1
|
Aguiar Santiago JA, Marrero Miragaya MA, Figueroa Oliva DA, Aguilar Juanes A, Idavoy Corona A, Martínez Fernández S, Morán Bertot I, Rodríguez Hernández M, Canales López E, Hernández Esteves I, Silva Girado JA, Estrada Vázquez RC, Gell Cuesta O, Mendoza-Marí Y, Valdés Prado I, Rodríguez Ibarra C, Palenzuela Gardon DO, Pentón Arias E, Guillén Nieto G, Aguilar Rubido JC. Preparing for the Next Pandemic: Increased Expression of Interferon-Stimulated Genes After Local Administration of Nasalferon or HeberNasvac. DNA Cell Biol 2024; 43:95-102. [PMID: 38118108 DOI: 10.1089/dna.2023.0283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023] Open
Abstract
HeberNasvac, a therapeutic vaccine for chronic hepatitis B, is able to safely stimulate multiple Toll-like receptors, increasing antigen presentation in vitro and in a phase II clinical trial (Profira) in elderly volunteers who were household contacts of respiratory infection patients. Thus, a new indication as a postexposure prophylaxis or early therapy for respiratory infections has been proposed. In this study, we evaluated the expression of several interferon-stimulated genes (ISGs) after mucosal administration of HeberNasvac and compared this effect with the nasal delivery of interferon alpha 2b (Nasalferon). Molecular studies of blood samples of 50 subjects from the Profira clinical trial who were locally treated with HeberNasvac or Nasalferon and concurrent untreated individuals were compared based on their relative mRNA expression of OAS1, ISG15, ISG20, STAT1, STAT3, and DRB1-HLA II genes. In most cases, the gene expression induced by HeberNasvac was similar in profile and intensity to the expression induced by Nasalferon and significantly superior to that observed in untreated controls. The immune stimulatory effect of HeberNasvac on ISGs paved the way for its future use as an innate immunity stimulator in elderly persons and immunocompromised subjects or as part of Mambisa, a nasal vaccine to prevent severe acute respiratory syndrome coronavirus 2 infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ivis Morán Bertot
- Plant Molecular Biology Department, Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| | | | - Eduardo Canales López
- Plant Genomic Department, Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| | | | - José Angel Silva Girado
- Olinonucleotide Synthesis Department, Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| | | | - Omar Gell Cuesta
- Olinonucleotide Synthesis Department, Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| | - Yssel Mendoza-Marí
- Vaccine Department, Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| | - Iris Valdés Prado
- Vaccine Department, Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| | | | | | - Eduardo Pentón Arias
- Vaccine Department, Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| | - Gerardo Guillén Nieto
- Vaccine Department, Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| | | |
Collapse
|
2
|
Park PG, Fatima M, An T, Moon YE, Woo S, Youn H, Hong KJ. Current development of therapeutic vaccines for the treatment of chronic infectious diseases. Clin Exp Vaccine Res 2024; 13:21-27. [PMID: 38362373 PMCID: PMC10864879 DOI: 10.7774/cevr.2024.13.1.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 12/29/2023] [Indexed: 02/17/2024] Open
Abstract
Chronic infectious diseases refer to diseases that require a long period of time from onset to cure or death, the use of therapeutic vaccines has recently emerged to eradicate diseases. Currently, clinical research is underway to develop therapeutic vaccines for chronic infectious diseases based on various vaccine formulations, and the recent success of the messenger RNA vaccine platform and efforts to apply it to therapeutic vaccines are having a positive impact on conquering chronic infectious diseases. However, since research on the development of therapeutic vaccines is still relatively lacking compared to prophylactic vaccines, there is a need to focus more on the development of therapeutic vaccines to overcome threats to human health caused by chronic infectious diseases. In order to accelerate the development of therapeutic vaccines for chronic infectious diseases in the future, it is necessary to establish a clear concept of therapeutic vaccines suitable for the characteristics of each chronic infectious disease, as well as standardize vaccine effectiveness evaluation methods, secure standards/reference materials, and simplify the vaccine approval procedure.
Collapse
Affiliation(s)
- Pil-Gu Park
- Department of Microbiology, Gachon University College of Medicine, Incheon, Korea
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea
| | - Munazza Fatima
- Department of Microbiology, Gachon University College of Medicine, Incheon, Korea
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea
| | - Timothy An
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea
| | - Ye-Eun Moon
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Korea
| | - Seungkyun Woo
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Korea
| | - Hyewon Youn
- Department of Nuclear Medicine, Cancer Imaging Center, Seoul National University Hospital, Seoul, Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Kee-Jong Hong
- Department of Microbiology, Gachon University College of Medicine, Incheon, Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Korea
| |
Collapse
|
3
|
Chen S, Guan F, Candotti F, Benlagha K, Camara NOS, Herrada AA, James LK, Lei J, Miller H, Kubo M, Ning Q, Liu C. The role of B cells in COVID-19 infection and vaccination. Front Immunol 2022; 13:988536. [PMID: 36110861 PMCID: PMC9468879 DOI: 10.3389/fimmu.2022.988536] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 07/26/2022] [Indexed: 12/23/2022] Open
Abstract
B cells secrete antibodies and mediate the humoral immune response, making them extremely important in protective immunity against SARS-CoV-2, which caused the coronavirus disease 2019 (COVID-19) pandemic. In this review, we summarize the positive function and pathological response of B cells in SARS-CoV-2 infection and re-infection. Then, we structure the immunity responses that B cells mediated in peripheral tissues. Furthermore, we discuss the role of B cells during vaccination including the effectiveness of antibodies and memory B cells, viral evolution mechanisms, and future vaccine development. This review might help medical workers and researchers to have a better understanding of the interaction between B cells and SARS-CoV-2 and broaden their vision for future investigations.
