1
|
Ghisalberti CA, Tezze C. Assessing the Noninferiority of the Spermidine Hyaluronate Complex Relative to 17β-Estradiol Treatment in the Ovariectomized Murine Model of Vulvovaginal Atrophy. J Menopausal Med 2025; 31:35-44. [PMID: 40347164 PMCID: PMC12070118 DOI: 10.6118/jmm.24022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/20/2024] [Accepted: 12/22/2024] [Indexed: 05/12/2025] Open
Abstract
OBJECTIVES Vulvovaginal atrophy (VVA) presents significant challenges in postmenopausal women. VVA is typically managed either with hormonal-estrogenic therapy or nonpharmacologically with hyaluronic acid (HA) treatments. This study has investigated an advanced formulation, Ubigel Donna™, consisting of an spermidine hyaluronate (Spd-HA) complex formed by combining spermidine and HA. Initial clinical trials have demonstrated promising outcomes for this formulation. METHODS Local administrations of Spd-HA gel, HA gel, and 17β-estradiol (E2) gel were evaluated under a pulsatile regimen in ovariectomized Wistar female rats for assessing therapeutic efficacy. RESULTS While E2 treatment demonstrated robust tissue revitalization through restored endometrial thickness and estrus-like vaginal epithelia, the HA gel yielded contradicting atrophic conditions (metestrus). The Spd-HA gel demonstrated an intermediate mucosal status with enhanced differentiation. All three treatments demonstrated similar regulation of the vaginal pH. CONCLUSIONS This study reaffirmed the efficacy of the estrogen replacement therapy. More importantly, the Spd-HA approach can be considered as a promising alternative for patients unable to use hormonal treatments. Thus, Ubigel Donna™ can be considered as an enhanced nonpharmacological solution for the widespread burden of postmenopausal VVA.
Collapse
Affiliation(s)
- Carlo Angelo Ghisalberti
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
- Research Department, Tixupharma Srl, Milan, Italy.
| | - Caterina Tezze
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
- Research Department, Tixupharma Srl, Milan, Italy.
| |
Collapse
|
2
|
Murina F, Graziottin A, Toni N, Schettino MT, Bello L, Marchi A, Del Bravo B, Gambini D, Tiranini L, Nappi RE. Clinical Evidence Regarding Spermidine-Hyaluronate Gel as a Novel Therapeutic Strategy in Vestibulodynia Management. Pharmaceutics 2024; 16:1448. [PMID: 39598571 PMCID: PMC11597842 DOI: 10.3390/pharmaceutics16111448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
Background: Vestibulodynia (VBD) represents a summation and overlapping of trigger factors (infections, hormonal disturbances, allergies, genetic aspects, psychological vulnerability, and others) with broad individual variability. As there are no standard treatment options for VBD, the disease is still in need of appropriate therapeutic tools. Objectives: A prospective observational trial was performed to confirm the efficacy of a topical gel containing a spermidine-hyaluronate complex (UBIGEL donna™) as either a stand-alone or companion treatment through a multicenter study on a large sample population. Methods: For women with VBD (n = 154), the treatment consisted of approximately two months (4 + 4 weeks) of applications according to the posology of UBIGEL. Evaluation of symptoms was performed on relevant clinical endpoints: dyspareunia and vulvovaginal pain/burning by a visual scale (VAS); vestibular trophism by a vestibular trophic health (VeTH) score; vulvoscopy through a cotton swab test; and the level of hypertonic pelvic floor by a physical graded assessment of levator ani hypertonus. Results: A total of 154 patients treated with UBIGEL donna™ showed significant improvements across all five evaluated parameters, including pain, dyspareunia, swab test results, muscle hypertonicity, and vestibular trophism. Pain and dyspareunia scores decreased by 46.5% and 33.5%, respectively, while significant improvements were also observed in the other parameters (p < 0.0001). These improvements were consistent across various stratifications, including age and disease duration. Conclusions: The findings of the present study suggest that UBIGEL donna™ is effective in alleviating pain and dyspareunia, as well as reducing vestibular hypersensitivity in women with VBD. Although UBIGEL donna™ alone cannot serve as a comprehensive substitute for all recommended therapies, we suggest that multimodal therapy strategies may be crucial for attaining substantial improvement in any aspect of the condition.
