1
|
Wanroon R, Leksungnoen N, Kaewgrajang T. The use of Pisolithus albus found in saline areas to improve the growth of Eucalyptus seedlings under high salinity conditions. Mycologia 2024; 116:629-641. [PMID: 38959131 DOI: 10.1080/00275514.2024.2360607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 05/20/2024] [Indexed: 07/05/2024]
Abstract
Salinity is an abiotic factor limiting plant fitness and therefore forest crop productivity, and salt-affected areas have been expanding throughout the world. Ectomycorrhizal (ECM) fungi can improve the salt tolerance of woody plants, including Eucalyptus species To screen for salt-resistant Pisolithus albus (PA) isolates, 16 PA isolates were cultivated on modified Melin-Norkrans agar containing NaCl at concentrations of 0, 10, 20, and 30 dS m-1. The P. albus isolate PA33 had the greatest salt resistance under 10 and 20 dS m-1 NaCl, which are soil salinity levels in salt-affected areas of Thailand. We studied the effect of PA33 on Eucalyptus camaldulensis × E. pellita cuttings under salt stress (0 and 16 dS m-1) for 1 month. PA enhanced the growth of the Eucalyptus seedlings, as indicated by higher relative growth rates in height and root collar diameter of inoculated seedlings compared with non-inoculated seedlings. Moreover, the inoculated seedlings had less cell damage from NaCl, as indicated by significantly lesser leaf thickness and electrolyte leakage than the controls. These findings could lead to practices conferring socioeconomic and environmental benefits, as abandoned salt-affected areas could be reclaimed using such Eucalyptus seedlings inoculated with salt-tolerant ECM fungi.
Collapse
Affiliation(s)
- Rattima Wanroon
- Royal Forest Department, 61 Phahonyothin Road, Lat Yao, Chatuchak, Bangkok 10900, Thailand
| | - Nisa Leksungnoen
- Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Phahonyothin Road, Lat Yao, Chatuchak, Bangkok 10900, Thailand
| | - Tharnrat Kaewgrajang
- Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Phahonyothin Road, Lat Yao, Chatuchak, Bangkok 10900, Thailand
| |
Collapse
|
2
|
Li J, Li C, Tsuruta M, Matsushita N, Goto S, Shen Z, Tsugama D, Zhang S, Lian C. Physiological and transcriptional responses of the ectomycorrhizal fungus Cenococcum geophilum to salt stress. MYCORRHIZA 2022; 32:327-340. [PMID: 35546369 DOI: 10.1007/s00572-022-01078-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 04/25/2022] [Indexed: 06/15/2023]
Abstract
Ectomycorrhizal (ECM) fungi improve the host plant's tolerance to abiotic and biotic stresses. Cenococcum geophilum (Cg) is among the most common ECM fungi worldwide and often grows in saline environments. However, the physiological and molecular mechanisms of salt tolerance in this fungus are largely unknown. In the present study, 12 isolates collected from different ecogeographic regions were used to investigate the mechanism of salt tolerance of Cg. The isolates were classified into four groups (salt-sensitive, moderately salt-tolerant, salt-tolerant, and halophilic) based on their in vitro mycelial growth under 0, 50, 125, 250, and 500 mM NaCl concentrations. Hence, the Na, Ca, P, and K concentrations of mycelia and the pH of the culture solution were determined. Compared with salt-tolerant isolates, treatment with 250 mM NaCl significantly increased the sodium concentration and decreased the potassium concentration of salt-sensitive isolates. RNA-sequencing and qRT-PCR analysis were conducted to identify differentially expressed genes (DEGs) involved in transmembrane transport and oxidoreductase activity pathways. The hydrogen peroxide concentration and activities of peroxidase and superoxide dismutase in mycelia were determined, and the accumulation and scavenging of reactive oxygen species in the salt-sensitive isolates were more active than those in the salt-tolerant isolates. The results supply functional validations to RNA-seq and qRT-PCR analysis. This study provides novel insights into the salt-stress response of Cg isolates and provides a foundation for elucidation of the salt-tolerance mechanism of ECM fungi.
