | - Mayu Sakiyama
- Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts
| | - Sana Inoue
- Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts
| | - Rei Takahashi
- Graduate School of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts
- Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts
| |
Collapse
|
27
|
Rodrigues M, Antonucci I, Elabd S, Kancherla S, Marchisio M, Blattner C, Stuppia L. p53 Is Active in Human Amniotic Fluid Stem Cells. Stem Cells Dev 2018; 27:1507-1517. [PMID: 30044176 PMCID: PMC6209428 DOI: 10.1089/scd.2017.0254] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Despite increasing interest in human amniotic fluid cells, very little is known about the regulation and function of p53 in this cell type. In this study, we show that undifferentiated human amniotic fluid cells express p53, yet at lower levels than in cancer cells. The p53 protein in amniotic fluid cells is mainly localized in the nuclei, however, its antiproliferative activity is compromised in these cells. Igf2, a maternal imprinted gene, and c-jun, a proto-oncogene, are regulated by p53 in these cells. DNA damage leads to an increase in p53 abundance in human amniotic fluid cells and to transcriptional activation of its target genes. Interestingly, cell differentiation toward the neural lineage leads to p53 induction as differentiation progresses.
Collapse
Affiliation(s)
- Melissa Rodrigues
- Laboratory of Molecular Genetics, Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, G. d' Annunzio University, Chieti-Pescara, Italy
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Ivana Antonucci
- Laboratory of Molecular Genetics, Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, G. d' Annunzio University, Chieti-Pescara, Italy
- Centre of Aging Science and Translational Medicine (Ce.S.I.-Me.T.), G. d'Annunzio University, Chieti-Pescara, Italy
| | - Seham Elabd
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany
- Department of Human Physiology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Shilpa Kancherla
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Marco Marchisio
- Centre of Aging Science and Translational Medicine (Ce.S.I.-Me.T.), G. d'Annunzio University, Chieti-Pescara, Italy
- Department of Medicine and Aging Sciences, School of Medicine and Health Sciences, G. d' Annunzio University, Chieti-Pescara, Italy
| | - Christine Blattner
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Liborio Stuppia
- Laboratory of Molecular Genetics, Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, G. d' Annunzio University, Chieti-Pescara, Italy
- Centre of Aging Science and Translational Medicine (Ce.S.I.-Me.T.), G. d'Annunzio University, Chieti-Pescara, Italy
| |
Collapse
|
28
|
Koifman G, Shetzer Y, Eizenberger S, Solomon H, Rotkopf R, Molchadsky A, Lonetto G, Goldfinger N, Rotter V. A Mutant p53-Dependent Embryonic Stem Cell Gene Signature Is Associated with Augmented Tumorigenesis of Stem Cells. Cancer Res 2018; 78:5833-5847. [PMID: 30154152 DOI: 10.1158/0008-5472.can-18-0805] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 07/10/2018] [Accepted: 08/23/2018] [Indexed: 11/16/2022]
Abstract
Mutations in the tumor suppressor p53 are the most frequent alterations in human cancer. These mutations include p53-inactivating mutations as well as oncogenic gain-of-function (GOF) mutations that endow p53 with capabilities to promote tumor progression. A primary challenge in cancer therapy is targeting stemness features and cancer stem cells (CSC) that account for tumor initiation, metastasis, and cancer relapse. Here we show that in vitro cultivation of tumors derived from mutant p53 murine bone marrow mesenchymal stem cells (MSC) gives rise to aggressive tumor lines (TL). These MSC-TLs exhibited CSC features as displayed by their augmented oncogenicity and high expression of CSC markers. Comparative analyses between MSC-TL with their parental mutant p53 MSC allowed for identification of the molecular events underlying their tumorigenic properties, including an embryonic stem cell (ESC) gene signature specifically expressed in MSC-TLs. Knockout of mutant p53 led to a reduction in tumor development and tumorigenic cell frequency, which was accompanied by reduced expression of CSC markers and the ESC MSC-TL signature. In human cancer, MSC-TL ESC signature-derived genes correlated with poor patient survival and were highly expressed in human tumors harboring p53 hotspot mutations. These data indicate that the ESC gene signature-derived genes may serve as new stemness-based prognostic biomarkers as well as novel cancer therapeutic targets.Significance: Mesenchymal cancer stem cell-like cell lines express a mutant p53-dependent embryonic stem cell gene signature, which can serve as a potential prognostic biomarker and therapeutic target in cancer. Cancer Res; 78(20); 5833-47. ©2018 AACR.
Collapse
Affiliation(s)
- Gabriela Koifman
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, Israel
| | - Yoav Shetzer
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, Israel
| | - Shay Eizenberger
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, Israel
| | - Hilla Solomon
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, Israel
| | - Ron Rotkopf
- Bioinformatic unit, Life Sciences Core Facilities, The Weizmann Institute of Science, Rehovot, Israel
| | - Alina Molchadsky
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, Israel
| | - Giuseppe Lonetto
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, Israel
| | - Naomi Goldfinger
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, Israel
| | - Varda Rotter
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
29
|
Gauster M, Maninger S, Siwetz M, Deutsch A, El-Heliebi A, Kolb-Lenz D, Hiden U, Desoye G, Herse F, Prokesch A. Downregulation of p53 drives autophagy during human trophoblast differentiation. Cell Mol Life Sci 2018; 75:1839-1855. [PMID: 29080089 PMCID: PMC5910494 DOI: 10.1007/s00018-017-2695-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 10/20/2017] [Accepted: 10/24/2017] [Indexed: 01/21/2023]
Abstract
The placental barrier is crucial for the supply of nutrients and oxygen to the developing fetus and is maintained by differentiation and fusion of mononucleated cytotrophoblasts into the syncytiotrophoblast, a process only partially understood. Here transcriptome and pathway analyses during differentiation and fusion of cultured trophoblasts yielded p53 signaling as negative upstream regulator and indicated an upregulation of autophagy-related genes. We further showed p53 mRNA and protein levels decreased during trophoblast differentiation. Reciprocally, autophagic flux increased and cytoplasmic LC3B-GFP puncta became more abundant, indicating enhanced autophagic activity. In line, in human first trimester placenta p53 protein mainly localized to the cytotrophoblast, while autophagy marker LC3B as well as late autophagic compartments were predominantly detectable in the syncytiotrophoblast. Importantly, ectopic overexpression of p53 reduced levels of LC3B-II, supporting a negative regulatory role on autophagy in differentiating trophoblasts. This was also shown in primary trophoblasts and human first trimester placental explants, where pharmacological stabilization of p53 decreased LC3B-II levels. In summary our data suggest that differentiation-dependent downregulation of p53 is a prerequisite for activating autophagy in the syncytiotrophoblast.