Collapse
Affiliation(s)
- Filippo Murina
- Lower Genital Tract Disease Unit, V. Buzzi Hospital, University of the Study of Milan, 20122 Milan, Italy
| | - Alessandra Graziottin
- Centre of Gynaecology and Medical Sexology, Department of Obstetrics and Gynaecology, San Raffaele Resnati Hospital, 20097 Milan, Italy;
| | - Nicla Toni
- Isola Tiberina Hospital-Gemelli Isola, 00186 Rome, Italy;
| | - Maria Teresa Schettino
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Luca Bello
- Ce.Mu.S.S., ASL Città Di Torino, 10128 Turin, Italy;
| | | | | | - Dania Gambini
- Graziottin Foundation for the Management and Treatment of Pain in Women, NPO, 20097 Milan, Italy;
| | - Lara Tiranini
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Viale Golgi 19, 27100 Pavia, Italy; (L.T.); (R.E.N.)
| | - Rossella Elena Nappi
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Viale Golgi 19, 27100 Pavia, Italy; (L.T.); (R.E.N.)
- Research Center for Reproductive Medicine and Gynecological Endocrinology—Menopause Unit, IRCCS S Matteo Foundation, 27100 Pavia, Italy
| |
Collapse
|
3
|
Calabrese E, Hayes AW, Pressman P, Kapoor R, Dhawan G, Calabrese V, Agathokleous E. Polyamines and hormesis: Making sense of a dose response dichotomy. Chem Biol Interact 2023; 386:110748. [PMID: 37816449 DOI: 10.1016/j.cbi.2023.110748] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/08/2023] [Accepted: 09/22/2023] [Indexed: 10/12/2023]
Abstract
The diverse biological effects of polyamines (putrescine, spermidine and spermine) were reviewed in the context of hormesis in an integrative manner for the first time. The findings illustrate that each of these polyamines commonly induces hormetic dose responses in a wide range of biological models and types of cells for multiple endpoints in numerous plant species and animal models. Plant research emphasized preconditioning experimental studies in which the respective polyamines conferred some protection against the damaging effects of a broad range of environmental stressors such as drought, salinity, cold/heat, heavy metals and UV-damage in an hormetic manner. Polyamine-based animal hormesis studies emphasized biomedical endpoints such as longevity and neuroprotection. These findings have important biological and biomedical implications and should guide experimental designs of low dose investigations.
Collapse
Affiliation(s)
- Edward Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA, 01003, USA.
| | - A Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management, College of Public Health, University of South Florida, Tampa, FL, USA.
| | - Peter Pressman
- University of Maine, 5728 Fernald Hall, Room 201, Orono, ME, 04469, USA.
| | - Rachna Kapoor
- Saint Francis Hospital and Medical Center, Hartford, CT, USA.
| | | | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine University of Catania, Via Santa Sofia 97, Catania, 95123, Italy.
| | - Evgenios Agathokleous
- School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| |
Collapse
|
4
|
Madeo F, Eisenberg T, Pietrocola F, Kroemer G. Spermidine in health and disease. Science 2018; 359:359/6374/eaan2788. [DOI: 10.1126/science.aan2788] [Citation(s) in RCA: 438] [Impact Index Per Article: 62.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
5
|
Peptide Regulation of Skin Fibroblast Functions during Their Aging In Vitro. Bull Exp Biol Med 2016; 161:175-8. [PMID: 27259496 DOI: 10.1007/s10517-016-3370-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Indexed: 10/21/2022]
Abstract
The effect peptides KE, KED, AED and AEDG on proliferation (Ki-67), regeneration and aging (CD98hc), apoptosis (caspase-3), and extracellular matrix remodeling (MMP-9) in skin fibroblasts during their aging in culture were studied by immunofluorescent confocal microscopy. All studied peptides inhibited MMP-9 synthesis that increases during aging of skin fibroblasts and enhanced the expression of Ki-67 and CD98hc that are less intensively synthesized during cell aging. Peptides AED and AEDG suppressed caspase-dependent apoptosis that increases during aging of cell cultures.