Collapse
Affiliation(s)
- Jiali Li
- Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Midori-cho, Nishitokyo, Tokyo, 188-0002, Japan
| | - Chaofeng Li
- Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Midori-cho, Nishitokyo, Tokyo, 188-0002, Japan.
| | - Momi Tsuruta
- Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Midori-cho, Nishitokyo, Tokyo, 188-0002, Japan
- Department of Forest Molecular Genetics and Biotechnology, Forestry and Forest Products Research Institute, 1 Matsunosato, Tsukuba, Ibaraki, 305-8687, Japan
| | - Norihisa Matsushita
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Susumu Goto
- The University of Tokyo Forests, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Zhenguo Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Daisuke Tsugama
- Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Midori-cho, Nishitokyo, Tokyo, 188-0002, Japan
| | - Shijie Zhang
- Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Midori-cho, Nishitokyo, Tokyo, 188-0002, Japan
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Chunlan Lian
- Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Midori-cho, Nishitokyo, Tokyo, 188-0002, Japan.
| |
Collapse
|
3
|
Kitagami Y, Matsuda Y. Effect of ectomycorrhizal fungal species on population growth and food preference of a fungivorous nematode. MYCORRHIZA 2022; 32:95-104. [PMID: 34982216 DOI: 10.1007/s00572-021-01063-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Fungivorous nematodes can use ectomycorrhizal (ECM) fungi as food resources in forest soils, and they may establish close predator-prey relationships in forest ecosystems. However, the effect of ECM fungal species on the growth of fungivorous nematodes is poorly studied. To identify fungivorous nematode propagation and preference for ECM fungi, we investigated the in vitro population growth and food attraction of the fungivorous nematode Aphelenchoides sp. on media with four ECM fungal species: Cenococcum geophilum, Pisolithus tinctorius, Rhizopogon roseolus and Suillus granulatus. Individual nematodes were fed on hyphae of all four ECM fungal species grown on modified Melin-Norkrans agar media. Nematode numbers were significantly lower on P. tinctorius than on all other fungal species. The other three species produced similar population growth rates, with S. granulatus producing the greatest number of nematodes at 2, 3 and 4 weeks and C. geophilum and R. roseolus producing the largest number after 8 weeks. In the histogram for nematode length classes, a unimodal pattern was fitted for P. tinctorius and R. roseolus, but a bimodal pattern was fitted for C. geophilum and S. granulatus by the Silverman test. The attraction of nematodes to S. granulatus was significantly higher than that to other ECM fungi. Our findings suggest that the propagation and body size of nematodes are ECM fungal species dependent. Predator-prey relationships between fungivorous nematodes and ECM fungi may accelerate nutrient cycles in forest ecosystems.
Collapse
Affiliation(s)
- Yudai Kitagami
- Laboratory of Forest Mycology, Graduate School of Bioresources, Mie University, Kurimamachiya 1577, Tsu, Mie, 514-8507, Japan.
| | - Yosuke Matsuda
- Laboratory of Forest Mycology, Graduate School of Bioresources, Mie University, Kurimamachiya 1577, Tsu, Mie, 514-8507, Japan
| |
Collapse
|
4
|
Molina‐Menor E, Tanner K, Vidal‐Verdú À, Peretó J, Porcar M. Microbial communities of the Mediterranean rocky shore: ecology and biotechnological potential of the sea-land transition. Microb Biotechnol 2019; 12:1359-1370. [PMID: 31562755 PMCID: PMC6801134 DOI: 10.1111/1751-7915.13475] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 12/29/2022] Open
Abstract
Microbial communities from harsh environments hold great promise as sources of biotechnologically relevant strains and compounds. In the present work, we have characterized the microorganisms from the supralittoral and splash zone in three different rocky locations of the Western Mediterranean coast, a tough environment characterized by high levels of irradiation and large temperature and salinity fluctuations. We have retrieved a complete view of the ecology and functional aspects of these communities and assessed the biotechnological potential of the cultivable microorganisms. All three locations displayed very similar taxonomic profiles, with the genus Rubrobacter and the families Xenococcaceae, Flammeovirgaceae, Phyllobacteriaceae, Rhodobacteraceae and Trueperaceae being the most abundant taxa; and Ascomycota and halotolerant archaea as members of the eukaryotic and archaeal community respectively. In parallel, the culture-dependent approach yielded a 100-isolates collection, out of which 12 displayed high antioxidant activities, as evidenced by two in vitro (hydrogen peroxide and DPPH) and confirmed in vivo with Caenorhabditis elegans assays, in which two isolates, CR22 and CR24, resulted in extended survival rates of the nematodes. This work is the first complete characterization of the Mediterranean splash-zone coastal microbiome, and our results indicate that this microbial niche is home of an extremophilic community that holds biotechnological potential.