Collapse
Affiliation(s)
- Martin Gauster
- Institute of Cell Biology, Histology and Embryology, Medical University Graz, Neue Stiftingtalstraße 6, F/03/38, 8010, Graz, Austria.
| | - Sabine Maninger
- Institute of Cell Biology, Histology and Embryology, Medical University Graz, Neue Stiftingtalstraße 6, F/03/38, 8010, Graz, Austria
| | - Monika Siwetz
- Institute of Cell Biology, Histology and Embryology, Medical University Graz, Neue Stiftingtalstraße 6, F/03/38, 8010, Graz, Austria
| | - Alexander Deutsch
- Division of Hematology, Department of Internal Medicine, Medical University Graz, Graz, Austria
| | - Amin El-Heliebi
- Institute of Cell Biology, Histology and Embryology, Medical University Graz, Neue Stiftingtalstraße 6, F/03/38, 8010, Graz, Austria
| | - Dagmar Kolb-Lenz
- Institute of Cell Biology, Histology and Embryology, Medical University Graz, Neue Stiftingtalstraße 6, F/03/38, 8010, Graz, Austria
- Center for Medical Research, Core Facility Ultrastructure Analysis, Medical University Graz, Graz, Austria
| | - Ursula Hiden
- Department of Obstetrics and Gynecology, Medical University Graz, Graz, Austria
| | - Gernot Desoye
- Department of Obstetrics and Gynecology, Medical University Graz, Graz, Austria
| | - Florian Herse
- Experimental and Clinical Research Center, A Joint Cooperation Between the Charité Medical Faculty and the Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Andreas Prokesch
- Institute of Cell Biology, Histology and Embryology, Medical University Graz, Neue Stiftingtalstraße 6, F/03/38, 8010, Graz, Austria.
| |
Collapse
|
30
|
Li Q, Lei Y, Du W. A Novel Target of p53, TCF21, Can Respond to Hypoxia by MAPK Pathway Inactivation in Uterine Corpus Endometrial Carcinoma. DNA Cell Biol 2018; 37:473-480. [PMID: 29608330 DOI: 10.1089/dna.2017.4062] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Uterine corpus endometrial carcinoma (UCEC) is a common malignancy in the female reproductive system, associated with high morbidity and mortality. Despite the high prevalence of UCEC, molecular understanding of uterine endothelium tumorigenesis remains poorly understood. In this study, we reported that transcription factor 21 (TCF21) inhibits cancer cell proliferation and invasion following overexpression, in vitro and in vivo. Moreover, in response to hypoxia, TCF21 is highly expressed in UCEC cells carrying wild-type p53, and is transcriptional target of p53. We observed that TCF21 interferes with the MAP kinase pathway, which is supported by a substantially reduced level of phosphorylated mitogen-activated protein kinase 1 (MAPK1 or ERK) in cells expressing a higher level of TCF21. Furthermore, we identified the specific region of TCF21 that is responsible for its interaction with mitogen-activated protein kinase 1 (MEK) and a subsequently reduced activity of ERK. Using molecular docking and mutagenesis analysis, we validated a special domain of TCF21, which can reduce the activity of the MAPK pathway and inhibit uterine endothelium tumor cell growth in vitro. Overall, our study determined that TCF21, a hypoxia-driven p53 target, functions as a tumor suppressor in UCEC and presents as a therapeutic target for tumor treatment.
Collapse
Affiliation(s)
- Qin Li
- 1 Department of Gynaecology and Obstetrics, Hubei College of Chinese Medicine , Hubei, People's Republic of China
| | - Yong Lei
- 2 Department of Oncology, The First People's Hospital of Jingzhou City , Hubei, People's Republic of China
| | - Wei Du
- 2 Department of Oncology, The First People's Hospital of Jingzhou City , Hubei, People's Republic of China
| |
Collapse
|
31
|
Matsumoto C, Jiang Y, Emathinger J, Quijada P, Nguyen N, De La Torre A, Moshref M, Nguyen J, Levinson AB, Shin M, Sussman MA, Hariharan N. Short Telomeres Induce p53 and Autophagy and Modulate Age-Associated Changes in Cardiac Progenitor Cell Fate. Stem Cells 2018; 36:868-880. [PMID: 29441645 DOI: 10.1002/stem.2793] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 01/07/2018] [Accepted: 01/24/2018] [Indexed: 12/12/2022]
Abstract
Aging severely limits myocardial repair and regeneration. Delineating the impact of age-associated factors such as short telomeres is critical to enhance the regenerative potential of cardiac progenitor cells (CPCs). We hypothesized that short telomeres activate p53 and induce autophagy to elicit the age-associated change in CPC fate. We isolated CPCs and compared mouse strains with different telomere lengths for phenotypic characteristics of aging. Wild mouse strain Mus musculus castaneus (CAST) possessing short telomeres exhibits early cardiac aging with cardiac dysfunction, hypertrophy, fibrosis, and senescence, as compared with common lab strains FVB and C57 bearing longer telomeres. CAST CPCs with short telomeres demonstrate altered cell fate as characterized by cell cycle arrest, senescence, basal commitment, and loss of quiescence. Elongation of telomeres using a modified mRNA for telomerase restores youthful properties to CAST CPCs. Short telomeres induce autophagy in CPCs, a catabolic protein degradation process, as evidenced by reduced p62 and increased accumulation of autophagic puncta. Pharmacological inhibition of autophagosome formation reverses the cell fate to a more youthful phenotype. Mechanistically, cell fate changes induced by short telomeres are partially p53 dependent, as p53 inhibition rescues senescence and commitment observed in CAST CPCs, coincident with attenuation of autophagy. In conclusion, short telomeres activate p53 and autophagy to tip the equilibrium away from quiescence and proliferation toward differentiation and senescence, leading to exhaustion of CPCs. This study provides the mechanistic basis underlying age-associated cell fate changes that will enable identification of molecular strategies to prevent senescence of CPCs. Stem Cells 2018;36:868-880.
Collapse
Affiliation(s)
- Collin Matsumoto
- Department of Pharmacology, University of California at Davis, Davis, California, USA
| | - Yan Jiang
- Department of Pharmacology, University of California at Davis, Davis, California, USA
| | | | - Pearl Quijada
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Nathalie Nguyen
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Andrea De La Torre
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Maryam Moshref
- Department of Pharmacology, University of California at Davis, Davis, California, USA
| | - Jonathan Nguyen
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Aimee B Levinson
- Department of Pharmacology, University of California at Davis, Davis, California, USA
| | - Minyoung Shin
- Department of Pharmacology, University of California at Davis, Davis, California, USA
| | - Mark A Sussman
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Nirmala Hariharan
- Department of Pharmacology, University of California at Davis, Davis, California, USA.,Department of Biology, San Diego State University, San Diego, California, USA
| |
Collapse
|
32
|
Foxm1 controls a pro-stemness microRNA network in neural stem cells. Sci Rep 2018; 8:3523. [PMID: 29476172 PMCID: PMC5824884 DOI: 10.1038/s41598-018-21876-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 02/12/2018] [Indexed: 01/07/2023] Open
Abstract
Cerebellar neural stem cells (NSCs) require Hedgehog-Gli (Hh-Gli) signalling for their maintenance and Nanog expression for their self-renewal. To identify novel molecular features of this regulatory pathway, we used next-generation sequencing technology to profile mRNA and microRNA expression in cerebellar NSCs, before and after induced differentiation (Diff-NSCs). Genes with higher transcript levels in NSCs (vs. Diff-NSCs) included Foxm1, which proved to be directly regulated by Gli and Nanog. Foxm1 in turn regulated several microRNAs that were overexpressed in NSCs: miR-130b, miR-301a, and members of the miR-15~16 and miR-17~92 clusters and whose knockdown significantly impaired the neurosphere formation ability. Our results reveal a novel Hh-Gli-Nanog-driven Foxm1-microRNA network that controls the self-renewal capacity of NSCs.