Collapse
|
6
|
Ghisalberti CA, Borzì RM, Cetrullo S, Flamigni F, Cairo G. Soft TCPTP Agonism-Novel Target to Rescue Airway Epithelial Integrity by Exogenous Spermidine. Front Pharmacol 2016; 7:147. [PMID: 27375482 PMCID: PMC4892113 DOI: 10.3389/fphar.2016.00147] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/19/2016] [Indexed: 12/17/2022] Open
Abstract
A reparative approach of disrupted epithelium in obstructive airway diseases, namely asthma and chronic obstructive pulmonary disease (COPD), may afford protection and long-lasting results compared to conventional therapies, e.g., corticosteroids or immunosuppressant drugs. Here, we propose the polyamine spermidine as a novel therapeutic agent in airways diseases, based on a recently identified mode of action: T-cell protein tyrosine phosphatase (TCPTP) agonism. It may include and surpass single-inhibitors of stress and secondary growth factor pathway signaling, i.e., the new medicinal chemistry in lung diseases. Enhanced polyamine biosynthesis has been charged with aggravating prognosis by competing for L-arginine at detriment of nitric oxide (NO) synthesis with bronchoconstrictive effects. Although excess spermine, a higher polyamine, is harmful to airways physiology, spermidine can pivot the cell homeostasis during stress conditions by the activation of TCPTP. In fact, the dephosphorylating activity of TCPTP inhibits the signaling cascade that leads to the expression of genes involved in detachment and epithelial-to-mesenchymal transition (EMT), and increases the expression of adhesion and tight junction proteins, thereby enhancing the barrier functionality in inflammation-prone tissues. Moreover, a further beneficial effect of spermidine may derive from its ability to promote autophagy, possibly in a TCPTP-dependent way. Since doses of spermidine in the micromolar range are sufficient to activate TCPTP, low amounts of spermidine administered in sustained release modality may provide an optimal pharmacologic profile for the treatment of obstructive airway diseases.
Collapse
Affiliation(s)
- Carlo A Ghisalberti
- Department of Biomedical Sciences for Health, University of MilanMilan, Italy; TixupharmaMilan, Italy
| | - Rosa M Borzì
- Laboratory of Immunorheumatology and Tissue Regeneration, Rizzoli Orthopaedic Institute Bologna, Italy
| | - Silvia Cetrullo
- Department of Biomedical and Neuromotor Sciences, University of Bologna Bologna, Italy
| | - Flavio Flamigni
- Department of Biomedical and Neuromotor Sciences, University of Bologna Bologna, Italy
| | - Gaetano Cairo
- Department of Biomedical Sciences for Health, University of Milan Milan, Italy
| |
Collapse
|
7
|
Guerra GP, Rubin MA, Mello CF. Modulation of learning and memory by natural polyamines. Pharmacol Res 2016; 112:99-118. [PMID: 27015893 DOI: 10.1016/j.phrs.2016.03.023] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 03/09/2016] [Accepted: 03/11/2016] [Indexed: 01/08/2023]
Abstract
Spermine and spermidine are natural polyamines that are produced mainly via decarboxylation of l-ornithine and the sequential transfer of aminopropyl groups from S-adenosylmethionine to putrescine by spermidine synthase and spermine synthase. Spermine and spermidine interact with intracellular and extracellular acidic residues of different nature, including nucleic acids, phospholipids, acidic proteins, carboxyl- and sulfate-containing polysaccharides. Therefore, multiple actions have been suggested for these polycations, including modulation of the activity of ionic channels, protein synthesis, protein kinases, and cell proliferation/death, within others. In this review we summarize these neurochemical/neurophysiological/morphological findings, particularly those that have been implicated in the improving and deleterious effects of spermine and spermidine on learning and memory of naïve animals in shock-motivated and nonshock-motivated tasks, from a historical perspective. The interaction with the opioid system, the facilitation and disruption of morphine-induced reward and the effect of polyamines and putative polyamine antagonists on animal models of cognitive diseases, such as Alzheimer's, Huntington, acute neuroinflammation and brain trauma are also reviewed and discussed. The increased production of polyamines in Alzheimer's disease and the biphasic nature of the effects of polyamines on memory and on the NMDA receptor are also considered. In light of the current literature on polyamines, which include the description of an inborn error of the metabolism characterized by mild-to moderate mental retardation and polyamine metabolism alterations in suicide completers, we can anticipate that polyamine targets may be important for the development of novel strategies and approaches for understanding the etiopathogenesis of important central disorders and their pharmacological treatment.