Collapse
Affiliation(s)
- Shiru Chen
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science Technology, Wuhan, China
- Department of Internal Medicine, The Division of Gastroenterology and Hepatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Guan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science Technology, Wuhan, China
| | - Fabio Candotti
- Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Kamel Benlagha
- Institut de Recherche Saint-Louis, Université de Paris, Paris, France
| | - Niels Olsen Saraiva Camara
- Laboratory of Human Immunology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Andres A. Herrada
- Lymphatic and Inflammation Research Laboratory, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomedicas, Universidad Autonoma de Chile, Talca, Chile
| | - Louisa K. James
- Centre for Immunobiology, Bizard Institute, Queen Mary University of London, London, United Kingdom
| | - Jiahui Lei
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science Technology, Wuhan, China
| | - Heather Miller
- Cytek Biosciences, R&D Clinical Reagents, Fremont, CA, United States
| | - Masato Kubo
- Laboratory for Cytokine Regulation, Center for Integrative Medical Science (IMS), Rikagaku Kenkyusho, Institute of Physical and Chemical Research (RIKEN) Yokohama Institute, Yokohama, Kanagawa, Japan
| | - Qin Ning
- Department of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science Technology, Wuhan, China
| |
Collapse
|
4
|
Hao Y, Gu Z, Yu Z, Schomann T, Sayedipour S, Aguilar JC, ten Dijke P, Cruz LJ. Photodynamic Therapy in Combination with the Hepatitis B Core Virus-like Particles (HBc VLPs) to Prime Anticancer Immunity for Colorectal Cancer Treatment. Cancers (Basel) 2022; 14:2724. [PMID: 35681703 PMCID: PMC9179923 DOI: 10.3390/cancers14112724] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/19/2022] [Accepted: 05/25/2022] [Indexed: 12/24/2022] Open
Abstract
Photodynamic therapy (PDT), which combines light and oxygen with a photosensitizer to induce reactive oxygen species (ROS)-mediated killing of primary tumor cells, benefits from non-invasive properties and its negligible toxicity to surrounding healthy tissues. In this study, we have shown that the second-generation photosensitizer FOSCAN can be internalized by tumor cells and effectively induce tumor cell death when exposed to laser irradiation in vitro. In addition, these dying tumor cells can be phagocytosed by dendritic cells and lead to their activation and maturation as assessed by in vitro co-culture models. While PDT induces immunogenic tumor cell apoptosis, its application for the treatment of tumors located in deep tissues and advanced malignancies has been limited. In this study, we demonstrate that hepatitis B core virus-like particles (HBc VLPs) can serve as a vaccine to enhance PDT-induced anti-cancer immunity by priming humoral immune responses and inducing CD8+ T cell responses. The combination of PDT and HBc VLPs increased the survival rate of MC-38 tumor-bearing mice to 55%, compared to 33% in PDT alone and no tumor-free mice in vaccine alone. Moreover, the combination effectively prevented tumor recurrence in vivo through enhanced immune memory T cells after therapy. Therefore, as both are clinically approved techniques, this combination provides a promising strategy for cancer therapy.
Collapse
Affiliation(s)
- Yang Hao
- Translational Nanobiomaterials and Imaging (TNI) Group, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (Y.H.); (Z.G.); (Z.Y.); (T.S.); (S.S.)
| | - Zili Gu
- Translational Nanobiomaterials and Imaging (TNI) Group, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (Y.H.); (Z.G.); (Z.Y.); (T.S.); (S.S.)
| | - Zhenfeng Yu
- Translational Nanobiomaterials and Imaging (TNI) Group, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (Y.H.); (Z.G.); (Z.Y.); (T.S.); (S.S.)
| | - Timo Schomann
- Translational Nanobiomaterials and Imaging (TNI) Group, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (Y.H.); (Z.G.); (Z.Y.); (T.S.); (S.S.)
- Percuros B.V., Zernikedreef 8, 2333 CL Leiden, The Netherlands
| | - Sana Sayedipour
- Translational Nanobiomaterials and Imaging (TNI) Group, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (Y.H.); (Z.G.); (Z.Y.); (T.S.); (S.S.)
| | - Julio C. Aguilar
- Center for Genetic Engineering and Biotechnology, CIGB, Havana 10600, Cuba;
| | - Peter ten Dijke
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, Einthovenweg 20, 2300 RC Leiden, The Netherlands
| | - Luis J. Cruz
- Translational Nanobiomaterials and Imaging (TNI) Group, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (Y.H.); (Z.G.); (Z.Y.); (T.S.); (S.S.)
| |
Collapse
|