Collapse
|
33
|
Quinet A, Lerner LK, Martins DJ, Menck CFM. Filling gaps in translesion DNA synthesis in human cells. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 836:127-142. [PMID: 30442338 DOI: 10.1016/j.mrgentox.2018.02.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 02/21/2018] [Indexed: 01/06/2023]
Abstract
During DNA replication, forks may encounter unrepaired lesions that hamper DNA synthesis. Cells have universal strategies to promote damage bypass allowing cells to survive. DNA damage tolerance can be performed upon template switch or by specialized DNA polymerases, known as translesion (TLS) polymerases. Human cells count on more than eleven TLS polymerases and this work reviews the functions of some of these enzymes: Rev1, Pol η, Pol ι, Pol κ, Pol θ and Pol ζ. The mechanisms of damage bypass vary according to the lesion, as well as to the TLS polymerases available, and may occur directly at the fork during replication. Alternatively, the lesion may be skipped, leaving a single-stranded DNA gap that will be replicated later. Details of the participation of these enzymes are revised for the replication of damaged template. TLS polymerases also have functions in other cellular processes. These include involvement in somatic hypermutation in immunoglobulin genes, direct participation in recombination and repair processes, and contributing to replicating noncanonical DNA structures. The importance of DNA damage replication to cell survival is supported by recent discoveries that certain genes encoding TLS polymerases are induced in response to DNA damaging agents, protecting cells from a subsequent challenge to DNA replication. We retrace the findings on these genotoxic (adaptive) responses of human cells and show the common aspects with the SOS responses in bacteria. Paradoxically, although TLS of DNA damage is normally an error prone mechanism, in general it protects from carcinogenesis, as evidenced by increased tumorigenesis in xeroderma pigmentosum variant patients, who are deficient in Pol η. As these TLS polymerases also promote cell survival, they constitute an important mechanism by which cancer cells acquire resistance to genotoxic chemotherapy. Therefore, the TLS polymerases are new potential targets for improving therapy against tumors.
Collapse
Affiliation(s)
- Annabel Quinet
- Saint Louis University School of Medicine, St. Louis, MO, United States.
| | - Leticia K Lerner
- MRC Laboratory of Molecular Biology,Francis Crick Avenue, Cambridge CB2 0QH, UK.
| | - Davi J Martins
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Carlos F M Menck
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
34
|
Najar M, Dollé L, Crompot E, Verhulst S, van Grunsven LA, Busser H, Lagneaux L. Isolation and Characterization of Bone Marrow Mesenchymal Stromal Cell Subsets in Culture Based on Aldehyde Dehydrogenase Activity. Tissue Eng Part C Methods 2018; 24:89-98. [PMID: 29241418 DOI: 10.1089/ten.tec.2017.0312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) have particular properties that allow their use as therapeutic strategies for several cell-based applications. Historically, bone marrow (BM)-MSCs are isolated by culture adherence since specific cell surface markers are yet to be developed. This original work aimed to identify and characterize isolating expanded BM-MSCs based on their aldehyde dehydrogenase (ALDH) activity known to be a hallmark of stem cells and relevant for their isolation. We thus isolated by fluorescence-activated cell sorting technology two functionally different populations of BM-MSCs depending on their ALDH activity (ALDH+ and ALDH-). Transcriptome analysis and profiling clearly demonstrated that both populations of BM-MSCs present distinct pattern of genes related to the main properties of MSCs (proliferation, response to hypoxia, angiogenesis, phenotype, stemness, multilineage, hematopoiesis, immunomodulation) in an ALDH activity dependent manner. Both BM-MSC populations look to significantly differ in terms of biological responses and functionalities. More functional analyses are needed to understand and characterize the properties of these ALDH populations. Collectively, our results highlight ALDH activity as a potential feature for isolating and segregating functional and/or competent subset of BM-MSC populations, which may account for better and more efficient therapeutic issue.
Collapse
Affiliation(s)
- Mehdi Najar
- 1 Department of Haematology, Laboratory of Clinical Cell Therapy (LTCC), Jules Bordet Institute , Université Libre de Bruxelles (ULB), Campus Erasme, Bâtiment de Transfusion (Level +1), Brussels, Belgium
| | - Laurent Dollé
- 2 Department of Cell Biology (CYTO-VUB), Liver Cell Biology Laboratory, Vrije Universiteit Brussel , Brussels, Belgium
| | - Emerence Crompot
- 1 Department of Haematology, Laboratory of Clinical Cell Therapy (LTCC), Jules Bordet Institute , Université Libre de Bruxelles (ULB), Campus Erasme, Bâtiment de Transfusion (Level +1), Brussels, Belgium
| | - Stefaan Verhulst
- 2 Department of Cell Biology (CYTO-VUB), Liver Cell Biology Laboratory, Vrije Universiteit Brussel , Brussels, Belgium
| | - Leo A van Grunsven
- 2 Department of Cell Biology (CYTO-VUB), Liver Cell Biology Laboratory, Vrije Universiteit Brussel , Brussels, Belgium
| | - Hélène Busser
- 1 Department of Haematology, Laboratory of Clinical Cell Therapy (LTCC), Jules Bordet Institute , Université Libre de Bruxelles (ULB), Campus Erasme, Bâtiment de Transfusion (Level +1), Brussels, Belgium
| | - Laurence Lagneaux
- 1 Department of Haematology, Laboratory of Clinical Cell Therapy (LTCC), Jules Bordet Institute , Université Libre de Bruxelles (ULB), Campus Erasme, Bâtiment de Transfusion (Level +1), Brussels, Belgium
| |
Collapse
|
35
|
Haq S, Suresh B, Ramakrishna S. Deubiquitylating enzymes as cancer stem cell therapeutics. Biochim Biophys Acta Rev Cancer 2017; 1869:1-10. [PMID: 29054474 DOI: 10.1016/j.bbcan.2017.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 09/20/2017] [Accepted: 10/15/2017] [Indexed: 12/18/2022]
Abstract
The focus of basic and applied research on core stem cell transcription factors has paved the way to initial delineation of their characteristics, their regulatory mechanisms, and the applicability of their regulatory proteins for protein-induced pluripotent stem cells (protein-IPSC) generation and in further clinical settings. Striking parallels have been observed between cancer stem cells (CSCs) and stem cells. For the maintenance of stem cells and CSC pluripotency and differentiation, post translational modifications (i.e., ubiquitylation and deubiquitylation) are tightly regulated, as these modifications result in a variety of stem cell fates. The identification of deubiquitylating enzymes (DUBs) involved in the regulation of core stem cell transcription factors and CSC-related proteins might contribute to providing novel insights into the implications of DUB regulatory mechanisms for governing cellular reprogramming and carcinogenesis. Moreover, we propose the novel possibility of applying DUBs coupled with core transcription factors to improve protein-iPSC generation efficiency. Additionally, this review article further illustrates the potential of applying DUB inhibitors as a novel therapeutic intervention for targeting CSCs. Thus, defining DUBs as core pharmacological targets implies that future endeavors to develop their inhibitors may revolutionize our ability to regulate stem cell maintenance and differentiation, somatic cell reprogramming, and cancer stem cells.
Collapse
Affiliation(s)
- Saba Haq
- Department of Lifesciences, College of Natural Sciences, Hanyang University, Seoul, South Korea
| | - Bharathi Suresh
- Department of Pharmacology and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea.