Collapse
Affiliation(s)
- Esther Molina‐Menor
- Institute for Integrative Systems Biology ISysBioUniversitat de València‐CSICPaterna46980Spain
| | - Kristie Tanner
- Institute for Integrative Systems Biology ISysBioUniversitat de València‐CSICPaterna46980Spain
- Darwin Bioprospecting Excellence S.L. Parc Científic Universitat de ValènciaPaterna46980Spain
| | - Àngela Vidal‐Verdú
- Institute for Integrative Systems Biology ISysBioUniversitat de València‐CSICPaterna46980Spain
| | - Juli Peretó
- Institute for Integrative Systems Biology ISysBioUniversitat de València‐CSICPaterna46980Spain
- Darwin Bioprospecting Excellence S.L. Parc Científic Universitat de ValènciaPaterna46980Spain
- Departament de Bioquímica i Biologia MolecularUniversitat de ValènciaBurjassot46100Spain
| | - Manuel Porcar
- Institute for Integrative Systems Biology ISysBioUniversitat de València‐CSICPaterna46980Spain
- Darwin Bioprospecting Excellence S.L. Parc Científic Universitat de ValènciaPaterna46980Spain
| |
Collapse
|
5
|
Guerrero-Galán C, Calvo-Polanco M, Zimmermann SD. Ectomycorrhizal symbiosis helps plants to challenge salt stress conditions. MYCORRHIZA 2019; 29:291-301. [PMID: 31011805 DOI: 10.1007/s00572-019-00894-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 04/08/2019] [Indexed: 05/27/2023]
Abstract
Soil salinity is an environmental condition that is currently increasing worldwide. Plant growth under salinity induces osmotic stress and ion toxicity impairing root water and nutrient absorption, but the association with beneficial soil microorganisms has been linked to an improved adaptation to this constraint. The ectomycorrhizal (ECM) symbiosis has been proposed as a key factor for a better tolerance of woody species to salt stress, thanks to the reduction of sodium (Na+) uptake towards photosynthetic organs. Although no precise mechanisms for this enhanced plant salt tolerance have been described yet, in this review, we summarize the knowledge accumulated so far on the role of ECM symbiosis. Moreover, we propose several strategies by which ECM fungi might help plants, including restriction of Na+ entrance into plant tissues and improvement of mineral nutrition and water balances. This positive effect of ECM fungi has been proven in field assays and the results obtained point to a promising application in forestry cultures and reforestation.
Collapse
Affiliation(s)
- Carmen Guerrero-Galán
- BPMP, Univ Montpellier, CNRS, INRA, SupAgro, Montpellier, France
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA), Universidad Politécnica de Madrid (UPM), 28223, Pozuelo de Alarcón, Spain
| | | | | |
Collapse
|
6
|
Zwiazek JJ, Equiza MA, Karst J, Senorans J, Wartenbe M, Calvo-Polanco M. Role of urban ectomycorrhizal fungi in improving the tolerance of lodgepole pine (Pinus contorta) seedlings to salt stress. MYCORRHIZA 2019; 29:303-312. [PMID: 30982089 DOI: 10.1007/s00572-019-00893-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 04/02/2019] [Indexed: 05/27/2023]
Abstract
With large forested urban areas, the city of Edmonton, Alberta, Canada, faces high annual costs of replacing trees injured by deicing salts that are commonly used for winter road maintenance. Ectomycorrhizal fungi form symbiotic associations with tree roots that allow trees to tolerate the detrimental effects of polluted soils. Here, we examined mycorrhizal colonization of Pinus contorta by germinating seeds in soils collected from different locations: (1) two urban areas within the city of Edmonton, and (2) an intact pine forest just outside Edmonton. We then tested the responses of seedlings to 0-, 60-, and 90-mM NaCl. Our results showed lower abundance and diversity of ectomycorrhizal fungi in seedlings colonized with the urban soils compared to those from the pine forest soil. However, when subsequently exposed to NaCl treatments, only seedlings inoculated with one of the urban soils containing fungi from the genera Tuber, Suillus, and Wilcoxina, showed reduced shoot Na accumulation and higher growth rates. Our results indicate that local ectomycorrhizal fungi that are adapted to challenging urban sites may offer a potential suitable source for inoculum for conifer trees designated for plating in polluted urban environments.