Collapse
Affiliation(s)
- Gustavo Petri Guerra
- Department of Food Technology, Federal Technological University of Paraná, Campus Medianeira, Medianeira, PR 85884-000, Brazil
| | - Maribel Antonello Rubin
- Department of Biochemistry, Center of Exact and Natural Sciences, Federal University of Santa Maria (UFSM), Santa Maria, RS 97105-900, Brazil.
| | - Carlos Fernando Mello
- Department of Physiology and Pharmacology, Center of Health Sciences, Federal University of Santa Maria (UFSM), Santa Maria, RS 97105-900, Brazil.
| |
Collapse
|
8
|
Aug A, Altraja A, Altraja S, Laaniste L, Mahlapuu R, Soomets U, Kilk K. Alterations of bronchial epithelial metabolome by cigarette smoke are reversible by an antioxidant, O-methyl-L-tyrosinyl-γ-L-glutamyl-L-cysteinylglycine. Am J Respir Cell Mol Biol 2014; 51:586-94. [PMID: 24810251 DOI: 10.1165/rcmb.2013-0377oc] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Human bronchial epithelial cells (HBECs) have first-line contact with harmful substances during smoking, and changes in their metabolism most likely represent a defining factor in coping with the stress and development of airway diseases. This study was designed to determine the dynamics of metabolome changes in HBECs treated with cigarette smoke condensate (CSC), and to test whether normal metabolism can be restored by synthetic antioxidants. Principal component analysis, based on untargeted mass spectra, indicated that treatment of CSC-exposed HBECs with O-methyl-L-tyrosinyl-γ-L-glutamyl-L-cysteinylglycine (UPF1) acted faster than did N-acetylcysteine to revert the effect of CSC. The maximum effect of 10 μg/ml CSC itself on HBEC cell line, BEAS-2B, metabolism was seen at 2 hours after treatment, with return to the baseline level by 7 hours. In primary HBECs, the initial maximum effect was seen at 1 hour after CSC exposure. Certain metabolites associated with redox pathways and energy production were affected by CSC. Subsequent restoration of their content by UPF1 supports the hypothetical protective capacity of UPF1 against the oxidative stress and increased energy demand, respectively. Furthermore, UPF1 up-regulated the contents of phospholipid species identified as phosphatidylcholines and phosphatidylethanolamines in the CSC-exposed HBECs, indicating possible suppression of inflammatory processes along with an increase in spermidine as an endogenous cytoprotector. In conclusion, with this dynamic metabolomics study, we characterize the durability of the CSC-induced metabolic changes in BEAS-2B line cells and primary HBECs, and demonstrate the ability of UPF1 to significantly accelerate the recovery of HBECs from CSC insult.
Collapse
Affiliation(s)
- Argo Aug
- 1 Department of Biochemistry, Institute of Biomedicine and Translational Medicine, University of Tartu, the Centre of Excellence for Translational Medicine, Tartu, Estonia
| | | | | | | | | | | | | |
Collapse
|
9
|
Daglia M, Antiochia R, Sobolev AP, Mannina L. Untargeted and targeted methodologies in the study of tea (Camellia sinensis L.). Food Res Int 2014. [DOI: 10.1016/j.foodres.2014.03.070] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|