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea; College of Medicine, Hanyang University, Seoul, South Korea.
| |
Collapse
|
36
|
Inatani H, Yamamoto N, Hayashi K, Kimura H, Takeuchi A, Miwa S, Higuchi T, Abe K, Taniguchi Y, Yamada S, Asai K, Otsuka T, Tsuchiya H. Do Mesenchymal Stem Cells Derived From Atypical Lipomatous Tumors Have Greater Differentiation Potency Than Cells From Normal Adipose Tissues? Clin Orthop Relat Res 2017; 475:1693-1701. [PMID: 28155209 PMCID: PMC5406341 DOI: 10.1007/s11999-017-5259-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 01/19/2017] [Indexed: 01/31/2023]
Abstract
BACKGROUND The p53 protein in mesenchymal stem cells (MSCs) regulates differentiation to osteogenic or adipogenic lineage. Because p53 function is depressed in most malignancies, if MSCs in malignancy also have p53 hypofunction, differentiation therapy to osteogenic or adipogenic lineage may be an effective treatment. We therefore wished to begin to explore this idea by evaluating atypical lipomatous tumor/well-differentiated liposarcoma (ALT/WDL) cells, because murine double minute 2 (MDM2) gene amplification, which leads to p53 hypofunction, is found in almost all ALT/WDLs. QUESTIONS/PURPOSES We compared osteogenic and adipogenic differentiation potency between MSCs isolated and cultured from normal adipose tissues and ALT/WDLs from the same patients. METHODS During tumor resections in six patients with ALT/WDL, we analyzed 3 mL of tumor, and for comparison, we harvested a similar amount of normal-appearing subcutaneous adipose tissue from an area remote from the tumor for comparison. Adipogenic differentiation potency was quantitatively assessed using spectrometry after oil red O staining. Osteogenic differentiation potency was semiquantitatively assessed by measuring a specific colored area after alkaline phosphatase (ALP) and alizarin red S staining. ALP is related to preosseous cellular metabolism, and alizarin red is related to calcium deposits in cell culture. There were three observers for each assessment, and each assessment (including induced-differentiation and histologic analysis) was performed in duplicate. We then analyzed the mechanism of the difference of osteogenic differentiation potency using the MDM2-specific inhibitor Nutlin-3 at various concentrations. RESULTS In terms of adipogenic differentiation potency, contrary to our expectations, more fatty acid droplets were observed in MSCs derived from normal fat than in MSCs derived from ALT/WDL, although we found no significant difference between MSCs derived from ALT/WDL and MSCs derived from normal fat; the mean differentiation potency values (normal adipose tissue versus ALT/WDL) (± SD) were 0.34 (SD, ± 0.13; 95% CI, 0.24-0.44) versus 0.25 (SD, ± 0.10; 95% CI, 0.18-0.33; p = 0.22). By contrast, we found greater osteogenic differentiation potency in MSCs derived from ALT/WDL than in MSCs derived from normal fat. The mean differentiation potency values (normal adipose tissue versus ALT/WDL) (±SD) based on ALP staining was 1.0 versus 17 (SD, ± 36; 95% CI, -2.8 to 38; p = 0.04). However, we found no differences based on alizarin red S staining; mean differentiation potency value (normal adipose tissue versus ALT/WDL) (± SD) was 1.0 versus 4.2 (SD, ± 4.8; 95% CI, 1.3-7.2; p = 0.58). The gap of osteogenic differentiation potency between MSCs from normal adipose tissue and ALT/WDL was decreased as MDM2-inhibitor Nutlin-3 concentration increased. CONCLUSIONS MSCs derived from ALT/WDL had higher osteogenic differentiation potency based on ALP staining, which disappeared as Nutlin-3 concentration increased, suggesting that could be caused by amplified MDM2 in ALT/WDL. Future laboratory studies might mechanistically confirm the gene and protein expression, and based on the mechanism of the gap of differentiation potency, if p53 contrast between MSCs in tumor and normal tissue could be stimulated, less-toxic and more-effective differentiation therapy to MSCs in malignancies might be developed.
Collapse
Affiliation(s)
- Hiroyuki Inatani
- Department of Orthopaedic Surgery, Kanazawa University Graduate School of Medical Science, 13-1, Takara-machi, Kanazawa-shi, Ishikawa-ken, 920–8640 Japan ,Department of Orthopaedic Surgery, Nagoya City University Graduate School of Medical Science, Nagoya-shi, Japan
| | - Norio Yamamoto
- Department of Orthopaedic Surgery, Kanazawa University Graduate School of Medical Science, 13-1, Takara-machi, Kanazawa-shi, Ishikawa-ken, 920–8640 Japan
| | - Katsuhiro Hayashi
- Department of Orthopaedic Surgery, Kanazawa University Graduate School of Medical Science, 13-1, Takara-machi, Kanazawa-shi, Ishikawa-ken, 920–8640 Japan ,Department of Orthopaedic Surgery, Nagoya City University Graduate School of Medical Science, Nagoya-shi, Japan
| | - Hiroaki Kimura
- Department of Orthopaedic Surgery, Kanazawa University Graduate School of Medical Science, 13-1, Takara-machi, Kanazawa-shi, Ishikawa-ken, 920–8640 Japan ,Department of Orthopaedic Surgery, Nagoya City University Graduate School of Medical Science, Nagoya-shi, Japan
| | - Akihiko Takeuchi
- Department of Orthopaedic Surgery, Kanazawa University Graduate School of Medical Science, 13-1, Takara-machi, Kanazawa-shi, Ishikawa-ken, 920–8640 Japan
| | - Shinji Miwa
- Department of Orthopaedic Surgery, Kanazawa University Graduate School of Medical Science, 13-1, Takara-machi, Kanazawa-shi, Ishikawa-ken, 920–8640 Japan
| | - Takashi Higuchi
- Department of Orthopaedic Surgery, Kanazawa University Graduate School of Medical Science, 13-1, Takara-machi, Kanazawa-shi, Ishikawa-ken, 920–8640 Japan
| | - Kensaku Abe
- Department of Orthopaedic Surgery, Kanazawa University Graduate School of Medical Science, 13-1, Takara-machi, Kanazawa-shi, Ishikawa-ken, 920–8640 Japan
| | - Yuta Taniguchi
- Department of Orthopaedic Surgery, Kanazawa University Graduate School of Medical Science, 13-1, Takara-machi, Kanazawa-shi, Ishikawa-ken, 920–8640 Japan
| | - Satoshi Yamada
- Department of Orthopaedic Surgery, Nagoya City University Graduate School of Medical Science, Nagoya-shi, Japan
| | - Kiyofumi Asai
- Department of Molecular Neurobiology, Nagoya City University Graduate School of Medical Science, Nagoya-shi, Japan
| | - Takanobu Otsuka
- Department of Orthopaedic Surgery, Nagoya City University Graduate School of Medical Science, Nagoya-shi, Japan
| | - Hiroyuki Tsuchiya
- Department of Orthopaedic Surgery, Kanazawa University Graduate School of Medical Science, 13-1, Takara-machi, Kanazawa-shi, Ishikawa-ken, 920–8640 Japan
| |
Collapse
|
37
|
Lerner LK, Francisco G, Soltys DT, Rocha CRR, Quinet A, Vessoni AT, Castro LP, David TIP, Bustos SO, Strauss BE, Gottifredi V, Stary A, Sarasin A, Chammas R, Menck CFM. Predominant role of DNA polymerase eta and p53-dependent translesion synthesis in the survival of ultraviolet-irradiated human cells. Nucleic Acids Res 2017; 45:1270-1280. [PMID: 28180309 PMCID: PMC5388406 DOI: 10.1093/nar/gkw1196] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 11/15/2016] [Accepted: 11/17/2016] [Indexed: 01/19/2023] Open
Abstract
Genome lesions trigger biological responses that help cells manage damaged DNA, improving cell survival. Pol eta is a translesion synthesis (TLS) polymerase that bypasses lesions that block replicative polymerases, avoiding continued stalling of replication forks, which could lead to cell death. p53 also plays an important role in preventing cell death after ultraviolet (UV) light exposure. Intriguingly, we show that p53 does so by favoring translesion DNA synthesis by pol eta. In fact, the p53-dependent induction of pol eta in normal and DNA repair-deficient XP-C human cells after UV exposure has a protective effect on cell survival after challenging UV exposures, which was absent in p53- and Pol H-silenced cells. Viability increase was associated with improved elongation of nascent DNA, indicating the protective effect was due to more efficient lesion bypass by pol eta. This protection was observed in cells proficient or deficient in nucleotide excision repair, suggesting that, from a cell survival perspective, proper bypass of DNA damage can be as relevant as removal. These results indicate p53 controls the induction of pol eta in DNA damaged human cells, resulting in improved TLS and enhancing cell tolerance to DNA damage, which parallels SOS responses in bacteria.