Collapse
Affiliation(s)
- Janusz J Zwiazek
- Department of Renewable Resources, University of Alberta, 4-42 Earth Sciences Building, Edmonton, AB, T6G 2E3, Canada
| | - Maria A Equiza
- Department of Renewable Resources, University of Alberta, 4-42 Earth Sciences Building, Edmonton, AB, T6G 2E3, Canada
| | - Justine Karst
- Department of Renewable Resources, University of Alberta, 4-42 Earth Sciences Building, Edmonton, AB, T6G 2E3, Canada
| | - Jorge Senorans
- Department of Renewable Resources, University of Alberta, 4-42 Earth Sciences Building, Edmonton, AB, T6G 2E3, Canada
| | - Mark Wartenbe
- City of Edmonton, P.O. Box 2359, Edmonton, AB, T5J 2R7, Canada
| | - Monica Calvo-Polanco
- Department of Renewable Resources, University of Alberta, 4-42 Earth Sciences Building, Edmonton, AB, T6G 2E3, Canada.
| |
Collapse
|
7
|
Obase K, Douhan GW, Matsuda Y, Smith ME. Isolation source matters: sclerotia and ectomycorrhizal roots provide different views of genetic diversity in Cenococcum geophilum. Mycologia 2018; 110:473-481. [PMID: 29923792 DOI: 10.1080/00275514.2018.1463130] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Cenococcum geophilum forms sclerotia and ectomycorrhizas with host plants in forest soils. We demonstrated the differences in genetic diversity of C. geophilum between cultured isolates from sclerotia and those from ectomycorrhizal roots in the same 73 soil samples based on glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene sequences and newly developed microsatellite markers. Based on GAPDH sequences, 759 cultured isolates (553 from sclerotia and 206 from ectomycorrhizas) were classified into 107 "genotypes" with sequence variation of up to 8.6%. The total number of GAPDH genotypes per soil sample ranged from 1 to 9, but genotypes that were shared between sclerotia and ectomycorrhizas were uncommon (0-3 per soil sample). More than 50% of GAPDH genotypes were unique to one source in most soil samples. Unique GAPDH genotypes were detected from either scleotia or ectomycorrhizal roots in most of the soil samples. Multilocus analysis using nine microsatellite markers provided additional resolution to differentiate fungal individuals and supported the results of GAPDH genotyping. The results indicated that sampling both sclerotia and ectomycorrhizal roots maximizes the detection of diversity at the soil core scale. On the other hand, when all isolates were viewed together, 82 GAPDH genotypes were unique to sclerotia whereas only 6 GAPDH genotypes were unique to ectomycorrhizas. Rarefaction analysis indicated that GAPDH genotypic diversity is significantly higher in sclerotia than ectomycorrhizal roots and the diversity within sclerotia is nearly the same as that of both sclerotia and ectomycorrhizas together. These findings suggest that sampling sclerotia alone is likely to detect the majority of GAPDH genotypes in Cenococcum at the regional scale. When deciding whether to sample sclerotia, ectomycorrhizas, or both types of tissues from Cenococcum, it is critical to consider the spatial scale and also the main questions and hypotheses of the study.