Collapse
Affiliation(s)
- Leticia K Lerner
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Guilherme Francisco
- Department of Center for Translational Oncology Cellular, Biology Group, Center for Translational Oncology, Cancer Institute of the State of São Paulo-ICESP, São Paulo, Brazil
| | - Daniela T Soltys
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Clarissa R R Rocha
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Annabel Quinet
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Alexandre T Vessoni
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ligia P Castro
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Taynah I P David
- Viral Vector Laboratory, Heart Institute, University of São Paulo, São Paulo, Brazil
| | - Silvina O Bustos
- Department of Center for Translational Oncology Cellular, Biology Group, Center for Translational Oncology, Cancer Institute of the State of São Paulo-ICESP, São Paulo, Brazil
| | - Bryan E Strauss
- Viral Vector Laboratory, Heart Institute, University of São Paulo, São Paulo, Brazil
| | - Vanesa Gottifredi
- Cell Cycle and Genomic Stability Laboratory, Fundación Instituto Leloir-CONICET, Buenos Aires, Argentina
| | - Anne Stary
- CNRS-UMR8200, Université Paris-Sud, Institut de Cancérologie Gustave Roussy, Villejuif, France
| | - Alain Sarasin
- CNRS-UMR8200, Université Paris-Sud, Institut de Cancérologie Gustave Roussy, Villejuif, France
| | - Roger Chammas
- Department of Center for Translational Oncology Cellular, Biology Group, Center for Translational Oncology, Cancer Institute of the State of São Paulo-ICESP, São Paulo, Brazil
| | - Carlos F M Menck
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
38
|
Nguyen DTT, Richter D, Michel G, Mitschka S, Kolanus W, Cuevas E, Wulczyn FG. The ubiquitin ligase LIN41/TRIM71 targets p53 to antagonize cell death and differentiation pathways during stem cell differentiation. Cell Death Differ 2017; 24:1063-1078. [PMID: 28430184 PMCID: PMC5442473 DOI: 10.1038/cdd.2017.54] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 03/04/2017] [Accepted: 03/17/2017] [Indexed: 12/13/2022] Open
Abstract
Rapidity and specificity are characteristic features of proteolysis mediated by the ubiquitin-proteasome system. Therefore, the UPS is ideally suited for the remodeling of the embryonic stem cell proteome during the transition from pluripotent to differentiated states and its inverse, the generation of inducible pluripotent stem cells. The Trim-NHL family member LIN41 is among the first E3 ubiquitin ligases to be linked to stem cell pluripotency and reprogramming. Initially discovered in C. elegans as a downstream target of the let-7 miRNA, LIN41 is now recognized as a critical regulator of stem cell fates as well as the timing of neurogenesis. Despite being indispensable for embryonic development and neural tube closure in mice, the underlying mechanisms for LIN41 function in these processes are poorly understood. To better understand the specific contributions of the E3 ligase activity for the stem cell functions of LIN41, we characterized global changes in ubiquitin or ubiquitin-like modifications using Lin41-inducible mouse embryonic stem cells. The tumor suppressor protein p53 was among the five most strongly affected proteins in cells undergoing neural differentiation in response to LIN41 induction. We show that LIN41 interacts with p53, controls its abundance by ubiquitination and antagonizes p53-dependent pro-apoptotic and pro-differentiation responses. In vivo, the lack of LIN41 is associated with upregulation of Grhl3 and widespread caspase-3 activation, two downstream effectors of p53 with essential roles in neural tube closure. As Lin41-deficient mice display neural tube closure defects, we conclude that LIN41 is critical for the regulation of p53 functions in cell fate specification and survival during early brain development.
Collapse
Affiliation(s)
- Duong Thi Thuy Nguyen
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institute of Cell Biology and Neurobiology, Charitéplatz 1, Berlin 10117, Germany
| | - Daniel Richter
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institute of Cell Biology and Neurobiology, Charitéplatz 1, Berlin 10117, Germany
| | - Geert Michel
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Forschungseinrichtung für Experimentelle Medizin, Krahmerstraße 6-10, Berlin 12207, Germany
| | - Sibylle Mitschka
- University of Bonn, Life &Medical Sciences Institute (LIMES), Molecular Immunology and Cell Biology, Carl-Troll-Straße 31, Bonn 53115, Germany
| | - Waldemar Kolanus
- University of Bonn, Life &Medical Sciences Institute (LIMES), Molecular Immunology and Cell Biology, Carl-Troll-Straße 31, Bonn 53115, Germany
| | - Elisa Cuevas
- UCL Institute of Child Health, Stem Cells &Regenerative Medicine Section, 30 Guilford Street, London WC1N 1EH, Great Britain, UK
| | - F Gregory Wulczyn
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institute of Cell Biology and Neurobiology, Charitéplatz 1, Berlin 10117, Germany
| |
Collapse
|
39
|
Aponte PM, Caicedo A. Stemness in Cancer: Stem Cells, Cancer Stem Cells, and Their Microenvironment. Stem Cells Int 2017; 2017:5619472. [PMID: 28473858 PMCID: PMC5394399 DOI: 10.1155/2017/5619472] [Citation(s) in RCA: 264] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 01/31/2017] [Accepted: 02/19/2017] [Indexed: 02/06/2023] Open
Abstract
Stemness combines the ability of a cell to perpetuate its lineage, to give rise to differentiated cells, and to interact with its environment to maintain a balance between quiescence, proliferation, and regeneration. While adult Stem Cells display these properties when participating in tissue homeostasis, Cancer Stem Cells (CSCs) behave as their malignant equivalents. CSCs display stemness in various circumstances, including the sustaining of cancer progression, and the interaction with their environment in search for key survival factors. As a result, CSCs can recurrently persist after therapy. In order to understand how the concept of stemness applies to cancer, this review will explore properties shared between normal and malignant Stem Cells. First, we provide an overview of properties of normal adult Stem Cells. We thereafter elaborate on how these features operate in CSCs. We then review the organization of microenvironment components, which enables CSCs hosting. We subsequently discuss Mesenchymal Stem/Stromal Cells (MSCs), which, although their stemness properties are limited, represent essential components of the Stem Cell niche and tumor microenvironment. We next provide insights of the therapeutic strategies targeting Stem Cell properties in tumors and the use of state-of-the-art techniques in future research. Increasing our knowledge of the CSCs microenvironment is key to identifying new therapeutic solutions.
Collapse
Affiliation(s)
- Pedro M. Aponte
- Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito (USFQ), 170901 Quito, Ecuador
- Colegio de Ciencias de la Salud, Escuela de Medicina Veterinaria, Universidad San Francisco de Quito (USFQ), 170901 Quito, Ecuador
- Mito-Act Research Consortium, Quito, Ecuador
| | - Andrés Caicedo
- Mito-Act Research Consortium, Quito, Ecuador
- Colegio de Ciencias de la Salud, Escuela de Medicina, Universidad San Francisco de Quito (USFQ), 170901 Quito, Ecuador
- Colegio de Ciencias Biológicas y Ambientales, Instituto de Microbiología, Universidad San Francisco de Quito (USFQ), 170901 Quito, Ecuador
| |
Collapse
|
40
|
Um S, Lee H, Zhang Q, Kim HY, Lee JH, Seo BM. Valproic Acid Modulates the Multipotency in Periodontal Ligament Stem Cells via p53-Mediated Cell Cycle. Tissue Eng Regen Med 2017; 14:153-162. [PMID: 30603472 DOI: 10.1007/s13770-017-0027-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 07/31/2016] [Accepted: 08/04/2016] [Indexed: 12/20/2022] Open
Abstract
Human periodontal ligament stem cells (PDLSCs), a type of mesenchymal stem cell, are a promising source for dental regeneration and are identified in human periodontal ligaments from extracted third molars. Valproic acid (VPA) is a histone deacetylase inhibitor that has been used as a wide-spectrum antiepileptic drug and a medication for mood disorders. VPA has shown several effects on increasing the pluripotency of embryonic stem cells and controlling osteogenic differentiation, besides the prevention of seizures. However, its effect on proliferation and osteogenesis depends on the cell type and concentration. The aim of this study was to investigate the effects of cyclic and constant VPA treatment on PDLSCs. Proliferation and apoptosis of PDLSCs were determined with cyclic and constant VPA treatment. In cemento/osteogenic differentiation, osteogenic markers decreased significantly after cyclic treatment with 0.5 mM VPA. In contrast, VPA enhanced osteogenic differentiation after constant treatment. With cyclic VPA treatment, p53 levels related to apoptotic pathway decreased to induce proliferation. These findings indicated that VPA has different roles in proliferation and differentiation of PDLSCs in vitro and in vivo via p53-related pathway.
Collapse
Affiliation(s)
- Soyoun Um
- 1Department of Dental Science, School of Dentistry, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Korea
- 5Dental Research Institute, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Korea
| | - Ho Lee
- 2Department of Oral and Maxillofacial Surgery, SMG-SNU Boramae Medical Center, Boramae-ro 5-gil, Dongjak-gu, Seoul, 07061 Korea
| | - Qingbin Zhang
- 3Department of Temporomandibular Joint Diseases, School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, 510182 China
| | - Hui Young Kim
- 4Department of Oral and Maxillofacial Surgery, School of Dentistry, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Korea
- 5Dental Research Institute, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Korea
| | - Joo-Hee Lee
- 4Department of Oral and Maxillofacial Surgery, School of Dentistry, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Korea
- 5Dental Research Institute, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Korea
| | - Byoung Moo Seo
- 4Department of Oral and Maxillofacial Surgery, School of Dentistry, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Korea
- 5Dental Research Institute, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Korea
| |
Collapse
|
41
|
Amir H, Touboul T, Sabatini K, Chhabra D, Garitaonandia I, Loring JF, Morey R, Laurent LC. Spontaneous Single-Copy Loss of TP53 in Human Embryonic Stem Cells Markedly Increases Cell Proliferation and Survival. Stem Cells 2017; 35:872-885. [PMID: 27888558 DOI: 10.1002/stem.2550] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 10/17/2016] [Accepted: 11/01/2016] [Indexed: 01/17/2023]
Abstract
Genomic aberrations have been identified in many human pluripotent stem cell (hPSC) cultures. Commonly observed duplications in portions of chromosomes 12p and 17q have been associated with increases in genetic instability and resistance to apoptosis, respectively. However, the phenotypic consequences related to sporadic mutations have not been evaluated to date. Here, we report on the effects of a single-copy deletion of the chr17p13.1 region, a sporadic mutation that spontaneously arose independently in several subclones of a human embryonic stem cell culture. Compared to cells with two normal copies of chr17p13.1 ("wild-type"), the cells with a single-copy deletion of this region ("mutant") displayed a selective advantage when exposed to stressful conditions, and retained a higher percentage of cells expressing the pluripotency marker POU5F1/OCT4 after 2 weeks of in vitro differentiation. Knockdown of TP53, which is a gene encompassed by the deleted region, in wild-type cells mimicked the chr17p13.1 deletion phenotype. Thus, sporadic mutations in hPSCs can have phenotypic effects that may impact their utility for clinical applications. Stem Cells 2017;35:872-885.
Collapse
Affiliation(s)
- Hadar Amir
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, California, USA
| | - Thomas Touboul
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, California, USA
| | - Karen Sabatini
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, California, USA
| | - Divya Chhabra
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, California, USA
| | - Ibon Garitaonandia
- Center for Regenerative Medicine, Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, USA
| | - Jeanne F Loring
- Center for Regenerative Medicine, Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, USA
| | - Robert Morey
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, California, USA
| | - Louise C Laurent
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
42
|
Kashii-Magaribuchi K, Takeuchi R, Haisa Y, Sakamoto A, Itoh A, Izawa Y, Isa M, Fukuzawa M, Murakami M, Takahashi R. Induced Expression of Cancer Stem Cell Markers ALDH1A3 and Sox-2 in Hierarchical Reconstitution of Apoptosis-resistant Human Breast Cancer Cells. Acta Histochem Cytochem 2016; 49:149-158. [PMID: 27917009 PMCID: PMC5130344 DOI: 10.1267/ahc.16031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 09/27/2016] [Indexed: 12/18/2022] Open
Abstract
We established an experimental system that can induce p53-dependent apoptosis by doxycycline treatment to analyze characteristics of the apoptosis-resistant cancer cell subpopulation in the human breast cancer cell line HCC1937. Expression patterns of the stem cell markers, ALDH1A3 and Sox-2, the luminal differentiation marker, GATA3 and the proliferation index marker, Ki-67 were analyzed using immunostaining and fluorescence-activated cell sorting (FACS). After doxycycline treatment, the number of viable cells was gradually decreased over seven days in a time-dependent manner due to p53-induced apoptosis; however, the number of smaller-sized ALDH1A3+ cells assessed by immunostaining increased sharply after 1 day of doxycycline treatment, suggesting their apoptosis-resistant nature. The expression of ALDH1A3 was also detected in 78% of small-sized Ki-67+ proliferating progenitor cells, followed by the transient expression of GATA3, which presumably indicated the ability to differentiate into luminal progenitor cells. Although 42.2–58.5% of residual cells were positive for both ALDH1A3 and GATA3, their expression patterns exhibited an inverse correlation. The expression pattern of another stem cell marker, Sox-2, was similar, but more drastically altered after p53 induction compared with ALDH1A3. These findings may aid in understanding the hierarchical responses of cancer stem cells to therapeutic stresses.
Collapse
Affiliation(s)
| | - Rie Takeuchi
- Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts
| | - Yuko Haisa
- Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts
| | - Akemi Sakamoto
- Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts
| | - Aimi Itoh
- Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts
| | - Yuki Izawa
- Graduate School of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts
| | - Miyuki Isa
- Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts
| | - Mayu Fukuzawa
- Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts
| | - Motonobu Murakami
- Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts
| | - Rei Takahashi
- Graduate School of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts
- Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts
| |
Collapse
|
43
|
|
44
|
Shetzer Y, Molchadsky A, Rotter V. Oncogenic Mutant p53 Gain of Function Nourishes the Vicious Cycle of Tumor Development and Cancer Stem-Cell Formation. Cold Spring Harb Perspect Med 2016; 6:cshperspect.a026203. [PMID: 27235476 DOI: 10.1101/cshperspect.a026203] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
More than half of human tumors harbor an inactivated p53 tumor-suppressor gene. It is well accepted that mutant p53 shows an oncogenic gain-of-function (GOF) activity that facilitates the transformed phenotype of cancer cells. In addition, a growing body of evidence supports the notion that cancer stem cells comprise a seminal constituent in the initiation and progression of cancer development. Here, we elaborate on the mutant p53 oncogenic GOF leading toward the acquisition of a transformed phenotype, as well as placing mutant p53 as a major component in the establishment of cancer stem cell entity. Therefore, therapy targeted toward cancer stem cells harboring mutant p53 is expected to pave the way to eradicate tumor growth and recurrence.