Collapse
Affiliation(s)
- Keisuke Obase
- a Microbial Ecology Laboratory, Department of Mushroom Science and Forest Microbiology , Forestry and Forest Products Research Institute , 1 Matsunosato, Tsukuba , Ibaraki 305-8687 , Japan.,b Department of Plant Pathology , University of Florida , 2523 Fifield Hall, Gainesville , Florida 32611-0680
| | - Greg W Douhan
- c Department of Plant Pathology and Microbiology , University of California , Riverside , California 92521.,d Cooperative Extension, Tulare County , University of California , Tulare , California 93274
| | - Yosuke Matsuda
- e Laboratory of Forest Mycology, Graduate School of Bioresources , Mie University , Kurimamachiya 1577, Tsu , Mie 514-8507 , Japan
| | - Matthew E Smith
- b Department of Plant Pathology , University of Florida , 2523 Fifield Hall, Gainesville , Florida 32611-0680
| |
Collapse
|
8
|
Intraspecific variation in mycelial growth of Cenococcum geophilum isolates in response to salinity gradients. MYCOSCIENCE 2017. [DOI: 10.1016/j.myc.2017.04.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Obase K, Douhan GW, Matsuda Y, Smith ME. Revisiting phylogenetic diversity and cryptic species of Cenococcum geophilum sensu lato. MYCORRHIZA 2016; 26:529-540. [PMID: 26968743 DOI: 10.1007/s00572-016-0690-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 02/29/2016] [Indexed: 06/05/2023]
Abstract
The fungus Cenococcum geophilum Fr. (Dothideomycetes, Ascomycota) is one of the most common ectomycorrhizal fungi in boreal to temperate regions. A series of molecular studies has demonstrated that C. geophilum is monophyletic but a heterogeneous species or a species complex. Here, we revisit the phylogenetic diversity of C. geophilum sensu lato from a regional to intercontinental scale by using new data from Florida (USA) along with existing data in GenBank from Japan, Europe, and North America. The combination of internal transcribed spacer (ITS) ribosomal DNA and the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene resolved six well-supported lineages (87-100 % bootstrap values) that are closely related to each other and a seventh lineage that is phylogenetically distinct. A multi-locus analysis (small subunit (SSU), large subunit (LSU), translational elongation factor (TEF), and the largest and second-largest subunits of RNA polymerase II (RPB1 and RPB2)) revealed that the divergent lineage is the sister group to all other known Cenococcum isolates. Isolates of the divergent lineage grow fast on nutrient media and do not form ectomycorrhizas on seedlings of several pine and oak species. Our results indicate that C. geophilum sensu lato includes more phylogenetically distinct cryptic species than have previously been reported. Furthermore, the divergent lineage appears to be a non-mycorrhizal sister group. We discuss the phylogenetic diversity of C. geophilum sensu lato and argue in favor of species recognition based on phylogenetic and ecological information in addition to morphological characteristics. A new genus and species (Pseudocenococcum floridanum gen. et sp. nov.) is proposed to accommodate a divergent and putatively non-mycorrhizal lineage.
Collapse
Affiliation(s)
- Keisuke Obase
- Microbial Ecology Laboratory, Department of Forest Microbiology, Forestry and Forest Products Research Institute, 1 Matsunosato, Tsukuba, Ibaraki, 305-8687, Japan.
- Department of Plant Pathology, University of Florida, 2517 Fifield Hall, Gainesville, FL, 32611-0680, USA.
| | - Greg W Douhan
- Department of Plant Pathology and Microbiology, University of California, Riverside, CA, 92521, USA
- Cooperative Extension Advisor, Tulare Co., University of California, Tulare, CA, 93274, USA
| | - Yosuke Matsuda
- Laboratory of Forest Pathology and Mycology, Graduate School of Bioresources, Mie University, Kurimamachiya 1577, Tsu, Mie, 514-8507, Japan
| | - Matthew E Smith
- Department of Plant Pathology, University of Florida, 2517 Fifield Hall, Gainesville, FL, 32611-0680, USA
| |
Collapse
|
10
|
Beaudoin-Nadeau M, Gagné A, Bissonnette C, Bélanger PA, Fortin JA, Roy S, Greer CW, Khasa DP. Performance of ectomycorrhizal alders exposed to specific Canadian oil sands tailing stressors under in vivo bipartite symbiotic conditions. Can J Microbiol 2016; 62:543-9. [PMID: 27170470 DOI: 10.1139/cjm-2015-0703] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Canadian oil sands tailings are predominately sodic residues contaminated by hydrocarbons such as naphthenic acids. These conditions are harsh for plant development. In this study, we evaluated the effect of inoculating roots of Alnus viridis ssp. crispa and Alnus incana ssp. rugosa with ectomycorrhizal fungi in the presence of tailings compounds. Seedlings were inoculated with 7 different strains of Paxillus involutus and Alpova diplophloeus and were grown under different treatments of NaCl, Na2SO4, and naphthenic acids in a growth chamber. Afterwards, seedling survival, height, dry biomass, leaf necrosis, and root mycorrhization rate were measured. Paxillus involutus Mai was the most successful strain in enhancing alder survival, health, and growth. Seedlings inoculated with this strain displayed a 25% increase in survival rate, 2-fold greater biomass, and 2-fold less leaf necrosis compared with controls. Contrary to our expectations, A. diplophloeus was not as effective as P. involutus in improving seedling fitness, likely because it did not form ectomycorrhizae on roots of either alder species. High intraspecific variation characterized strains of P. involutus in their ability to stimulate alder height and growth and to minimize leaf necrosis. We conclude that in vivo selection under bipartite symbiotic conditions is essential to select effective strains that will be of use for the revegetation and reclamation of derelict lands.