Collapse
Affiliation(s)
- Yoav Shetzer
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Alina Molchadsky
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Varda Rotter
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
45
|
Meng Z, Chen G, Chen J, Yang B, Yu M, Feng L, Jiang Z, Guo W, Tian W. Tumorigenicity analysis of heterogeneous dental stem cells and its self-modification for chromosome instability. Cell Cycle 2016; 14:3396-407. [PMID: 26322910 DOI: 10.1080/15384101.2015.1036204] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Heterogeneity demonstrates that stem cells are constituted by several sub-clones in various differentiation states. The heterogeneous state is maintained by cross-talk among sub-clones, thereby ensuring stem cell adaption. In this study, we investigated the roles of heterogeneity on genetic stability. Three sub-clones (DF2, DF8 and DF18) were isolated from heterogeneous dental stem cells (DSCs), and were proved to be chromosome instability (CIN) after long term expansion. Cell apoptosis were not detected in sub-clones, which exhibited strong tumorigenesis tendency, coupled with weak expression of p53 and aberrant ultra-structure. However, 3 sub-clones did not overexpress tumor related markers or induce tumorigenesis in vivo. The mixed-culture study suggested that 3-clone-mixed culturing cells (DF1) presented apparent decrease in the ratio of aneuploidy. The screening experiment further proved that 3 sub-clones functioned separately in this modification procedure but only mixed culturing all 3 sub-clones, simulated heterogeneous microenvironment, could achieve complete modification. Additionally, osteogenesis capability of 3 sub-clones was partially influenced by CIN while DSCs still kept stronger osteogenesis than sub-clones. These results suggested aberrant sub-clones isolated from heterogeneous DSCs were not tumorigenesis and could modify CIN by cross-talk among themselves, indicating that the heterogeneity played a key role in maintaining genetic stability and differentiation capability in dental stem cells.
Collapse
Affiliation(s)
- Zhaosong Meng
- a National Engineering Laboratory for Oral Regenerative Medicine; West China Hospital of Stomatology; Sichuan University ; Chengdu , China.,b State Key Laboratory of Oral Diseases; West China Hospital of Stomatology; Sichuan University ; Chengdu , China.,c Department of Oral and Maxillofacial Surgery ; West China School of Stomatology; Sichuan University ; Chengdu , China
| | - Guoqing Chen
- a National Engineering Laboratory for Oral Regenerative Medicine; West China Hospital of Stomatology; Sichuan University ; Chengdu , China.,b State Key Laboratory of Oral Diseases; West China Hospital of Stomatology; Sichuan University ; Chengdu , China
| | - Jinlong Chen
- a National Engineering Laboratory for Oral Regenerative Medicine; West China Hospital of Stomatology; Sichuan University ; Chengdu , China.,b State Key Laboratory of Oral Diseases; West China Hospital of Stomatology; Sichuan University ; Chengdu , China.,c Department of Oral and Maxillofacial Surgery ; West China School of Stomatology; Sichuan University ; Chengdu , China
| | - Bo Yang
- a National Engineering Laboratory for Oral Regenerative Medicine; West China Hospital of Stomatology; Sichuan University ; Chengdu , China.,b State Key Laboratory of Oral Diseases; West China Hospital of Stomatology; Sichuan University ; Chengdu , China.,c Department of Oral and Maxillofacial Surgery ; West China School of Stomatology; Sichuan University ; Chengdu , China
| | - Mei Yu
- a National Engineering Laboratory for Oral Regenerative Medicine; West China Hospital of Stomatology; Sichuan University ; Chengdu , China.,b State Key Laboratory of Oral Diseases; West China Hospital of Stomatology; Sichuan University ; Chengdu , China
| | - Lian Feng
- a National Engineering Laboratory for Oral Regenerative Medicine; West China Hospital of Stomatology; Sichuan University ; Chengdu , China.,b State Key Laboratory of Oral Diseases; West China Hospital of Stomatology; Sichuan University ; Chengdu , China
| | - Zongting Jiang
- a National Engineering Laboratory for Oral Regenerative Medicine; West China Hospital of Stomatology; Sichuan University ; Chengdu , China.,b State Key Laboratory of Oral Diseases; West China Hospital of Stomatology; Sichuan University ; Chengdu , China
| | - Weihua Guo
- a National Engineering Laboratory for Oral Regenerative Medicine; West China Hospital of Stomatology; Sichuan University ; Chengdu , China.,b State Key Laboratory of Oral Diseases; West China Hospital of Stomatology; Sichuan University ; Chengdu , China.,d Department of Pedodontics ; West China School of Stomatology; Sichuan University ; Chengdu , China
| | - Weidong Tian
- a National Engineering Laboratory for Oral Regenerative Medicine; West China Hospital of Stomatology; Sichuan University ; Chengdu , China.,b State Key Laboratory of Oral Diseases; West China Hospital of Stomatology; Sichuan University ; Chengdu , China.,c Department of Oral and Maxillofacial Surgery ; West China School of Stomatology; Sichuan University ; Chengdu , China
| |
Collapse
|
46
|
Pesch R, Zimmer R. Cross-species Conservation of context-specific networks. BMC SYSTEMS BIOLOGY 2016; 10:76. [PMID: 27531214 PMCID: PMC4988053 DOI: 10.1186/s12918-016-0304-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 07/04/2016] [Indexed: 11/20/2022]
Abstract
BACKGROUND Many large data compendia on context-specific high-throughput genomic and regulatory data have been made available by international research consortia such as ENCODE, TCGA, and Epigenomics Roadmap. The use of these resources is impaired by the sheer size of the available big data and big metadata. Many of these context-specific data can be modeled as data derived regulatory networks (DDRNs) representing the complex and complicated interactions between transcription factors and target genes. These DDRNs are useful for the understanding of regulatory mechanisms and helpful for interpreting biomedical data. RESULTS The Cross-species Conservation framework (CroCo) provides a network-oriented view on the ENCODE regulatory data (CroCo network repository), convenient ways to access and browse networks and metadata, and a method to combine networks across compendia, experimental techniques, and species (CroCo tool suite). DDRNs can be combined with additional information and networks derived from the literature, curated resources, and computational predictions in order to enable detailed exploration and cross checking of regulatory interactions. Applications of the CroCo framework range from simple evidence look-up for user-defined regulatory interactions to the identification of conserved sub-networks in diverse cell-lines, conditions, and even species. CONCLUSION CroCo adds an intuitive unifying view on the data from the ENCODE projects via a comprehensive repository of derived context-specific regulatory networks and enables flexible cross-context, cross-species, and cross-compendia comparison via a basis set of analysis tools. The CroCo web-application and Cytoscape plug-in are freely available at: http://services.bio.ifi.lmu.de/croco-web . The web-page links to a detailed system description, a user guide, and tutorial videos presenting common use cases of the CroCo framework.
Collapse
Affiliation(s)
- Robert Pesch
- Institute for Informatics, Ludwig-Maximilians-Universität München, Amalienstrasse 17, München, Germany
| | - Ralf Zimmer
- Institute for Informatics, Ludwig-Maximilians-Universität München, Amalienstrasse 17, München, Germany
| |
Collapse
|
47
|
Xiong M, Ferder IC, Ohguchi Y, Wang N. Quantitative analysis of male germline stem cell differentiation reveals a role for the p53-mTORC1 pathway in spermatogonial maintenance. Cell Cycle 2016; 14:2905-13. [PMID: 26177380 DOI: 10.1080/15384101.2015.1069928] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
p53 protects cells from DNA damage by inducing cell-cycle arrest upon encountering genomic stress. Among other pathways, p53 elicits such an effect by inhibiting mammalian target of rapamycin complex 1 (mTORC1), the master regulator of cell proliferation and growth. Although recent studies have indicated roles for both p53 and mTORC1 in stem cell maintenance, it remains unclear whether the p53-mTORC1 pathway is conserved to mediate this process under normal physiological conditions. Spermatogenesis is a classic stem cell-dependent process in which undifferentiated spermatogonia undergo self-renewal and differentiation to maintain the lifelong production of spermatozoa. To better understand this process, we have developed a novel flow cytometry (FACS)-based approach that isolates spermatogonia at consecutive differentiation stages. By using this as a tool, we show that genetic loss of p53 augments mTORC1 activity during early spermatogonial differentiation. Functionally, loss of p53 drives spermatogonia out of the undifferentiated state and causes a consistent expansion of early differentiating spermatogonia until the stage of preleptotene (premeiotic) spermatocyte. The frequency of early meiotic spermatocytes is, however, dramatically decreased. Thus, these data suggest that p53-mTORC1 pathway plays a critical role in maintaining the homeostasis of early spermatogonial differentiation. Moreover, our FACS approach could be a valuable tool in understanding spermatogonial differentiation.
Collapse
Affiliation(s)
- Mulin Xiong
- a Vincent Center for Reproductive Biology; Vincent Department of Obstetrics and Gynecology; Massachusetts General Hospital; Harvard Medical School ; Boston , MA USA
| | - Ianina C Ferder
- a Vincent Center for Reproductive Biology; Vincent Department of Obstetrics and Gynecology; Massachusetts General Hospital; Harvard Medical School ; Boston , MA USA
| | - Yasuyo Ohguchi
- a Vincent Center for Reproductive Biology; Vincent Department of Obstetrics and Gynecology; Massachusetts General Hospital; Harvard Medical School ; Boston , MA USA
| | - Ning Wang
- a Vincent Center for Reproductive Biology; Vincent Department of Obstetrics and Gynecology; Massachusetts General Hospital; Harvard Medical School ; Boston , MA USA
| |
Collapse
|
48
|
Suresh B, Lee J, Kim H, Ramakrishna S. Regulation of pluripotency and differentiation by deubiquitinating enzymes. Cell Death Differ 2016; 23:1257-64. [PMID: 27285106 DOI: 10.1038/cdd.2016.53] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 04/16/2016] [Accepted: 04/18/2016] [Indexed: 12/20/2022] Open
Abstract
Post-translational modifications (PTMs) of stemness-related proteins are essential for stem cell maintenance and differentiation. In stem cell self-renewal and differentiation, PTM of stemness-related proteins is tightly regulated because the modified proteins execute various stem cell fate choices. Ubiquitination and deubiquitination, which regulate protein turnover of several stemness-related proteins, must be carefully coordinated to ensure optimal embryonic stem cell maintenance and differentiation. Deubiquitinating enzymes (DUBs), which specifically disassemble ubiquitin chains, are a central component in the ubiquitin-proteasome pathway. These enzymes often control the balance between ubiquitination and deubiquitination. To maintain stemness and achieve efficient differentiation, the ubiquitination and deubiquitination molecular switches must operate in a balanced manner. Here we summarize the current information on DUBs, with a focus on their regulation of stem cell fate determination and deubiquitinase inhibition as a therapeutic strategy. Furthermore, we discuss the possibility of using DUBs with defined stem cell transcription factors to enhance cellular reprogramming efficiency and cell fate conversion. Our review provides new insight into DUB activity by emphasizing their cellular role in regulating stem cell fate. This role paves the way for future research focused on specific DUBs or deubiquitinated substrates as key regulators of pluripotency and stem cell differentiation.
Collapse
Affiliation(s)
- B Suresh
- Department of Pharmacology and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - J Lee
- Department of Physiology and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - H Kim
- Department of Pharmacology and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - S Ramakrishna
- Graduate School of Biomedical Science and Engineering, Department of Biomedical Science, Hanyang University, Seoul, South Korea.,College of Medicine, Department of Biomedical Science, Hanyang University, Seoul, South Korea
| |
Collapse
|
49
|
Abstract
p53 has been studied intensively as a major tumour suppressor that detects oncogenic events in cancer cells and eliminates them through senescence (a permanent non-proliferative state) or apoptosis. Consistent with this role, p53 activity is compromised in a high proportion of all cancer types, either through mutation of the TP53 gene (encoding p53) or changes in the status of p53 modulators. p53 has additional roles, which may overlap with its tumour-suppressive capacity, in processes including the DNA damage response, metabolism, aging, stem cell differentiation and fertility. Moreover, many mutant p53 proteins, termed 'gain-of-function' (GOF), acquire new activities that help drive cancer aggression. p53 is regulated mainly through protein turnover and operates within a negative-feedback loop with its transcriptional target, MDM2 (murine double minute 2), an E3 ubiquitin ligase which mediates the ubiquitylation and proteasomal degradation of p53. Induction of p53 is achieved largely through uncoupling the p53-MDM2 interaction, leading to elevated p53 levels. Various stress stimuli acting on p53 (such as hyperproliferation and DNA damage) use different, but overlapping, mechanisms to achieve this. Additionally, p53 activity is regulated through critical context-specific or fine-tuning events, mediated primarily through post-translational mechanisms, particularly multi-site phosphorylation and acetylation. In the present review, I broadly examine these events, highlighting their regulatory contributions, their ability to integrate signals from cellular events towards providing most appropriate response to stress conditions and their importance for tumour suppression. These are fascinating aspects of molecular oncology that hold the key to understanding the molecular pathology of cancer and the routes by which it may be tackled therapeutically.
Collapse
|
50
|
Mieloch AA, Suchorska WM. The concept of radiation-enhanced stem cell differentiation. Radiol Oncol 2015; 49:209-16. [PMID: 26401125 PMCID: PMC4577216 DOI: 10.1515/raon-2015-0022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 06/05/2015] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Efficient stem cell differentiation is considered to be the holy grail of regenerative medicine. Pursuing the most productive method of directed differentiation has been the subject of numerous studies, resulting in the development of many effective protocols. However, the necessity for further improvement in differentiation efficiency remains. This review contains a description of molecular processes underlying the response of stem cells to ionizing radiation, indicating its potential application in differentiation procedures. In the first part, the radiation-induced damage response in various types of stem cells is described. Second, the role of the p53 protein in embryonic and adult stem cells is highlighted. Last, the hypothesis on the mitochondrial involvement in stem cell development including its response to ionizing radiation is presented. CONCLUSIONS In summary, despite the many threats of ionizing radiation concerning genomic instability, subjecting cells to the appropriate dosage of ionizing radiation may become a useful method for enhancing directed differentiation in certain stem cell types.
Collapse
Affiliation(s)
- Adam A. Mieloch
- Radiobiology Laboratory, Department of Medical Physics, The Greater Poland Cancer Centre
| | - Wiktoria M. Suchorska
- Radiobiology Laboratory, Department of Medical Physics, The Greater Poland Cancer Centre
| |
Collapse
|