Collapse
Affiliation(s)
- Martin Beaudoin-Nadeau
- a Centre d'étude de la forêt et Institut de biologie intégrative et des systèmes, Université Laval, Ste-Foy, QC G1V 0A6, Canada
| | - André Gagné
- a Centre d'étude de la forêt et Institut de biologie intégrative et des systèmes, Université Laval, Ste-Foy, QC G1V 0A6, Canada
| | - Cyntia Bissonnette
- b Centre SÈVE, Département de biologie, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Pier-Anne Bélanger
- b Centre SÈVE, Département de biologie, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - J André Fortin
- a Centre d'étude de la forêt et Institut de biologie intégrative et des systèmes, Université Laval, Ste-Foy, QC G1V 0A6, Canada
| | - Sébastien Roy
- b Centre SÈVE, Département de biologie, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Charles W Greer
- c National Research Council, Biotechnology Research Institute, Montréal, QC H4P 2R2, Canada
| | - Damase P Khasa
- a Centre d'étude de la forêt et Institut de biologie intégrative et des systèmes, Université Laval, Ste-Foy, QC G1V 0A6, Canada
| |
Collapse
|
11
|
Matsuda Y, Takeuchi K, Obase K, Ito SI. Spatial distribution and genetic structure of Cenococcum geophilum in coastal pine forests in Japan. FEMS Microbiol Ecol 2015; 91:fiv108. [PMID: 26347080 DOI: 10.1093/femsec/fiv108] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2015] [Indexed: 11/13/2022] Open
Abstract
The asexual ectomycorrhizal fungus Cenococcum geophilum has a wide geographic range in diverse forest ecosystems. Although its genetic diversity has been documented at a stand or regional scale, knowledge of spatial genetic structure is limited. We studied the genetic diversity and spatial structure of C. geophilum in eight Japanese coastal pine forests with a maximum geographic range of 1364 km. A total of 225 samples were subjected to phylogenetic analysis based on the glyceraldehyde 3-phosphate dehydrogenase gene (GAPDH) followed by microsatellite analysis with five loci. The phylogenetic analysis based on GAPDH resolved three groups with most isolates falling into one dominant lineage. Microsatellite analyses generated 104 multilocus genotypes in the overall populations. We detected significant genetic variation within populations and genetic clusters indicating that high genetic diversity may be maintained by possible recombination processes at a stand scale. Although no spatial autocorrelation was detected at a stand scale, the relationship between genetic and geographic distances among the populations was significant, suggesting a pattern of isolation by distance. These results indicate that cryptic recombination events at a local scale and unknown migration events at both stand and regional scales influence spatial distribution and genetic structure of C. geophilum in coastal pine forests of Japan.
Collapse
Affiliation(s)
- Yosuke Matsuda
- Laboratory of Forest Pathology and Mycology, Graduate School of Bioresources, Mie University, Kurimamachiya 1577, Tsu, Mie 514-8507, Japan
| | - Kosuke Takeuchi
- Faculty of Bioresources, Mie University, Kurimamachiya 1577, Tsu, Mie 514-8507, Japan
| | - Keisuke Obase
- Laboratory of Forest Pathology and Mycology, Graduate School of Bioresources, Mie University, Kurimamachiya 1577, Tsu, Mie 514-8507, Japan Department of Plant Pathology, University of Florida, 2517 Fifield Hall, Gainesville FL 32611-0680, USA
| | - Shin-ichiro Ito
- Laboratory of Forest Pathology and Mycology, Graduate School of Bioresources, Mie University, Kurimamachiya 1577, Tsu, Mie 514-8507, Japan Mie University, Kurimamachiya 1577, Tsu, Mie 514-8507, Japan
| |
Collapse
|
12
|
Obase K, Matsuda Y. Culturable fungal endophytes in roots of Enkianthus campanulatus (Ericaceae). MYCORRHIZA 2014; 24:635-644. [PMID: 24795166 DOI: 10.1007/s00572-014-0584-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 04/21/2014] [Indexed: 06/03/2023]
Abstract
Roots of plants in the genus Enkianthus, which belongs to the earliest diverging lineage in the Ericaceae, are commonly colonized by arbuscular mycorrhizal (AM) fungi. We documented the community of fungal root endophytes associated with Enkianthus species using a culture-based method for better understanding the members of root-colonizing fungi, except for AM fungi. Fungal isolates were successfully obtained from 610 out of 3,599 (16.9 %) root segments. Molecular analysis of fungal cultures based on ribosomal internal transcribed spacer (ITS) sequences yielded 63 operational taxonomical units (OTUs: 97 % sequence similarity cutoff) from 315 representative isolates. Further phylogenetic analysis showed that most (296 isolates) belonged to Ascomycota and were either members of Helotiales (Dermataceae, Hyaloscyphaceae, Phialocephala and Rhizoscyphus ericae aggregate), Oidiodendron, or other Pezizomycotina. Twenty-three out of 63 OTUs, which mainly consisted of Leotiomycetes, showed high similarities with reference sequences derived from roots of other ericaceous plants such as Rhododendron. The results indicated that Enkianthus houses variable root mycobionts including putative endophytic and mycorrhizal fungi in addition to AM fungi.
Collapse
Affiliation(s)
- Keisuke Obase
- Department of Plant Pathology, University of Florida, 2523 Fifield Hall, Gainesville, FL, 32611-0680, USA,
| | | |
Collapse
|
13
|
Obase K, Douhan GW, Matsuda Y, Smith ME. Culturable fungal assemblages growing within Cenococcum sclerotia in forest soils. FEMS Microbiol Ecol 2014; 90:708-17. [PMID: 25229424 DOI: 10.1111/1574-6941.12428] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 09/11/2014] [Accepted: 09/12/2014] [Indexed: 11/27/2022] Open
Abstract
The ectomycorrhizal fungus Cenococcum geophilum (Ascomycota, Dothideomycetes) forms black, round to irregular sclerotia in forest soils. Fungi that colonize the sclerotia appear to affect sclerotia viability and may play an important role in the life history of Cenococcum. Some of the fungi could also affect nutrient cycling by decomposing Cenococcum sclerotia, which are melanized and recalcitrant to decay. We used a culture-based method to document the fungal communities growing inside surface-sterilized sclerotia that were collected from forest soils. Cenococcum was successfully isolated from 297 of 971 sclerotia whereas 427 sclerotia hosted fungi other than Cenococcum. DNA barcoding of the internal transcribed spacer rDNA followed by grouping at 97% sequence similarity yielded 85 operational taxonomic units (OTUs) that consisted primarily of Ascomycota (e.g. Chaetothyriales, Eurotiales, Helotiales, Pleosporales) and a few Basidiomycota and Mucoromycotina. Although most fungal OTUs were infrequently cultured, several OTUs such as members of Asterostroma, Cladophialophora, Oidiodendron, and Pleosporales were common and found across many sites. Our results suggest that Cenococcum sclerotia act as a substrate for diverse fungi. The occurrence of several OTUs in sclerotia across many sites suggests that these fungi may be active parasites of Cenococcum sclerotia or may preferentially use sclerotia as a nutrient source.
Collapse
Affiliation(s)
- Keisuke Obase
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA
| | | | | | | |
Collapse
|
14
|
Obase K, Lee SY, Chun KW, Lee JK. Enzyme Activity of Cenococcum geophilum Isolates on Enzyme-specific Solid Media. MYCOBIOLOGY 2011; 39:125-128. [PMID: 22783090 PMCID: PMC3385097 DOI: 10.4489/myco.2011.39.2.125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 05/13/2011] [Indexed: 06/01/2023]
Abstract
Enzyme activities of Cenococcum geophilum isolates were examined on enzyme-specific solid media. Deoxyribonuclease, phosphatase, and urease were detected in all isolates, whereas cellulase was not detected in any of the isolates. Variations in enzyme activities of amylase, caseinolysis, gelatinase, lipase, and ribonuclease were observed among isolates.
Collapse
Affiliation(s)
- Keisuke Obase
- College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 200-701, Korea
| | | | | | | |
Collapse
|